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Newton’s Law of Motion

Purpose

The purpose of this Lab is to introduce you to differential equations. As an impor-
tant application, we will study Newton’s Law of Motion and help you understand
why Newton’s calculations caused a revolution in human thought.

I. Introduction to Differential Equations.

A differential equation is an equation which involves the first derivative or higher
derivatives of an unknown function. Finding the unknown function is called “solv-
ing” the differential equation. We have seen some simple examples already. In the
Laboratory entitled “Introduction to Euler’s Method,” we asked whether we can
find a function y(t) if we know its derivative. In that Lab, we showed how to find
y(t) approximately by using tangent lines. The following example shows that we
may be able to find y(t) by guesswork.

Example 1. Suppose that an unknown function y(t) satisfies
y(t) =t
By differentiating, it is easy to see that the function ¢*/3 satisfies the differential
equation. However, this is not the only function which satisfies y/(t) = t?, since
for any constant ¢, the function
t3

y(t):§+c

also satisfies the differential equation. Thus, the differential equation has infinitely
many solutions, each one corresponding to a different value of ¢. Now, suppose we
know the value of y at t = 0. For example, suppose

y(0) =5

then there is only one function in our family of functions, namely y(t) = t3/3 + 5,
which satisfies both the differential equation and the “initial condition” y(0) = 5.
Several different solutions of the differential equation corresponding to different
initial conditions are shown in Figure 1.

In Example 1, g is called an antiderivative of t?. Thus, the procedure that
we used to solve y/(t) = t? was first to find an antiderivative of 2. Then we

observed that for each choice of ¢, the function % + ¢ was also a solution. In
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FIGURE 1. The solution curves to ¢/(t) = ¢ for the initial conditions

y(0) = 5,y(0) = £,4(0) = 0, and y(0) = —% respectively

general, a good strategy for solving the differential equation y’(t) = f(t) is to find
an antiderivative of f, that is, a function, F'(¢), which satisfies F'(t) = f(¢).
Then, for each choice of ¢, the function

yt) = F(t) + ¢

will satisfy ¢/(t) = f(t). (Can you explain why?) If y(0) is given, we can solve the
algebraic equation y(0) = F(0) + ¢ to find ¢. For instance, in the last example,
f(t)=t* F(t) =13/3, and ¢ = 5.

Example 2. Find the function y(x) which satisfies
y'(z) = 32 +2, and y(0) =4.

By trial and error we find that 2 4+ 2x is an antiderivative of 322 + 2. Thus, every
function of the form
y(z) = 2° + 22 + ¢

satisfies the differential equation. Since
4 =y0) =0 +0+c

we see that ¢ = 4. Thus, the solution of the differential equation which satisfies
y(0) =41is
ylr) = 2° + 2z + 4.
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A differential equation together with an initial condition on the solution is often
called an initial-value problem.

Practice Problems.

(1) Find an antiderivative for each of the following functions:

(a) f(z) =22 +3.

(b) f(z) =22+ 27,

(c) f(x) =2 — Tz +5.
(2) Solve the following initial-value problems:

(a) ¢'(z) =2z +3, y(0) = 4.

(b) ¥/'(z) = 22 + 3, y(0) = —2.

(c) ¥'(x) =2 +a", y(0) = 3.

(d) ¢'(z) = 2% — Tz, y(0) = 1.

ometimes the initial condition is not given at x = ut at some other value
3) S i he initial condition i i 0b h 1

of z. Show how to find the solution of the differential equation y'(z) = 2z + 3
which satisfies y(2) = 5.

The order of a differential equation is the highest derivative that occurs in the
equation. In Examples 1 and 2 we solved first order differential equations. In the
following example we shall solve a second order differential equation.

Example 3. We wish to solve the differential equation
s'(t) = ¢
with initial conditions
s(0) = 2, and s'(0) = 4.

Because solving the differential equation means finding the function s(¢) and be-
cause s”(t) is the second derivative of s(t), we realize that we will have to antidif-
ferentiate twice. An antiderivative for ¢? is ?, thus, as we saw earlier, all functions

of the form ? + b are antiderivatives, where b is a constant. That is, if

(1) sty = /3 + b

then s”(t) = t2. To see that this is true, simply differentiate both sides of (1).
Now, a family of antiderivatives for ¢3/3 + b is t*/12 + bt + ¢ for any constant c.
This suggests that if we define s(t) by the formula

1
s(t) = Et4 + bt + c

then s(t) should satisfy the differential equation s”(t) = t*>. You can check this by
explicit differentiation.
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We shall now use the initial conditions to determine b and c. Substituting ¢t = 0
into s(t) = $5t* + bt + ¢, we find

2
2 =50 =0+0+c
Therefore, ¢ = 2. Substituting ¢t = 0 into s'(t) = t3/3 + b, we find
4 =40)=0+0b
Therefore, b = 4. Thus, the function
s(t) =t/12 + 4t + 2

satisfies both the differential equation and the initial conditions. You can check
this directly.

From this example we can see a strategy for solving differential equations of the
form

s"(t) = f(t)
If we can find a function G which satisfies G”(t) = f(t), then the function
s(t) = G(t) + bt +c

satisfies the differential equation for any choice of the constants b and c¢. For
instance, in Example 3, G(t) = 4t*. To see why this is true, differentiate s(t)
twice. We say that this second order differential equation has a “two-parameter”
family of solutions, since for any choice of the “parameters” b and ¢ we get a
solution of the differential equation s”(t) = f(t). Typically, b and ¢ are determined

from initial conditions as they were in Example 3.

Practice Problems.

(1) Solve the following initial-value problems.
() 4(t) = 3t + 2, y(0) = 4,4/(0) = 1.
(b) y"(t) =t* =5, y(1) = —2,7/(1) = 2.

(2) Write short clear descriptions of the following terms:
(a) differential equation.

(b) antiderivative.

(¢) initial-value problem.

(d) order of a differential equation.

Plug in! In this course you will learn several different methods for solving
initial-value problems. Whatever the method, you can always check that the “so-
lution” really is a solution by plugging it into the differential equation and checking
whether the differential equation is satisfied. Similarly, you can always check that
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the “solution” satisfies the initial conditions by evaluating the solution at the initial
time.

Naming functions and variables. In Example 1 the name of the unknown
function was “y” and the name of the independent variable was “t”. We were trying
to find the unknown function y(¢). In Example 2 the name of the independent
variable was “z”. In Example 3, the name of the unknown function was “s”
and the name of the independent variable was “t”. We were trying to find the
unknown function s(t). What is going on here? The first (and most crucial) point
is that the ideas and methods of calculus do not depend on the names which we
give to functions and variables. If you know how to differentiate the function
f(z) = 32%+5, then you also know how to differentiate the function g(t) = 3t?+5.
Nevertheless, names are very important. Standardized notation is efficient because
one doesn’t need to ask what the symbols mean and it makes the comparison of
different solution techniques easy. Therefore, when we discuss the theory of how
to solve different types of differential equations, we shall usually call the unknown
function y(t). That is, ¢ is the name of the independent variable and y is the
name of the unknown function. On the other hand, in applications it is natural
to give special names to functions and variables which help us remember their
meaning. In physics, we might be interested in h(t), the height of a projectile as
a function of time. In ecology, we might be interested in C(d), the concentration
of a pollutant as a function of the distance from the source. In public policy, we
might be interested in U(7), the number of unemployment claims as a function of
interest rate. Thus, in applying calculus and differential equations to real world
problems; we shall use a wide variety of names for functions and variables.

II. Newton’s Law of Motion.

Newton’s Law of Motion
F = ma

expresses a relationship among the pushes and pulls on an object (the force F),
the mass of the object (m), and the acceleration of the object (a). We shall discuss
Newton’s Law of motion for several special cases in which the object moves along
a line. If the function s(t) gives the position of the object on the line at time
t, then the rate of change of s(¢), namely s'(¢), is called the velocity, and the
rate of change of s'(t), namely s”(t), is called the acceleration. Thus, Newton’s
Law of Motion gives us information about the second derivative of s(t). The
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mathematical problem is to use this information about the second derivative and
information about the object at time ¢t = 0 to calculate s(¢) itself. You will be
asked to make several calculations and to reflect on the philosophical impact of
Newton’s achievements.

Falling Bodies. Suppose that a rock is dropped from a height of 200 feet. We
shall calculate its position as a function of time as it falls to the ground. We
will measure time ¢ in seconds starting at the time of release and we will measure
distance in feet and denote the height above the ground at time t by the function
h(t). Thus, in this case, the “line” referred to above is the vertical line determined
by the initial position of the rock and the place where it hits the ground. The
concepts of velocity and acceleration are already familiar:

h(t) = distance above the ground
h'(t) = rate of change of distance = velocity
R"(t) = rate of change of velocity = acceleration.
We are given the information that A(0) = 200.
We assume that the only force acting on the rock is the force due to gravity. For a
rock this assumption is reasonable; for a feather it would not be reasonable since

the resistance of the air would significantly affect the feather. Near the surface of
the earth, the force of gravity is

F = —mg

where g = 32 feet per second per second. Thus, in this case, Newton’s Law can be
written

mh'(t) = —m(32).

The negative sign indicates that the force pushes in the direction that causes h to
decrease. Notice that m occurs on both sides of the equation above, so dividing
by m, we find

W) = —32.

This is the differential equation satisfied by h(t). Since this is a second order
differential equation, we expect that we will need two initial conditions to determine
the solution. We were told explicitly that

h(0) = 200

. The other condition is implicit in the description of the problem we are trying to
solve. We were told that the rock “is dropped”, which says that it was not thrown
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down or thrown up, but released with initial velocity zero. That is,
n'(0) = 0.

The differential equation, along with the two initial conditions is just the type of
second order initial-value problem that you learned to solve earlier in the Lab.

Problem 1. Solve the initial-value problem for the differential equation and show that
h(t) = —16t% + 200.

Now that we have computed h(t), the height of the rock at all times ¢ (until it hits
the earth), you can use h(t) to calculate other quantities of interest. For example,
the height after 2 seconds is h(2) = (—16)2% + 200 = 136 feet. The distance fallen
in ¢ seconds is:

h(0) — h(t) = 200 — (—16t* +200) = 16t* feet.

Problem 2. For what values of ¢ will h(t) actually represent the height of the rock
above the ground?

Problem 3. Suppose that the rock discussed above is not dropped but instead is
thrown upward (from a platform 200 feet above the ground) with an initial velocity of
100 feet per second.

(a) Let h(t) be the distance above the ground as a function of time. Write down the
differential equation and initial conditions that are to be satisfied by h(t).

(b) Compute h(t).

(c) Compute the height above ground at times ¢t = 1,2,...7.

(d) Compute the time when the rock will hit the ground.

(e) Compute the greatest height above the ground. (Hint: this will happen at the
time when the velocity is zero.)

Notice that the mass m appears on both sides of Newton’s equation of motion for
falling bodies and therefore cancels out. Thus, the motion is independent of the
mass, a fact discovered by Galileo. This is strictly true only in a vacuum since the
resistance of air exerts a force counter to any motion and the resistance depends on
the size and surface properties of the body. The motion does depend on g, which is
32ft/(sec)? on the surface of the earth. If we had asked the same questions on the
surface of the moon, where g = 5ft/(sec)?, the answers would have been different.
For more practice problems on motion under the influence of gravity, see Section
6.5 of your text.
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Motion on a Line. Suppose that an object of mass m moves along a line. The
object could be a ping-ball or a subatomic particle. Think of the line as the z-axis
and let s(t) denote the position of the object on the axis at time ¢. The time ¢
is measured in some time units (seconds, minutes, or hours) and s is measured in
some distance units (feet or miles). If the object is pushed by a constant force F'
acting parallel to the line, then, according to Newton’s Law of Motion,

s"(t) = F/m

so the acceleration is constant. Of course, the appropriate units for /' depend on
the units chosen for s and t. For simplicity, we let all the units remain unspecified.
If " > 0 the force acts to push the object in the positive x direction. Similarly, if
s'(t) > 0, then the object is moving in the positive z direction.

Problem 4. Suppose that F//m =5 and that the particle starts two units to the right
of the origin (that is, s(0) = 2) with initial velocity s’(0) = —10. Describe the subsequent
motion of the particle. Hint: first use the differential equation and the initial conditions
to find s(t). Then describe the motion using that fact that s(¢) is the position and s’(t)
is the velocity at each time t.

Problem 5. In elementary textbooks it is often stated that “Newton’s first law
says that objects will move with constant velocity if the force applied to them is zero.”
Explain why this follows automatically from Newton’s Law of Motion.

Problem 6. A particle moves on a line with acceleration s”(t) = —4t. Suppose that
s(0) = 6 and s'(0) = 24. Find the functions s(¢) and s’(t). Graph the functions s(t),
§'(t), and s”(t) on the same page and describe the motion in words.

II1I. Calculus and Human History.

[saac Newton, an Englishman, was born in 1642, the year of Galileo’s death.
He showed no particular scientific talents as a child or as a student at Cambridge,
but the full flowering of his genius appeared when he left Cambridge (to avoid the
plague) in 1666 and took up residence in the country. There, in the space of two
years, Newton invented the differential and integral calculus, proved the binomial
theorem, showed that white light is composed of many colors, and found the law of
universal gravitation. Of course, Newton did not make these inventions in scientific
isolation, for he knew Kepler’s laws of planetary motion and the mechanics of
Galileo and others.

Of these discoveries, only the decomposition of light was communicated to the
Royal Society at the time. Newton put aside his dynamical calculations and did
not return to them for many years, and concentrated his attention on optics and
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chemistry. He returned to mechanics in 1679 when there was much general specu-
lation about what sort of force is exerted by the sun on the planets. In 1684, the
astronomer Edmond Halley went to consult Newton.

“Without mentioning either his own speculations or those of Hooke and Wren,
he at once indicated the object of his visit by asking Newton what would be the
curve described by the planets on the supposition that gravity diminished as the
square of the distance. Newton immediately answered ‘an ellipse.” Struck with joy
and amazement, Halley asked how he knew it. ‘Why,’ replied he, ‘I have calculated
it’; and being asked for his calculation, he could not find it, but promised to send
it to him.” (from an account by John Conduitt, a contemporary of Newton and
Halley.)

At Halley’s urging, Newton devoted his full efforts to writing a description of his
discoveries. His work was communicated to the Royal Society in 1686 and published
(at Halley’s expense) in 1687 as Philosophiae Naturalis Principia Mathematica.
The German mathematician Gottfried Leibnitz (1646 — 1716) is credited with
discovering calculus independently.

Calculation and Prediction. Newton’s scientific discoveries had an enormous
impact on philosophy, religion, and literature, because he showed that the answers
to certain mechanical questions could be calculated. That is, in fact, what you
have done in several simple cases in problems 1 - 4. Suppose that we know the
mass and the forces acting on a particle. Then, given the initial position and
initial velocity, we can calculate where the particle will be in the future. It was
natural for the thinkers of the 18th century to believe that all other fields, not
only the sciences, but human social organization and the study of human nature
itself, would soon have laws and methods of calculation which would enable one
to calculate and predict. The French mathematician Laplace said:

“We may regard the present state of the universe as the effect of its past and the
cause of the future. An intellect which at any given moment knew all of the forces
that animate nature and the mutual positions of the beings that compose it, if
this intellect were vast enough to submit its data to analysis, could condense into
a single formula the movement of the greatest bodies of the universe and that of
the lightest atom: for such an intellect nothing could be uncertain; and the future,
just like the past, would be present before its eyes.”

And the French philosoper Voltaire wrote:
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“It would be very singular that all nature, all the planets, should obey eternal
laws, and that there should be a little animal, five feet high, who, in contempt of
these laws, could act as he pleased, soley according to his own caprice.”

This is not some ancient, dry, philosophical dispute. Indeed, differing views of
human nature play a major role in current disputes over social policy and the
“best” forms of political organization. Here is contemporary socio-biologist E. O.
Wilson (from On Human Nature, 1978) :

“But, to the extent that the new naturalism is true, its pursuit seems certain to
generate two great spiritual dilemmas. The first is that no species, ours included,
possesses a purpose beyond the imperative created by its genetic history...I believe
that the human mind is constructed in a way that locks it inside this fundamental
human constaint and forces it to make choices with a purely biological instrument.
If the brain evolved by natural selection, even the capacities to select particular
esthetic judgments and religious beliefs must have arisen by the same mechanistic
process. They are either direct adaptations to past environments in which the an-
cestral human population evolved or at most constructions thrown up secondarily
by deeper, less visible activities that were once adaptive in this stricter, biological
sense.

Essay Question. Do individuals have free will? In other words, are a person’s
decisions and innermost feelings both determined by his or her biological inher-
itance and environmental past? What does this have to do with mathematics?
Write a short (two page) essay on these questions.

Report. For this Lab your report should be in two parts. Your answers to the six
problems should be written up and turned in to your Lab Assistant. Your essay
should be turned in to your classroom instructor.



