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Series 4: Alternating Series#

 The series that you have studied so far in this course were series with only positive
terms, except for some geometric series.  We have learned that, if a series converges,
then the individual terms much approach 0; more explicitly, if the series
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On the other hand, we have also seen that the terms, , may go to 0, but the series,+5! !
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5+ , could still diverge, such as happens with the harmonic series , which

diverges even though  .  We shall see that the result is very different if,lim
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instead of having all positive terms, the signs of the terms alternate.

Definition.  A series  is said to be an  if the signs of the terms!
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alternate between positive and negative.

Examples.  The following series are all examples of alternating series:
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Because the last example in this list is a geometric series, we know that it converges
and that its sum is .  Notice in the first two examples how the alternating" #
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#
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signs can be represented in the shorthand notation.  In fact if we are writing a
mathematical statement about alternating series in general, we may want to exhibit the
alternating signs in that manner.  For example, if we stipulate that all the numbers
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are positive, then the expression  represents an alternating

series.
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Comparison of the harmonic series and the alternating harmonic series.
 So that we can get an understanding of what effect the alternating signs have on a
series, we will look closely at the partial sums of the harmonic series and the corre-
sponding alternating harmonic series.

 In long hand here are the two series we are comparing.
  The harmonic series:     " � � � �á" " "

# $ %

  and the alternating harmonic series: " � � � �á" " "
# $ %

 First, compare the partial sums of these two series.

   Harmonic series  Alternating harmonic series

8 W œ 8 W œ8 8
5œ" 5œ"

8 8
"
5 5

�"! !
1 1 1 1
2 1.5 2 0.5
3 1.83333 3 0.83333
5 2.28333 5 0.7
10 2.92897
50 4.49921
100 5.18738
200 5.87803
400 6.56993
800 7.26245

  a b5�"

8333
10 0.64563
50 0.68325
100 0.68817
200 0.69065
400 0.69190
800 0.69252

The partial sums of the harmonic series are increasing without bound—albeit they are
increasing very slowly.  In fact one reason this series is so interesting is that, even
though we know that it diverges, it seems that it “almost converges.”  The terms  just"

5
weren't quite small enough to make the series converge.  On the other hand, look at the
partial sums of the alternating harmonic series.  These partial sums are a strong
indication that this series is converging.
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Why should the alternating harmonic series converge?
 Intuitively, what happens when we make the signs of a series alternate, as we did
above in creating the alternating harmonic series from the harmonic series, is that we
improve the chances of getting convergence:  the alternating signs mean that we get
some cancellation.  The cancellation, combined with the fact that the individual terms
are decreasing in size to zero, is enough to cause the series to converge.  The degree to
which the cancellation affects the series is evident when you note that the sum of the
alternating harmonic series does not appear to be very large.

The argument for convergence.

 We will look more closely at the alternating harmonic series, !
5œ"

8
�"
5

a b5�" , and we will

argue why it must converge.  Consider the partial sums, one-by-one.
(1)  We begin with .W œ ""

(2)  To get  we subtract  from .  Note that the number we subtracted wasW W# "
"
#

smaller than the first term.
(3)  To get  we add  to the previous partial sum.  Note that the term weW$ "

$
added was smaller than the last one we subtracted.
(4)  To get  we subtract  from the previous partial sum.  Note that the termW% "

%
we subtracted was smaller than the last one we added.

The process continues.  We alternate adding and subtracting, always by a smaller and
smaller amount.  The partial sums have the following relationship to each other:

W � W � W � á á � W � W � W# % ' & $ "

In particular the odd partial sums are decreasing and the even partial sums are increas-
ing.  If the partial sums are actually approaching a limit, then that limit must lie in the
interval between these odd and even partial sums.  If we can argue that this interval
between the odd and even partial sums must be shrinking to length 0, then there must
be a limiting value of the sequence of partial sums!
 Let  and  be any two consecutive partial sums.  How far apart are theseW W8 8+1

numbers?  Well, to get  from  you simply add the term:   .  ItW W Ð8 � "Ñ8 8
=> �"

8�"+1
a b8�"�"

follows that the  and  issize of the difference between W W8 8+1¸ ¸W � W œ8�" 8
"
8�"

Thus, as , the gap between the odd and even partial sums approaches 0.  We have8p_
shown that the sequence of partial sums for the alternating harmonic series must
converge!
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 The illustration to the right shows
graphically, for the alternating har-
monic series, the relationship between
the odd partial sums, the even partial
sums, and the sum of the entire series.
The number, , denoting which partial8
sum is being computed, is on the
horizontal axis.  The sum of the series
is represented by the horizontal
asymptote, the odd partial sums by the
points plotted above the asymptote, and
the even partial sums by the points
plotted below the asymptote.

How big is the error when we approximate the sum of the alternating harmonic
series with a partial sum?
 We get a useful bonus from our convergence argument above.  Even though we can't
express the sum of series above exactly, we can approximate the sum as accurately as
we please.  Let's think of plotting the values the partial sums and the actual sum on a
number line, and let's consider the distances between these sums.  The actual sum of
the series must lie between  and  for any choice of  (in other words, the sum ofW W 88 8+1
the series is between any two consecutive partial sums).  Because the distance between
W W W8 8 8

" "
8�" 8�" and  is , the distance from the actual sum to  must be less than .  The+1

situation is pictured below:

    even8 8 odd

For example, suppose we approximate    with    ! !
5œ" 5œ"

_
�" �"
5 5

a b a b5�" 5�"500
œ Þ'*#"%)")!á Þ

We can conclude from our argument above that the error is less than ; i.e.,"
&!"

    error œ W � W � Þ¸ ¸&!!
"
&!"
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Alternating series in general.
 Now that we have considered in detail what happens with the alternating harmonic
series, we shall see what we can say about alternating series in general.  We will use
the following notation:

In this context we use the symbols   to represent + ß + ß + ßá" # $ positive numbers.
By assuming that the  are all positive, we know that when we write+5!
5œ"

_
5�"

5Ð�"Ñ +  we are representing an alternating series (i.e., we don't have to

worry that some negative signs could be “hidden” in the terms ).+5

 We are ready to address the question:  under what conditions can we be certain that
!
5œ"

_
5�"

5Ð�"Ñ +  will converge?  Look at the argument that we used for the alternating

harmonic series.  What properties of that series were crucial in making the argument
for convergence?  Of course, there were the alternating signs—and we have those in
the general alternating series, too.  The only other property of the alternating harmonic
series that we used was the fact that the terms  were decreasing in size and"

5
approaching 0.  (Could a sequence of terms decrease in size without approaching 0?
Of course.  And that's not good enough here because of the -term test.)  Those are8>2
the only properties we need:  if we know that the general terms  are  de-+5 strictly
creasing to  (i.e., besides “decreasing to ,” no two can be equal), then the same! !
argument we used for the alternating harmonic series will work for the general case.
 Don't worry.  We will not repeat the argument.  Here is the general result:

Alternating Series Theorem.
 It the terms,  + ß + ß + ßá" # $ , are all positive and strictly decreasing to 0, then the
series

!
5œ"

_
5�"

5Ð�"Ñ +

must converge.  Furthermore, if we let  represent the sum of the series and  the W W 88
>2

partial sum, then ¸ ¸W � W � +8 8�".
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Example 1.

 Consider the series !
5œ"

_
Ð�"Ñ

5

5�"È  .  To put this series into the notation of the theorem we

would take .  The terms  are obviously strictly decreasing to 0 and the+ œ5 " "
5 5È È

series is alternating; therefore, the series must converge.  Now suppose we use  toW"!!
approximate the sum.  What is the approximation and what can we say about the
error?

   (from a calculator)W œ œ Þ&&&!#$'á"!!
5œ"

"!!
Ð�"Ñ

5
! 5�"È

And we know that the error must be less than ; i.e.,"
"!È 1

     .error œ ¸ ¸W � W � + œ"!! "!"
"
"!È 1

Example 2.

 Suppose you want to approximate the sum of    with an error less than .001.!
5œ"

_
Ð�"Ñ

5

5�"È
How many terms must you include in the partial sum?
 Solution:  If we use  to approximate this sum, then the error will be less thanW8
"
8�"È Þ Because we want the error to be less than .001, we set up the inequality

     "
8�"È Ÿ Þ!!"

and solve it for :8

" Ÿ ÐÞ!!"Ñ 8 � "
"
Þ!!"

Ÿ 8 � "

"!!! Ÿ 8 � "
Ð"!!!Ñ Ÿ Ð8 � "Ñ

Ð"!!!Ñ � " Ÿ 8

È
È
È

#

#

Therefore, if we compute a partial sum with at least    terms, then ourÐ"!!!Ñ � "#

approximation will have an error of less than .001 .

Absolute convergence.
 We have seen that changing the signs of the terms in a series from all positive to
alternating may change the answer to the convergence question.  What happens if we
take a series with alternating signs and make all the terms positive?  We have only to
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look at examples we've already considered to see what could happen.  The possibilities
are illustrated by the cases we reiterate below:

      ! ! !¹ ¹
5œ" 5œ" 5œ"

_ _ _
�" �"
5 5 5

"a b a b5�" 5�"

 converges, but  diverges.œ

     converges to , and    converges to 2.! ! !ˆ ‰ ˆ ‰ ˆ ‰¹ ¹
5œ 5œ! 5œ!

_ _ _
" # " "
# $ # #
5 5 5

0
� � œ

It has become clear that, because of cancellation, mixing the signs of the terms gives
the series a better chance of converging than if all the terms were positive.  In the

second case above we say that  converges absolutely, because even if we take!ˆ ‰
5œ!

_
"
#
5�

the absolute value of each term to create the new series , this new series still!ˆ ‰
5œ!

_
"
#
5

converges.  That result tells us something:  the convergence of  did not de-!ˆ ‰
5œ!

_
"
#
5�

pend upon positive/negative cancellation of terms; rather, the terms  become soˆ ‰� "#
5

small as  that the series would converge even if there had been no cancellation.5p_
 Contrast the case that we just described with that of the alternating harmonic series,
!
5œ"

_
�"
5

a b5�"  .  We know from the Alternating Series Theorem that this series converges.

But the fact that      diverges, tells us that the convergence of the! !¹ ¹
5œ" 5œ!

_ _
Ð�"Ñ
5 5

"5�"
œ

alternating harmonic series did, indeed, depend upon the positive/negative cancellation
of terms.  This contrast in the manner of convergence motivates us to make the
following definition.

Definition.  Suppose a series  converges.  (The terms { } can have any sign.)  If!
5œ"

_

5 5+ +

the series   also converges, then we say that   .  On! !¹ ¹
5œ" 5œ"

_ _

5 5+ + converges absolutely

the other hand, if the series   diverges, then we say that  ! !¹ ¹
5œ" 5œ"

_ _

5 5+ + converges

conditionally.
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Example 3.

 (1)    converges absolutely.!ˆ ‰
5œ!

_
"
#
5�

 (2)  The alternating harmonic series converges conditionally.

 (3) Suppose the geometric series  converges.  By the Geometric Series Theorem!
5œ!

_
5<

we know that  thus, by the same theorem,   also converges.¸ ¸ ¸ ¸!< � "à <
5œ!

_
5

Therefore, every geometric series which converges, converges absolutely.

 (4) !
5œ"

_
Ð�"Ñ

5

5�"È  converges conditionally.  We know the convergence is conditional

because the Alternating Series Theorem implies that    converges, and!
5œ"

_
Ð�"Ñ

5

5�"È
we know from the Integral Test that  diverges.!

5œ"

_

5
1È

 (5)    converges absolutely.!
5œ"

_
Ð�"Ñ
5
5�"

#

Implications of absolute convergence.
 We have seen that absolute convergence tells us something about the sizes of the
terms being added:  if a series converges absolutely, then the terms, , become so+5
small as , that positive/negative cancellation is not necessary to ensure that 5p_ +!

5œ"

_

5

converge.  In other words, if   converges absolutely, then we could change the!
5œ"

_

5+

signs of any or all terms in any way we please and still get a series that would
converge (although we would be changing the sum to which it converges).  This
observation can be said in a slightly different—but equivalent—way in the following
theorem.
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Absolute Convergence Theorem.

If the series   converges, then the series   must also converge.! !¸ ¸
5œ" 5œ"

_ _

5 5+ +

It is common to think of this theorem as stating that “Absolute convergence implies
convergence.”  Of course, you might ask, “So what? If a series converges, we know
we can approximate the sum with a partial sum.  If it diverges, then forget looking for
an approximation.  Why should we care about this distinction between absolute and
conditional convergence?”   The next example illustrates how we can use this theorem,
and the comments that follow it hint at why mathematicians have made a distinction
between absolute and conditional convergence.

Example 4.

 Does the series  converge?  We know that   converges Because! !
5œ" 5œ"

_ _
=38Ð5Ñ
5 5# #

1 Þ

! Ÿ Ÿ 5   "¹ ¹ ¹ ¹!=38Ð5Ñ =38Ð5Ñ
5 5 5

5œ"

_
# # #

1  for all ,  the series   converges by the Comparison

Test.  Thus,    must converge by the Absolute Convergence Theorem.!
5œ"

_
=38Ð5Ñ
5#

 Why did we use absolute convergence?  Note that the series    looks very!
5œ"

_
=38Ð5Ñ
5#

similar to a -series, but we can't use the  series result, because of the terms, ,: : =38Ð5Ñ
which change in value and change in sign.  Furthermore, the direct comparison,
! ! ! !
5œ" 5œ" 5œ" 5œ"

_ _ _ _
=38Ð5Ñ =38Ð5Ñ
5 5 5 5# # # #Ÿ 1 1 does not help, even though   converges, because  has

negative terms; i.e., the sequence of partial sums for  is not an increasing!
5œ"

_
=38Ð5Ñ
5#

sequence, so being bounded is not enough to ensure convergence.

Some comments on theory.
 We are accustomed to the associative and commutative properties of addition.  But it
turns out that neither of these properties hold for conditionally convergent series.  For
example, the series  converges toÐ& � & Ñ � Ð& � & Ñ � Ð& � & Ñ � Ð& � & Ñ �á

" " " " " " "
# # $ $ % % &

& � " œ % & � Ð& � & Ñ � Ð& � & Ñ � Ð& � & Ñ �á, whereas the series converges
" " " " " "
# # $ $ % %

to .  [You can check the partial sums—just pay close attention to where the&
parentheses are.]  In fact a remarkable result of advanced calculus is that if a series is
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conditionally convergent, then we can rearrange the terms to make it add up to any
number we please!  But there is some good news awaiting you in advanced calculus:
if a series is absolutely convergent, then the associative and commutative laws of
(infinite) addition hold true.  In particular, all rearrangements and regroupings of an
absolutely convergent series have the same sum.
 We mention these matters, not for you to try to prove them (that's hard) or to be
overly concerned about them, but to give you another idea as to why mathematicians
have made a distinction between absolute and conditionally convergent series.

The Ratio Test revisited.
 In our earlier presentation of the Ratio Test we considered only series of positive
terms.  Now that we have the Absolute Convergence Theorem in hand, we can drop
the “positive” part of the previous hypothesis.

The Generalized Ratio Test

 Suppose the series  has no zero terms.  Consider the limit:    L .!
5œ"

_

5
5Ä_

l+ l
+ l+ œ lim 5�"

5¸
  If L 1, then the series  converges .� +!

5œ"

_

5 absolutely

  If L 1, then the series  diverges.� +!
5œ"

_

5

The hypothesis that the series must have no zero terms is really no restriction at all.  If
there are some zeros in the series, we just leave them out.

The first conclusion follows from combining the earlier version of the Ratio Test and
the Theorem on Absolute Convergence.  The second conclusion follows from the
proof of the Ratio Test, wherein we show that if L , the terms of the series (with or� "
without absolute values) fail the -term test.8th
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Example 5.

 Consider the series .  If we apply the Generalized Ratio Test to the series we!
5œ!

_
Ð�#Ñ
5x
5

get  L . (You should check this result.)  It follows that the seriesœ œ !lim
5Ä_

¹ ¹
¹ ¹
Ð�#Ñ5�"
Ð5�"Ñx

Ð�#Ñ5
5x

converges absolutely.

Example 6.

 For which values of  does the series  converge?B !
5œ"

_
Ð�"Ñ B

5
5�" #5

 Solution:  Using the Generalized Ratio Test we get

     L  .œ œ œ Blim lim
5Ä_ 5Ä_

B 5
5�"

#
º º

º º
Ð�"Ñ B5�"�" #Ð5�"Ñ

5�"

Ð�"Ñ B5�" #5
5

#

We can set , and solve for  to determine which values of  make L less than 1,B � " B B#

and hence make the series converge absolutely.  We find that .�" � B � "
Furthermore, we see that if or , then L 1 and the series must diverge.B � " B � �" �
We have answered the question of convergence for all values of except  and .B �" "
We can treat those as special cases.  If , then the series becomes the alter-B œ „ "
nating harmonic series, which we know converges conditionally.

Exercises.

 For problems 1-6 determine if the series converges.  If it does converge, either
compute the sum (if you can), or approximate the sum with  and find a bound onW50
the error.

1.    !
5œ"

_
Ð�"Ñ
'5x
5�"1 #Þ ! !_ _

5œ" 5œ"

Ð�"Ñ 5 Ð�"Ñ
5�" 5
5�" 5�"

$  $Þ

%Þ &Þ Ð�"Ñ ÐÞ!!" � Ñ 'Þ! ! !Š ‹_ _ _

5œ" 5œ" 5œ#

Ð�"Ñ $ Ð�"Ñ
(

5�" "
5 "�5

5�" 5 5

5 #  
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 In problems 6-10 the series all converge.  Either compute the sum precisely, or
determine which partial sum you must use to approximate the sum with an error less
than .01 and compute the approximation.

(. ! !_ _

5œ" 5œ!

Ð�"Ñ Ð�"Ñ
5 #
5 5

% 5     )Þ

*Þ Ð�"Ñ! !_ _

5œ! 5œ!

Ð�"Ñ
5x #5�"

55
%
#5�"

    "!Þ  
ˆ ‰1

11. Many Taylor Series are alternating; thus, we could use the Alternating Series
Theorem to determine an error bound when we use a partial sum.
 (a)  For values of  in the interval [ , ], how many terms of the Taylor series (withB �" "

base point 0) for would we need to ensure that the error is less than 0.1 ?=38ÐBÑ
 (b) The approximation  is commonly used for small values of .  For=38ÐBÑ ¸ B B

what interval can we be sure that the error is less than 0.05 ?

12.  When we're considering the question of convergence of a series, we can ignore a
finite number of terms at the beginning.  (Of course, we can't ignore any terms when
we're computing the sum.)  For example, you would have to use such a strategy with

the series .  Explain carefully how you know this series must converge, and!_
5œ"

Ð�"Ñ 5
5 �"!!

5�"

#

determine how large  must be for the partial sum, , to approximate the sum with an8 W8
error less than .01 . [Hint:  Watch the conditions of the Alternating Series Theorem.
And you can use derivatives to show when a function is decreasing.]

 For each series below determine all values of  for which the series converges.B

13.      ! ! !_ _ _

5œ" 5œ" 5œ"

B
5x 5

Ð�"Ñ B Ð�"Ñ # B
&

5 5 5 5 5 5

5"%Þ "&Þ

"'Þ BFor which values of  will the first 500 terms of the Taylor Series (about 0) for
68ÐB � "Ñ 68ÐB � "Ñ approximate  with an error less than 0.1 ?
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(ldb, June 20, 2001)

Answers to selected problems

1.  Converges.  0.330977   with an error less than  .W œ á&! 'Ð&"xÑ
1

2.  Diverges by the  Term Test.8>2

4.  Converges to the sum 0.3 exactly.
5.  Diverges by the  Term Test.8>2

7.  Use W œ �!Þ*%*)á$

8.  The exact sum is  .#$
11(b).  �!Þ''* � B � !Þ''*
13.  Converges for all real numbers.
14.  Converges for     .�" � B Ÿ "


