{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 1 14 189 0 14 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 258 "" 0 1 184 0 112 0 1 0 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 260 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 261 "" 0 1 85 23 110 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 262 "" 0 1 184 0 112 0 1 0 0 0 0 0 0 0 0 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 20 " " } {TEXT 256 32 "Complex Transcendental Functions" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 " " {TEXT -1 28 " Load the plots package." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "with(plots):" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 257 32 "P art 1: The exponential function" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 14 "1. Increase " }{XPPEDIT 18 0 "n" "6#%\" nG" }{TEXT -1 94 " one step at a time to see how the polynomial approx imation compares with the actual function." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 200 "n:=1;\nP:=z->sum (z^k/k!,k=0..n);\ngraph1a:=conformal(exp(z),z=-2-2*I..2+2*I, grid=[16, 8], scaling=constrained):\ngraph1b:=conformal(P(z),z=-2-2*I..2+2*I, gr id=[16,8], color=blue, scaling = constrained):\n" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "display(\{graph1a,graph1b\});" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 1 "\n" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 94 "2. \+ Look at the conformal plot of the exponential function alone. Watch th e scale on the plot." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 83 "d:=0.5;\nconformal(exp(z), z =-d - d*I..d + d*I,numxy=[50,50], scaling=constrained);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 71 "3. Now lo ok at the graph of the magnitude of the exponential function." }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "complexplot3d(exp(z), z=-1 - I..1 + I);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 60 "4. The \+ real and imaginary parts of the exponential function" }}{PARA 0 "" 0 " " {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 117 "u:=(x,y) ->Re(exp(x+I*y));\nv:=(x,y)->Im(exp(x+I*y));\nplot3d(u(x,y),x=-6..6, y =-6..6);\nplot3d(v(x,y),x=-6..6, y=-6..6);" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 28 "5. The exp onential of a sum" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 20 "z1:=1+I; z2:=2-3*I;\n" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 72 "n:=10;\nsum((z1+z2)^k/k!,k=0..n)-sum(z1^k/k!,k =0..n)*sum(z2^k/k!,k=0..n):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "\nev alf(abs(%));" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 49 "6. Write your explanation here. You do n ot need " }{TEXT 258 7 "Maple's" }{TEXT -1 35 " symbolic capability fo r this step." }}{PARA 0 "" 0 "" {TEXT -1 1 " " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 49 "7. Writ e your explanation here. You do not need " }{TEXT 262 7 "Maple's" } {TEXT -1 35 " symbolic capability for this step." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 259 45 "Part 2: The complex sine and cosine func tions" }}{PARA 0 "" 0 "" {TEXT 260 1 " " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 234 "1 & 2. Look at the conformal plot of the sine function. Be sure to click each time on the 1:1 button to obtain the proper asp ect ratio. Watch the scale on the plot. For comparison we give the con formal plot for the identity function." }}{PARA 0 "" 0 "" {TEXT -1 0 " " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 84 "d:=0.5;\nconformal(z, z =-d - d*I..d + d*I);\nconformal(sin(z), z =-d - d*I..d + d*I);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 55 "3 & 4. The graph of the magnitude of the sine function" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "complexplot3d(sin(z), z=-3 - I..3 + I);" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 69 "5 & 6. The real and imaginary parts of the sine and cosine functions" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 52 "u:=(x,y)->Re(sin(x+I*y));\nv:=(x,y)->Im(sin(x+I*y));\n" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "plot3d(u(x,y),x=-6..6, y=-2..2);" }} {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "plot3d(v(x,y),x=-6..6, y=-2..2);" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 90 "7. Symbolic descriptions of the real and imaginary par ts of the sine and cosine functions" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "evalc(Re(sin(x+I*y)));evalc(Im(sin(x+I*y)));" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "evalc(Re(cos(x+I*y)));evalc( Im(cos(x+I*y)));" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 48 "Here are plots of the real hyperbo lic functions." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 45 "plot(sinh(t),t=-3..3);\nplot(cosh(t),t=-3..3); " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 261 15 "Part 3: Summary" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "2 0 0" 12 } {VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }