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Quadratic Residues and Prime Numbers

For integers a and b, we write a | b to indicate that a evenly divides b, and a - b to indicate
that a does not divide b. (For example, 2 | 4 and 4 - 2.)

Let p be a prime number. An integer a is called a quadratic residue modulo p if there
exists an integer x with p | x2 − a. For example, if we take p = 5, then 0, 1, and 4 are
quadratic residues modulo 5, as 5 | 02 − 0 = 12 − 1 = 22 − 4.

1. a. (1 point.) Explain why for every integer x, there must be an integer k such that
x is equal to one of 5k, 5k + 1, 5k + 2, 5k + 3, or 5k + 4.
Solution. Using division with remainder, we can write x = 5k + r, where 0 ≤
r ≤ 4. Thus we have x in the desired form.

b. (1 point.) Explain why every integer of the form 5k, 5k + 1, or 5k + 4 is a
quadratic residue modulo 5.
Solution. For a = 5k we may take x = 0 in the definition of a quadratic residue;
we then have 5 | x2 − a = −5k as desired.
For a = 5k+1 we may take x = 1, as we obtain 5 | 1−(5k+1) = −5k. Similarly
for a = 5k + 4 we may take x = 2.

c. (2 points.) Using part (a), show that 2 and 3 are not quadratic residues modulo
5. Explain why every number of the form 5k + 2 or 5k + 3 is not a quadratic
residue modulo 5.
Solution. We show that 2 is not a quadratic residue modulo 5 by contradiction.
Suppose there exists x such that 5 | x2 − 2. Write x = 5k + r, so that x2 =
25k2+10kr+r2 = 5(5k2+2kr)+r2. Then we must have 5 | 5(5k2+2kr)+r2−2,
so that 5 | r2 − 2. But we only have 5 possibilities for r, none of which work: 5
does not divide -2, -1, 2, 7, or 14. Hence 2 cannot be a quadratic residue modulo
5. An analogous argument shows that 3 is not a quadratic residue modulo 5
either.
As 5 | x2−a iff 5 | x2− (a+5k), replacing 2 by 2+5k or 3 by 3+5k in the above
arguments doesn’t change their validity. Hence no number of the form 5k + 2 or
5k + 3 is a quadratic residue modulo 5.

Given p and a as above, we write(
a

p

)
=

 1 if a is a quadratic residue modulo p and p - a;
0 if p | a
−1 if a is not a quadratic residue modulo p.

This notation is commonly called the Legendre symbol. Do not confuse this with the
fraction a/p!1

2. a. (1 point.) Compute
(
2
5

)
and

(
2
7

)
.

1Yeah, this notation isn’t the best. Unfortunately, it’s traditional.
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Solution. By 1(c), we know that 2 is not a quadratic residue modulo 5. Hence(
2
5

)
= −1.

We have 7 | 32 − 2, so 2 is a quadratic residue modulo 7. Hence
(
2
7

)
= 1.

b. (1 point.) Explain why
(

a2

p

)
= 1 for all primes p and integers a with p - a.

Solution. Taking x = a in the definition of a quadratic residue, we have p |
a2 − a2 = 0 for all primes p and integers a. Hence a2 is always a quadratic

residue modulo p; if we further assume that p - a then
(

a2

p

)
= 1.

c. (2 points.) Show that if p | a− b, then
(

a
p

)
=
(

b
p

)
.

Solution. Suppose that
(

a
p

)
= 1. Then a is a quadratic residue modulo p, so

there exists x with p | x2 − a. Hence p | (x2 − a) + (a − b) = x2 − b, so b is a
quadratic residue modulo p. Furthermore, if p - a and p | a − b, then p - b, so(

b
p

)
= 1.

If
(

a
p

)
= 0, then p | a. Hence p | a + (b− a) = b, so

(
b
p

)
= 0.

If
(

a
p

)
= −1, then there does not exist x with p | x2− a. If there existed x′ with

p | x2 − b, then we would have p | (x2 − b) + (b − a) = x2 − a, a contradiction.

Hence b is not a quadratic residue modulo p, and so
(

b
p

)
= −1.

3. (3 points.) Suppose that p > 2. Explain why exactly (p + 1)/2 of the numbers
{0, 1, 2, · · · , p−1} are quadratic residues modulo p. (Hint: if a is a quadratic residue,
factor the polynomial x2 − a.)

Solution. Consider the pairs (0, 0), (1, 1), · · · , (x, x2), · · · , (p − 1, 1), where x2 is

the unique number between 0 and p − 1 such that p | x2 − x2. For example, as

p | (p− 1)2 − 1 = p2 − 2p, we have (p− 1)2 = 1.
Then the number of quadratic residues among {0, 1, 2, · · · , p − 1} is clearly the

number of distinct second elements among all these pairs. Clearly x2 = (p− x)2, as
(p − x)2 = p2 − 2px + x2. Hence 1 and p − 1 have the same second element, and
similarly for 2, p − 2 and so on. There are (p − 1)/2 of these pairs, and all of them
have nonzero second element, as if p | x2 then p | x.

Now we claim that no other pairs have equal second element. For if x 6= y have
equal second elements x2, y2, then p | 0 = x2− y2. Hence p | x2− y2 = (x− y)(x+ y),
and thus either p | x − y or p | x + y. Note that as x, y ∈ {0, · · · , p − 1} we have
0 < |x− y| < p and thus p - x− y. Hence p | x + y, and thus y = p− x. So no other
pairs have equal second elements. Throwing in the second element of zero from the
pair (0, 0) does not give us any more collisions, as noted above, and hence there are
(p− 1)/2 + 1 = (p + 1)/2 quadratic residues among {0, 1, 2, · · · , p− 1}.

4. (4 points.) Using the result of question 3, show that for any prime number p there
must exist positive integers a, b with p | a2 + b2 + 1.
Solution. If p = 2 the result is clear: take a even and b odd.
Now if p > 2, then exactly (p + 1)/2 elements of the set {0, 1, 2, · · · , p − 1} are

quadratic residues. The map x 7→ p − 1 − x maps this set to itself bijectively, and
hence by the pigeonhole principle there exists c such that c and p−1−c are quadratic
residues. Thus there exist integers a, b such that p | a2 − c and p | b2 − (p − 1 − c).
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Hence we have

p | (a2 − c) + (b2 − p + 1 + c) = a2 + b2 + 1− p,

and hence p | a2 + b2 + 1. We may clearly take a, b to be positive.

A celebrated theorem of Euler gives a somewhat convenient way to calculate Legendre
symbols:

Euler’s Criterion. Let p > 2 be a prime, and let a be an integer. Then

p |
(
a

p

)
− a(p−1)/2.

To see how to use this to compute Legendre symbols, let’s calculate
(
2
3

)
. We know that(

2
3

)
− 21 must be divisible by 3. As

(
2
3

)
must be 1 or -1, it follows that

(
2
3

)
= −1. Hence 2

is not a quadratic residue modulo 3.

5. (3 points.) Show that
(
−1
p

)
= 1 if p = 2 or p is of the form 4k + 1 and

(
−1
p

)
= −1

if p is of the form 4k + 3.

Solution. Clearly
(−1

2

)
= 1; now suppose p > 2. Then we have p |

(
−1
p

)
−

(−1)(p−1)/2. As p > 2 the only way that p can divide the difference of
(
−1
p

)
and

(−1)(p−1)/2 is if they are equal to each other. Hence we have
(
−1
p

)
= (−1)(p−1)/2. Thus

if p = 4k+1 then
(
−1
p

)
= (−1)2k = 1, and if p = 4k+3 then

(
−1
p

)
= (−1)2k+1 = −1.

6. (5 points.) Show that
(

a
p

)(
b
p

)
=
(

ab
p

)
.

Solution. The statement is obvious for p = 2 - there are only 4 cases to check and
they are all immediately clear. Now suppose p > 3.

Then we have p |
(

a
p

)
− a(p−1)/2, and hence p |

(
a
p

)(
b
p

)
− a(p−1)/2

(
b
p

)
. Similarly,

p |
(

b
p

)
− b(p−1)/2, and hence p | a(p−1)/2

(
b
p

)
− a(p−1)/2b(p−1)/2. Hence we have

p |
[(

a

p

)(
b

p

)
− a(p−1)/2

(
b

p

)]
+

[
a(p−1)/2

(
b

p

)
− a(p−1)/2b(p−1)/2

]
=

(
a

p

)(
b

p

)
−(ab)(p−1)/2.

We also have p |
(

ab
p

)
− (ab)(p−1)/2, and thus

p |
[(

a

p

)(
b

p

)
− (ab)(p−1)/2

]
−
[(

ab

p

)
− (ab)(p−1)/2

]
=

(
a

p

)(
b

p

)
−
(
ab

p

)
.

As p > 2 and as the two terms in the rightmost expression are equal to ±1, they

must be equal. Hence
(

a
p

)(
b
p

)
=
(

ab
p

)
as desired.

7. (6 points.) Let p be a prime of the form 4k + 3. Using the above results, show that

if there exist integers a, b with p | a2 + b2, then p | a and p | b. (Hint: how are
(
−1
p

)
and

(
−b2
p

)
related?)
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Solution. Suppose that p - a, b; that is,
(

a
p

)
,
(

b
p

)
6= 0. As p | a2 + b2 = a2− (−b2),

we know that −b2 is a quadratic residue modulo p, and so
(
−b2
p

)
= 1. By above we

have
(
−b2
p

)
=
(
−1
p

)(
b2

p

)
. We have

(
b2

p

)
= 1, and thus

(
−1
p

)
= 1, contradicting the

hypothesis that p = 4k + 3. Hence it must be the case that p | a, b.

The second famous theorem concerning the Legendre symbol is generally credited to Gauss,
and is known as the law of quadratic reciprocity:

Quadratic Reciprocity. Let p 6= q be odd prime numbers. Then(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .

This theorem can be extended to the case q = 2 and p odd, in which case it gives(
2

p

)
= (−1)

p2−1
8 .

8. (6 points.) Calculate, with explanation,
(

42
2017

)
. Solution. We have(

42

2017

)
=

(
2

2017

)(
3

2017

)(
7

2017

)
.

We have 16 | 2017 − 1, and hence 16 | 20172 − 1 so that 2 | (20172 − 1)/8. Hence(
2

2017

)
= 1 by the q = 2 case above.

Now we turn to the
(

3
2017

)
term. As 8 | 2017− 1, by quadratic reciprocity we have(

3
2017

) (
2017
3

)
= 1. As

(
2017
3

)
=
(
1
3

)
= 1 it follows that

(
3

2017

)
= 1.

Finally we calculate
(

7
2017

)
. We have similarly to the 3 case that

(
7

2017

) (
2017
7

)
= 1.

As 2016 = 2100 − 84, we have
(
2017
7

)
=
(
1
7

)
= 1. Hence

(
7

2017

)
= 1, and thus(

42
2017

)
= 1.

9. (7 points.) Show that if p is a prime and n is an integer with p | n2 + n + 1, then
either p = 3 or p = 6k + 1 for some positive integer k. (Hint: multiply by 4.)
Solution. Note that n2 + n + 1 is odd for all n, and so p 6= 2. Now suppose p > 3.
Taking the hint, we have p | 4n2 + 4n+ 4 = (2n+ 1)2 + 3. Hence −3 is a quadratic

residue modulo p. Hence we have

1 =

(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)(p−1)/2

(
3

p

)
.

By quadratic reciprocity we have
(

3
p

) (
p
3

)
= (−1)2(p−1)/4; as

(
3
p

)
= ±1 we have thus(

3
p

)
=
(
p
3

)
(−1)(p−1)/2. Hence

1 =

(
−3

p

)
=
(p

3

)
(−1)2(p−1)/2 =

(p
3

)
(−1)p−1 =

(p
3

)
,

and thus p is a quadratic residue modulo 3. Hence p = 3j + 1. As p must be odd,
we must have j = 2k even, and thus p = 6k + 1.
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10. (8 points.) Let k be an integer, and suppose that p is an odd prime with p | 5k2 + 1.

Show that the tens digit of p must be even. (Hint: what must
(
−5
p

)
be?)

Solution. Note that if p = 3 then the hypothesis is trivially satisfied. Hence
suppose p > 5.

Using the same trick as in the last problem, we have p | 25k2+5, and thus
(
−5
p

)
= 1.

We have
(
−5
p

)
=
(
−1
p

) (
p
5

)
, and thus as

(
−1
p

)
= (−1)(p−1)/2 we have by quadratic

reciprocity that

1 =

(
−5

p

)
= (−1)(p−1)/2 ·

(p
5

)
(−1)(p−1) = (−1)(p−1)/2

(p
5

)
.

Hence we have two cases: first, that 4 | p−1 and
(
p
5

)
= 1, and second, that 2 | p−1

but 4 - p− 1 and
(

5
p

)
= −1. Note that

(
1
5

)
=
(
4
5

)
= 1 and

(
2
5

)
=
(
3
5

)
= −1.

Hence in the first case we have either p = 20k+1 or p = 20k+9, and in the second
case we have either p = 20k + 3 or p = 20k + 7. Thus the tens digit of p must be
odd, as desired.


