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CHAPTER TWO

Solutions for Section 2.1

Exercises

1. For ¢ between 2 and 5, we have

Average velocity = i—j = 40(5)% = 22;5 km/hr.
The average velocity on this part of the trip was 265/3 km/hr.
2. (a) Lets = f(¢).
(1) We wish to find the average velocity between ¢ = 1 and ¢ = 1.1. We have
f(1.1)—f(1) 3.63—-3

Average velocity = T1-1 =01 = 6.3 m/sec.

(ii)) We have
f(1.01) — f(1) _ 3.0603 — 3

Tol—1  ~  oo1  0U3msec

Average velocity =

(iii) We have
f(1.001) — f(1) _ 3.006003 — 3

1.001—1  0.001

(b) We see in part (a) that as we choose a smaller and smaller interval around ¢ = 1 the average velocity appears to be

getting closer and closer to 6, so we estimate the instantaneous velocity at t = 1 to be 6 m/sec.
3. (a) Lets= f(t).
(1) We wish to find the average velocity between ¢ = 1 and ¢ = 1.1. We have
fA1)—f(1) 784-7

Average velocity = 111 =01 = 8.4 m/sec.

= 6.003 m/sec.

Average velocity =

(i1)) We have
f(1.01) — f(1) _ 7.0804 — 7

10l =1 = 001 = 8.04 m/sec.

Average velocity =
(iii)) We have
f(1.001) — f(1) _ 7.008004 — 7
1.001—1 0.001
(b) We see in part (a) that as we choose a smaller and smaller interval around ¢ = 1 the average velocity appears to be
getting closer and closer to 8, so we estimate the instantaneous velocity at ¢ = 1 to be 8 m/sec.
4. (a) Lets = f(¢).
() We wish to find the average velocity between ¢ = 1 and ¢ = 1.1. We have
f(1.1) — f(1) _ 0.808496 — 0.909297
i—-1 0.1 B

= 8.004 m/sec.

Average velocity =

Average velocity = —1.00801 m/sec.

(ii)) We have

. f(1.01)— f(1) _ 0.900793 —0.909297
Average velocity = 1ol —1 = 0,01 = —0.8504 m/sec.

(ii1) We have
. £(1.001) — f(1)  0.908463 — 0.909297
A locity = = = —0.834 m/sec.
verage velocity 100l =1 0.001 0.834 m/sec
(b) We see in part (a) that as we choose a smaller and smaller interval around ¢ = 1 the average velocity appears to be
getting closer and closer to —0.83, so we estimate the instantaneous velocity at ¢ = 1 to be —0.83 m/sec. In this case,

more estimates with smaller values of A would be very helpful in making a better estimate.

. Slope | =3 | —1[0|1/2|1 ]2
Point | F | C |E| A |B|D
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6. The slope is positive at A and D; negative at C' and F'. The slope is most positive at A; most negative at F'.

7. Using h = 0.1, 0.01, 0.001, we see

(340.1)% —27
— =2791
0.1 79
(3+40.01)3% — 27
— =27.09
0.01
(3 +0.001) — 27
——— = 27.009.
0.001
h)? —2
These calculations suggest that }llmb M = 27.
8. Using radians,
h (cosh—1)/h
0.01 —0.005
0.001 —0.0005
0.0001 —0.00005
h—1
These values suggest that }IIIH}) Cosh T 2 _ 0.
9. Using h = 0.1, 0.01, 0.001, we see
701 _ 1
— =214
0.1 8
70.01 _
—— =1.965
0.01
70.001 _
——— =1.948
0.001
70.0001 _ ¢
—— = 1.946.
0.0001
This suggests that lim -1 ~ 1.9
gg P S
10. Using h = 0.1, 0.01, 0.001, we see
h (erth —e)/h
0.01 2.7319
0.001 2.7196
0.0001 2.7184
1+h _
These values suggest that }llln%) = 2.7. In fact, this limit is e.
Problems
11. See Figure 2.1.
12. See Figure 2.2.
13. See Figure 2.3.
distance distance distance
time time time

Figure 2.1

Figure 2.2

Figure 2.3
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14. 0 < slope at C' < slope at B < slope of AB < 1 < slope at A. (Note that the line y = z, has slope 1.)

15. Since f(t) is concave down between ¢ = 1 and ¢ = 3, the average velocity between the two times should be less than the
instantaneous velocity at ¢ = 1 but greater than the instantaneous velocity at time ¢ = 3, so D < A < C. For analogous
reasons, F' < B < E. Finally, note that f is decreasing at t = 5 so E' < 0, but increasing at t = 0, so D > 0. Therefore,
the ordering from smallest to greatest of the given quantities is

F<B<E<O0<D<A<C.

16. One possibility is shown in Figure 2.4.

f®)
L A A t
Figure 2.4
17.
Average velocity \ _ s(0.2) —s(0) _ 05 _ 9.5 fi/sec.
0<t<0.2 0.2-0 0.2
Average velocity s(0.4) —s(0.2) 1.3
= —————~ = — =06.5 ft/sec.
( 0.2 <¢<04 ) 04-02 02 e
A reasonable estimate of the velocity at ¢ = 0.2 is the average: %(6.5 +2.5) = 4.5 ft/sec.
2 _ 2 _

18, qim 2ERTZA g AR oA lim (4 + h) = 4

h—0 h h—0 h h—0

3 _ 2, 23 _ 2

19, Jimg LHEMT 2L gy LHSRASHT AR Z L ROESAER) g3y 34 s? =,

h—0 h h—0 h h—0 h h—0

2+ h)?— 12 2 — 12

20. lim 227 = i 2 L2RAS 2 12  RA2ESD) g g3 = e,

h—0 h h—0 h h—0 h h—0

. (3+h)?*-@B-h)?* . 946h+h*—9+6h—h> . 12h .
2. i 2h = 2N =, T 6=6

Solutions for Section 2.2

Exercises

1. The derivative, f’(2), is the rate of change of z* at = 2. Notice that each time  changes by 0.001 in the table, the value
of 2% changes by 0.012. Therefore, we estimate
£(2) = Rate of change ~ 0.012 _
of fatx =2 0.001
The function values in the table look exactly linear because they have been rounded. For example, the exact value of

x3 when = 2.001 is 8.012006001, not 8.012. Thus, the table can tell us only that the derivative is approximately 12.
Example 5 on page 85 shows how to compute the derivative of f(z) exactly.

12.

2. (a) Using a calculator we obtain the values found in the table below:

IE 1 [15] 2 2.5 3|
le® [ 272 4.48 [ 7.39 [ 12.18 | 20.09 |
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(b) The average rate of change of f(z) = e” between z = 1 and x = 3 is

p— 3 — p—
Average rate of change = f(S; — {(1) = 63 — 16 ~ 20'092 272 _ 8.69.
(c) First we find the average rates of change of f(z) = e” between x = 1.5 and x = 2, and between = 2 and = = 2.5:

F(2)— f(1.5)  e*—e'®  7.39 448

Average rate of change = 915 =515 ~ 05 =5.82
F(2.5) — f(2)  €*® —e? 1218 —7.39
A f ch = = ~ = 9.58.
verage rate of change 552 252 05 9.58
Now we approximate the instantaneous rate of change at z = 2 by averaging these two rates:
.82+09.
Instantaneous rate of change ~ w ="17.7.
3. (a)
Table 2.1
x 1 15 2 2.5 3
logxz |0 0.18 030 040 048
(b) The average rate of change of f(z) = logx between z = 1 and = = 3 is
f(38)— f(1) log3—logl 0.48-0 — 024
3-1  3-1 2 7
(c) First we find the average rates of change of f(z) = logx between x = 1.5 and x = 2, and between x = 2 and
T =2.5.
log2 —logl.5 0.30—0.18
2—-1.5 0.5
log2.5 —log2 0.40—-0.30
25—-2 0.5

Now we approximate the instantaneous rate of change at x = 2 by finding the average of the above rates, i.e.

(the instantaneous rate of change) . 024+0.20 0.22

of f(z) =logzatz =2 2

4. (a) Table 2.2 shows that near = = 1, every time the value of z increases by 0.001, the value of z? increases by approxi-
mately 0.002. This suggests that

0.002
F)~ oo =
0.001
Table 2.2 Values of f(z) = x* near x = 1
Difference in
T x2 successive 2 values
0.998 0.996004
0.001997
0.999 0.998001
0.001999
1.000 1.000000
0.002001
1.001 1.002001
0.002003
1.002 1.004004
T T
T increments All approximately
of 0.001 0.002

(b) The derivative is the limit of the difference quotient, so we look at
- f(+h)— f(1)
(1) = tim LEFN = SA),
fQ) = lim W
Using the formula for f, we have

2 _ 42 2y _ 2
f’(l):lim(1+h) 1 — lim (1+2h+h%) -1 ,m2h+h.

h—0 h—0 h h—0 h
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Since the limit only examines values of h close to, but not equal to zero, we can cancel & in the expression (2h +

h?)/h. We get
/ . h(2+4+h)
F) = lim ==—

This limit is 2, so f'(1) = 2. Atz = 1 the rate of change of z? is 2.

(c) Since the derivative is the rate of change, f'(1) = 2 means that for small changes in x near x = 1, the change in
f(x) = 2% is about twice as big as the change in x. As an example, if z changes from 1 to 1.1, a net change of 0.1,
then f () changes by about 0.2. Figure 2.5 shows this geometrically. Near = = 1 the function is approximately linear

— lim (2 + h).
lim (2 +h)

with slope of 2.
g2 « f@)=a?
fz)== Slope =~ 2
121 o Zooming ‘
T /| 0.21
| J
I
I
I
I
I
I
I
B
Ll 2
11.1
Figure 2.5: Graph of f(z) = = near = = 1 has slope ~ 2
5. Y

1 V\ ~
N sinz
t x
L W\/QW 37r\/47r
—1

Since sin « is decreasing for values near x = 3, its derivative at z = 3 is negative.

/ . log(1+4h) —log1l . log(1+h)
6. £ (1) = lim h =T

Evaluating bg(%” for h = 0.01,0.001, and 0.0001, we get 0.43214,0.43408, 0.43427, so f'(1) ~ 0.43427. The
corresponding secant lines are getting steeper, because the graph of log x is concave down. We thus expect the limit to be
more than 0.43427 . If we consider negative values of h, the estimates are too large. We can also see this from the graph
below:

Ww forh <0 .- f'(z

log(1+h)
=8 g forh >0

7. We estimate f’(2) using the average rate of change formula on a small interval around 2. We use the interval x = 2 to
x = 2.001. (Any small interval around 2 gives a reasonable answer.) We have
F(2) ~ f(2.001) — f(2)  3>9°"—3%  9.00989 — 9
T 2001-2  2001-2  0.001

= 9.89.
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8. Since f’(x) = 0 where the graph is horizontal, f'(x) = 0 at z = d. The derivative is positive at points b and c, but the
graph is steeper at z = c. Thus f'(z) = 0.5 at x = band f'(x) = 2 at x = c. Finally, the derivative is negative at points
a and e but the graph is steeper at z = e. Thus, f'(z) = —0.5atz = a and f'(x) = —2 at & = e. See Table 2.3.
Thus, we have f'(d) = 0, f'(b) = 0.5, f'(c) = 2, f'(a) = —0.5, f'(e) = —2.

Table 2.3

f'(=)
0
0.5
2
-0.5
—2

|m IS ®&|%2|

9. One possible choice of points is shown below.

10. (a) The average rate of change from = = a to = = b is the slope of the line between the points on the curve with x = a
and z = b. Since the curve is concave down, the line from z = 1 to = 3 has a greater slope than the line from

x = 3 tox = 5, and so the average rate of change between x = 1 and « = 3 is greater than that between x = 3 and
z =5.

(b) Since f is increasing, f(5) is the greater.
(c) Asin part (a), f is concave down and f’ is decreasing throughout so f’(1) is the greater.

Problems

11. The statements f(100) = 35 and f’(100) = 3 tell us that at z = 100, the value of the function is 35 and the function is
increasing at a rate of 3 units for a unit increase in x. Since we increase x by 2 units in going from 100 to 102, the value
of the function goes up by approximately 2 - 3 = 6 units, so

f(102) 35+ 2-3=35+6=41.

12. The coordinates of A are (4, 25). See Figure 2.6. The coordinates of B and C' are obtained using the slope of the tangent
line. Since f'(4) = 1.5, the slope is 1.5

Tangent line

Figure 2.6

From A to B, Az = 0.2, s0o Ay = 1.5(0.2) = 0.3. Thus, at C' we have y = 25 + 0.3 = 25.3. The coordinates of
B are (4.2,25.3).

From A to C, Az = —0.1, so Ay = 1.5(—0.1) = —0.15. Thus, at C we have y = 25 — 0.15 = 24.85. The
coordinates of C are (3.9, 24.85).
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13. (a) Since the point B = (2, 5) is on the graph of g, we have g(2) = 5.
(b) The slope of the tangent line touching the graph at x = 2 is given by

Rise 5-—5.02 —0.02
S0P = Ran T2- 195~ 005~ OF
Thus, ¢'(2) = —0.4.
14. The answers to parts (a)—(d) are shown in Figure 2.7.
Slope= f(3) f(@)

|
,,,,,,, IR T 10 - £2)
f(2) - f()
Slope = L(B)=/(2)
ope 5-2 opo — f(3%:{(1)
f(4)
slope = 71%2%:{(1)
| | | | €T | | | | | €T
1 2 3 4 5 1 2 3 4 5
Figure 2.7 Figure 2.8

15. (a) Since f is increasing, f(4) > f(3).

(b) From Figure 2.8, it appears that f(2) — f(1) > f(3) — f(2).
f2) - 1)
2—-1
and z = 2. This is greater than the slope of the secant line connecting the points at x = 1 and x = 3 which is

fB) - f)

3—-1
(d) The function is steeper at x = 1 than at x = 4 so f'(1) > f'(4).

(c) The quantity represents the slope of the secant line connecting the points on the graph at z = 1

16. Figure 2.9 shows the quantities in which we are interested.

Slope = f7(2)

Slope = f7(3)

|
i
f(z) Slope = L1 }
=f(3) - f(2) }
A
L~ \ ‘ N
2 3
Figure 2.9

The quantities f'(2), f'(3) and f(3) — f(2) have the following interpretations:

e f(2) = slope of the tangent line at x = 2
e f'(3) = slope of the tangent line at x = 3
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o f(3)—f(2)= % = slope of the secant line from f(2) to f(3).
From Figure 2.9, it is clear that 0 < f(3) — f(2) < f’(2). By extending the secant line past the point (3, f(3)), we can
see that it lies above the tangent line at x = 3.
Thus

0<f'(3) <f(3) = f(2) < ['(2)

17. (a) f(4)/4 is the slope of the line connecting (0,0) to (4, f(4)). (See Figure 2.10.)
(b) Itis clear from Figure 2.10 that f(3)/3 > f(4)/4.

Figure 2.10 Figure 2.11

18. See Figure 2.11.

19. (a) For the line from A to B,

f(b) — f(a)
b—a

(b) The tangent line at point C appears to be parallel to the line from A to B. Assuming this to be the case, the lines have
the same slope.

Slope =

(c) There is only one other point, labeled D in Figure 2.12, at which the tangent line is parallel to the line joining A and
B.

Figure 2.12
20. (a)
h in degrees (O
inh —sin0 inh
, .. sinh—sin0  sin
F10) = fim ———— ==~

To four decimal places,

sin 0.2 sin 0.1 sin 0.01 sin 0.001
02~ o1~ o001~ oom <001

so f'(0) ~ 0.01745.
(b) Consider the ratio % As we approach 0, the numerator, sin h, will be much smaller in magnitude if h is in degrees
than it would be if A were in radians. For example, if h = 1° radian, sinh = 0.8415, but if h = 1 degree,
sin h = 0.01745. Thus, since the numerator is smaller for h measured in degrees while the denominator is the same,

we expect the ratio Si;‘lh to be smaller.




21.

22,

23.

2.2 SOLUTIONS 4l

We want f'(2). The exact answer is

f/(Q):}LiL%f(Q-i-h)—f(Q) :’llli% (2+h)}j+h—4

but we can approximate this. If A = 0.001, then

(2.001)%0° 4

0.001 ~ 6.779

and if h = 0.0001 then 50001
2.0001)~ —4
(2.0001)" " —4 ~ 6.773,
0.0001
so f'(2) ~ 6.77.
Notice that we can’t get all the information we want just from the graph of f for 0 < z < 2, shown on the left in
Figure 2.13. Looking at this graph, it looks as if the slope at z = 0 is 0. But if we zoom in on the graph near = = 0, we
get the graph of f for 0 < z < 0.05, shown on the right in Figure 2.13. We see that f does dip down quite a bit between
x = 0 and z =~ 0.11. In fact, it now looks like f’(0) is around —1. Note that since f(x) is undefined for x < 0, this
derivative only makes sense as we approach zero from the right.

y y
et} @
6l 00025 [\ 001 0.02 003 0.04 0.05
5+ —0.005 |
\
4+ —0.0075 |-\
— 2,3/2 _ \
3 (@) = 37" —w —0.01
27 —0.0125 flz) =323/2 —
1+ —0.015 |-
: 1 1 — ~0.0175

Figure 2.13

We zoom in on the graph of f near x = 1 to get a more accurate picture from which to estimate f(1). A graph of
ffor 0.7 < z < 1.3 is shown in Figure 2.14. [Keep in mind that the axes shown in this graph don’t cross at the origin!]
Here we see that f'(1) ~ 3.5.

1 T T T T z
0.7 0.8 0.9 1.11.21.3

Figure 2.14

£(1) = lim F+h)— f(1) _ lim In(cos(1 + h)) — In(cos 1)
h—0 h h—0 h
For h = 0.001, the difference quotient = —1.55912; for h = 0.0001, the difference quotient = —1.55758.
The instantaneous rate of change of f therefore appears to be about —1.558 at z = 1.
Atz = 7, if we try h = 0.0001, then

In[cos(% + 0.0001)] — In(cos T)
0.0001

The instantaneous rate of change of f appears to be about —1 at x = 7.

~ —1.0001.

difference quotient =
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24. We want to approximate P’(0) and P’(2). Since for small h
_ P(h) - P(0)

P(0) » ),

if we take h = 0.01, we get

1.15(1.014)°°%t — 1.1
P'(0) = 5(1.0 0)01 > 0.01599 billion /year

= 16.0 million people/year

_ 1.15(1.014)*°" — 1.15(1.014)?

P2
(2) 0.01

= 0.0164 billion /year

= 16.4 million people/year

25. (a) From Figure 2.15, it appears that the slopes of the tangent lines to the two graphs are the same at each z. For x = 0,
the slopes of the tangents to the graphs of f(x) and g(z) at 0 are

fO+h) - f(0)

! _ . ! _ .
710) = limy h 9(0) = Jim, h
_ iy f(W) 0 _ i 90 = 9(0)
h—0 h h—0 h
1p2 ih*+3-3
— | 27 — T 2
= Jm =5 fimy h
. Lp?
— l _h T
o2 = Jim 5
_07 1
= lim =h
hli%2
=0.

For x = 2, the slopes of the tangents to the graphs of f(z) and g(x) are

£ (2) = lim f@2+h) - 1) g (2) = lim 9(2+h) —g(2)

h—0 h h—0 h
i 2252 iy 2243 (527 43)
h—0 h h—0 h
o dA+dhtn -2 B (RO e
h—0 h h—0 h
_hm2+2h+%h2—2 i $(4+4h+h*) -2
T h=0 h T h—o h
i 2h + h* :hm2+2h+§(h2)—2
h—0 h h—0 h
) 1 2h + £ (h?)
= lim (2—|— —h) — 5 2
;—»0 2 hli% h
-7 = lim <2+ 1h)
h—0 2
= 2.

Figure 2.15



26.

27.

28.

29.

30.

31.

32.

33.

2.2 SOLUTIONS
For 2 = xo, the slopes of the tangents to the graphs of f(x) and g(x) are
1oy _ qe f(@o+h) — f(xo) oy qin 9o +h) — g(wo)
F(wo) = limy h 9 (w0) = lim h
_ g(wo+h)? - 3af - 3(zo+h)* +3 - (5(z0)” +3)
=lim *~¥——---“+*+—=— = lim
h—0 h h—0 h
~ lim %(r% + 2x0h + h?) — %x% _ lim %(xo +h)? - %(mo)Q
h—0 h h—0 h
. xzoh+ %hQ ) %(x%—!—onh—l—hQ) — %1:(2)
= lim = lim
h—0 h h—0 h
172
=1 Zh T zoh + 5h
jim, (w0-+ 57) = Jim =
= Zo, 1
= lim ($0 + —h)
h—0 2
= Zo-
(b)
. +h) —g(x)
/ -1 g(z
g (z) = lim =———=-=
_ i £+ M0 () C)

As h gets smaller, round-off error becomes important. When h = 107'2, the quantity 2" — 1 is so close to O that the
calculator rounds off the difference to 0, making the difference quotient 0. The same thing will happen when h = 10~2°.

— 2_ J—

fim 3R =9 g 9Z6hFR 29y AEEHR) 6= s
h—0 h h—0 h h—0 h—0

_ 3 _ _ 2 _ 13 _ 12
fim G =8 gy 82 ORT T8y REI2H6R BTy o e 2 =
h—0 h h—0 h h—0 h h—0
101 . 1—(1+h) -1
iﬂﬁ(uh_l)_}{lﬁ‘h T e S
lim L U N\ Lo 424p?) L —2-h
heo b (14 h)? "~ h—0 h(1+ h)? ~h—o (14+h)2
\/m72:(\/4+ -2)(WV4+h+2)  44+h-4 _ h .

\/4+ +2 \/4+h+2 vi+h+2

Therefore lim —— —2 l' ! -

h—0 h \/4+ +2 4

11 _2-Vi+h _ (@2-VA+hHQR+Vit+h) _ 4—(4+h)

Vit+h 2 2vV4—+h 24+ h(2+ VA+h) 2V/A+h(2+VA+h)

1 1

—1 1

Therefore hm -

Using the definition of the derivative, we have

f'(10)

lim
h—0
lim
h—0

lim
h—0

w0 R \/4+h_§> VT h2+vith) 16

f(10+ h) — f(10)
h

5(10 + h)? — 5(10)?
h
500 + 100h + 5h% — 500
h

—12.

73
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. 100k + 5h2
= hm _—
h—0 h
—tm h(100 + 5h)
h—0 h
= lim 100 + 5h
h—0
= 100.

34. Using the definition of the derivative, we have

f(=2+h) - f(=2)

! _2 — 1
f(=2) = lim )

o 52 h)’ —(=2)°
h—0 h

~ lim (=8 4+ 12h — 6h* + h?) — (—8)
h—0 h

i 2P 6h° + h°

T h—0 h

g P2 6R h?)

T h—0 h

= lim (12 — 6h + h?),
h—0

which goes to 12 as h — 0. So f'(—2) = 12.
35. Using the definition of the derivative

. —1+h)—g(-1)
'(-1) = lim 9
g (=1) = lim )
BT (Gl h)* + (=14 h)) = ((=1)* + (-1))
h—0 h
J— 27 _
:hm(l 2h +h? —1+h) — (0)
h—0 h
. —h+h*
=i T e =
36.
vy e JA+FR) = f) o (L4 h)*+5) - (1° +5)
£ 1) = Jim, h = Jim h
. 143h+3R*+h*+5-1-5 . 3h+3k*+h°
:hm :hrni
h—0 h h—0 h
= lim (3 + 3h + h%) = 3.
h—0
37.
g(2+h) —g(2) % 3
19) = lim LE TV T 9NE) gy, 2R T2
9(2) = lim h fm ==
—lim2_(2+h)—lim _
T h—0 R(2+h)2  rS0 A(2+ D)2
-1 1

o 2+ h)2 4



38.

2.3 SOLUTIONS

1 1
92+h)—g(2) _ . TG 22

hlﬂ% h h—0 h
22— (2+h)®> | 4—4—4h— R’

= lim = lim

h—0 22(24+h)2h ~ n—0 4h(2+ h)2
T N e
T h—04h(2+h)2 T h—04(2 + h)?
_ -4 1

422 7 4

75

39. As we saw in the answer to Problem 33, the slope of the tangent line to f(z) = 5z at z = 10 is 100. When 2 = 10,
f(z) =500 so (10, 500) is a point on the tangent line. Thus y = 100(z — 10) 4+ 500 = 100z — 500.

40. As we saw in the answer to Problem 34, the slope of the tangent line to f(z) = z® at £ = —2is 12. When 2 = —2,

fz) =

2) — 8 = 12z + 16.

41. We know that the slope of the tangent line to f(x) = x when z = 20 is 1. When z = 20, f(z) = 20 so (20, 20) is on
the tangent line. Thus the equation of the tangent line is y = 1(z — 20) 4 20 = «.

42. First find the derivative of f(z) = 1/z% at = = 1.

= lim

fA+R) = f() _ | TEnE 1
= l1m
h—0 h—0 h,

1°—(1+h)? . 1—(1+2h+h?

B R NI S U R L AT ST

—2h—h*> . —2—h

oo R(L+R)2  hoo (1+ )2

Thus the tangent line has a slope of —2 and goes through the point (1, 1), and so its equation is

Solutions for Section 2.3

y—1=-2(x—-1) or y=—2x+3.

—8 so we know the point (—2, —8) is on the tangent line. Thus the equation of the tangent line is y = 12(z +

Exercises

1. The graph is that of the line y = —2x + 2. The slope, and hence the derivative, is —2. See Figure 2.16.
2. See Figure 2.17.
3. See Figure 2.18.

—4 4

Figure 2.16

4 4

Figure 2.17 Figure 2.18
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4. The slope of this curve is approximately —1 at x = —4 and at x = 4, approximately 0 at x+ = —2.5 and x = 1.5, and
approximately 1 at x = 0. See Figure 2.19.

5. See Figure 2.20.

A <+ 4 / 4 —+—+A t+—+ =
—4 4 / \ —4 1 4
4+ _4 .
Figure 2.19 Figure 2.20 Figure 2.21
6. See Figure 2.21.
7. See Figure 2.22.
8. See Figure 2.23.
y A y
4+ | 4+
T~ | /\ T _4 4 & I g

T T T T T T T T
- \/” !
// N
—4 4 —4
Figure 2.22 Figure 2.23 Figure 2.24
9. See Figure 2.24.
10. T Inz T Inz T Inz x Inx
0.998 | —0.0020 1.998 | 0.6921 4.998 | 1.6090 9.998 | 2.3024
0.999 | —0.0010 1.999 | 0.6926 4.999 | 1.6092 9.999 | 2.3025
1.000 | 0.0000 2.000 | 0.6931 5.000 | 1.6094 10.000 | 2.3026
1.001 0.0010 2.001 | 0.6936 5.001 | 1.6096 10.001 | 2.3027
1.002 | 0.0020 2.002 | 0.6941 5.002 | 1.6098 10.002 | 2.3028

11.

Atz = 1, the values of In z are increasing by 0.001 for each increase in = of 0.001, so the derivative appears to be 1.

At x = 2, the increase is 0.0005 for each increase of 0.001, so the derivative appears to be 0.5. At x = 5, In x increases

by 0.0002 for each increase of 0.001 in x, so the derivative appears to be 0.2. And at z = 10, the increase is 0.0001 over

intervals of 0.001, so the derivative appears to be 0.1. These values suggest an inverse relationship between z and f'(z),
namely f'(z) = 1.

(a) We use the interval to the right of z = 2 to estimate the derivative. (Alternately, we could use the interval to the left

of 2, or we could use both and average the results.) We have
f4)—f(2) 24-18 6

1) ~ - =2

4—2 1-2 2 %

We estimate f'(2) ~ 3.
(b) We know that f’(x) is positive when f(z) is increasing and negative when f(z) is decreasing, so it appears that
1/ (=) is positive for 0 < z < 4 and is negative for 4 < z < 12.
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12. For z = 0, 5, 10, and 15, we use the interval to the right to estimate the derivative. For x = 20, we use the interval to the
left. For x = 0, we have
, Nf(5)—f(0)770—1007—3077
JO~==F—" =50 =5 ~ ¢

Similarly, we find the other estimates in Table 2.4.

Table 2.4

flx)| -6 -3]-18]-12]-12

13. Since 1/z = x !, using the power rule gives

- 1
E(z)=(-Dz %= 2
Using the definition of the derivative, we have

1 1

, - k@t+h) k@) . wm-i_ . ae—(cth)
= =1 =1
F(z) = Jim h o h heo h(z + h)x
—h 1 1

= li = li —— ==
hs h(z + h)x s (z+ h)x x?

14. Since 1/2* = x ™2, using the power rule gives

/ 3 2
'(z)=-2 =- 3
Using the definition of the derivative, we have
1 ___ 1 2 2
/ =1 (z+h)? 2 =1 T (l’
H) fs h Py h(x + h)2x?
. x? — (2?4 2zh + h?) . —2xh — h?
= lim =Im ——=—
h—0 h(z + h)2z? h—0 h(x + h)222
— lim —2z—-h _ 2z 2
T h—o (x4 h)222 T 222 23’
15. Using the definition of the derivative,
. +h)—g(z) . 2(x+h)?—3— (222 -3)
! =1 g(x— =1
9 () P h Py h
. 22+ 2zh+ R -3 222 +3 . dxh + 2R?
= lim = lim
h—0 h h—0 h
= lim (4z + 2h) = 4z.
h—0
16. Using the definition of the derivative, we have
. + h) —m(z) .1 1 1
’ -1 m(x =1 - ( _ )
m (z) = Jim, h o h \z+h+1 z+1
—liml g+l-z—h-1 = lim —h
S hmoh \(z+D(x+h+1)) roh(z+1)(z+h+1)
= lim -1
T h—o (x4 1D)(z+h+1)

-t
(w+1)%
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17. 4+
4 4
T f(=)
27 f'(z)
2 1
| o o
72 .
-2 5 " a4+
18, at 1'(@)
5 2t
T 1) X | S
1 4
/ -2
1 1 2 ’ —4 i
19. 1 f(z) 1
N e
L x - B o W e o
2 2 2 2
—1 —1
1+ 1 ’
1F ‘ f'(@)
1
Problems
21. We know that f'(z) =~ w For this problem, we’ll take the average of the values obtained for h = 1
and h = —1; that’s the average of f(x + 1) — f(z) and f(z) — f(z — 1) which equals fletl) ; o= 1). Thus,
f(0)~ f(1) — f(0) =13 — 18 = —5.
f(1) = [f(2) = f(0)]/2 =[10 - 18]/2 = —4.
F@)=[f3) - f())/2=1[9-13)/2= -2
F'(3) ~ [F(4) - F(2)/2 = [9 — 10]/2 = —0.5.
f@)=[f(5) - f(3)]/2=[11-9]/2=1.
F1(5) = [£(6) = f(4)]/2 = [15—9]/2 = 3.
£1(6) = [f(7) = f(5)]/2=[21 - 11]/2=5.
f'(7) = [f(8) — f(6)]/2 = [30 — 15]/2 = 7.5.
F'(8) =~ f(8) — f(7) =30—21=09.
The rate of change of f(z) is positive for 4 < x < 8, negative for 0 < z < 3. The rate of change is greatest at about
z=38.



22. The value of g(x) is increasing at a decreasing rate for 2.7 < x < 4.2 and increasing at an increasing rate for z > 4.2.

Ay 74-60 o _
Ar 52 47" 2.8 between x = 4.7 and x = 5.2
Ay 90-74 . _
Az 57 53" 3.2 between z = 5.2 and x = 5.7

Thus g’(z) should be close to 3 near x = 5.2.

23. This is a line with slope 1, so the derivative is the constant function f’(z) = 1. The graph is the horizontal line y = 1.

See Figure 2.25.

24. This is a line with slope —2, so the derivative is the constant function f’(z)
y = —2. See Figure 2.26.

25. See Figure 2.27.

1 -
! —
T f'(@) 1 5 "
71 .
1 L x
-3 3 -2 f(x)
Figure 2.25 Figure 2.26
26. See Figure 2.28.
27. See Figure 2.29.
28. See Figure 2.30.
f'(=x)
1 x 4
1 2 f T
(@) S
Figure 2.28 Figure 2.29
29. See Figure 2.31.
20
f'(=x)
—+— H—+—F =z
-3 3
—20
Figure 2.31

30. One possible graph is shown in Figure 2.32. Notice that as x gets large, the graph of f(z) gets more and more horizontal.

Thus, as z gets large, f'(z) gets closer and closer to 0.

2.3 SOLUTIONS

—2. The graph is a horizontal line at

Figure 2.27

Figure 2.30

Figure 2.32
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31. See Figure 2.33.

|
T
-1 N2 3 4 5 6

Figure 2.33 Figure 2.34

32. See Figure 2.34.

B. @z ®as (©xs (Das

34. The derivative is zero whenever the graph of the original function is horizontal. Since the current is proportional to
the derivative of the voltage, segments where the current is zero alternate with positive segments where the voltage is
increasing and negative segments where the voltage is decreasing. See Figure 2.35. Note that the derivative does not exist

where the graph has a corner.

current

time

Figure 2.35

35. (a) Graphll
(b) Graphl
(c) Graph III

36. On intervals where f = 0, f is not changing at all, and is therefore constant. On the small interval where f' > 0, f is
increasing; at the point where f” hits the top of its spike, f is increasing quite sharply. So f should be constant for a while,
have a sudden increase, and then be constant again. A possible graph for f is shown in Figure 2.36.

[

t

Figure 2.36: Step function

37. @ t=3
(b) t=9
) t=14

(d 1 V' (t)
( / \ 15 18
| L | . t
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38. (a) The population varies periodically with a period of 1 year. See below.

4500
3500 P(t)

t (in months)

(b) The population is at a maximum on July 1. At this time sin(2m¢ — %) = 1, so the actual maximum population is
4000 + 500(1) = 4500. Similarly, the population is at a minimum on January 1°°. At this time, sin (27t — ) =-1
so the minimum population is 4000 4+ 500(—1) = 3500.

(c) The rate of change is most positive about April 15 and most negative around October 15¢.

(d) Since the population is at its maximum around July 1%, its rate of change is about 0 then.

39. The derivative of the accumulated federal debt with respect to time is shown in Figure 2.37. The derivative represents the
rate of change of the federal debt with respect to time and is measured in trillions of dollars per year.

rate of change in debt
(trillions of $/year)

08
04
1 1 1 1 1 year
1975 1980 1985 1990 1995
Figure 2.37
40. From the given information we know that f is increasing for values of x less than —2, is decreasing between x = —2 and

x = 2, and is constant for z > 2. Figure 2.38 shows a possible graph—yours may be different.

Figure 2.38 Figure 2.39

41. Figure 2.39 shows a possible graph — yours may be different.

42. (a) The function f is increasing where f' is positive, so for r1 < z < x3.
(b) The function f is decreasing where f” is negative, so for0 < < z orzs < = < Ts.
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43. If f(x) is even, its graph is symmetric about the y-axis. So the tangent line to f at z = ¢ is the same as that at x = —z¢
reflected about the y-axis.

Yy Yy
y=f(z)
N Z y=f'(z)
N = xr x
So the slopes of these two tangent lines are opposite in sign, so f'(xo) = —f'(—x0), and f’ is odd.
44. If g(x) is odd, its graph remains the same if you rotate it 180° about the origin. So the tangent line to g at x = o is the
tangent line to g at x = —x, rotated 180°.
Y Y
y=g(z) y=g'(z)
/
A €T €T

But the slope of a line stays constant if you rotate it 180°. So ¢'(zo) = g’ (—=0); g’ is even.

Solutions for Section 2.4

Exercises

1. (a) As the cup of coffee cools, the temperature decreases, so f(t) is negative.
(b) Since f'(t) = dH/dt, the units are degrees Celsius per minute. The quantity f’(20) represents the rate at which the
coffee is cooling, in degrees per minute, 20 minutes after the cup is put on the counter.

2. (Note that we are considering the average temperature of the yam, since its temperature is different at different points
inside it.)
(a) Itis positive, because the temperature of the yam increases the longer it sits in the oven.
(b) The units of f/(20) are °F/min. f'(20) = 2 means that at time ¢ = 20 minutes, the temperature 7" increases by
approximately 2°F for each additional minute in the oven.

3. (a) The statement f(200) = 350 means that it costs $350 to produce 200 gallons of ice cream.
(b) The statement f'(200) = 1.4 means that when the number of gallons produced is 200, costs are increasing by about
$1.40 per gallon. In other words, it costs about $1.40 to produce the next (the 201°°) gallon of ice cream.

4. (a) The statement f(5) = 18 means that when 5 milliliters of catalyst are present, the reaction will take 18 minutes.
Thus, the units for 5 are ml while the units for 18 are minutes.
(b) Asin part (a), 5 is measured in ml. Since f’ tells how fast T’ changes per unit a, we have f’ measured in minutes/ml.
If the amount of catalyst increases by 1 ml (from 5 to 6 ml), the reaction time decreases by about 3 minutes.

5. Since B is measured in dollars and ¢ is measured in years, dB/dt is measured in dollars per year. We can interpret d B
as the extra money added to your balance in dt years. Therefore dB/dt represents how fast your balance is growing, in
units of dollars/year.

6. Units of C’(r) are dollars/percent. Approximately, C’(r) means the additional amount needed to pay off the loan when
the interest rate is increased by 1%. The sign of C’() is positive, because increasing the interest rate will increase the
amount it costs to pay off a loan.
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7. Units of P’(t) are dollars/year. The practical meaning of P’(t) is the rate at which the monthly payments change as the
duration of the mortgage increases. Approximately, P’ (t) represents the change in the monthly payment if the duration is
increased by one year. P’(t) is negative because increasing the duration of a mortgage decreases the monthly payments.

8. (a) This means that investing the $1000 at 5% would yield $1649 after 10 years.

(b) Writing ¢’(r) as dB/dr, we see that the units of dB/dr are dollars per percent (interest). We can interpret dB as
the extra money earned if interest rate is increased by dr percent. Therefore g’ (5) = % |r=5 & 165 means that
the balance, at 5% interest, would increase by about $165 if the interest rate were increased by 1%. In other words,
g(6) = g(5) + 165 = 1649 + 165 = 1814.

9. The units of f'(z) are feet/mile. The derivative, f'(x), represents the rate of change of elevation with distance from the
source, so if the river is flowing downhill everywhere, the elevation is always decreasing and f'(x) is always negative. (In
fact, there may be some stretches where the elevation is more or less constant, so f ’(:v) =0.)

10. (a) If the price is $150, then 2000 items will be sold.
(b) If the price goes up from $150 by $1 per item, about 25 fewer items will be sold. Equivalently, if the price is decreased
from $150 by $1 per item, about 25 more items will be sold.

Problems

11. (a) Since W = f(c) where W is weight in pounds and c is the number of Calories consumed per day:

consuming 1800 Calories per day

f(1800) = 155  means that results in a weight of 155 pounds.

consuming 2000 Calories per day causes

! —
f7(2000) =0  means that neither weight gain nor loss.

a weight of 162 pounds is caused by

—1 o
f7(162) = 2200 means that a consumption of 2200 Calories per day.

(b) The units of dW/dc are pounds/(Calories/day).

12. The graph is increasing for 0 < ¢ < 10 and is decreasing for 10 < ¢ < 20. One possible graph is shown in Figure 2.40.
The units on the horizontal axis are years and the units on the vertical axis are people.

people

! — years
10 20

Figure 2.40

The derivative is positive for 0 < ¢ < 10 and negative for 10 < ¢t < 20. Two possible graphs are shown in
Figure 2.41. The units on the horizontal axes are years and the units on the vertical axes are people per year.

people/year people/year

f'(®) f(®)

Figure 2.41
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13.

14.

15.

16.

17.

18.

19.

20.
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Since f(t) = 1.15(1.014)", we have
f(6) = 1.15(1.014)° = 1.25.

To estimate f’(6), we use a small interval around 6:

£(6.001) — f(6)  1.15(1.014)%%°" —1.15(1.014)°
6.001 —6 0.001

f'(6) ~ =0.0174.

We see that f(6) = 1.25 billion people and f'(6) = 0.0174 billion people per year. This model tells us that the population
of China was about 1,250,000,000 people in 1999 and was growing at a rate of about 17,400,000 people per year at that
time.

(a) The statement f(140) = 120 means that a patient weighing 140 pounds should receive a dose of 120 mg of the
painkiller. The statement f(140) = 3 tells us that if the weight of a patient increases by about one pound (from 140
pounds), the dose should be increased by about 3 mg.

(b) Since the dose for a weight of 140 lbs is 120 mg and at this weight the dose goes up by 3 mg for each pound, a 145
1b patient should get an additional 3(5) = 15 mg. Thus, for a 145 Ib patient, the correct dose is approximately

£(145) ~ 120 + 3(5) = 135 mg.

(a) When t = 10, that is, at 10 am, 3.1 cm of rain has fallen.

(b) We are told that when 5 cm of rain has fallen, 16 hours have passed (¢ = 16); that is, 5 cm of rain has fallen by 4 pm.

(c) The rate at which rain is falling is 0.4 cm/hr at ¢ = 10, that is, at 10 am.

(d) The units of (f7)’(5) are hours/cm. Thus, we are being told that when 5 cm of rain has fallen, rain is falling at a
rate such that it will take 2 additional hours for another centimeter to fall.

(a) The pressure in dynes/cm? at a depth of 100 meters.

(b) The depth of water in meters giving a pressure of 1.2 - 10¢ dynes/cm?.

(c) The pressure at a depth of h meters plus a pressure of 20 dynes/cm?.

(d) The pressure at a depth of 20 meters below the diver.

(e) The rate of increase of pressure with respect to depth, at 100 meters, in units of dynes/cm? per meter. Approximately,
p’(100) represents the increase in pressure in going from 100 meters to 101 meters.

(f) The depth, in meters, at which the rate of change of pressure with respect to depth is 20 dynes/cm? per meter.

Units of g’ (55) are mpg/mph. The statement g’ (55) = —0.54 means that at 55 miles per hour the fuel efficiency (in miles
per gallon, or mpg) of the car decreases at a rate of approximately one half mpg as the velocity increases by one mph.
(@) velocity

terminal
velocity

(b) The graph should be concave down because air resistance decreases your acceleration as you speed up, and so the
slope of the graph of velocity is decreasing.
(c) The slope represents the acceleration due to gravity.

(a) The company hopes that increased advertising always brings in more customers instead of turning them away. There-
fore, it hopes f’(a) is always positive.

(b) If f/(100) = 2, it means that if the advertising budget is $100,000, each extra dollar spent on advertising will bring
in $2 worth of sales. If /(100) = 0.5, each dollar above $100 thousand spent on advertising will bring in $0.50
worth of sales.

(¢) If f/(100) = 2, then as we saw in part (b), spending slightly more than $100,000 will increase revenue by an amount
greater than the additional expense, and thus more should be spent on advertising. If £'(100) = 0.5, then the increase
in revenue is less than the additional expense, hence too much is being spent on advertising. The optimum amount
to spend is an amount that makes f’(a) = 1. At this point, the increases in advertising expenditures just pay for
themselves. If f'(a) < 1, too much is being spent; if f'(a) > 1, more should be spent.

Since w is an estimate of P’ (66), we may think of P’(66) as an estimate of P(67) — P(66), and the latter is the
P(66.5)— P(65.5)

number of people between 66 and 67 inches tall. Alternatively, since ——z—c==

is a better estimate of P’(66), we
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may regard P’ (66) as an estimate of the number of people of height between 65.5 and 66.5 inches. The units for P’(x)
are people per inch. Since there were 250 million people at the 1990 census, we might guess that there are about 200
million full-grown persons in the US whose heights are distributed between 60" (5") and 75" (6'3"). There are probably
quite a few people of height 66" —perhaps 1% what you’d expect from an even, or uniform, distribution—-because it’s nearly
average. An even distribution would yield P’(66) = 29027lion ~ 13 million per inch-so we can expect P’ (66) to be
perhaps 13(1.5) ~ 20.

P’(z) is never negative because P(z) is never decreasing. To see this, let’s look at an example involving a particular
value of z, say = 70. The value P(70) represents the number of people whose height is less than or equal to 70 inches,
and P(71) represents the number of people whose height is less than or equal to 71 inches. Since everyone shorter than
70 inches is also shorter than 71 inches, P(70) < P(71). In general, P(x) is O for small z, and increases as x increases,
and is eventually constant (for large enough x).

21. (a) The units of compliance are units of volume per units of pressure, or liters per centimeter of water.
(b) The increase in volume for a 5 cm reduction in pressure is largest between 10 and 15 cm. Thus, the compliance
appears maximum between 10 and 15 cm of pressure reduction. The derivative is given by the slope, so

Compliance =~ % = 0.042 liters per centimeter.

(c) When the lung is nearly full, it cannot expand much more to accommodate more air.
22. Solving for dp/dd, we get
dp _ P N
do S+ (p/c2) ) "

(a) For § ~ 10 g/cm®, we have log § & 1, so, from Figure 2.37 in the text, we have  ~ 2.6 and log p ~ 13.
Thus p =~ 10'3, so p/c? ~ 10" /(9 -10%°) ~ 1075, and
dp ~ 10" ~ 12
i W2'6N2'6'10 .
The derivative can be interpreted as the ratio between a change in pressure and the corresponding change in density.
The fact that it is so large says that a very large change in pressure brings about a very small change in density. This
says that cold iron is not a very compressible material.
(b) For § = 10, we have log § & 6, so, from Figure 2.37 in the text, v ~ 1.5 and log p ~ 23.
Thus p =~ 10?3, s0 p/c? ~ 1073 /(9 - 10*°) ~ 10, and
dp _ 10%
ds "~ 106 + 102
This tells us that the matter in a white dwarf is even less compressible than cold iron.

1.5~ 1.5-10'.

Solutions for Section 2.5

Exercises

1. (a) Since the graph is below the z-axis at x = 2, the value of f(2) is negative.
(b) Since f(z) is decreasing at z = 2, the value of f'(2) is negative.
(c) Since f(x) is concave up at x = 2, the value of f”(2) is positive.

2. At B both dy/dx and d*y/da* could be positive because y is increasing and the graph is concave up there. At all the
other points one or both of the derivatives could not be positive.

3. The two points at which f' = 0 are A and B. Since f’ is nonzero at C' and D and " is nonzero at all four points, we get

the completed Table 2.5:
Table 2.5
Point | f | f | f”
A [—Jo]+
B |+]0]| -
c [+]-1-
D |-[+[+
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4. The function is everywhere increasing and concave up. One possible graph is shown in Figure 2.42.

Figure 2.42

5. The graph must be everywhere decreasing and concave up on some intervals and concave down on other intervals. One
possibility is shown in Figure 2.43.

height

time

Figure 2.43 Figure 2.44

6. Since velocity is positive and acceleration is negative, we have f’ > 0 and f” < 0, and so the graph is increasing and
concave down. See Figure 2.44.

7. f'(z) >0
f(z) >0
8. f:/(x) =0
f(x) =0
9. f:/(x) <0
f(@)=0
10. f'(z) <0
f'(z) >0
1. f'(z) >0
f(z) <0
12. f'(z) <0
fi(z) <0
13. The velocity is the derivative of the distance, that is, v(t) = s’(t). Therefore, we have
.. s(t+h)—s(t)
v(t) = Jim, h
2 2
— lim (5(t+ h)*+3) — (5¢t° +3)
h—0 h
. 10th 4 5h*
= lim ———
h—0 h
= lim h(10¢ + 5h) = lim (10t + 5h) = 10t
h—0 h h—0

The acceleration is the derivative of velocity, so a(t) = v’ (t):

10(t + h) — 10t
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Problems

14. (a) The derivative, f'(t), appears to be positive since the number of cars is increasing. The second derivative, f”(t),

(b)

appears to be positive because the rate of change is increasing. For example, between 1940 and 1950, the rate of
change is (40.3 — 27.5)/10 = 1.28 million cars per year, while between 1950 and 1960, the rate of change is 2.14
million cars per year.

We use the average rate of change formula on the interval 1970 to 1980 to estimate f'(1975):

121.6 — 89.3  32.3

— = 3.23.

"1975) Ao == 292 _
i ) 1980 — 1970 10

We see that f'(1975) ~ 3.23 million cars per year. The number of passenger cars in the US was increasing at a rate
of about 3.23 million cars per year in 1975.

15. To measure the average acceleration over an interval, we calculate the average rate of change of velocity over the interval.
The units of acceleration are ft/sec per second, or (ft/sec)/sec, written ft/sec?.

Average acceleration _ Change n velocity _ v(1) —v(0) _ 30=0 _ 30 fu/sec’
for0 <t <1 Time ! !
A lerati -
verage acceleration 5230 _ . >
for1 <¢<2 2-1

16. (a) dP/dt > 0and d>P/dt* > 0.

17.

18.

19.

20.

21.

22.

(b)
(@)

(b)

(@)
(b)

(@)
(b)
©
(d)
©)
)
(@)
(b)
©
(d)
(e)

dP/dt < 0 and d*P/dt* > 0 (but dP/dt is close to zero).
utility

quantity

As a function of quantity, utility is increasing but at a decreasing rate; the graph is increasing but concave down. So
the derivative of utility is positive, but the second derivative of utility is negative.

The EPA will say that the rate of discharge is still rising. The industry will say that the rate of discharge is increasing
less quickly, and may soon level off or even start to fall.

The EPA will say that the rate at which pollutants are being discharged is leveling off, but not to zero—so pollutants
will continue to be dumped in the lake. The industry will say that the rate of discharge has decreased significantly.

At x4 and x5, because the graph is below the x-axis there.

At x3 and x4, because the graph is sloping down there.

At x3 and x4, because the graph is sloping down there. This is the same condition as part (b).
At x2 and 3, because the graph is bending downward there.

At x1, x2, and x5, because the graph is sloping upward there.

At 1, x4, and x5, because the graph is bending upward there.

At s, t4, and t5, because the graph is above the t-axis there.
At t2 and t3, because the graph is sloping up there.

At t1, t2, and t5, because the graph is concave up there

At tq, ta, and t5, because the graph is sloping down there.
At t3 and t4, because the graph is concave down there.

Since f’ is everywhere positive, f is everywhere increasing. Hence the greatest value of f is at z¢ and the least value of
f is at 1. Directly from the graph, we see that f” is greatest at x3 and least at z2. Since f” gives the slope of the graph
of f/, f" is greatest where f is rising most rapidly, namely at 26, and f” is least where f’ is falling most rapidly, namely
at xy.

To the right of = = 5, the function starts by increasing, since f'(5) = 2 > 0 (though f may subsequently decrease) and
is concave down, so its graph looks like the graph shown in Figure 2.45. Also, the tangent line to the curve at x = 5 has
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slope 2 and lies above the curve for x > 5. If we follow the tangent line until x = 7, we reach a height of 24. Therefore,
£(7) must be smaller than 24, meaning 22 is the only possible value for f(7) from among the choices given.

Y

2
24 F———
€T
20 F-————— r
-2 F
—4 L
Figure 2.45 Figure 2.46

23. (a) See Figure 2.46.
(b) Exactly one. There can’t be more than one zero because f is increasing everywhere. There does have to be one zero
because f stays below its tangent line (dotted line in above graph), and therefore f must cross the z-axis.
(c) The equation of the (dotted) tangent line is y = %m — %, and so it crosses the x-axis at x = 1. Therefore the zero of
f must be between z = 1 and z = 5.
(d lim f(x) = —oo, because f is increasing and concave down. Thus, as © — —oo, f(x) decreases, at a faster and
r— —00

faster rate.
(e) Yes.
(f) No. The slope is decreasing since f is concave down, so f'(1) > f'(5),i.e. f'(1) > 1.

Solutions for Section 2.6

Exercises

1. (a) Function f is not continuous at x = 1.
(b) Function f appears not differentiable at x = 1, 2, 3.
2. (a) Function g appears continuous at all z-values shown.

(b) Function g appears not differentiable at x = 2, 4. At x = 2, the curve is vertical, so the derivative does not exist. At
z = 4, the graph has a corner, so the derivative does not exist.

3. (a) The function is continuous everywhere. See Figure 2.47.
(b) The function appears not to be differentiable at x = —1 because the graph has a corner at x = —1. (See Figure 2.47.)
This is confirmed by the fact that the limit of the difference quotient

i J@ R = [ (@)

h—0 h
does not exist for x = —1, since the following limit does not exist:

. | =14+h+1 -] =141 .||
lim = lim —.
h—0 h h—0 h

f(@) =z +1
xr
—1
Figure 2.47

4. No, there are sharp turning points.
5. Yes.
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Problems

6. We want to look at
. (h®+0.0001)"/2 — (0.0001)*/2

lim .

h—0 h
As h — 0 from positive or negative numbers, the difference quotient approaches 0. (Try evaluating it for h = 0.001,
0.0001, etc.) So it appears there is a derivative at = 0 and that this derivative is zero. How can this be if f has a corner
atz = 0?

The answer lies in the fact that what appears to be a corner is in fact smooth—when you zoom in, the graph of f

looks like a straight line with slope 0! See Figure 2.48.

f(=z) f(=z)

2+

1 1 1 1 €T 1 1 1 1 €T

-2 -1 0 1 2 -02 0.1 0 0.1 0.2

Figure 2.48: Close-ups of f(z) = (z* 4 0.0001)"/? showing differentiability at 2 = 0

7. Yes, f is differentiable at z = 0, since its graph does not have a “corner” at z = 0. See below.

1.64 /

—-0.4 0.4

Another way to see this is by computing:
- 2 2 2
fo JO) = FO) (b B B 2hhl B
h—0 h h—0 h h—0 h
Since |h|*> = h?, we have:
o 2
lim f(h) — f(0) m 2h* + 2hlh| _
h—0 h h—0
So f is differentiable at 0 and f'(0) = 0.

8. As we can see in Figure 2.49, f oscillates infinitely often between the x-axis and the line y = 2z near the origin. This
means a line from (0, 0) to a point (h, f(h)) on the graph of f alternates between slope 0 (when f(h) = 0) and slope 2
(when f(h) = 2h) infinitely often as h tends to zero. Therefore, there is no limit of the slope of this line as h tends to
zero, and thus there is no derivative at the origin. Another way to see this is by noting that

lim M = lim w = lim (Sil’l (%) + 1)

h—0 h h—0 h h—0

li =0.
lim 2(h + |h) =0

does not exist, since sin(%) does not have a limit as h tends to zero. Thus, f is not differentiable at x = 0.

Figure 2.49



90 Chapter Two /SOLUTIONS

9. We can see from Figure 2.50 that the graph of f oscillates infinitely often between the curves y = =2 and y (: >—x2 near
o . . _ 32 f(R)-0 _

the origin. Thus the slope of the line from (0,0) to (h, f(h)) oscillates between h (when f(h) = h” and =25~ = h)

and —h (when f(h) = —h? and % = —h) as h tends to zero. So, the limit of the slope as A tends to zero is 0, which

is the derivative of f at the origin. Another way to see this is to observe that

g T IO _ (0000

h—0 h h—0 h

= lim hsin(l)

h—0 h
= O’
since }lLin% h =0and —1 < sin(3) < 1 for any h. Thus f is differentiable at z = 0, and f'(0) = 0.
_2 2
3T 3T
Figure 2.50

10. (a) The graph is concave up everywhere, except at x = 2 where the derivative is undefined. This is the case if the graph
has a corner at x = 2. One possible graph is shown in Figure 2.51.
(b) The graph is concave up for x < 2 and concave down for x > 2, and the derivative is undefined at z = 2. This is the
case if the graph is vertical at x = 2. One possible graph is shown in Figure 2.52.

f(=z)
f(=z)
! T ! T
2 2
Figure 2.51 Figure 2.52
11. (a) g
aM
‘RZ
! r
R
Figure 2.53
(b) The graph certainly looks continuous. The only point in question is » = R. Using the second formula with r = R
gives
_GM
==

Then, using the first formula with r approaching R from below, we see that as we get close to the surface of the earth
_GMR GM
I "R T R
Since we get the same value for g from both formulas, g is continuous.

(c) Forr < R, the graph of g is a line with a positive slope of = GR_]\s/I For r > R, the graph of g looks like 1/2%, and
so has a negative slope. Therefore the graph has a “corner” at = R and so is not differentiable there.



12.

13.

14.

15.
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(a) The graph of @ against ¢ does not have a break at t = 0, so (Q appears to be continuous at ¢ = 0. See Figure 2.54.
(b) The slope dQ/dt is zero for t < 0, and negative for all ¢ > 0. At t = 0, there appears to be a corner, which does not
disappear as you zoom in, suggesting that [ is defined for all times ¢ except ¢t = 0.

(a) Notice that B is a linear function of r for » < r¢ and a reciprocal for » > rq. The constant By is the value of B at
r = 7o and the maximum value of B. See Figure 2.55.
(b) B is continuous at r = r( because there is no break in the graph there. Using the formula for B, we have

lim B=_2By=By, and lim B=_2B,=B,.
r—ry To r—7r To
0 0
(c) The function B is not differentiable at » = ro because the graph has a corner there. The slope is positive for r < rg
and the slope is negative for r > 7¢.

B

E
Q Bo - kro
1
| | | | t 1 r | r
-2 -1 1 2 o o
Figure 2.54 Figure 2.55 Figure 2.56
(a) Since
lim EF = k’r‘o
'r—»ro_
and )
lim E = 0 _ g
'r~>r+ To
0
and
E(To) = k’l“o,

we see that F is continuous at rg.

(b) The function E is not differentiable at » = ro because the graph has a corner there. The slope is positive for » < rg
and the slope is negative for r > rq.

(c) See Figure 2.56.

(a) The graph of g(r) does not have a break or jump at » = 2, and so g(r) is continuous there. See Figure 2.57. This is

confirmed by the fact that
g(2) =1+4cos(m2/2) =14+ (-1)=0

so the value of g(r) as you approach r = 2 from the left is the same as the value when you approach r = 2 from the
right.

(b) The graph of g(r) does not have a corner at r = 2, even after zooming in, so g(r) appears to be differentiable at
r = 0. This is confirmed by the fact that cos(7r/2) is at the bottom of a trough at = 2, and so its slope is O there.
Thus the slope to the left of » = 2 is the same as the slope to the right of » = 2.

Figure 2.57 Figure 2.58

16. (a) The graph of ¢ does not have a break at y = 0, and so ¢ appears to be continuous there. See figure Figure 2.58.

(b) The graph of ¢ has a corner at y = 0 which does not disappear as you zoom in. Therefore ¢ appears not be
differentiable at y = 0.
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17. (a) The graph of

Fa) = {0 ifz <0.

2?2 ifz > 0.

is shown to the right. The graph is continu-

ous and has no vertical segments or corners,
so f(x) is differentiable everywhere.

By Example 4 on page 84,

f,(w)_{o ifz <0

2uifx >0

So its graph is shown to the right.

(b) The graph of the derivative has a corner at z = 0 so f'(z) is
not differentiable at x = 0. The graph of

” _J0ifz <O
f (m)_{Qifx>0

looks like:

The second derivative is not defined at x = 0. So it is
certainly neither differentiable nor continuous at z = 0.

y=f"(x)

Solutions for Chapter 2 Review.

Exercises

1. See Figure 2.59.

Figure 2.59

2. See Figure 2.60.

—1.5

Figure 2.60



3. See Figure 2.61.

SOLUTIONS to Review Problems for Chapter Two

xr
: N o NN
-1 2 3 4
!
Figure 2.61 Figure 2.62
4. See Figure 2.62.
5. See Figure 2.63.
fll@) — ¢
. f(x)
x
o—
Figure 2.63 Figure 2.64

6. See Figure 2.64.
7. Using the definition of the derivative

i f@h) — f(@)

f'(z) = lim

h—0 h
2 _ 2
~ lim 5(x+h)*+z+h— (52" 4+ x)
h—0 h
. 5?4+ 2zh+ R+ +h—52° —x
= lim
h—0 h
. 10zh +5h* +h
= lim ———————
h—0 h

lim (102 + 5h + 1) = 10z + 1

8. Using the definition of the derivative, we have

n'(z)

~ lim n(z + h) — n(x)
h—0 h
.1 1 1

=t () -G+l
()

o B r+h =z
lmx—(m+h)

h—0 hx(x + h)

lim ————
Ps hx(xz + h)
-1

lim ————— —1
h—0 x(x + h)

z2’

93
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2 _ 2 2 2 _ 2
9. lim CHER =@y @ H20RER AT 00 h) = 24
h—0 h h—0 h h—0
1 1 1 . a—(a+h) . -1 -1
10. lim — (—— — =) =1 - S ——
0 h— h(a+h a) hm (a+ h)ah hm (a+h)a a?
2 2 2 _ _ _
Wotim L (L L) oy @t )y, (F2azh) 22
o B (a+h)?2  a? h=0 (a + h)2a2h h—0 (a + h)%?a®? a3
12. VaTh - a— (Va+h—+va)(Va+h++a) a+h—a h .
Va+h++a \/a+ +va Vath+ya
Therefore lim Y- th-ya = lim L —
h—0 h h—0+/a+h++a 2\/5

13. We combine terms in the numerator and multiply top and bottom by /a + v/a + h.
1 1  Va—+va+h (Va—+va+h)(a++Va+h)

Va+h a  Vathya Va+ hva(va+va+h)

_ a—(a+h)
va+ hva(v/a++va+h)
Therefore hm = ( LI 1) = lim -1 __ !
moh \Vath  va)  n=ovathva(VatVath) o 2(Va)y

Problems

14. (a) A possible example is f(xz) = 1/|z — 2| as lim2 1/|lz —2| =
(b) A possible example is f(z) = —1/(z — 2)? as lim2 —1/(x —2)° = —o0.

15. Since f(2) = 3 and f'(2) = 1, near x = 2 the graph looks like the segment shown in Figure 2.65.

Slope =1
3 f*f*f/

|
|
|
|
|
|
\
2

€T
Figure 2.65
(a) If f(x) is even, then the graph of f(z) near x = 2 and z = —2 looks like Figure 2.66. Thus f(—2) = 3 and
£-2) =1
(b) If f(x) is odd, then the graph of f(z) near x = 2 and x = —2 looks like Figure 2.67. Thus f(—2) = —3 and
fl(=2)=1.

N T

T )‘(:37—

Figure 2.66: For f even Figure 2.67: For f odd
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16. The slopes of the lines drawn through successive pairs of points are negative but increasing, suggesting that f''(z) > 0
for 1 < z < 3.3 and that the graph of f(x) is concave up.

17. Using the approximation Ay ~ f’(x)Az with Ax = 2, we have Ay ~ f'(20) -2 =62, so
f(22) ~ £(20) + f/(20) - 2 = 345 + 6 - 2 = 357.

18. (a)
6 —
Student B's
answer
5 Student C's answer - slope
=slope of this line of this line
tudent A’s answer
4k =slope of this line
1 1 1 1 1 | €T

(b) The slope of f appears to be somewhere between student A’s answer and student B’s, so student C’s answer, halfway
in between, is probably the most accurate.

(c) Student A’s estimate is f'(z) =~ M, while student B’s estimate is f'(z) = w Student C’s
estimate is the average of these two, or

~ L fath) = f@)  f@)-fle-h)| _ fleth) - fle—h)

f@)~ 3 h h 2h

This estimate is the slope of the chord connecting (x — h, f(z — h)) to (z + h, f(z + h)). Thus, we estimate that
the tangent to a curve is nearly parallel to a chord connecting points h units to the right and left, as shown below.

19. (a) Since the point A = (7, 3) is on the graph of f, we have f(7) = 3.
(b) The slope of the tangent line touching the curve at x = 7 is given by
Rise 3.8—-3 0.8

Slope = pn 727 02 *

Thus, f'(7) = 4.
20. At point A, we are told that z = 1 and f(1) = 3. Since A = (2, y2), we have z2 = 1 and yo = 3. Since h = 0.1, we
knowz:1 =1—-0.1=09andx3=1+0.1 =1.1.
Now consider Figure 2.68. Since f'(1) = 2, the slope of the tangent line AD is 2. Since AB = 0.1,
Rise = BD _ 9
Run 0.1 7

so BD = 2(0.1) = 0.2. Therefore y1 =3 — 0.2 =2.8and y3 =3+ 0.2 = 3.2.
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21.

22,

23.

24,

25.

26.
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Figure 2.68

A possible graph of y = f(z) is shown in Figure 2.69.

Figure 2.69

(a) The yam is cooling off so T is decreasing and f'(t) is negative.

(b) Since f(t) is measured in degrees Fahrenheit and ¢ is measured in minutes, df /dt must be measured in units of
°F/min.

f(10) = 240,000 means that if the commodity costs $10, then 240,000 units of it will be sold. f'(10) = —29,000 means

that if the commodity costs $10 now, each $1 increase in price will cause a decline in sales of 29,000 units.

The rate of change of the US population is P’(t), so
P'(t) = 0.8% - Current population = 0.008P(t).

oo f0.8) = £(0.6)  40-39 oo f0.6) = f(0.4) 0.4
@ fO06~=F8=66 ~ 02 > 50'5) T 06-04 02 2
(b) Using the values of f’ from part (a), we get f”/(0.6) ~ / (0'6é :gé -5) = 0'2_ 2_ _()1i5 = —15.

(c) The maximum value of f is probably near x = 0.8. The minimum value of fis pfobably near z = 0.3.
(a) Slope of tangent line = limp_,¢ 7“”2"/1. Using h = 0.001, 7%/1 = 0.249984. Hence the slope of the
tangent line is about 0.25.
(b)
y—y1 =m(z—z1)
y—2=0.25(x—4)
y—2=025z—-1
y=0.25zx+1

© f(z)= ka®
If (4, 2) is on the graph of f, then f(4) = 2,50k -4> = 2. Thus k = %, and f(z) = 127 .
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(d) To find where the graph of f crosses then line y = 0.25z 4 1, we solve:

éxQ = 0.25z +1
2?2 = 2z 48
22 -2z -8 =0
(z—4)(z+2) =0
r=4 or x =-2
f(=2) = S()=05

97

Therefore, (—2, 0.5) is the other point of intersection. (Of course, (4, 2) is a point of intersection; we know that from

the start.)

27. (a) The slope of the tangent line at (0, v/19) is zero: it is horizontal.
The slope of the tangent line at (1/19, 0) is undefined: it is vertical.

(b) The slope appears to be about % (Note that when z is 2, y is about —4, but when z is 4, y is approximately —3.)

(c) Using symmetry we can determine: Slope at (—2,v/15): about 1. Slope at (—2, —v/15): about —2. Slope at

(2,/15): about —1.
28. () 1V, (b) IIL, (©) 1L, (d) L, () IV, (H) I

29. (a) The population varies periodically with a period of 12 months (i.e. one year).

5000 -

4000

/( 1 1 1 1 1 1 1 1

3 6 9 12 15 18 21 24

April July Oct Jan April July Oct Jan April

(b) The herd is largest about June 1°* when there are about 4500 deer.
(c) The herd is smallest about February 15 when there are about 3500 deer.

(d) The herd grows the fastest about April 15°. The herd shrinks the fastest about July 15 and again about December 15.
(e) It grows the fastest about April 1°* when the rate of growth is about 400 deer/month, i.e about 13 new fawns per day.

30. (a) The graph looks straight because the graph shows only a small part of the curve magnified greatly.

(b) The month is March: We see that about the 21°* of the month there are twelve hours of daylight and hence twelve
hours of night. This phenomenon (the length of the day equaling the length of the night) occurs at the equinox, midway
between winter and summer. Since the length of the days is increasing, and Madrid is in the northern hemisphere, we

are looking at March, not September.

(c) The slope of the curve is found from the graph to be about 0.04 (the rise is about 0.8 hours in 20 days or 0.04
hours/day). This means that the amount of daylight is increasing by about 0.04 hours (about 2 % minutes) per calendar

day, or that each day is 2% minutes longer than its predecessor.
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31. (a) A possible graph is shown in Figure 2.70. At first, the yam heats up very quickly, since the difference in temperature
between it and its surroundings is so large. As time goes by, the yam gets hotter and hotter, its rate of temperature
increase slows down, and its temperature approaches the temperature of the oven as an asymptote. The graph is thus
concave down. (We are considering the average temperature of the yam, since the temperature in its center and on its
surface will vary in different ways.)

temperature

200°C

20°C

time

Figure 2.70

(b) If the rate of temperature increase were to remain 2°/min, in ten minutes the yam’s temperature would increase 20°,
from 120° to 140°. Since we know the graph is not linear, but concave down, the actual temperature is between 120°
and 140°.

(c) In 30 minutes, we know the yam increases in temperature by 45° at an average rate of 45/30 = 1.5°/min. Since the
graph is concave down, the temperature at ¢ = 40 is therefore between 120 + 1.5(10) = 135° and 140°.

(d) If the temperature increases at 2°/minute, it reaches 150° after 15 minutes, at ¢ = 45. If the temperature increases at
1.5°/minute, it reaches 150° after 20 minutes, at t = 50. So ¢ is between 45 and 50 mins.

32. (a) We construct the difference quotient using erf(0) and each of the other given values:

erf(1) — erf(0)

erf’(0) & S = 0.84270079
£(0.1) — erf(0)
£(0) o ) T ) 111246292
erf’(0) 01-0 629
£(0.01) — erf(0)
£(0) ~ S T TRT) 1 198342.
erf (0) 0.0l -0 83

Based on these estimates, the best estimate is erf’(0) a2 1.12; the subsequent digits have not yet stabilized.
(b) Using erf(0.001), we have
erf(0.001) — erf(0)

erf’ (0) ~ =1.12838
©0) 0.001 —0
and so the best estimate is now 1.1283.
33. (a)
Table 2.6
z sinh(z#»O(,)ii)(())éifsinh(z) sinh(z+06(')§(())éifsinh(m) 0 f’(O) ~ COSh(I)
1.00000 1.00000 1.00000 1.00000
0.3 1.04549 1.04535 1.04535 1.04534
0.7 1.25555 1.25521 1.25521 1.25517
1 1.54367 1.54314 1.54314 1.54308

(b) It seems that they are approximately the same, i.e. the derivative of sinh(z) = cosh(z) for x =0, 0.3, 0.7, and 1.

CAS Challenge Problems

34. The CAS says the derivative is zero. This can be explained by the fact that f(x) = sin® x 4 cos® x = 1, so f’(x) is the
derivative of the constant function 1. The derivative of a constant function is zero.
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35. (a) The CAS gives f'(z) = 2cos® z — 2sin? z. Form of answers may vary.
(b) Using the double angle formulas for sine and cosine, we have
f(x) = 2sinx cosx = sin(2x)

f'(x) = 2cos® & — 2sin® z = 2(cos® x — sin® ) = 2 cos(2z).

Thus we get
:ii_:r sin(2z) = 2 cos(2x).

azr

36. (a) The first derivative is g’ (z) = —2aze” 2, so the second derivative is

” _ d? —az? _ —2a 4a%2?
g (z) = Frehe

- eax2 eaxz '

Form of answers may vary.

99

(b) Both graphs get narrow as a gets larger; the graph of g”’ is below the z-axis along the interval where g is concave

down, and is above the x-axis where g is concave up. See Figure 2.71.

—6 —6+

a=1 a=2

Figure 2.71

(c) The second derivative of a function is positive when the graph of the function is concave up and negative when it is

concave down.

37. (a) The CAS gives the same derivative, 1/x, in all three cases.

(b) From the properties of logarithms, g(z) = In(2z) = In2 + Inz = f(z) + In2. So the graph of g is the same
shape as the graph of f, only shifted up by In 2. So the graphs have the same slope everywhere, and therefore the two
functions have the same derivative. By the same reasoning, h(z) = f(z) +1n 3, so h and f have the same derivative

as well.

38. (a) The computer algebra system gives

4 (22 1 1)? = da(a® + 1)
X

dz
j—x(ﬁ +1)? = 6a(® + 1)2

j—w(gﬂ 1)t = 8a(? 4 1)

(b) The pattern suggests that

5—33(:52 +1)" = 2nx(z® +1)" "

Taking the derivative of (2 + 1)™ with a CAS confirms this.
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(a) Using a CAS, we find

— sinx = cosx

dx
——cosr = —sinz
dx
d , . B 2 2 2
d—(smxcosaj) =cos"z —sin“x =2cos” x — 1.
x
(b) The product of the derivatives of sin = and cos z is cos z(— sinz) = — cos x sin z. On the other hand, the derivative
of the product is cos? & — sin? &, which is not the same. So no, the derivative of a product is not always equal to the
product of the derivatives.

CHECK YOUR UNDERSTANDING

N, e

10.

11.

12.

13.

14.

15.

16.

17.

False. For example, the car could slow down or even stop at one minute after 2 pm, and then speed back up to 60 mph at
one minute before 3 pm. In this case the car would travel only a few miles during the hour, much less than 50 miles.

False. Its average velocity for the time between 2 pm and 4 pm is 40 mph, but the car could change its speed a lot during
that time period. For example, the car might be motionless for an hour then go 80 mph for the second hour. In that case
the velocity at 2 pm would be 0 mph.

True. During a short enough time interval the car can not change its velocity very much, and so it velocity will be nearly
constant. It will be nearly equal to the average velocity over the interval.

True. The instantaneous velocity is a limit of the average velocities. The limit of a constant equals that constant.

True. By definition, Average velocity = Distance traveled /Time.

False. Instantaneous velocity equals a limit of difference quotients.

True. This is seen graphically. The derivative f’(a) is the slope of the line tangent to the graph of f at the point P where
x = a. The difference quotient (f(b) — f(a))/(b — a) is the slope of the secant line with endpoints on the graph of f

at the points where * = a and « = b. The tangent and secant lines cross at the point P. The secant line goes above the
tangent line for z > a because f is concave up, and so the secant line has higher slope.

True. The derivative of a function is the limit of difference quotients. A few difference quotients can be computed from
the table, but the limit can not be computed from the table.

False. If f'(x) is increasing then f(x) is concave up. However, f(x) may be either increasing or decreasing. For example,
the exponential decay function f(z) = e~ is decreasing but f’(z) is increasing because the graph of f is concave up.
False. A counterexample is given by f(z) = 5 and g(x) = 10, two different functions with the same derivatives:
f()=g'(z) =0.

True. The graph of a linear function f(x) = ma + b is a straight line with the same slope m at every point. Thus
f(z) = mforall z.

True. Shifting a graph vertically does not change the shape of the graph and so it does not change the slopes of the tangent
lines to the graph.

Oifz <0

lifz >0 The graph of f may have a

False. The function f(z) may be discontinuous at = = 0, for instance f(z) = {

vertical tangent line at « = 0, for instance f(z) = /3.
True. The two sides of the equation are different frequently used notations for the very same quantity, the derivative of f
at the point a.
True. The derivative f'(10) is the slope of the tangent line to the graph of y = f(z) at the point where z = 10. When
you zoom in on y = f(x) close enough it is not possible to see the difference between the tangent line and the graph of f
on the calculator screen. The line you see on the calculator is a little piece of the tangent line, so its slope is the derivative
f'(10).
True. The second derivative f”(z) is the derivative of f'(x). Thus the derivative of f’(x) is positive, and so f'(z) is
increasing.
True. Instantaneous acceleration is a derivative, and all derivatives are limits of difference quotients. More precisely,
instantaneous acceleration a(t) is the derivative of the velocity v(t), so
. v(t+h) —o(t)
t) = lim ———=.
a(t) B h



18.

19.

20.

21.

22,

23.

24.
25.
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True. The derivatives f’(t) and g’ (¢) measure the same thing, the rate of chemical production at the same time ¢, but they
measure it in different units. The units of f’(t) are grams per minute, and the units of g() are kilograms per minute. To
convert from kg/min to g/min, multiply by 1000.

False. The derivatives f'(t) and ¢'(t) measure different things because they measure the rate of chemical production at
different times. There is no conversion possible from one to the other.

True. Let f(z) = |x — 3|. Then f(z) is continuous for all = but not differentiable at z = 3 because its graph has a corner
there. Other answers are possible.

True. If a function is differentiable at a point, then it is continuous at that point. For example, f(x) = 22 is both differ-
entiable and continuous on any interval. However, one example does not establish the truth of this statement; it merely
illustrates the statement.

False. Being continuous does not imply differentiability. For example, f(z) = |z| is continuous but not differentiable at
xz=0.

True. If a function were differentiable, then it would be continuous. For example,
1 z>0. . . . . :
f(z) = { 1 ; 0 is neither differentiable nor continuous at = 0. However, one example does not establish the
-1 =z
truth of this statement; it merely illustrates the statement.

False. For example, f(z) = |z| is not differentiable at = = 0, but it is continuous at z = 0.

(a) This is not a counterexample, since it does not satisfy the conditions of the statement, and therefore does not have the
potential to contradict the statement.

(b) This contradicts the statement, because it satisfies its conditions but not its conclusion. Hence it is a counterexample.
Notice that this counterexample could not actually exist, since the statement is true.

(c) This is an example illustrating the statement; it is not a counterexample.

(d) This is not a counterexample, for the same reason as in part (a).

PROJECTS FOR CHAPTER TWO

1.

(a) S(0) = 12 since the days are always 12 hours long at the equator.
(b) Since S(0) = 12 from part (a) and the formula gives S(0) = a, we have a = 12. Since S(x) must be
continuous at z = o, and the formula gives S(zo) = a + barcsin(1) = 124 b (%) and also S(z¢) = 24,
we musthave 12+ b (3) =24s0b(3) =12and b= 2! ~ 7.64.
(c) S(32°13') ~ 14.12 and S(46°4) ~ 15.58.
(G hours of sunlight
24+ S(z)
18+
12

6,,

30 60 90
Figure 2.72

(e) The graph in Figure 2.72 appears to have a corner at zq = 66°30’. We compare the slope to the right of xg
and to the left of x¢. To the right of Sy, the function is constant, so S’(z) = 0 for x > 66°30’.
We estimate the slope immediately to the left of x3. We want to calculate the following:

lim S(l'() + h) — S(SC()) .
h—0- h

We approximate it by taking ¢y = 66.5 and h = —0.1, — 0.01, — 0.001:

S(66.49) — S(66.5) _ 22.3633 — 24
—0.1 - —0.1

= 16.38,
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5(66.499) — S(66.5) _ 23.4826 — 24

~ = 51.

—0.01 —0.01 51.83,
S(66.4999) — S(66.5) _ 23.8370 — 24 163.9
—0.001 ~ o —0.001 7T

These approximations suggest that, for ¢y = 66.5,

lim S(xo +h) — S(wo)

does not exist.
h—0— h

This evidence suggests that S(x) is not differentiable at . A proof requires the techniques found in
Chapter 3.

2. (a) (i) Estimating derivatives using difference quotients (but other answers are possible):

P/(1900) ~ F(1910) — P(1900) _ 92.0 - 76.0

= 1.6 million people per year

10 10
P(1950) — P(1940 150.7 — 131.7
P'(1945) ~ ( )10 ( ) = 0 = 1.9 million people per year
P(1990) — P(1980 248.7 — 226.
P’'(1990) ~ (1990) 10 (1980) = 10 65 _ 2.22 million people per year

(i1) The population growth was maximal somewhere between 1950 and 1960.

(i) P’(1950) o ZU2O-P950) _ 179.0-150.7 — 9 83 million people per year, so P(1956) ~ P(1950)+
P’(1950)(1956 — 1950) = 150.7 + 2.83(6) ~ 167.7 million people.

(iv) If the growth rate between 1990 and 2000 was the same as the growth rate from 1980 to 1990, then
the total population should be about 271 million people in 2000.

(b) (i) f71(100) is the point in time when the population of the US was 100 million people (somewhere
between 1910 and 1920).

(ii) The derivative of f~1(P) at P = 100 represents the ratio of change in time to change in population,
and its units are years per million people. In other words, this derivative represents about how long it
took for the population to increase by 1 million, when the population was 100 million.

(iii) Since the population increased by 105.7 — 92.0 = 13.7 million people in 10 years, the average rate
of increase is 1.37 million people per year. If the rate is fairly constant in that period, the amount of
time it would take for an increase of 8 million people (100 million — 92.0 million) would be

8 million people

~5.8 ~6
1.37 million people/year years years

Adding this to our starting point of 1910, we estimate that the population of the US reached 100
million around 1916, i.e. f~(100) ~ 1916.
(iv) Since it took 10 years between 1910 and 1920 for the population to increase by 105.7 — 92.0 = 13.7
million people, the derivative of f~!(P) at P = 100 is approximately
10 years
13.7 million people

= 0.73 years/million people

(¢) (i) Clearly the population of the US at any instant is an integer that varies up and down every few seconds
as a child is born, a person dies, or a new immigrant arrives. So f(¢) has “jumps;” it is not a smooth
function. But these jumps are small relative to the values of f, so f appears smooth unless we zoom
in very closely on its graph (to within a few seconds).

Major land acquisitions such as the Louisiana Purchase caused larger jumps in the population,
but since the census is taken only every ten years and the territories acquired were rather sparsely
populated, we cannot see these jumps in the census data.

(i) We can regard rate of change of the population for a particular time ¢ as representing an estimate of
how much the population will increase during the year after time ¢.

(iii) Many economic indicators are treated as smooth, such as the Gross National Product, the Dow Jones
Industrial Average, volumes of trading, and the price of commodities like gold. But these figures only
change in increments, not continuously.



