Math 31L Lab Quiz #3

Blake, Fall 2001

Name:

- 1. (10 points) Suppose f is a continuous function that is strictly decreasing over the interval [a,b]. List the following quantities in order from smallest to largest.
 - A. $\int_{0}^{0} f(t)dt$
- B. Right-hand Sum with N = 500.
- C. Right-hand Sum with N = 700.

- D. Left-hand Sum with N = 40.
- E. Left-hand Sum with N = 60.

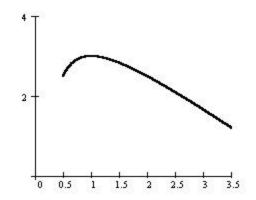
2. (12 points) Some of the sums below are good approximations of $\int_{2}^{7} sin(x^2) dx$ and some are <u>not</u>.

Beside the ones that are are good approximations, indicate what kind of approximation it is (RHS, LHS, etc). If the sum does not approximate this integral well, then write "NOT."

$$\sum_{k=1}^{5000} sin((3+.0008k)^2)(.0008)$$

$$\sum_{k=1}^{5000} sin((3+.0008k)^2)(.0008) \qquad \qquad \sum_{k=0}^{999} sin((.004k)^2)(.004)$$

$$\sum_{k=0}^{799} \sin((3+.008k)^2)(.008)$$


$$\sum_{k=0}^{799} sin((3+.008k)^2)(.008) \qquad \qquad \sum_{k=1}^{1000} sin((3+.004k)^2)(.004) \qquad \qquad$$

$$\sum_{k=0}^{999} sin((3.002 + .004k)^2)(.004)$$

$$\sum_{k=0}^{999} sin((3.002 + .004k)^2)(.004) \qquad \qquad \sum_{k=0}^{999} sin((3.001 + .004k)^2)(.004) \qquad \qquad$$

3. (8 points) Let $f(x) = -\frac{1}{x} + 5 - x$ for $\frac{1}{2} \le x \le \frac{7}{2}$. Suppose we use two subintervals to construct a Riemann sum to approximate $\int_{1}^{2} f(x)dx$. Circle the largest possible value the

Riemann sum could have.

0 9 3
$$\frac{33}{4}$$

 $\frac{15}{2}$ $\frac{39}{7}$ $\frac{26}{7}$ 5
 $\frac{17}{14}$ $\frac{5}{3}$ $\frac{11}{2}$ 7.054089851