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CHAPTER THREE
Solutions for Section 3.1

Exercises

1. The derivative, f ′(x), is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

If f(x) = 7, then

f ′(x) = lim
h→0

7− 7

h
= lim
h→0

0

h
= 0.

2. The definition of the derivative says that

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Therefore,

f ′(x) = lim
h→0

[17(x+ h) + 11]− [17x+ 11]

h
= lim
h→0

17h

h
= 17.

3. y′ = 11x10.

4. y′ = 12x11.

5. y′ = −12x−13.

6. y′ = 11x−12.

7. y′ = 3.2x2.2.

8. y′ = 4
3
x1/3.

9. y′ = 3
4
x−1/4.

10. y′ = − 3
4
x−7/4.

11. f ′(x) = −4x−5.

12. Since g(t) =
1

t5
= t−5, we have g′(t) = −5t−6.

13. Since f(z) = − 1

z6.1
= −z−6.1, we have f ′(z) = −(−6.1)z−7.1 = 6.1z−7.1.

14. Since y =
1

r7/2
= r−7/2, we have

dy

dx
= −7

2
r−9/2.

15. Since y =
√
x = x1/2, we have

dy

dx
=

1

2
x−1/2.

16. f ′(x) = 1
4
x−3/4.

17. Since h(θ) =
1
3
√
θ

= θ−1/3, we have h′(θ) = −1

3
θ−4/3.

18. Since f(x) =

√
1

x3
=

1

x3/2
= x−3/2, we have f ′(x) = −3

2
x−5/2.

19. f ′(x) = exe−1.

20. y′ = 6x1/2 − 5
2
x−1/2.

21. f ′(t) = 6t− 4.

22. y′ = 17 + 12x−1/2.

23. y′ = 2z − 1
2z2 .

24. The power rule gives f ′(x) = 20x3 − 2

x3
.

25. h′(w) = 6w−4 +
3

2
w−1/2

26. y′ = 18x2 + 8x− 2.
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27. y′ = 15t4 − 5
2
t−1/2 − 7

t2
.

28. y′ = 6t− 6

t3/2
+ 2

t3
.

29. Since y =
√
x(x+ 1) = x1/2x+ x1/2 · 1 = x3/2 + x1/2, we have

dy

dx
=

3

2
x1/2 +

1

2
x−1/2.

30. Since y = t3/2(2 +
√
t) = 2t3/2 + t3/2t1/2 = 2t3/2 + t2, we have dy

dx
= 3t1/2 + 2t.

31. Since h(t) =
3

t
+

4

t2
= 3t−1 + 4t−2, we have h′(t) = −3t−2 − 8t−3.

32. Since y =
√
θ

(√
θ +

1√
θ

)
= θ1/2θ1/2 +

√
θ√
θ

= θ + 1, we have dy
dx

= 1.

33. y = x+ 1
x

, so y′ = 1− 1
x2 .

34. f(z) =
z

3
+

1

3
z−1 =

1

3

(
z + z−1

)
, so f ′(z) =

1

3

(
1− z−2

)
=

1

3

(
z2 − 1

z2

)
.

35. f(t) =
1

t2
+

1

t
− 1

t4
= t−2 + t−1 − t−4

f ′(t) = −2t−3 − t−2 + 4t−5.

36. y = θ√
θ
− 1√

θ
=
√
θ − 1√

θ

y′ = 1

2
√
θ

+ 1

2θ3/2 .

37. j′(x) =
3x2

a
+

2ax

b
− c

38. Since f(x) =
ax+ b

x
=
ax

x
+
b

x
= a+ bx−1, we have f ′(x) = −bx−2.

39. Since h(x) =
ax+ b

c
=
a

c
x+

b

c
, we have h′(x) =

a

c
.

40. Since g(t) =

√
t(1 + t)

t2
=
t1/2 · 1 + t1/2t

t2
=
t1/2

t2
+
t3/2

t2
= t−3/2 + t−1/2, we have g′(t) = −3

2
t−5/2 − 1

2
t−3/2.

41. Since 4/3, π, and b are all constants, we have

dV

dr
=

4

3
π(2r)b =

8

3
πrb.

42. Since w is a constant times q, we have dw/dq = 3ab2.

43. Since a, b, and c are all constants, we have
dy

dx
= a(2x) + b(1) + 0 = 2ax+ b.

44. Since a and b are constants, we have
dP

dt
= 0 + b

1

2
t−1/2 =

b

2
√
t
.

Problems

45. So far, we can only take the derivative of powers of x and the sums of constant multiples of powers of x. Since we cannot
write

√
x+ 3 in this form, we cannot yet take its derivative.

46. The x is in the exponent and we haven’t learned how to handle that yet.

47. g′(x) = πx(π−1) + πx−(π+1), by the power and sum rules.

48. y′ = 6x. (power rule and sum rule)

49. We cannot write 1
3x2+4

as the sum of powers of x multiplied by constants.

50. y′ = −2/3z3. (power rule and sum rule)

51. f ′(t) = 6t2 − 8t+ 3 and f ′′(t) = 12t− 8.

52.
f ′(x) = −8 + 2

√
2x

f ′(r) = −8 + 2
√

2r = 4

r =
12

2
√

2
= 3
√

2.
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53. Differentiating gives
f ′(x) = 6x2 − 4x so f ′(1) = 6− 4 = 2.

Thus the equation of the tangent line is (y − 1) = 2(x− 1) or y = 2x− 1.

54. (a) We have f(2) = 8, so a point on the tangent line is (2, 8). Since f ′(x) = 3x2, the slope of the tangent is given by

m = f ′(2) = 3(2)2 = 12.

Thus, the equation is
y − 8 = 12(x− 2) or y = 12x− 16.

(b) See Figure 3.1. The tangent line lies below the function f(x) = x3, so estimates made using the tangent line are
underestimates.

−2 2 4
−10

10

20

30

x

y = 12x− 16

y = x3

Figure 3.1

55.

f ′(x) = 12x2 + 12x− 23 ≥ 1

12x2 + 12x− 24 ≥ 0

12(x2 + x− 2) ≥ 0

12(x+ 2)(x− 1) ≥ 0.

Hence x ≥ 1 or x ≤ −2.

56. The slopes of the tangent lines to y = x2 − 2x + 4 are given by y′ = 2x − 2. A line through the origin has equation
y = mx. So, at the tangent point, x2 − 2x+ 4 = mx where m = y′ = 2x− 2.

x2 − 2x+ 4 = (2x− 2)x

x2 − 2x+ 4 = 2x2 − 2x

−x2 + 4 = 0

−(x+ 2)(x− 2) = 0

x = 2,−2.

Thus, the points of tangency are (2, 4) and (−2, 12). The lines through these points and the origin are y = 2x and
y = −6x, respectively. Graphically, this can be seen in Figure 3.2:

(−2, 12)

(2, 4)

y = −6x

y

y = x2 − 2x+ 4

y = 2x

x

Figure 3.2
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57. Decreasing means f ′(x) < 0:
f ′(x) = 4x3 − 12x2 = 4x2(x− 3),

so f ′(x) < 0 when x < 3 and x 6= 0. Concave up means f ′′(x) > 0:

f ′′(x) = 12x2 − 24x = 12x(x− 2)

so f ′′(x) > 0 when
12x(x− 2) > 0

x < 0 or x > 2.

So, both conditions hold for x < 0 or 2 < x < 3.

58. The graph increases when dy/dx > 0:

dy

dx
= 5x4 − 5 > 0

5(x4 − 1) > 0 so x4 > 1 so x > 1 or x < −1.

The graph is concave up when d2y/dx2 > 0:

d2y

dx2
= 20x3 > 0 so x > 0.

We need values of x where {x > 1 or x < −1} AND {x > 0}, which implies x > 1. Thus, both conditions hold for all
values of x larger than 1.

59. Since f(x) = x3 − 6x2 − 15x+ 20, we have f ′(x) = 3x2 − 12x− 15. To find the points at which f ′(x) = 0, we solve

3x2 − 12x− 15 = 0

3(x2 − 4x− 5) = 0

3(x+ 1)(x− 5) = 0.

We see that f ′(x) = 0 at x = −1 and at x = 5. The graph of f(x) in Figure 3.3 appears to be horizontal at x = −1 and
at x = 5, confirming what we found analytically.

−1

5
x

f(x)

Figure 3.3

60. (a) Since the power of x will go down by one every time you take a derivative (until the exponent is zero after which the
derivative will be zero), we can see immediately that f (8)(x) = 0.

(b) f (7)(x) = 7 · 6 · 5 · 4 · 3 · 2 · 1 · x0 = 5040.

61. Since f(t) = 700 − 3t2, we have f(5) = 700 − 3(25) = 625 cm. Since f ′(t) = −6t, we have f ′(5) = −30 cm/year.
In the year 2000, the sand dune was 625 cm high and it was eroding at a rate of 30 centimeters per year.

62. (a) Velocity v(t) = dy
dt

= d
dt

(1250− 16t2) = −32t.
Since t ≥ 0, the ball’s velocity is negative. This is reasonable, since its height y is decreasing.

(b) Acceleration a(t) = dv
dt

= d
dt

(−32t) = −32.
So its acceleration is the negative constant −32.

(c) The ball hits the ground when its height y = 0. This gives

1250− 16t2 = 0

t = ±8.84 seconds

We discard t = −8.84 because time t is nonnegative. So the ball hits the ground 8.84 seconds after its release, at
which time its velocity is

v(8.84) = −32(8.84) = −282.88 feet/sec = −192.84 mph.
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63. (a) The average velocity between t = 0 and t = 2 is given by

Average velocity =
f(2)− f(0)

2− 0
=
−4.9(22) + 25(2) + 3− 3

2− 0
=

33.4− 3

2
= 15.2 m/sec.

(b) Since f ′(t) = −9.8t+ 25, we have

Instantaneous velocity = f ′(2) = −9.8(2) + 25 = 5.4 m/sec.

(c) Acceleration is given f ′′(t) = −9.8. The acceleration at t = 2 (and all other times) is the acceleration due to gravity,
which is −9.8 m/sec2.

(d) We can use a graph of height against time to estimate the maximum height of the tomato. See Figure 3.4. Alternately,
we can find the answer analytically. The maximum height occurs when the velocity is zero and v(t) = −9.8t+25 = 0
when t = 2.6 sec. At this time the tomato is at a height of f(2.6) = 34.9. The maximum height is 34.9 meters.

2.6 5.2

34.9

t (sec)

height (m)

Figure 3.4

(e) We see in Figure 3.4 that the tomato hits ground at about t = 5.2 seconds. Alternately, we can find the answer
analytically. The tomato hits the ground when

f(t) = −4.9t2 + 25t+ 3 = 0.

We solve for t using the quadratic formula:

t =
−25±

√
(25)2 − 4(−4.9)(3)

2(−4.9)

t =
−25±

√
683.8

−9.8
t = −0.12 and t = 5.2.

We use the positive values, so the tomato hits the ground at t = 5.2 seconds.

64. dF

dr
= −2GMm

r3
.

65. (a) T = 2π

√
l

g
=

2π√
g

(
l

1
2

)
, so

dT

dl
=

2π√
g

(
1

2
l−

1
2

)
=

π√
gl

.

(b) Since
dT

dl
is positive, the period T increases as the length l increases.

66. (a) A = πr2

dA
dr

= 2πr.
(b) This is the formula for the circumference of a circle.
(c) A′(r) ≈ A(r+h)−A(r)

h
for small h. When h > 0, the numerator of the difference quotient denotes the area of the

region contained between the inner circle (radius r) and the outer circle (radius r + h). See figure below. As h
approaches 0, this area can be approximated by the product of the circumference of the inner circle and the “width”
of the region, i.e., h. Dividing this by the denominator, h, we get A′ = the circumference of the circle with radius r.
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r

� h

We can also think about the derivative ofA as the rate of change of area for a small change in radius. If the radius
increases by a tiny amount, the area will increase by a thin ring whose area is simply the circumference at that radius
times the small amount. To get the rate of change, we divide by the small amount and obtain the circumference.

67. V = 4
3
πr3. Differentiating gives dV

dr
= 4πr2 = surface area of a sphere.

The difference quotient V (r+h)−V (r)
h

is the volume between two spheres divided by the change in radius. Further-
more, when h is very small, the difference between volumes, V (r + h) − V (r), is like a coating of paint of depth h
applied to the surface of the sphere. The volume of the paint is about h · (Surface Area) for small h: dividing by h gives
back the surface area.

Thinking about the derivative as the rate of change of the function for a small change in the variable gives another
way of seeing the result. If you increase the radius of a sphere a small amount, the volume increases by a very thin layer
whose volume is the surface area at that radius multiplied by that small amount.

68. If f(x) = xn, then f ′(x) = nxn−1. This means f ′(1) = n · 1n−1 = n · 1 = n, because any power of 1 equals 1.

69. Since f(x) = axn, f ′(x) = anxn−1. We know that f ′(2) = (an)2n−1 = 3, and f ′(4) = (an)4n−1 = 24. Therefore,

f ′(4)

f ′(2)
=

24

3

(an)4n−1

(an)2n−1
=
(

4

2

)n−1

= 8

2n−1 = 8, and thus n = 4.

Substituting n = 4 into the expression for f ′(2), we get 3 = a(4)(8), or a = 3/32.

70. Yes. To see why, we substitute y = xn into the equation 13x
dy

dx
= y. We first calculate

dy

dx
=

d

dx
(xn) = nxn−1. The

differential equation becomes
13x(nxn−1) = xn

But 13x(nxn−1) = 13n(x · xn−1) = 13nxn, so we have

13n(xn) = xn

This equality must hold for all x, so we get 13n = 1, so n = 1/13. Thus, y = x1/13 is a solution.

71. (a)

d(x−1)

dx
= lim

h→0

(x+ h)−1 − x−1

h
= lim
h→0

1

h

[
1

x+ h
− 1

x

]

= lim
h→0

1

h

[
x− (x+ h)

x(x+ h)

]
= lim
h→0

1

h

[
−h

x(x+ h)

]

= lim
h→0

−1

x(x+ h)
=
−1

x2
= −1x−2.

d(x−3)

dx
= lim

h→0

(x+ h)−3 − x−3

h

= lim
h→0

1

h

[
1

(x+ h)3
− 1

x3

]
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= lim
h→0

1

h

[
x3 − (x+ h)3

x3(x+ h)3

]

= lim
h→0

1

h

[
x3 − (x3 + 3hx2 + 3h2x+ h3)

x3(x+ h)3

]

= lim
h→0

1

h

[
−3hx2 − 3xh2 − h3

x3(x+ h)3

]

= lim
h→0

−3x2 − 3xh− h2

x3(x+ h)3

=
−3x2

x6
= −3x−4.

(b) For clarity, let n = −k, where k is a positive integer. So xn = x−k.

d(x−k)

dx
= lim

h→0

(x+ h)−k − x−k
h

= lim
h→0

1

h

[
1

(x+ h)k
− 1

xk

]

= lim
h→0

1

h

[
xk − (x+ h)k

xk(x+ h)k

]

= lim
h→0

1

h

[
xk − xk − khxk−1 −

terms involving h2 and higher powers of h
︷ ︸︸ ︷
. . .− hk

xk(x+ h)k

]

=
−kxk−1

xk(x)k
=
−k
xk+1

= −kx−(k+1) = −kx−k−1.

Solutions for Section 3.2

Exercises

1. f ′(x) = 2ex + 2x.

2. y′ = 10t+ 4et.

3. y′ = (ln 5)5x.

4. f ′(x) = 12ex + (ln 11)11x.

5. y′ = 10x+ (ln 2)2x.

6. f ′(x) = (ln 2)2x + 2(ln 3)3x.

7. dy

dx
= 4(ln 10)10x − 3x2.

8. dy

dx
= 3− 2(ln 4)4x.

9. Since y = 2x +
2

x3
= 2x + 2x−3, we have

dy

dx
= (ln 2)2x − 6x−4.

10. dy

dx
=

1

3
(ln 3)3x − 33

2
(x−

3
2 ).

11. z′ = (ln 4)ex.

12. z′ = (ln 4)24x.

13. f ′(t) = (ln(ln 3))(ln 3)t.

14. dy

dx
= 5 · 5t ln 5 + 6 · 6t ln 6

15. h′(z) = (ln(ln 2))(ln 2)z .

16. f ′(x) = exe−1.
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17. f ′(x) = 3x2 + 3x ln 3

18. dy

dx
= πx lnπ

19. f ′(x) = (lnπ)πx.

20. This is the sum of an exponential function and a power function, so f ′(x) = ln(π)πx + πxπ−1.

21. Since e and k are constants, ek is constant, so we have f ′(x) = (ln k)kx.

22. f(x) = e1+x = e1 · ex. Then, since e1 is just a constant,
f ′(x) = e · ex = e1+x.

23. f(t) = et · e2. Then, since e2 is just a constant, f ′(t) = d
dt

(ete2) = e2 d
dt
et = e2et = et+2.

24. y = eθe−1 y′ =
d

dθ
(eθe−1) = e−1 d

dθ
eθ = eθe−1 = eθ−1.

25. y′(x) = ax ln a+ axa−1.

26. f ′(x) = π2x(π2−1) + (π2)x ln(π2)

27. y′ = 2x+ (ln 2)2x.

28. y′ = 1
2
x−

1
2 − ln 1

2
( 1

2
)x = 1

2
√
x

+ ln 2( 1
2
)x.

29. We can take the derivative of the sum x2 + 2x, but not the product.

30. Once again, this is a product of two functions, 2x and 1
x

, each of which we can take the derivative of; but we don’t know
how to take the derivative of the product.

31. Since y = e5ex, y′ = e5ex = ex+5.

32. y = e5x = (e5)x, so y′ = ln(e5) · (e5)x = 5e5x.

33. The exponent is x2, and we haven’t learned what to do about that yet.

34. f ′(z) = (ln
√

4)(
√

4)z = (ln 2)2z.

35. We can’t use our rules if the exponent is
√
θ.

Problems

36. Since P = 1 · (1.05)t, dP
dt

= ln(1.05)1.05t. When t = 10,

dP

dt
= (ln 1.05)(1.05)10 ≈ $0.07947/year ≈ 7.95c//year.

37.
dP

dt
= 35,000 · (ln 0.98)(0.98t).

At t = 23, this is 35,000(ln 0.98)(0.9823) ≈ −444.3 people/year. (Note: the negative sign indicates that the population
is decreasing.)

38. We have f(t) = 5.3(1.018)t so f ′(t) = 5.3(ln 1.018)(1.018)t = 0.095(1.018)t. Therefore

f(0) = 5.3 billion people

and
f ′(0) = 0.095 billion people per year.

In 1990, the population of the world was 5.3 billion people and was increasing at a rate of 0.095 billion people per year.
We also have

f(30) = 5.3(1.018)30 = 9.1 billion people,

and
f ′(30) = 0.095(1.018)30 = 0.16 billion people per year.

In the year 2020, this model predicts that the population of the world will be 9.1 billion people and will be increasing at
a rate of 0.16 billion people per year.

39. dV

dt
= 75(1.35)t ln 1.35 ≈ 22.5(1.35)t.
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40. (a) V (4) = 25(0.85)4 = 25(0.522) = 13,050. Thus the value of the car after 4 years is $13,050.
(b) We have a function of the form f(t) = Cat. We know that such functions have a derivative of the form (C ln a) · at.

Thus, V ′(t) = 25(0.85)t ·ln 0.85 = −4.063(0.85)t. The units would be the change in value (in thousands of dollars)
with respect to time (in years), or thousands of dollars/year.

(c) V ′(4) = −4.063(0.85)4 = −4.063(0.522) = −2.121. This means that at the end of the fourth year, the value of
the car is decreasing by $2121 per year.

(d) V (t) is a positive decreasing function, so that the value of the automobile is positive and decreasing. V ′(t) is a
negative function whose magnitude is decreasing, meaning the value of the automobile is always dropping, but the
yearly loss of value is less as time goes on. The graphs of V (t) and V ′(t) confirm that the value of the car decreases
with time. What they do not take into account are the costs associated with owning the vehicle. At some time, t, it is
likely that the yearly costs of owning the vehicle will outweigh its value. At that time, it may no longer be worthwhile
to keep the car.

41. (a) f(x) = 1 − ex crosses the x-axis where 0 = 1 − ex, which happens when ex = 1, so x = 0. Since f ′(x) = −ex,
f ′(0) = −e0 = −1.

(b) y = −x
(c) The negative of the reciprocal of −1 is 1, so the equation of the normal line is y = x.

42. Since y = 2x, y′ = (ln 2)2x. At (0, 1), the tangent line has slope ln 2 so its equation is y = (ln 2)x+ 1. At c, y = 0, so
0 = (ln 2)c+ 1, thus c = − 1

ln 2
.

43.

g(x) = ax2 + bx+ c

g′(x) = 2ax+ b

g′′(x) = 2a

f(x) = ex

f ′(x) = ex

f ′′(x) = ex

So, using g′′(0) = f ′′(0), etc., we have 2a = 1, b = 1, and c = 1, and thus g(x) = 1
2
x2 + x + 1, as shown in

Figure 3.5.

ex

1
2
x2 + x+ 1

x

Figure 3.5

The two functions do look very much alike near x = 0. They both increase for large values of x, but ex increases
much more quickly. For very negative values of x, the quadratic goes to∞whereas the exponential goes to 0. By choosing
a function whose first few derivatives agreed with the exponential when x = 0, we got a function which looks like the
exponential for x-values near 0.

44. The first and second derivatives of ex are ex. Thus, the graph of y = ex is concave up. The tangent line at x = 0 has
slope e0 = 1 and equation y = x + 1. A graph that is always concave up is always above any of its tangent lines. Thus
ex ≥ x+ 1 for all x, as shown in the following figure.

x

y

(0, 1)

y = x+ 1
y = ex
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45. The equation 2x = 2x has solutions x = 1 and x = 2. (Check this by substituting these values into the equation). The
graph below suggests that these are the only solutions, but how can we be sure?

Let’s look at the slope of the curve f(x) = 2x, which is f ′(x) = (ln 2)2x ≈ (0.693)2x, and the slope of the line
g(x) = 2x which is 2. At x = 1, the slope of f(x) is less than 2; at x = 2, the slope of f(x) is more than 2. Since the
slope of f(x) is always increasing, there can be no other point of intersection. (If there were another point of intersection,
the graph f would have to “turn around”.)

Here’s another way of seeing this. Suppose g(x) represents the position of a car going a steady 2 mph, while f(x)
represents a car which starts ahead of g (because the graph of f is above g) and is initially going slower than g. The car f
is first overtaken by g. All the while, however, f is speeding up until eventually it overtakes g again. Notice that the two
cars will only meet twice (corresponding to the two intersections of the curve): once when g overtakes f and once when
f overtakes g.

(2, 4)

(1, 2)

y = 2x

y = 2x

46. For x = 0, we have y = a0 = 1 and y = 1 + 0 = 1, so both curves go through the point (0, 1) for all values of a.
Differentiating gives

d(ax)

dx

∣∣∣∣
x=0

= ax ln a|x=0 = a0 ln a = ln a

d(1 + x)

dx

∣∣∣∣
x=0

= 1.

The graphs are tangent at x = 0 if
ln a = 1 so a = e.

Solutions for Section 3.3

Exercises

1. By the product rule, f ′(x) = 2x(x3 + 5) + x2(3x2) = 2x4 + 3x4 + 10x = 5x4 + 10x. Alternatively, f ′(x) =
(x5 + 5x2)′ = 5x4 + 10x. The two answers should, and do, match.

2. Using the product rule,

f ′(x) = (ln 2)2x3x + (ln 3)2x3x = (ln 2 + ln 3)(2x · 3x) = ln(2 · 3)(2 · 3)x = (ln 6)6x

or, since 2x · 3x = (2 · 3)x = 6x,
f ′(x) = (6x)′ = (ln 6)(6x).

The two answers should, and do, match.

3. f ′(x) = x · ex + ex · 1 = ex(x+ 1).

4. y′ = 2x + x(ln 2)2x = 2x(1 + x ln 2).

5. y′ = 1
2
√
x

2x +
√
x(ln 2)2x.

6. dy

dt
= 2tet + (t2 + 3)et = et(t2 + 2t+ 3).

7. f ′(x) = (x2 − x 1
2 ) · 3x(ln 3) + 3x

(
2x− 1

2
x−

1
2

)
= 3x

[
(ln 3)(x2 − x 1

2 ) +

(
2x− 1

2
√
x

)]
.
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8. It is easier to do this by multiplying it out first, rather than using the product rule first: z = s4 − s, z′ = 4s3 − 1.

9. f ′(y) = (ln 4)4y(2− y2) + 4y(−2y) = 4y((ln 4)(2− y2)− 2y).

10. y′ = (3t2 − 14t)et + (t3 − 7t2 + 1)et = (t3 − 4t2 − 14t+ 1)et.

11. f ′(x) =
ex · 1− x · ex

(ex)2
=
ex(1− x)

(ex)2
=

1− x
ex

.

12. g′(x) =
50xex − 25x2ex

e2x
=

50x− 25x2

ex
.

13. dy

dx
=

1 · 2t − (t+ 1)(ln 2)2t

(2t)2
=

2t(1− (t+ 1) ln 2)

(2t)2
=

1− (t+ 1) ln 2

2t

14. g′(w) =
3.2w2.2(5w)− (ln 5)(w3.2)5w

52w
=

3.2w2.2 − w3.2(ln 5)

5w
.

15. q′(r) =
3(5r + 2)− 3r(5)

(5r + 2)2
=

15r + 6− 15r

(5r + 2)2
=

6

(5r + 2)2

16. g′(t) =
(t+ 4)− (t− 4)

(t+ 4)2
=

8

(t+ 4)2
.

17. dz

dt
=

3(5t+ 2)− (3t+ 1)5

(5t+ 2)2
=

15t+ 6− 15t− 5

(5t+ 2)2
=

1

(5t+ 2)2
.

18. z′ =
(2t+ 5)(t+ 3)− (t2 + 5t+ 2)

(t+ 3)2
=
t2 + 6t+ 13

(t+ 3)2
.

19. Using the quotient rule gives
dz

dt
=

(2t+ 3)(t+ 1)− (t2 + 3t+ 1)

(t+ 1)2
or

dz

dt
=
t2 + 2t+ 2

(t+ 1)2
.

20. Divide and then differentiate
f(x) = x+

3

x

f ′(x) = 1− 3

x2
.

21. w = y2 − 6y + 7. w′ = 2y − 6, y 6= 0.

22. y′ =

1

2
√
t
(t2 + 1)−

√
t(2t)

(t2 + 1)2
.

23. d

dz

(
z2 + 1√

z

)
=

d

dz
(z

3
2 + z−

1
2 ) =

3

2
z

1
2 − 1

2
z−

3
2 =

√
z

2
(3− z−2).

24. g′(t) = −4(3 +
√
t)−2

(
1

2
t−1/2

)
=

−2√
t(3 +

√
t)2

25. h′(r) =
d

dr

(
r2

2r + 1

)
=

(2r)(2r + 1)− 2r2

(2r + 1)2
=

2r(r + 1)

(2r + 1)2
.

26. Notice that you can cancel a z out of the numerator and denominator to get

f(z) =
3z

5z + 7
, z 6= 0

Then

f ′(z) =
(5z + 7)3− 3z(5)

(5z + 7)2

=
15z + 21− 15z

(5z + 7)2

=
21

(5z + 7)2
, z 6= 0.

[If you used the quotient rule correctly without canceling the z out first, your answer should simplify to this one, but
it is usually a good idea to simplify as much as possible before differentiating.]

27. w′(x) =
17ex(2x)− (ln 2)(17ex)2x

22x
=

17ex(2x)(1− ln 2)

22x
=

17ex(1− ln 2)

2x
.
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28. h′(p) =
2p(3 + 2p2)− 4p(1 + p2)

(3 + 2p2)2
=

6p+ 4p3 − 4p− 4p3

(3 + 2p2)2
=

2p

(3 + 2p2)2
.

29.
f ′(x) =

(2 + 3x+ 4x2)(1)− (1 + x)(3 + 8x)

(2 + 3x+ 4x2)2

=
2 + 3x+ 4x2 − 3− 11x− 8x2

(2 + 3x+ 4x2)2

=
−4x2 − 8x− 1

(2 + 3x+ 4x2)2
.

30. We use the quotient rule. We have

f ′(x) =
(cx+ k)(a)− (ax+ b)(c)

(cx+ k)2
=
acx+ ak − acx− bc

(cx+ k)2
=

ak − bc
(cx+ k)2

.

Problems

31. Using the product rule, we know that h′(x) = f ′(x) · g(x) + f(x) · g′(x). We use slope to compute the derivatives. Since
f(x) is linear on the interval 0 < x < 2, we compute the slope of the line to see that f ′(x) = 2 on this interval. Similarly,
we compute the slope on the interval 2 < x < 4 to see that f ′(x) = −2 on the interval 2 < x < 4. Since f(x) has a
corner at x = 2, we know that f ′(2) does not exist.

Similarly, g(x) is linear on the interval shown, and we see that the slope of g(x) on this interval is −1 so we have
g′(x) = −1 on this interval.

(a) We have h′(1) = f ′(1) · g(1) + f(1) · g′(1) = 2 · 3 + 2(−1) = 6− 2 = 4.
(b) We have h′(2) = f ′(2) · g(2) + f(2) · g′(2). Since f(x) has a corner at x = 2, we know that f ′(2) does not exist.

Therefore, h′(2) does not exist.
(c) We have h′(3) = f ′(3) · g(3) + f(3) · g′(3) = (−2)1 + 2(−1) = −2− 2 = −4.

32. Using the quotient rule, we know that k′(x) = (f ′(x) · g(x) − f(x) · g′(x))/(g(x))2. We use slope to compute the
derivatives. Since f(x) is linear on the interval 0 < x < 2, we compute the slope of the line to see that f ′(x) = 2 on this
interval. Similarly, we compute the slope on the interval 2 < x < 4 to see that f ′(x) = −2 on the interval 2 < x < 4.
Since f(x) has a corner at x = 2, we know that f ′(2) does not exist.

Similarly, g(x) is linear on the interval shown, and we see that the slope of g(x) on this interval is −1 so we have
g′(x) = −1 on this interval.

(a) We have

k′(1) =
f ′(1) · g(1)− f(1) · g′(1)

(g(1))2
=

2 · 3− 2(−1)

32
=

6 + 2

9
=

8

9
.

(b) We have k′(2) = (f ′(2) · g(2)− f(2) · g′(2))/(g(2)2). Since f(x) has a corner at x = 2, we know that f ′(2) does
not exist. Therefore, k′(2) does not exist.

(c) We have

k′(3) =
f ′(3) · g(3)− f(3) · g′(3)

(g(3))2
=

(−2)1− 2(−1)

12
=
−2 + 2

1
= 0.

33. Using the quotient rule, we know that j ′(x) = (g′(x) · f(x) − g(x) · f ′(x))/(f(x))2. We use slope to compute the
derivatives. Since f(x) is linear on the interval 0 < x < 2, we compute the slope of the line to see that f ′(x) = 2 on this
interval. Similarly, we compute the slope on the interval 2 < x < 4 to see that f ′(x) = −2 on the interval 2 < x < 4.
Since f(x) has a corner at x = 2, we know that f ′(2) does not exist.

Similarly, g(x) is linear on the interval shown, and we see that the slope of g(x) on this interval is −1 so we have
g′(x) = −1 on this interval.

(a) We have

j′(1) =
g′(1) · f(1)− g(1) · f ′(1)

(f(1))2
=

(−1)2− 3 · 2
22

=
−2− 6

4
=
−8

4
= −2.

(b) We have j′(2) = (g′(2) · f(2)− g(2) · f ′(2))/(f(2)2). Since f(x) has a corner at x = 2, we know that f ′(2) does
not exist. Therefore, j′(2) does not exist.

(c) We have

j′(3) =
g′(3) · f(3)− g(3) · f ′(3)

(f(3))2
=

(−1)2− 1(−2)

22
=
−2 + 2

4
= 0.
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34. From the graphs, we estimate f(1) ≈ −0.4, f ′(1) ≈ 0.5, g(1) ≈ 2, and g′(1) ≈ 1. By the product rule,

h′(1) = f ′(1) · g(1) + f(1) · g′(1) ≈ (0.5)2 + (−0.4)1 = 0.6.

35. From the graphs, we estimate f(1) ≈ −0.4, f ′(1) ≈ 0.5, g(1) ≈ 2, and g′(1) ≈ 1. By the quotient rule,

k′(1) =
f ′(1) · g(1)− f(1) · g′(1)

(g(1))2
≈ (0.5)2− (−0.4)1

22
= 0.35.

36. From the graphs, we estimate f(2) ≈ 0.3, f ′(2) ≈ 1.1, g(2) ≈ 1.6, and g′(2) ≈ −0.5. By the product rule,

h′(2) = f ′(2) · g(2) + f(2) · g′(2) ≈ 1.1(1.6) + 0.3(−0.5) = 1.61.

37. From the graphs, we estimate f(2) ≈ 0.3, f ′(2) ≈ 1.1, g(2) ≈ 1.6, and g′(2) ≈ −0.5. By the quotient rule,

k′(2) =
f ′(2) · g(2)− f(2) · g′(2)

(g(2))2
≈ 1.1(1.6)− 0.3(−0.5)

(1.6)2
= 0.75.

38. From the graphs, we estimate f(1) ≈ −0.4, f ′(1) ≈ 0.5, g(1) ≈ 2, and g′(1) ≈ 1. By the quotient rule,

l′(1) =
g′(1) · f(1)− g(1) · f ′(1)

(f(1))2
≈ 1(−0.4)− 2(0.5)

(−0.4)2
= −8.75.

39. From the graphs, we estimate f(2) ≈ 0.3, f ′(2) ≈ 1.1, g(2) ≈ 1.6, and g′(2) ≈ −0.5. By the quotient rule,

l′(2) =
g′(2) · f(2)− g(2) · f ′(2)

(f(2))2
≈ (−0.5)0.3− 1.6(1.1)

(0.3)2
= −21.22.

40.
f ′(x) = 3(2x− 5) + 2(3x+ 8) = 12x+ 1

f ′′(x) = 12.

41.

f(t) =
1

et

f ′(t) =
et · 0− et · 1

(et)2

=
−1

et
= −e−t.

42. f(x) = ex · ex
f ′(x) = ex · ex + ex · ex = 2e2x.

43.
f(x) = exe2x

f ′(x) = ex(e2x)′ + (ex)′e2x

= 2exe2x + exe2x (from Problem 42)

= 3e3x.

44. We have
f ′(x) = ex + xex

f ′′(x) = ex + ex + xex = (2 + x)ex.

Since f(x) is concave up when f ′′(x) > 0, we see that f(x) is concave up when x > −2.
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45. Using the quotient rule, we have

g′(x) =
0− 1(2x)

(x2 + 1)2
=

−2x

(x2 + 1)2

g′′(x) =
−2(x2 + 1)2 + 2x(4x3 + 4x)

(x2 + 1)4

=
−2(x2 + 1)2 + 8x2(x2 + 1)

(x2 + 1)4

=
−2(x2 + 1) + 8x2

(x2 + 1)3

=
2(3x2 − 1)

(x2 + 1)3
.

Since (x2 + 1)3 > 0 for all x, we have g′′(x) < 0 if (3x2 − 1) < 0, or when

3x2 < 1

− 1√
3
< x <

1√
3
.

46. Since f(0) = −5/1 = −5, the tangent line passes through the point (0,−5), so its vertical intercept is −5. To find the
slope of the tangent line, we find the derivative of f(x) using the quotient rule:

f ′(x) =
(x+ 1) · 2− (2x− 5) · 1

(x+ 1)2
=

7

(x+ 1)2
.

At x = 0, the slope of the tangent line is m = f ′(0) = 7. The equation of the tangent line is y = 7x− 5.

47. (a) Although the answer you would get by using the quotient rule is equivalent, the answer looks simpler in this case if
you just use the product rule:

d

dx

(
ex

x

)
=

d

dx

(
ex · 1

x

)
=
ex

x
− ex

x2

d

dx

(
ex

x2

)
=

d

dx

(
ex · 1

x2

)
=
ex

x2
− 2ex

x3

d

dx

(
ex

x3

)
=

d

dx

(
ex · 1

x3

)
=
ex

x3
− 3ex

x4
.

(b)
d

dx

ex

xn
=
ex

xn
− nex

xn+1.
48.

d(x2)

dx
=

d

dx
(x · x)

= x
d(x)

dx
+ x

d(x)

dx
= 2x.

d(x3)

dx
=

d

dx
(x2 · x)

= x2 d(x)

dx
+ x

d(x2)

dx

= x2 d(x)

dx
+ x

[
x
d(x)

dx
+ x

d(x)

dx

]

= x2 d(x)

dx
+ x2 d(x)

dx
+ x2 d(x)

dx

= 3x2.
49. Since

x1/2 · x1/2 = x,

we differentiate to obtain
d

dx
(x1/2) · x1/2 + x1/2 · d

dx
(x1/2) = 1.
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Now solve for d(x1/2)/dx:

2x1/2 d

dx
(x1/2) = 1

d

dx
(x1/2) =

1

2x1/2
.

50. (a) We have h′(2) = f ′(2) + g′(2) = 5− 2 = 3.
(b) We have h′(2) = f ′(2)g(2) + f(2)g′(2) = 5(4) + 3(−2) = 14.

(c) We have h′(2) =
f ′(2)g(2)− f(2)g′(2)

(g(2))2
=

5(4)− 3(−2)

42
=

26

16
=

13

8
.

51. (a) G′(z) = F ′(z)H(z) +H ′(z)F (z), so
G′(3) = F ′(3)H(3) +H ′(3)F (3) = 4 · 1 + 3 · 5 = 19.

(b) G′(w) =
F ′(w)H(w)−H ′(w)F (w)

[H(w)]2
, so G′(3) =

4(1)− 3(5)

12
= −11.

52. f ′(x) = 10x9ex + x10ex is of the form g′h+ h′g, where

g(x) = x10, g′(x) = 10x9

and
h(x) = ex, h′(x) = ex.

Therefore, using the product rule, let f = g · h, with g(x) = x10 and h(x) = ex. Thus

f(x) = x10ex.

53. (a) f(140) = 15,000 says that 15,000 skateboards are sold when the cost is $140 per board.
f ′(140) = −100 means that if the price is increased from $140, roughly speaking, every dollar of increase will
decrease the total sales by 100 boards.

(b)
dR

dp
=

d

dp
(p · q) =

d

dp
(p · f(p)) = f(p) + pf ′(p).

So,

dR

dp

∣∣∣∣
p=140

= f(140) + 140f ′(140)

= 15,000 + 140(−100) = 1000.

(c) From (b) we see that
dR

dp

∣∣∣∣
p=140

= 1000 > 0. This means that the revenue will increase by about $1000 if the price

is raised by $1.

54. We want dR/dr1. Solving for R:

1

R
=

1

r1
+

1

r2
=
r2 + r1

r1r2
, which gives R =

r1r2

r2 + r1
.

So, thinking of r2 as a constant and using the quotient rule,

dR

dr1
=
r2(r2 + r1)− r1r2(1)

(r2 + r1)2
=

r2
2

(r1 + r2)2
.

55. (a) If the museum sells the painting and invests the proceeds P (t) at time t, then t years have elapsed since 2000, and
the time span up to 2020 is 20− t. This is how long the proceeds P (t) are earning interest in the bank. Each year the
money is in the bank it earns 5% interest, which means the amount in the bank is multiplied by a factor of 1.05. So,
at the end of (20− t) years, the balance is given by

B(t) = P (t)(1 + 0.05)20−t = P (t)(1.05)20−t.
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(b)

B(t) = P (t)(1.05)20(1.05)−t = (1.05)20 P (t)

(1.05)t
.

(c) By the quotient rule,

B′(t) = (1.05)20

[
P ′(t)(1.05)t − P (t)(1.05)t ln 1.05

(1.05)2t

]
.

So,

B′(10) = (1.05)20

[
5000(1.05)10 − 150,000(1.05)10 ln 1.05

(1.05)20

]

= (1.05)10(5000− 150,000 ln 1.05)

≈ −3776.63.

56. Note first that f(v) is in liters
km

, and v is in km
hour

.

(a) g(v) = 1
f(v)

. (This is in km
liter

.) Differentiating gives

g′(v) =
−f ′(v)

(f(v))2
.

So,

g(80) =
1

0.05
= 20 km

liter
.

g′(80) =
−0.0005

(0.05)2
= −1

5
km
liter

for each 1 km
hr

increase in speed.

(b) h(v) = v · f(v). (This is in km
hour
· liters

km
= liters

hour
.) Differentiating gives

h′(v) = f(v) + v · f ′(v),

so
h(80) = 80(0.05) = 4 liters

hr
.

h′(80) = 0.05 + 80(0.0005) = 0.09 liters
hr

for each 1 km
hr

increase in speed.

(c) Part (a) tells us that at 80 km/hr, the car can go 20 km on 1 liter. Since the first derivative evaluated at this velocity
is negative, this implies that as velocity increases, fuel efficiency decreases, i.e., at higher velocities the car will not
go as far on 1 liter of gas. Part (b) tells us that at 80 km/hr, the car uses 4 liters in an hour. Since the first derivative
evaluated at this velocity is positive, this means that at higher velocities, the car will use more gas per hour.

57. Assume for g(x) 6= f(x), g′(x) = g(x) and g(0) = 1. Then for

h(x) =
g(x)

ex

h′(x) =
g′(x)ex − g(x)ex

(ex)2
=
ex(g′(x)− g(x))

(ex)2
=
g′(x)− g(x)

ex
.

But, since g(x) = g′(x), h′(x) = 0, so h(x) is constant. Thus, the ratio of g(x) to ex is constant. Since
g(0)

e0
=

1

1
= 1,

g(x)

ex
must equal 1 for all x. Thus g(x) = ex = f(x) for all x, so f and g are the same function.

58. (a) f ′(x) = (x− 2) + (x− 1).
(b) Think of f as the product of two factors, with the first as (x− 1)(x− 2). (The reason for this is that we have already

differentiated (x− 1)(x− 2)).
f(x) = [(x− 1)(x− 2)](x− 3).

Now f ′(x) = [(x− 1)(x− 2)]′(x− 3) + [(x− 1)(x− 2)](x− 3)′

Using the result of a):

f ′(x) = [(x− 2) + (x− 1)](x− 3) + [(x− 1)(x− 2)] · 1
= (x− 2)(x− 3) + (x− 1)(x− 3) + (x− 1)(x− 2).



3.3 SOLUTIONS 119

(c) Because we have already differentiated (x− 1)(x− 2)(x− 3), rewrite f as the product of two factors, the first being
(x− 1)(x− 2)(x− 3):

f(x) = [(x− 1)(x− 2)(x− 3)](x− 4)

Now f ′(x) = [(x− 1)(x− 2)(x− 3)]′(x− 4) + [(x− 1)(x− 2)(x− 3)](x− 4)′.

f ′(x) = [(x− 2)(x− 3) + (x− 1)(x− 3) + (x− 1)(x− 2)](x− 4)

+[(x− 1)(x− 2)(x− 3)] · 1
= (x− 2)(x− 3)(x− 4) + (x− 1)(x− 3)(x− 4)

+(x− 1)(x− 2)(x− 4) + (x− 1)(x− 2)(x− 3).

From the solutions above, we can observe that when f is a product, its derivative is obtained by differentiating each
factor in turn (leaving the other factors alone), and adding the results.

59. From the answer to Problem 58, we find that

f ′(x) = (x− r1)(x− r2) · · · (x− rn−1) · 1
+(x− r1)(x− r2) · · · (x− rn−2) · 1 · (x− rn)

+(x− r1)(x− r2) · · · (x− rn−3) · 1 · (x− rn−1)(x− rn)

+ · · ·+ 1 · (x− r2)(x− r3) · · · (x− rn)

= f(x)
(

1

x− r1
+

1

x− r2
+ · · ·+ 1

x− rn

)
.

60. (a) We can approximate d
dx

[F (x)G(x)H(x)] using the large rectangular solids by which our original cube is increased:

Volume of whole − volume of original solid = change in volume.

F (x+ h)G(x+ h)H(x+ h)− F (x)G(x)H(x) = change in volume.

G′(x)h
G(x)

F (x)

F ′(x)h

H(x)

H ′(x)h

The volume of this slab is F ′(x)G(x)H(x)h
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As in the book, we will ignore the smaller regions which are added (the long, thin rectangular boxes and the
small cube in the corner.) This can be justified by recognizing that as h → 0, these volumes will shrink much faster
than the volumes of the big slabs and will therefore be insignificant. (Note that these smaller regions have an h2 or
h3 in the formulas of their volumes.) Then we can approximate the change in volume above by:

F (x+ h)G(x+ h)H(x+ h)− F (x)G(x)H(x) ≈ F ′(x)G(x)H(x)h (top slab)

+ F (x)G′(x)H(x)h (front slab)

+ F (x)G(x)H ′(x)h (other slab).

Dividing by h gives

F (x+ h)G(x+ h)H(x+ h)− F (x)G(x)H(x)

h

≈ F ′(x)G(x)H(x) + F (x)G′(x)H(x) + F (x)G(x)H ′(x).

Letting h→ 0
(FGH)′ = F ′GH + FG′H + FGH ′.

(b) Verifying,

d

dx
[(F (x) ·G(x)) ·H(x)] = (F ·G)′(H) + (F ·G)(H)′

= [F ′G+ FG′]H + FGH ′

= F ′GH + FG′H + FGH ′

as before.
(c) From the answer to (b), we observe that the derivative of a product is obtained by differentiating each factor in turn

(leaving the other factors alone), and adding the results. So, in general,

(f1 · f2 · f3 · . . . · fn)′ = f ′1f2f3 · · · fn + f1f
′
2f3 · · · fn + · · ·+ f1 · · · fn−1f

′
n.

61. (a) Since x = a is a double zero of a polynomial P (x), we can write P (x) = (x − a)2Q(x), so P (a) = 0. Using the
product rule, we have

P ′(x) = 2(x− a)Q(x) + (x− a)2Q′(x).

Substituting in x = a, we see P ′(a) = 0 also.
(b) Since P (a) = 0, we know x = a is a zero of P , so that x− a is a factor of P and we can write

P (x) = (x− a)Q(x),

where Q is some polynomial. Differentiating this expression for P using the product rule, we get

P ′(x) = Q(x) + (x− a)Q′(x).

Since we are told that P ′(a) = 0, we have

P ′(a) = Q(a) + (a− a)Q′(a) = 0

and so Q(a) = 0. Therefore x = a is a zero of Q, so again we can write

Q(x) = (x− a)R(x),

where R is some other polynomial. As a result,

P (x) = (x− a)Q(x) = (x− a)2R(x),

so that x = a is a double zero of P .

Solutions for Section 3.4

Exercises

1. f ′(x) = 99(x+ 1)98 · 1 = 99(x+ 1)98.

2. w′ = 100(t2 + 1)99(2t) = 200t(t2 + 1)99.

3. w′ = 100(t3 + 1)99(3t2) = 300t2(t3 + 1)99.

4. d

dx

(
(4x2 + 1)7

)
= 7(4x2 + 1)6 d

dx
(4x2 + 1) = 7(4x2 + 1)6 · 8x = 56x(4x2 + 1)6.
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5. f ′(x) =
1

2
(1− x2)−

1
2 (−2x) =

−x√
1− x2

.

6. d

dx
(
√
ex + 1) =

d

dx
(ex + 1)1/2 =

1

2
(ex + 1)−1/2 d

dx
(ex + 1) =

ex

2
√
ex + 1

.

7. w′ = 100(
√
t+ 1)99

(
1

2
√
t

)
= 50√

t
(
√
t+ 1)99.

8. h′(w) = 5(w4 − 2w)4(4w3 − 2)

9. We can write w(r) = (r4 + 1)1/2, so

w′(r) =
1

2
(r4 + 1)−1/2(4r3) =

2r3

√
r4 + 1

.

10. k′(x) = 4(x3 + ex)3(3x2 + ex).

11. f ′(x) = 2e2x[x2 + 5x] + e2x[2x+ (ln 5)5x] = e2x[2x2 + 2x+ (ln 5 + 2)5x].

12. f ′(t) = e3t · 3 = 3e3t.

13. g(x) = πeπx.

14. f(θ) = (2−1)θ = ( 1
2
)θ so f ′(θ) = (ln 1

2
)2−θ .

15. y′ = (lnπ)π(x+2).

16. g′(x) = 2(ln 3)3(2x+7).

17. f ′(t) = 1 · e5−2t + te5−2t(−2) = e5−2t(1− 2t).

18. p′(t) = 4e4t+2.

19. Using the product rule gives v′(t) = 2te−ct − ce−ctt2 = (2t− ct2)e−ct.

20. d

dt
e(1+3t)2 = e(1+3t)2 d

dt
(1 + 3t)2 = e(1+3t)2 · 2(1 + 3t) · 3 = 6(1 + 3t)e(1+3t)2 .

21. y′ = 3
2
e

3
2
w.

22. y′ = −4e−4t.

23. y′ =
3s2

2
√
s3 + 1

.

24. w′ =
1

2
√
s
e
√
s.

25. y′ = 1 · e−t2 + te−t
2

(−2t)

26. f ′(z) =
1

2
√
z
e−z −√ze−z.

27. z′(x) =
(ln 2)2x

3 3
√

(2x + 5)2
.

28. z′ = 5 · ln 2 · 25t−3.

29. w′ =
3

2

√
x2 · 5x[2x(5x) + (ln 5)(x2)(5x)] =

3

2
x2
√

53x(2 + x ln 5).

30. f(y) =
[
10(5−y)

] 1
2 = 10

5
2
− 1

2
y

f ′(y) = (ln 10)
(

10
5
2
− 1

2
y
)(
−1

2

)
= −1

2
(ln 10)(10

5
2
− 1

2
y).

31. We can write this as f(z) =
√
ze−z , in which case it is the same as problem 26. So f ′(z) =

1

2
√
z
e−z −√ze−z.

32. y′ =

2z

2
√
z
− (
√
z)(ln 2)(2z)

22z
=

1− 2z ln 2

2z+1
√
z

.

33. y′ = 2

(
x2 + 2

3

)(
2x

3

)
=

4

9
x
(
x2 + 2

)

34. We can write h(x) =

(
x2 + 9

x+ 3

)1/2

, so

h′(x) =
1

2

(
x2 + 9

x+ 3

)−1/2 [
2x(x+ 3)− (x2 + 9)

(x+ 3)2

]
=

1

2

√
x+ 3

x2 + 9

[
x2 + 6x− 9

(x+ 3)2

]
.
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35. dy

dx
=

2e2x(x2 + 1)− e2x(2x)

(x2 + 1)2
=

2e2x(x2 + 1− x)

(x2 + 1)2

36. y′ =
−(3e3x + 2x)

(e3x + x2)2
.

37. h′(z) =
−8b4z

(a+ z2)5

38. f ′(z) = −2(ez + 1)−3 · ez =
−2ez

(ez + 1)3
.

39. w′ = (2t+ 3)(1− e−2t) + (t2 + 3t)(2e−2t).

40. h′(x) = (ln 2)(3e3x)2e
3x

= 3e3x2e
3x

ln 2.

41. f ′(x) = 6(e5x)(5) + (e−x
2

)(−2x) = 30e5x − 2xe−x
2

.

42. f ′(x) = e−(x−1)2 · (−2)(x− 1).

43.
f ′(w) = (ew

2

)(10w) + (5w2 + 3)(ew
2

)(2w)

= 2wew
2

(5 + 5w2 + 3)

= 2wew
2

(5w2 + 8).

44. The power and chain rules give

f ′(θ) = −1(eθ + e−θ)−2 · d
dθ

(eθ + e−θ) = −(eθ + e−θ)−2(eθ + e−θ(−1)) = −
(
eθ − e−θ
eθ + e−θ

)
.

45. We write y = (e−3t2 + 5)1/2, so

dy

dt
=

1

2
(e−3t2 + 5)−1/2 · d

dt
(e−3t2 + 5) =

1

2
(e−3t2 + 5)−1/2 · e−3t2 · d

dt
(−3t2)

=
1

2
(e−3t2 + 5)−1/2 · e−3t2 · (−6t) = − 3te−3t2

√
e−3t2 + 5

.

46. Using the product and chain rules, we have

dz

dt
= 9(te3t + e5t)8 · d

dt
(te3t + e5t) = 9(te3t + e5t)8(1 · e3t + t · e3t · 3 + e5t · 5)

= 9(te3t + e5t)8(e3t + 3te3t + 5e5t).

47. f ′(y) = ee
(y2)
[
(ey

2

)(2y)
]

= 2ye[e(y
2)+y2].

48. f ′(t) = 2(e−2e2t)(−2e2t)2 = −8(e−2e2t+2t).

49. Since a and b are constants, we have f ′(x) = 3(ax2 + b)2(2ax) = 6ax(ax2 + b)2.

50. Since a and b are constants, we have f ′(t) = aebt(b) = abebt.

51. We use the product rule. We have

f ′(x) = (ax)(e−bx(−b)) + (a)(e−bx) = −abxe−bx + ae−bx.

52. Using the product and chain rules, we have

g′(α) = eαe
−2α · d

dx
(αe−2α) = eαe

−2α

(1 · e−2α + αe−2α(−2))

= eαe
−2α

(e−2α − 2αe−2α)

= (1− 2α)e−2αeαe
−2α

.
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Problems

53. Using the chain rule, we know that h′(x) = f ′(g(x)) · g′(x). We use slope to compute the derivatives. Since f(x) is
linear on the interval 0 < x < 2, we compute the slope of the line to see that f ′(x) = 2 on this interval. Similarly, we
compute the slope on the interval 2 < x < 4 to see that f ′(x) = −2 on the interval 2 < x < 4. Since f(x) has a corner
at x = 2, we know that f ′(2) does not exist.

Similarly, g(x) is linear on the interval shown, and we see that the slope of g(x) on this interval is −1 so we have
g′(x) = −1 on this interval.

(a) We have h′(1) = f ′(g(1)) · g′(1) = (f ′(3))(−1) = (−2)(−1) = 2.
(b) We have h′(2) = f ′(g(2)) · g′(2) = (f ′(2))(−1). Since f(x) has a corner at x = 2, we know that f ′(2) does not

exist. Therefore, h′(2) does not exist.
(c) We have h′(3) = f ′(g(3)) · g′(3) = (f ′(1))(−1) = 2(−1) = −2.

54. Using the chain rule, we know that u′(x) = g′(f(x)) · f ′(x). We use slope to compute the derivatives. Since f(x) is
linear on the interval 0 < x < 2, we compute the slope of the line to see that f ′(x) = 2 on this interval. Similarly, we
compute the slope on the interval 2 < x < 4 to see that f ′(x) = −2 on the interval 2 < x < 4. Since f(x) has a corner
at x = 2, we know that f ′(2) does not exist.

Similarly, g(x) is linear on the interval shown, and we see that the slope of g(x) on this interval is −1 so we have
g′(x) = −1 on this interval.

(a) We have u′(1) = g′(f(1)) · f ′(1) = (g′(2))2 = (−1)2 = −2.
(b) We have u′(2) = g′(f(2)) · f ′(2). Since f(x) has a corner at x = 2, we know that f ′(2) does not exist. Therefore,

u′(2) does not exist.
(c) We have u′(3) = g′(f(3)) · f ′(3) = (g′(2))(−2) = (−1)(−2) = 2.

55. Using the chain rule, we know that v′(x) = f ′(f(x)) · f ′(x). We use slope to compute the derivatives. Since f(x) is
linear on the interval 0 < x < 2, we compute the slope of the line to see that f ′(x) = 2 on this interval. Similarly, we
compute the slope on the interval 2 < x < 4 to see that f ′(x) = −2 on the interval 2 < x < 4. Since f(x) has a corner
at x = 2, we know that f ′(2) does not exist.

(a) We have v′(1) = f ′(f(1)) · f ′(1) = f ′(2) · 2. Since f(x) has a corner at x = 2, we know that f ′(2) does not exist.
Therefore, v′(1) does not exist.

(b) We have v′(2) = f ′(f(2)) · f ′(2). Since f(x) has a corner at x = 2, we know that f ′(2) does not exist. Therefore,
v′(2) does not exist.

(c) We have v′(3) = f ′(f(3)) · f ′(3) = (f ′(2))(−2). Since f(x) has a corner at x = 2, we know that f ′(2) does not
exist. Therefore, v′(3) does not exist.

56. Using the chain rule, we know that w′(x) = g′(g(x)) · g′(x). We use slope to compute the derivatives. Since g(x) is
linear on the interval shown, with slope equal to −1, we have g′(x) = −1 on this interval.

(a) We have w′(1) = g′(g(1)) · g′(1) = (g′(3))(−1) = (−1)(−1) = 1.
(b) We have w′(2) = g′(g(2)) · g′(2) = (g′(2))(−1) = (−1)(−1) = 1.
(c) We have w′(3) = g′(g(3)) · g′(3) = (g′(1))(−1) = (−1)(−1) = 1.

57. The chain rule gives

d

dx
f(g(x))

∣∣∣∣
x=30

= f ′(g(30))g′(30) = f ′(55)g′(30) = (1)(
1

2
) =

1

2
.

58. The chain rule gives
d

dx
f(g(x))

∣∣∣∣
x=70

= f ′(g(70))g′(70) = f ′(60)g′(70) = (1)(0) = 0.

59. The chain rule gives

d

dx
g(f(x))

∣∣∣∣
x=30

= g′(f(30))f ′(30) = g′(20)f ′(30) = (1/2)(−2) = −1.

60. The chain rule gives

d

dx
g(f(x))

∣∣∣∣
x=70

= g′(f(70))f ′(70) = g′(30)f ′(70) = (1)(
1

2
) =

1

2
.
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61. We have f(2) = (2− 1)3 = 1, so (2, 1) is a point on the tangent line. Since f ′(x) = 3(x− 1)2, the slope of the tangent
line is

m = f ′(2) = 3(2− 1)2 = 3.

The equation of the line is
y − 1 = 3(x− 2) or y = 3x− 5.

62.

f(x) = 6e5x + e−x
2

f(1) = 6e5 + e−1

f ′(x) = 30e5x − 2xe−x
2

f ′(1) = 30e5 − 2(1)e−1

y − y1 = m(x− x1)

y − (6e5 + e−1) = (30e5 − 2e−1)(x− 1)

y − (6e5 + e−1) = (30e5 − 2e−1)x− (30e5 − 2e−1)

y = (30e5 − 2e−1)x− 30e5 + 2e−1 + 6e5 + e−1

≈ 4451.66x− 3560.81.

63. The graph is concave down when f ′′(x) < 0.

f ′(x) = e−x
2

(−2x)

f ′′(x) =
[
e−x

2

(−2x)
]

(−2x) + e−x
2

(−2)

=
4x2

ex2 −
2

ex2

=
4x2 − 2

ex2 < 0

The graph is concave down when 4x2 < 2. This occurs when x2 < 1
2

, or − 1√
2
< x < 1√

2
.

64. We rewrite e−x = 1/ex so that we can use the quotient rule, then

f(x) =
x

ex
,

f ′(x) =
1 · ex − x · ex

(ex)2
=

(1− x)ex

(ex)2
=

1− x
ex

,

f ′′(x) =
−1 · ex − (1− x)ex

(ex)2
=
−ex − ex + xex

(ex)2
=

(−2 + x)ex

(ex)2
=
x− 2

ex
.

Since e−x > 0, for all x, we have f ′′(x) < 0 if x− 2 < 0, that is, x < 2.

65.

f ′(x) = [10(2x+ 1)9(2)][(3x− 1)7] + [(2x+ 1)10][7(3x− 1)6(3)]

= (2x+ 1)9(3x− 1)6[20(3x− 1) + 21(2x+ 1)]

= [(2x+ 1)9(3x− 1)6](102x+ 1)

f ′′(x) = [9(2x+ 1)8(2)(3x− 1)6 + (2x+ 1)9(6)(3x− 1)5(3)](102x+ 1)

+(2x+ 1)9(3x− 1)6(102).

66. (a) The rate of change of the population is P ′(t). If P ′(t) is proportional to P (t), we have

P ′(t) = kP (t).

(b) If P (t) = Aekt, then P ′(t) = kAekt = kP (t).
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67. (a) With µ and σ constant, differentiating m(t) = eµt+σ
2t2/2 with respect to t gives

m′(t) = eut+σ
2t2/2 ·

(
µ+

2σ2t

2

)
= eµt+σ

2t2/2(µ+ σ2t).

Thus,
Mean = m′(0) = e0(µ+ 0) = µ.

(b) Differentiating m′(t) = eµt+σ
2t2/2(µ+ σ2t), we have

m′′(t) = eµt+σ
2t2/2(µ+ σ2t)2 + eµt+σ

2t2/2σ2.

Thus
Variance = m′′(0)− (m′(0))2 = e0µ2 + e0σ2 − µ2 = σ2.

68. (a) If
p(x) = k(2x),

then
p′(x) = k′(2x) · 2.

When x = 1
2

,

p′
(

1

2

)
= k′

(
2 · 1

2

)
(2) = 2 · 2 = 4.

(b) If
q(x) = k(x+ 1),

then
q′(x) = k′(x+ 1) · 1.

When x = 0,
q′(0) = k′(0 + 1)(1) = 2 · 1 = 2.

(c) If

r(x) = k
(

1

4
x
)
,

then
r′(x) = k′

(
1

4
x
)
· 1

4
.

When x = 4,

r′(4) = k′
(

1

4
4
)

1

4
= 2 · 1

4
=

1

2
.

69. Yes. To see why, simply plug x = 3
√

2t+ 5 into the expression 3x2 dx

dt
and evaluate it. To do this, first we calculate

dx

dt
.

By the chain rule,
dx

dt
=

d

dt
(2t+ 5)

1
3 =

2

3
(2t+ 5)−

2
3 =

2

3
[(2t+ 5)

1
3 ]−2.

But since x = (2t+ 5)
1
3 , we have (by substitution)

dx

dt
=

2

3
x−2.

It follows that 3x2 dx

dt
= 3x2

(
2

3
x−2
)

= 2.

70. We see that m′(x) is nearly of the form f ′(g(x)) · g′(x) where

f(g) = eg and g(x) = x6,

but g′(x) is off by a multiple of 6. Therefore, using the chain rule, let

m(x) =
f(g(x))

6
=
e(x6)

6
.
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71. (a) H(x) = F (G(x))
H(4) = F (G(4)) = F (2) = 1

(b) H(x) = F (G(x))
H ′(x) = F ′(G(x)) ·G′(x)
H ′(4) = F ′(G(4)) ·G′(4) = F ′(2) · 6 = 5 · 6 = 30

(c) H(x) = G(F (x))
H(4) = G(F (4)) = G(3) = 4

(d) H(x) = G(F (x))
H ′(x) = G′(F (x)) · F ′(x)
H ′(4) = G′(F (4)) · F ′(4) = G′(3) · 7 = 8 · 7 = 56

(e) H(x) = F (x)
G(x)

H ′(x) = G(x)·F ′(x)−F (x)·G′(x)

[G(x)]2

H ′(4) = G(4)·F ′(4)−F (4)·G′(4)

[G(4)]2
= 2·7−3·6

22 = 14−18
4

= −4
4

= −1

72. (a) Differentiating g(x) =
√
f(x) = (f(x))1/2, we have

g′(x) =
1

2
(f(x))−1/2 · f ′(x) =

f ′(x)

2
√
f(x)

g′(1) =
f ′(1)

2
√
f(1)

=
3

2
√

4
=

3

4
.

(b) Differentiating h(x) = f(
√
x), we have

h′(x) = f ′(
√
x) · 1

2
√
x

h′(1) = f ′(
√

1) · 1

2
√

1
=
f ′(1)

2
=

3

2
.

73. We have h(0) = f(g(0)) = f(d) = d. From the chain rule, h′(0) = f ′(g(0))g′(0). From the graph of g, we see that
g′(0) = 0, so h′(0) = f ′(g(0)) · 0 = 0.

74. We have h(−c) = f(g(−c)) = f(−b) = 0. From the chain rule,

h′(−c) = f ′(g(−c))g′(−c).

Since g is increasing at x = −c, we know that g′(−c) > 0. We have

f ′(g(−c)) = f ′(−b),

and since f is decreasing at x = −b, we have f ′(g(−c)) < 0. Thus,

h′(−c) = f ′(g(−c))︸ ︷︷ ︸
−

· g′(−c)︸ ︷︷ ︸
+

< 0,

so h is decreasing at x = −c.
75. We have

h′(a) = f ′(g(a))g′(a).

From the graph of g, we see that g is decreasing at x = a, so g′(a) < 0. We have

f ′(g(a)) = f ′(b),

and from the graph of f , we see that f is increasing at x = b, so f ′(b) > 0. Thus,

h′(a) = f ′(g(a))︸ ︷︷ ︸
+

· g′(a)︸︷︷︸
−

< 0,

so h is decreasing at x = a.
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76. We have h(d) = f(g(d)) = f(−d) = d so h(d) is positive. From the chain rule,

h′(d) = f ′(g(d))g′(d).

We have
f ′(g(d)) = f ′(−d).

From the graph of f , we see that f ′(−d) < 0, and from the graph of g, we see that g′(d) < 0. This means the sign of
h′(d) is the product of two negative numbers, so h′(d) > 0.

77. On the interval −d < x < −b, we see that the value of g(x) increases from −d to 0. On the interval −d < x < 0, the
value of f(x) decreases from d to −d. Thus, the value of h(x) = f(g(x)) decreases on the interval −d < x < −b from

h(−d) = f(g(−d)) = f(−d) = d to h(−b) = f(g(−b)) = f(0)− d.

Confirming this using derivatives and the chain rule, we see

h′(x) = f ′(g(x)) · g′(x),

and since g′(x) is negative on −d < x < −b and f ′(g(x)) is positive on this interval, the value of h(x) is decreasing.

78. We have f(0) = 6 and f(10) = 6e0.013(10) = 6.833. The derivative of f(t) is

f ′(t) = 6e0.013t · 0.013 = 0.078e0.013t,

and so f ′(0) = 0.078 and f ′(10) = 0.089.
These values tell us that in 1999 (at t = 0), the population of the world was 6 billion people and the population was

growing at a rate of 0.078 billion people per year. In the year 2009 (at t = 10), this model predicts that the population of
the world will be 6.833 billion people and growing at a rate of 0.089 billion people per year.

79. (a)
dB

dt
= P

(
1 +

r

100

)t
ln
(

1 +
r

100

)
. The expression

dB

dt
tells us how fast the amount of money in the bank is

changing with respect to time for fixed initial investment P and interest rate r.

(b)
dB

dr
= Pt

(
1 +

r

100

)t−1 1

100
. The expression

dB

dr
indicates how fast the amount of money changes with respect

to the interest rate r , assuming fixed initial investment P and time t.

80. (a)

dm

dv
=

d

dv

[
m0

(
1− v2

c2

)−1/2
]

= m0

(
−1

2

)(
1− v2

c2

)−3/2 (
−2v

c2

)

=
m0v

c2
1√(

1− v2

c2

)3 .

(b)
dm

dv
represents the rate of change of mass with respect to the speed v.

81. (a) For t < 0, I =
dQ

dt
= 0.

For t > 0, I =
dQ

dt
= − Q0

RC
e−t/RC .

(b) For t > 0, t→ 0 (that is, as t→ 0+),

I = − Q0

RC
e−t/RC → − Q0

RC
.

Since I = 0 just to the left of t = 0 and I = −Q0/RC just to the right of t = 0, it is not possible to define I at
t = 0.

(c) Q is not differentiable at t = 0 because there is no tangent line at t = 0.
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82. Recall that v = dx/dt. We want to find the acceleration, dv/dt, when x = 2. Differentiating the expression for v with
respect to t using the chain rule and substituting for v gives

dv

dt
=

d

dx
(x2 + 3x− 2) · dx

dt
= (2x+ 3)v = (2x+ 3)(x2 + 3x− 2).

Substituting x = 2 gives

Acceleration =
dv

dt

∣∣∣
x=2

= (2(2) + 3)(22 + 3 · 2− 2) = 56 cm/sec2.

83. Let f have a zero of multiplicity m at x = a so that

f(x) = (x− a)mh(x), h(a) 6= 0.

Differentiating this expression gives

f ′(x) = (x− a)mh′(x) +m(x− a)(m−1)h(x)

and both terms in the sum are zero when x = a so f ′(a) = 0. Taking another derivative gives

f ′′(x) = (x− a)mh′′(x) + 2m(x− a)(m−1)h′(x) +m(m− 1)(x− a)(m−2)h(x).

Again, each term in the sum contains a factor of (x − a) to some positive power, so at x = a this will evaluate to 0.
Differentiating repeatedly, all derivatives will have positive integer powers of (x − a) until the mth and will therefore
vanish. However,

f (m)(a) = m!h(a) 6= 0.

84. Since 2x is the derivative of x2 + 1, the chain rule tells us that

d

dx
f(x2 + 1) = 2xf ′(x2 + 1).

Thus using the information given in the problem, we have

2xf ′(x2 + 1) =
2x

x2 + 1
,

so
f ′(x2 + 1) =

1

x2 + 1
.

Thus, replacing x2 + 1 by x, we have

f ′(x) =
1

x
.

85. The problem tells us that
d

dt
G(a− bt) = H(a− bt).

Since
d

dt
(a− bt) = −b, the chain rule tells us that

−bG′(a− bt) = H(a− bt),

so
G′(a− bt) =

(
−1

b

)
H(a− bt).

Replacing a− bt by t, we have

G′(t) =
(
−1

b

)
H(t)

.

86. By the product rule,
d

dt
tf(t) = f(t) + tf ′(t). Thus, using the information given in the problem, we have

f(t) + tf ′(t) = 1 + f(t).

Subtracting f(t) from both sides gives tf ′(t) = 1, so f ′(t) = 1/t.
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87. By the chain rule,
d

dx
f(ex) = f ′(ex)

d

dx
(ex) = f ′(ex)ex,

so, using the information given in the problem, we have

f ′(ex)ex = 2e2x.

Dividing by ex we get

f ′(ex) =
2e2x

ex
,

so
f ′(ex) = 2ex.

Thus, replacing x by x, we have
f ′(x) = 2x,

so
f(x) = x2.

Solutions for Section 3.5

Exercises

1.
Table 3.1
x cosx Difference Quotient − sinx

0 1.0 −0.0005 0.0

0.1 0.995 −0.10033 −0.099833

0.2 0.98007 −0.19916 −0.19867

0.3 0.95534 −0.296 −0.29552

0.4 0.92106 −0.38988 −0.38942

0.5 0.87758 −0.47986 −0.47943

0.6 0.82534 −0.56506 −0.56464

2. r′(θ) = cos θ − sin θ.

3. s′(θ) = − sin θ sin θ + cos θ cos θ = cos2 θ − sin2 θ = cos 2θ.

4. z′ = −4 sin(4θ).

5. f ′(x) = cos(3x) · 3 = 3 cos(3x).

6. d

dx
sin(2− 3x) = cos(2− 3x)

d

dx
(2− 3x) = −3 cos(2− 3x).

7. Using the chain rule gives R′(x) = 3π sin(πx).

8. g′(θ) = 2 sin(2θ) cos(2θ) · 2− π = 4 sin(2θ) cos(2θ)− π
9. f ′(x) = (2x)(cosx) + x2(− sinx) = 2x cosx− x2 sinx.

10. w′ = et cos(et).

11. f ′(x) = (ecos x)(− sinx) = − sinxecos x.

12. f ′(y) = (cos y)esin y.

13. z′ = ecos θ − θ(sin θ)ecos θ.

14. Using the chain rule gives R′(θ) = 3 cos(3θ)esin(3θ).
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15. g′(θ) =
cos(tan θ)

cos2 θ

16. w′(x) =
2x

cos2(x2)

17.
f(x) = (1− cosx)

1
2

f ′(x) =
1

2
(1− cosx)−

1
2 (−(− sinx))

=
sinx

2
√

1− cosx
.

18. f ′(x) = [− sin(sinx)](cosx).

19. f ′(x) =
cosx

cos2(sinx)
.

20. k′(x) = 3
2

√
sin(2x)(2 cos(2x)) = 3 cos(2x)

√
sin(2x).

21. f ′(x) = 2 · [sin(3x)] + 2x[cos(3x)] · 3 = 2 sin(3x) + 6x cos(3x)

22. y′ = eθ sin(2θ) + 2eθ cos(2θ).

23. f ′(x) = (e−2x)(−2)(sinx) + (e−2x)(cosx) = −2 sinx(e−2x) + (e−2x)(cosx) = e−2x[cosx− 2 sinx].

24. z′ =
cos t

2
√

sin t
.

25. y′ = 5 sin4 θ cos θ.

26. g′(z) =
ez

cos2(ez)
.

27. z′ =
−3e−3θ

cos2(e−3θ)
.

28. w′ = (− cos θ)e− sin θ.

29. h′(t) = 1 · (cos t) + t(− sin t) + 1
cos2 t

= cos t− t sin t+ 1
cos2 t

.

30. f ′(α) = − sinα+ 3 cosα

31. k′(α) = (5 sin4 α cosα) cos3 α+ sin5 α(3 cos2 α(− sinα)) = 5 sin4 α cos4 α− 3 sin6 α cos2 α

32. f ′(θ) = 3θ2 cos θ − θ3 sin θ.

33. y′ = −2 cosw sinw − sin(w2)(2w) = −2(cosw sinw + w sin(w2))

34. y′ = cos(cosx+ sinx)(cosx− sinx)

35. y′ = 2 cos(2x) sin(3x) + 3 sin(2x) cos(3x).

36. t′(θ) =
− sin θ sin θ − cos θ cos θ

sin2 θ
= − (sin2 θ + cos2 θ)

sin2 θ
= − 1

sin2 θ
.

37. Using the power and quotient rules gives

f ′(x) =
1

2

(
1− sinx

1− cosx

)−1/2
[
− cosx(1− cosx)− (1− sinx) sinx

(1− cosx)2

]

=
1

2

√
1− cosx

1− sinx

[
− cosx(1− cosx)− (1− sinx) sinx

(1− cosx)2

]

=
1

2

√
1− cosx

1− sinx

[
1− cosx− sinx

(1− cosx)2

]
.

38. d

dy

(
y

cos y + a

)
=

cos y + a− y(− sin y)

(cos y + a)2
=

cos y + a+ y sin y

(cos y + a)2
.

39. The quotient rule gives G′(x) =
2 sinx cosx(cos2 x+ 1) + 2 sinx cosx(sin2 x+ 1)

(cos2 x+ 1)2

or, using sin2 x+ cos2 x = 1,

G′(x) =
6 sinx cosx

(cos2 x+ 1)2
.
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Problems

40. We begin by taking the derivative of y = sin(x4) and evaluating at x = 10:

dy

dx
= cos(x4) · 4x3.

Evaluating cos(10,000) on a calculator (in radians) we see cos(10,000) < 0, so we know that dy/dx < 0, and therefore
the function is decreasing.
Next, we take the second derivative and evaluate it at x = 10, giving sin(10,000) < 0:

d2y

dx2
= cos(x4) · (12x2)︸ ︷︷ ︸

negative

+ 4x3 · (− sin(x4))(4x3)︸ ︷︷ ︸
positive, but much
larger in magnitude

.

From this we can see that d2y/dx2 > 0, thus the graph is concave up.

41. The pattern in the table below allows us to generalize and say that the (4n)th derivative of cosx is cosx, i.e.,

d4y

dx4
=
d8y

dx8
= · · · = d4ny

dx4n
= cosx.

Thus we can say that d48y/dx48 = cosx. From there we differentiate twice more to obtain d50y/dx50 = − cosx.

n 1 2 3 4 · · · 48 49 50

nth derivative − sinx − cosx sinx cosx cosx − sinx − cosx

42. We see that q′(x) is of the form
g(x) · f ′(x)− f(x) · g′(x)

(g(x))2
,

with f(x) = ex and g(x) = sinx. Therefore, using the quotient rule, let

q(x) =
f(x)

g(x)
=

ex

sinx
.

43. Since F ′(x) is of the form sinu, we can make an initial guess that

F (x) = cos(4x),

then
F ′(x) = −4 sin(4x)

so we’re off by a factor of −4. To fix this problem, we modify our guess by a factor of −4, so the next try is

F (x) = −(1/4) cos(4x),

which has
F ′(x) = sin(4x).

44. (a) Differentiating gives
dy

dt
= −4.9π

6
sin
(
π

6
t
)
.

The derivative represents the rate of change of the depth of the water in feet/hour.
(b) The derivative, dy/dt, is zero where the tangent line to the curve y is horizontal. This occurs when dy/dt =

sin(π
6
t) = 0, or at t = 6, 12, 18 and 24 (6 am, noon, 6 pm, and midnight). When dy/dt = 0, the depth of the

water is no longer changing. Therefore, it has either just finished rising or just finished falling, and we know that the
harbor’s level is at a maximum or a minimum.
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45. (a) v(t) =
dy

dt
=

d

dt
(15 + sin(2πt)) = 2π cos(2πt).

(b)

1 2 3

14

15

16

y = 15 + sin 2πt

t

y

1 2 3

−2π

2π

v = 2π cos 2πt

t

v

46. (a) Differentiating, we find

Rate of change of voltage
with time

=
dV

dt
= −120π · 156 sin(120πt)

= −18720π sin(120πt) volts per second.

(b) The rate of change of voltage with time is zero when sin(120πt) = 0. This occurs when 120πt equals any multiple
of π. For example, sin(120πt) = 0 when 120πt = π, or at t = 1/120 seconds. Since there are an infinite number of
multiples of π, there are many times when the rate of change dV/dt is zero.

(c) The maximum value of the rate of change is 18720π = 58810.6 volts/sec.

47. (a) When
√

k
m
t = π

2
the spring is farthest from the equilibrium position. This occurs at time t = π

2

√
m
k

v = A
√

k
m

cos
(√

k
m
t
)

, so the maximum velocity occurs when t = 0

a = −A k
m

sin
(√

k
m
t
)

, so the maximum acceleration occurs when
√

k
m
t = 3π

2
, which is at time t = 3π

2

√
m
k

(b) T = 2π√
k/m

= 2π
√

m
k

(c)
dT

dm
=

2π√
k
· 1

2
m−

1
2 =

π√
km

Since
dT

dm
> 0, an increase in the mass causes the period to increase.

48. The tangent lines to f(x) = sinx have slope
d

dx
(sinx) = cosx. The tangent line at x = 0 has slope f ′(0) = cos 0 = 1

and goes through the point (0, 0). Consequently, its equation is y = g(x) = x. The approximate value of sin(π/6) given
by this equation is g(π/6) = π/6 ≈ 0.524.

Similarly, the tangent line at x = π
3

has slope

f ′
(
π

3

)
= cos

π

3
=

1

2

and goes through the point (π/3,
√

3/2). Consequently, its equation is

y = h(x) =
1

2
x+

3
√

3− π
6

.

The approximate value of sin(π/6) given by this equation is then

h
(
π

6

)
=

6
√

3− π
12

≈ 0.604.

The actual value of sin(π/6) is 1
2

, so the approximation from 0 is better than that from π/3. This is because the slope
of the function changes less between x = 0 and x = π/6 than it does between x = π/6 and x = π/3. This is illustrated
by the following figure.

π
6

π
3

1

x

y

y = sinx

y = g(x)

y = h(x)
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49. If the graphs of y = sinx and y = ke−x are tangent, then the y-values and the derivatives,
dy

dx
= cosx and

dy

dx
=

−ke−x, are equal at that point, so

sinx = ke−x and cosx = −ke−x.

Thus sinx = − cosx so tanx = −1. The smallest x-value is x = 3π/4, which leads to the smallest k value

k =
sin(3π/4)

e−3π/4
= 7.46.

When x =
3π

4
, we have y = sin

(
3π

4

)
=

1√
2

so the point is

(
3π

4
,

1√
2

)
.

50. Differentiating with respect to t using the chain rule and substituting for dx/dt gives

d2x

dt2
=

d

dt

(
dx

dt

)
=

d

dx
(x sinx) · dx

dt
= (sinx+ x cosx)x sinx.

51. (a) If f(x) = sinx, then

f ′(x) = lim
h→0

sin(x+ h)− sinx

h

= lim
h→0

(sinx cosh+ sinh cosx)− sinx

h

= lim
h→0

sinx(cosh− 1) + sinh cosx

h

= sinx lim
h→0

cosh− 1

h
+ cosx lim

h→0

sinh

h
.

(b) cosh−1
h
→ 0 and sinh

h
→ 1, as h→ 0. Thus, f ′(x) = sinx · 0 + cosx · 1 = cosx.

(c) Similarly,

g′(x) = lim
h→0

cos(x+ h)− cosx

h

= lim
h→0

(cosx cosh− sinx sinh)− cosx

h

= lim
h→0

cosx(cosh− 1)− sinx sinh

h

= cosx lim
h→0

cosh− 1

h
− sinx lim

h→0

sinh

h
= − sinx.

52. (a) Sector OAQ is a sector of a circle with radius 1
cos θ

and angle ∆θ. Thus its area is the left side of the inequality.
Similarly, the area of Sector OBR is the right side of the equality. The area of the triangle OQR is 1

2
∆ tan θ since it

is a triangle with base ∆ tan θ (the segment QR) and height 1 (if you turn it sideways, it is easier to see this). Thus,
using the given fact about areas (which is also clear from looking at the picture), we have

∆θ

2π
· π
(

1

cos θ

)2

≤ 1

2
·∆(tan θ) ≤ ∆θ

2π
· π
(

1

cos(θ + ∆θ)

)2

.

(b) Dividing the inequality through by ∆θ
2

and canceling the π’s gives:

(
1

cos θ

)2

≤ ∆ tan θ

∆θ
≤
(

1

cos(θ + ∆θ)

)2

Then as ∆θ → 0, the right and left sides both tend toward
(

1
cos θ

)2
while the middle (which is the difference quotient

for tangent) tends to (tan θ)′. Thus, the derivative of tangent is “squeezed” between two values heading toward the
same thing and must, itself, also tend to that value. Therefore, (tan θ)′ =

(
1

cos θ

)2
.
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(c) Take the identity sin2 θ + cos2 θ = 1 and divide through by cos2 θ to get (tan θ)2 + 1 = ( 1
cos θ

)2. Differentiating
with respect to θ yields:

2(tan θ) · (tan θ)′ = 2
(

1

cos θ

)
·
(

1

cos θ

)′

2
(

sin θ

cos θ

)
·
(

1

cos θ

)2

= 2
(

1

cos θ

)
· (−1)

(
1

cos θ

)2

(cos θ)′

2
sin θ

cos3 θ
= (−1)2

1

cos3 θ
(cos θ)′

− sin θ = (cos θ)′.

(d)

d

dθ

(
sin2 θ + cos2 θ

)
=

d

dθ
(1)

2 sin θ · (sin θ)′ + 2 cos θ · (cos θ)′ = 0

2 sin θ · (sin θ)′ + 2 cos θ · (− sin θ) = 0

(sin θ)′ − cos θ = 0

(sin θ)′ = cos θ.

Solutions for Section 3.6

Exercises

1. f ′(t) =
2t

t2 + 1
.

2. f ′(x) =
−1

1− x =
1

x− 1
.

3. Since ln(e2x) = 2x, the derivative f ′(x) = 2.

4. Since eln(e2x
2+3) = e2x2+3, the derivative f ′(x) = 4xe2x2+3.

5. f ′(x) =
1

1− e−x · (−e
−x)(−1) =

e−x

1− e−x .

6. f ′(α) =
1

sinα
· cosα =

cosα

sinα
.

7. f ′(x) =
1

ex + 1
· ex.

8. dy

dx
= lnx+ x

(
1

x

)
− 1 = lnx

9. j′(x) =
aeax

(eax + b)

10. Using the product and chain rules gives h′(w) = 3w2 ln(10w) + w3 10

10w
= 3w2 ln(10w) + w2.

11. f ′(x) =
1

e7x
· (e7x)7 = 7.

(Note also that ln(e7x) = 7x implies f ′(x) = 7.)

12. Note that f(x) = eln x · e1 = x · e = ex. So f ′(x) = e. (Remember, e is just a constant.) You might also use the chain
rule to get:

f ′(x) = e(ln x)+1 · 1
x

.
[Are the two answers the same? Of course they are, since

e(ln x)+1
(

1

x

)
= eln x · e

(
1

x

)
= xe

(
1

x

)
= e.]



3.6 SOLUTIONS 135

13. f ′(w) =
1

cos(w − 1)
[− sin(w − 1)] = − tan(w − 1).

[This could be done easily using the answer from Problem 6 and the chain rule.]

14. f(t) = ln t (because ln ex = x or because eln t = t), so f ′(t) = 1
t
.

15. f ′(y) =
2y√

1− y4
.

16. g′(t) =
3

(3t− 4)2 + 1
.

17. g(α) = α, so g′(α) = 1.

18. g′(t) = earctan(3t2)

(
1

1 + (3t2)2

)
(6t) = earctan(3t2)

(
6t

1 + 9t4

)
.

19. g′(t) =
− sin(ln t)

t
.

20. h′(z) = (ln 2)z(ln 2−1).

21. h′(w) = arcsinw +
w√

1− w2
.

22. Note that f(x) = kx so, f ′(x) = k.

23. Using the chain rule gives r′(t) =
2√

1− 4t2
.

24. j′(x) = − sin
(
sin−1 x

)
·
[

1√
1− x2

]
= − x√

1− x2

25. f ′(x) = − sin(arctan 3x)

(
1

1 + (3x)2

)
(3) =

−3 sin(arctan 3x)

1 + 9x2
.

26. Note that g(x) = arcsin(sinπx) = πx.
Thus, g′(x) = π.

27. f ′(z) = −1(ln z)−2 · 1

z
=

−1

z(ln z)2
.

28. Using the quotient rule gives

f ′(x) =
1 + lnx− x( 1

x
)

(1 + lnx)2

=
lnx

(1 + lnx)2
.

29. dy

dx
= 2(lnx+ ln 2) + 2x

(
1

x

)
− 2 = 2(lnx+ ln 2) = 2 ln(2x)

30. Using the chain rule gives f ′(x) =
cosx− sinx

sinx+ cosx
.

31. f ′(t) =
1

ln t
· 1

t
=

1

t ln t
32. Using the chain rule gives

T ′(u) =

[
1

1 +
(

u
1+u

)2

][
(1 + u)− u

(1 + u)2

]

=
(1 + u)2

(1 + u)2 + u2

[
1

(1 + u)2

]

=
1

1 + 2u+ 2u2
.
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33. Since ln

[(
1− cos t

1 + cos t

)4
]

= 4 ln
[(

1− cos t

1 + cos t

)]
we have

a′(t) = 4
(

1 + cos t

1− cos t

)[
sin t(1 + cos t) + sin t(1− cos t)

(1 + cos t)2

]

=
[

1 + cos t

1− cos t

] [
8 sin t

(1 + cos t)2

]

=
8 sin t

1− cos2 t

=
8

sin t
.

34. f ′(x) = − sin(arcsin(x+ 1))(
1√

1− (x+ 1)2
) =

−(x+ 1)√
1− (x+ 1)2

.

Problems

35. From the graphs, we estimate g(1) ≈ 2, g′(1) ≈ 1, and f ′(2) ≈ 0.8. Thus, by the chain rule,

h′(1) = f ′(g(1)) · g′(1) ≈ f ′(2) · g′(1) ≈ 0.8 · 1 = 0.8.

36. From the graphs, we estimate f(1) ≈ −0.4, f ′(1) ≈ 0.5, and g′(−0.4) ≈ 2. Thus, by the chain rule,

k′(1) = g′(f(1)) · f ′(1) ≈ g′(−0.4) · 0.5 ≈ 2 · 0.5 = 1.

37. From the graphs, we estimate g(2) ≈ 1.6, g′(2) ≈ −0.5, and f ′(1.6) ≈ 0.8. Thus, by the chain rule,

h′(2) = f ′(g(2)) · g′(2) ≈ f ′(1.6) · g′(2) ≈ 0.8(−0.5) = −0.4.

38. From the graphs, we estimate f(2) ≈ 0.3, f ′(2) ≈ 1.1, and g′(0.3) ≈ 1.7. Thus, by the chain rule,

k′(2) = g′(f(2)) · f ′(2) ≈ g′(0.3) · f ′(2) ≈ 1.7 · 1.1 ≈ 1.9.

39. Differentiating

f ′(x) =
1

x2 + 1
· 2x = 2x(x2 + 1)−1

f ′′(x) = 2(x2 + 1)−1 − 2x(x2 + 1)−2 · 2x

=
2

(x2 + 1)
− 4x2

(x2 + 1)2
=

2x2 + 2

(x2 + 1)2
− 4x2

(x2 + 1)2

=
2(1− x2)

(x2 + 1)2
.

Since (x2 + 1)2 > 0 for all x, we see that f ′′(0) > 0 for 1− x2 > 0 or x2 < 1. That is, ln(x2 + 1) is concave up on the
interval −1 < x < 1.

40. Let
g(x) = arcsinx

so
sin[g(x)] = x.

Differentiating,
cos[g(x)] · g′(x) = 1

g′(x) =
1

cos[g(x)]

Using the fact that sin2 θ + cos2 θ = 1, and cos[g(x)] ≥ 0, since − π
2
≤ g(x) ≤ π

2
, we get

cos[g(x)] =
√

1− (sin[g(x)])2.
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Therefore,

g′(x) =
1√

1− (sin[g(x)])2

Since sin[g(x)] = x, we have

g′(x) =
1√

1− x2
,−1 < x < 1.

41. Let
g(x) = log x.

Then
10g(x) = x.

Differentiating,

(ln 10)[10g(x)]g′(x) = 1

g′(x) =
1

(ln 10)[10g(x)]

g′(x) =
1

(ln 10)x
.

42. pH = 2 = − log x means log x = −2 so x = 10−2. Rate of change of pH with hydrogen ion concentration is

d

dx
pH = − d

dx
(log x) =

−1

x(ln 10)
= − 1

(10−2) ln 10
= −43.4

43. (a) For y = lnx, we have y′ = 1/x, so the slope of the tangent line is f ′(1) = 1/1 = 1. The equation of the tangent
line is y − 0 = 1(x− 1), so, on the tangent line, y = g(x) = x− 1.

(b) Using a value on the tangent line to approximate ln(1, 1), we have

ln(1.1) ≈ g(1.1) = 1.1− 1 = 0.1.

Similarly, ln(2) is approximated by
ln(2) ≈ g(2) = 2− 1 = 1.

(c) From Figure 3.6, we see that f(1.1) and f(2) are below g(x) = x− 1. Similarly, f(0.9) and f(0.5) are also below
g(x). This is true for any approximation of this function by a tangent line since f is concave down (f ′′(x) = − 1

x2 <
0 for all x > 0). Thus, for a given x-value, the y-value given by the function is always below the value given by the
tangent line.

2 4 6

−4

4

f(x) = lnx

g(x) = x− 1

x

Figure 3.6
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44. (a) Let g(x) = ax2 + bx + c be our quadratic and f(x) = lnx. For the best approximation, we want to find a
quadratic with the same value as lnx at x = 1 and the same first and second derivatives as lnx at x = 1. g ′(x) =
2ax+ b, g′′(x) = 2a, f ′(x) = 1

x
, f ′′(x) = − 1

x2 .

g(1) = a(1)2 + b(1) + c f(1) = 0

g′(1) = 2a(1) + b f ′(1) = 1

g′′(1) = 2a f ′′(1) = −1

Thus, we obtain the equations

a+ b+ c = 0

2a+ b = 1

2a = −1

We find a = − 1
2

, b = 2 and c = − 3
2

. Thus our approximation is:

g(x) = −1

2
x2 + 2x− 3

2

(b) From the graph below, we notice that around x = 1, the value of f(x) = lnx and the value of g(x) = − 1
2
x2+2x− 3

2

are very close.

x

y

g(x) = − 1
2
x2 + 2x− 3

2

f(x) = lnx

(c) g(1.1) = 0.095 g(2) = 0.5
Compare with f(1.1) = 0.0953, f(2) = 0.693.

45. (a)

f ′(x) =
1

1 + x2
+

1

1 + 1
x2

· (− 1

x2
)

=
1

1 + x2
+
(
− 1

x2 + 1

)

=
1

1 + x2
− 1

1 + x2

= 0

(b) f is a constant function. Checking at a few values of x,

Table 3.2
x arctanx arctanx−1 f(x) = arctanx+ arctanx−1

1 0.785392 0.7853982 1.5707963

2 1.1071487 0.4636476 1.5707963

3 1.2490458 0.3217506 1.5707963
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46. The closer you look at the function, the more it begins to look like a line with slope equal to the derivative of the function
at x = 0. Hence, functions whose derivatives at x = 0 are equal will look the same there.

The following functions look like the line y = x since, in all cases, y′ = 1 at x = 0.
y = x y′ = 1
y = sinx y′ = cosx
y = tanx y′ = 1

cos2 x

y = ln(x+ 1) y′ = 1
x+1

The following functions look like the line y = 0 since, in all cases, y′ = 0 at x = 0.
y = x2 y′ = 2x
y = x sinx y′ = x cosx+ sinx
y = x3 y′ = 3x2

y = 1
2

ln (x2 + 1) y′ = 2x · 1
2
· 1
x2+1

= x
x2+1

y = 1− cosx y′ = sinx

The following functions look like the line x = 0 since, in all cases, as x→ 0+, the slope y′ →∞.
y =
√
x y′ = 1

2
√
x

y =
√

x
x+1

y′ = (x+1)−x
(x+1)2

· 1
2
· 1√

x
x+1

= 1
2(x+1)2

·
√

x+1
x

y =
√

2x− x2 y′ = (2− 2x) 1
2
· 1√

2x−x2
= 1−x√

2x−x2

47. Since the chain rule gives h′(x) = n′(m(x))m′(x) = −2 we must find values a and x such that a = m(x) and
n′(a)m′(x) = −2.

Calculating slopes from the graph of n gives

n′(a) =

{
1 if 0 < a < 50

1/2 if 50 < a < 100.

Calculating slopes from the graph of m gives

m′(x) =

{
−2 if 0 < x < 50

2 if 50 < x < 100.

The only values of the derivative n′ are 1 and 1/2 and the only values of the derivative m′ are 2 and −2. In order to
have n′(a)m′(x) = −2 we must therefore have n′(a) = 1 and m′(x) = −2. Thus 0 < a < 50 and 0 < x < 50.

Now a = m(x) and from the graph of m we see that 0 < m(x) < 50 for 25 < x < 75.
The two conditions on x we have found are both satisfied when 25 < x < 50. Thus h′(x) = −2 for all x in the

interval 25 < x < 50. The question asks for just one of these x values, for example x = 40.

48. Since the chain rule gives h′(x) = n′(m(x))m′(x) = 2 we must find values a and x such that a = m(x) and
n′(a)m′(x) = 2.

Calculating slopes from the graph of n gives

n′(a) =

{
1 if 0 < a < 50

1/2 if 50 < a < 100.

Calculating slopes from the graph of m gives

m′(x) =

{
−2 if 0 < x < 50

2 if 50 < x < 100.

The only values of the derivative n′ are 1 and 1/2 and the only values of the derivative m′ are 2 and −2. In order to
have n′(a)m′(x) = 2 we must therefore have n′(a) = 1 and m′(x) = 2. Thus 0 < a < 50 and 50 < x < 100.

Now a = m(x) and from the graph of m we see that 0 < m(x) < 50 for 25 < x < 75.
The two conditions on x we have found are both satisfied when 50 < x < 75. Thus h′(x) = 2 for all x in the

interval 50 < x < 75. The question asks for just one of these x values, for example x = 60.

49. Since the chain rule gives h′(x) = n′(m(x))m′(x) = 1 we must find values a and x such that a = m(x) and
n′(a)m′(x) = 1.
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Calculating slopes from the graph of n gives

n′(a) =

{
1 if 0 < a < 50

1/2 if 50 < a < 100.

Calculating slopes from the graph of m gives

m′(x) =

{
−2 if 0 < x < 50

2 if 50 < x < 100.

The only values of the derivative n′ are 1 and 1/2 and the only values of the derivative m′ are 2 and −2. In order to
have n′(a)m′(x) = 1 we must therefore have n′(a) = 1/2 and m′(x) = 2. Thus 50 < a < 100 and 50 < x < 100.

Now a = m(x) and from the graph of m we see that 50 < m(x) < 100 for 0 < x < 25 or 75 < x < 100.
The two conditions on x we have found are both satisfied when 75 < x < 100. Thus h′(x) = 1 for all x in the

interval 75 < x < 100. The question asks for just one of these x values, for example x = 80.

50. Since the chain rule gives h′(x) = n′(m(x))m′(x) = −1 we must find values a and x such that a = m(x) and
n′(a)m′(x) = −1.

Calculating slopes from the graph of n gives

n′(a) =

{
1 if 0 < a < 50

1/2 if 50 < a < 100.

Calculating slopes from the graph of m gives

m′(x) =

{
−2 if 0 < x < 50

2 if 50 < x < 100.

The only values of the derivative n′ are 1 and 1/2 and the only values of the derivative m′ are 2 and −2. In order to
have n′(a)m′(x) = −1 we must therefore have n′(a) = 1/2 and m′(x) = −2. Thus 50 < a < 100 and 0 < x < 50.

Now a = m(x) and from the graph of m we see that 50 < m(x) < 100 for 0 < x < 25 or 75 < x < 100.
The two conditions on x we have found are both satisfied when 0 < x < 25. Thus h′(x) = −1 for all x in the

interval 0 < x < 25. The question asks for just one of these x values, for example x = 10.

51. Since the point (2, 5) is on the curve, we know f(2) = 5. The point (2.1, 5.3) is on the tangent line, so

Slope tangent =
5.3− 5

2.1− 2
=

0.3

0.1
= 3.

Thus, f ′(2) = 3.
By the chain rule

h′(2) = 3(f(2))2 · f ′(2) = 3 · 52 · 3 = 225.

52. Since the point (2, 5) is on the curve, we know f(2) = 5. The point (2.1, 5.3) is on the tangent line, so

Slope tangent =
5.3− 5

2.1− 2
=

0.3

0.1
= 3.

Thus, f ′(2) = 3.
By the chain rule

k′(2) = −(f(2))−2 · f ′(2) = −5−2 · 3 = −0.12.

53. Since the point (2, 5) is on the curve, we know f(2) = 5. The point (2.1, 5.3) is on the tangent line, so

Slope tangent =
5.3− 5

2.1− 2
=

0.3

0.1
= 3.

Thus, f ′(2) = 3. Since g is the inverse function of f and f(2) = 5, we know f−1(5) = 2, so g(5) = 2.
Differentiating, we have

g′(2) =
1

f ′(g(5))
=

1

f ′(2)
=

1

3
.
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54. (a) Since f(x) = x3, we have f ′(x) = 3x2. Thus, f ′(2) = 3(2)2 = 12.
(b) To find f−1(x), we switch xs and ys and solve for y.

Since y = x3, we get x = y3.
Solving for y gives y = 3

√
x.

Thus, f−1(x) = 3
√
x.

(c) To find (f−1)′(x), we differentiate. Since f−1(x) = 3
√
x = x1/3, we get

(f−1)′(x) =
1

3
x−2/3.

Thus,

(f−1)′(8) =
1

3
(8)−2/3 =

1

3 · 82/3
=

1

3 · 4 =
1

12
.

(d) The point (2, 8) is on the graph of f . Thus the point (8, 2) is on the graph of f−1, so f−1(8) = 2. Therefore,

(f−1)′(8) =
1

f ′(f−1(8))
=

1

f ′(2)
=

1

12
.

55. (a) Since f(x) = 2x5 + 3x3 + x, we differentiate to get f ′(x) = 10x4 + 9x2 + 1.
(b) Because f ′(x) is always positive, we know that f(x) is increasing everywhere. Thus, f(x) is a one-to-one function

and is invertible.
(c) To find f(1), substitute 1 for x into f(x). We get f(1) = 2(1)5 + 3(1)3 + 1 = 2 + 3 + 1 = 6.
(d) To find f ′(1), substitute 1 for x into f ′(x). We get f ′(1) = 10(1)4 + 9(1)2 + 1 = 20.
(e) Since f(1) = 6, we have f−1(6) = 1, so

(f−1)′(6) =
1

f ′(f−1(6))
=

1

f ′(1)
=

1

20
.

56. Since g is the inverse of f , we know that g(4) = f−1(4) = 3, so

g′(4) =
1

f ′(g(4))
=

1

f ′(3)
=

1

6
.

57. To find (f−1)′(3), we first look in the table to find that 3 = f(9), so f−1(3) = 9. Thus,

(f−1)′(3) =
1

f ′(f−1(3))
=

1

f ′(9)
=

1

5
.

58. (a) Knowing f(2000) = 281 tells us that the US population was 281 million in the year 2000.
(b) Since f(2000) = 281, we have f−1(281) = 2000. This tells us that the year in which the US population was 281

million was 2000.
(c) Knowing f ′(2000) = 3.476 tells us that in the year 2000, the US population was growing at a rate of 3.476 million

people per year.
(d) Using parts (b) and (c), we have

(f−1)′(281) =
1

f ′(f−1(281))
=

1

f ′(2000)
=

1

3.476
= 0.288.

The units of the derivative of f−1 are years per million people (the reciprocal of the units of f ′). The statement
(f−1)′(281) = 0.288 tells us that when the US population was 281 million, it took 0.288 of a year (between 3 and
4 months) for the population to increase by another million.

59. Each grid mark on the horizontal axis represents 3 years and each grid mark on the vertical axis represents 50 million
vehicles.

(a) Reading from the graph
f(21) ≈ 200 million vehicles.

This tells us that 21 years after 1946, in 1967, there were 200 million registered vehicles.
(b) Drawing a tangent line to the curve at t = 21, we have

Slope = f ′(21) ≈ 90

6
= 15 million vehicles/year.

Thus, 21 years after 1946, in 1967, the number of registered vehicles was increasing at 15 million vehicles per year.
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(c) From the graph or part (a)
f−1(200) = 21 years.

Thus, there were 200 million cars registered when t = 21,that is, in 1967.
(d) We have

(f−1)′(200) =
1

f ′(f−1(200))
=

1

f ′(21)
=

1

15
= 0.0667 years/million.

Thus, when 200 million vehicles were already registered, it took 0.0667 year, or about 24 days, for another million
to be registered.

60. We have (f−1)′(8) = 1/f ′(f−1(8)). From the graph we see f−1(8) = 4. Thus (f−1)′(8) =
1

f ′(4)
=

1

3.0
.

61. We must have
(f−1)′(5) =

1

f ′(f−1(5))
=

1

f ′(10)
=

1

8
.

62. All three values equal 1.

(a) We have f−1(A) = a, so (f−1)′(A) = 1
f ′(f−1(A))

= 1
f ′(a)

. Thus f ′(a)(f−1)′(A) = 1.

(b) We have f−1(B) = b, so (f−1)′(B) = 1
f ′(f−1(B))

= 1
f ′(b) . Thus f ′(b)(f−1)′(B) = 1.

(c) We have f−1(C) = c, so (f−1)′(C) = 1
f ′(f−1(C))

= 1
f ′(c) . Thus f ′(c)(f−1)′(C) = 1.

63. A continuous invertible function f(x) cannot be increasing on one interval and decreasing on another because it would fail
the horizontal line test. The same is true of the inverse function f−1(x). Either f−1(x) is increasing and (f−1)′(x) ≥ 0
for all x, or f−1(x) is decreasing and (f−1)′(x) ≤ 0 for all x. We can not have both (f−1)′(10) = 8 and (f−1)′(20) =
−6.

64. (a) The definition of the derivative of ln(1 + x) at x = 0 is

lim
h→0

ln(1 + h)− ln 1

h
= lim
h→0

ln(1 + h)

h
=

1

1 + x

∣∣∣∣
x=0

= 1.

(b) The rules of logarithms give

lim
h→0

ln(1 + h)

h
= lim
h→0

1

h
ln(1 + h) = lim

h→0
ln(1 + h)1/h = 1.

Thus, taking e to both sides and using the fact that elnA = A, we have

elimh→0 ln(1+h)1/h = lim
h→0

eln(1+h)1/h = e1

lim
h→0

(1 + h)1/h = e.

This limit is sometimes used as the definition of e.
(c) Let n = 1/h. Then as h→ 0+, we have n→∞. Since

lim
h→0+

(1 + h)1/h = lim
h→0

(1 + h)1/h = e,

we have
lim
n→∞

(
1 +

1

n

)n
= e.

This limit is also sometimes used as the definition of e.

Solutions for Section 3.7

Exercises

1. We differentiate implicitly both sides of the equation with respect to x.

2x+ 2y
dy

dx
= 0 ,

dy

dx
= −2x

2y
= −x

y
.
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2. We differentiate implicitly both sides of the equation with respect to x.

2x+
(
y + x

dy

dx

)
− 3y2 dy

dx
= y2 + x(2y)

dy

dx
,

x
dy

dx
− 3y2 dy

dx
− 2xy

dy

dx
= y2 − y − 2x ,

dy

dx
=

y2 − y − 2x

x− 3y2 − 2xy
.

3. Implicit differentiation gives

1 · y + x · dy
dx

+ 1 +
dy

dx
= 0.

Solving for dy/dx, we have
dy

dx
= − 1 + y

1 + x
.

4.

2xy + x2 dy

dx
− 2

dy

dx
= 0

(x2 − 2)
dy

dx
= −2xy

dy

dx
=
−2xy

(x2 − 2)

5. We differentiate implicitly both sides of the equation with respect to x.

x1/2 = 5y1/2

1

2
x−1/2 =

5

2
y−1/2 dy

dx

dy

dx
=

1
2
x−1/2

5
2
y−1/2

=
1

5

√
y

x
=

1

25
.

We can also obtain this answer by realizing that the original equation represents part of the line x = 25y which has slope 1/25.

6. We differentiate implicitly both sides of the equation with respect to x.

x
1
2 + y

1
2 = 25 ,

1

2
x−

1
2 +

1

2
y−

1
2
dy

dx
= 0 ,

dy

dx
= −

1
2
x−

1
2

1
2
y−

1
2

= −x
− 1

2

y−
1
2

= −
√
y√
x

= −
√
y

x
.

7. We differentiate implicitly with respect to x.

y + x
dy

dx
− 1− 3dy

dx
= 0

(x− 3)
dy

dx
= 1− y

dy

dx
=

1− y
x− 3

8.

12x+ 8y
dy

dx
= 0

dy

dx
=
−12x

8y
=
−3x

2y

9.

2ax− 2by
dy

dx
= 0

dy

dx
=
−2ax

−2by
=
ax

by
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10. We differentiate implicitly both sides of the equation with respect to x.

lnx+ ln(y2) = 3

1

x
+

1

y2
(2y)

dy

dx
= 0

dy

dx
=
−1/x

2y/y2
= − y

2x
.

11. We differentiate implicitly both sides of the equation with respect to x.

ln y + x
1

y

dy

dx
+ 3y2 dy

dx
=

1

x

x

y

dy

dx
+ 3y2 dy

dx
=

1

x
− ln y

dy

dx

(
x

y
+ 3y2

)
=

1− x ln y

x

dy

dx

(
x+ 3y3

y

)
=

1− x ln y

x

dy

dx
=

(1− x ln y)

x
· y

(x+ 3y3)

12. We differentiate implicitly both sides of the equation with respect to x.

cos(xy)
(
y + x

dy

dx

)
= 2

y cos(xy) + x cos(xy)
dy

dx
= 2

dy

dx
=

2− y cos(xy)

x cos(xy)
.

13. Using the relation cos2 y + sin2 y = 1, the equation becomes:

1 = y + 2 or y = −1. Hence,
dy

dx
= 0.

14. We differentiate implicitly both sides of the equation with respect to x.

ecos y(− sin y)
dy

dx
= 3x2 arctan y + x3 1

1 + y2

dy

dx

dy

dx

(
−ecos y sin y − x3

1 + y2

)
= 3x2 arctan y

dy

dx
=

3x2 arctan y

−ecos y sin y − x3(1 + y2)−1
.

15. We differentiate implicitly both sides of the equation with respect to x.

arctan(x2y) = xy2

1

1 + x4y2
(2xy + x2 dy

dx
) = y2 + 2xy

dy

dx

2xy + x2 dy

dx
= [1 + x4y2][y2 + 2xy

dy

dx
]

dy

dx
[x2 − (1 + x4y2)(2xy)] = (1 + x4y2)y2 − 2xy

dy

dx
=

y2 + x4y4 − 2xy

x2 − 2xy − 2x5y3
.
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16. We differentiate implicitly both sides of the equation with respect to x.

ex
2

+ ln y = 0

2xex
2

+
1

y

dy

dx
= 0

dy

dx
= −2xyex

2

.

17. We differentiate implicitly both sides of the equation with respect to x.

(x− a)2 + y2 = a2

2(x− a) + 2y
dy

dx
= 0

2y
dy

dx
= 2a− 2x

dy

dx
=

2a− 2x

2y
=
a− x
y

.

18. 2

3
x−1/3 +

2

3
y−1/3 · dy

dx
= 0,

dy

dx
= −x

−1/3

y−1/3
= − y

1/3

x1/3
.

19. Differentiating x2 + y2 = 1 with respect to x gives

2x+ 2yy′ = 0

so that
y′ = −x

y

At the point (0, 1) the slope is 0.

20. Differentiating sin(xy) = x with respect to x gives

(y + xy′) cos(xy) = 1

or
xy′ cos(xy) = 1− y cos(xy)

so that

y′ =
1− y cos(xy)

x cos(xy)
.

As we move along the curve to the point (1, π
2

), the value of dy/dx→∞, which tells us the tangent to the curve at (1, π
2

)
has infinite slope; the tangent is the vertical line x = 1.

21. Differentiating with respect to x gives
3x2 + 2xy′ + 2y + 2yy′ = 0

so that

y′ = −3x2 + 2y

2x+ 2y

At the point (1, 1) the slope is − 5
4

.

22. The slope is given by dy/dx, which we find using implicit differentiation. Notice that the product rule is needed for the
second term. We differentiate to obtain:

3x2 + 5x2 dy

dx
+ 10xy + 4y

dy

dx
= 4

dy

dx

(5x2 + 4y − 4)
dy

dx
= −3x2 − 10xy

dy

dx
=
−3x2 − 10xy

5x2 + 4y − 4
.

At the point (1, 2), we have dy/dx = (−3 − 20)/(5 + 8 − 4) = −23/9. The slope of this curve at the point (1, 2) is
−23/9.
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23. First, we must find the slope of the tangent, i.e.
dy

dx

∣∣∣∣
(1,−1)

. Differentiating implicitly, we have:

y2 + x(2y)
dy

dx
= 0,

dy

dx
= − y2

2xy
= − y

2x
.

Substitution yields
dy

dx

∣∣∣∣
(1,−1)

= −−1

2
=

1

2
. Using the point-slope formula for a line, we have that the equation for the

tangent line is y + 1 = 1
2
(x− 1) or y = 1

2
x− 3

2
.

24. First we must find the slope of the tangent,
dy

dx
, at (1, e2). Differentiating implicitly, we have:

1

xy

(
x
dy

dx
+ y
)

= 2

dy

dx
=

2xy − y
x

.

Evaluating dy/dx at (1, e2) yields (2(1)e2 − e2)/1 = e2. Using the point-slope formula for the equation of the line, we
have:

y − e2 = e2(x− 1),

or
y = e2x.

25. First, we must find the slope of the tangent,
dy

dx

∣∣∣∣
(4,2)

. Implicit differentiation yields:

2y
dy

dx
=

2x(xy − 4)− x2
(
x dy
dx

+ y
)

(xy − 4)2
.

Given the complexity of the above equation, we first want to substitute 4 for x and 2 for y (the coordinates of the

point where we are constructing our tangent line), then solve for
dy

dx
. Substitution yields:

2 · 2dy
dx

=
(2 · 4)(4 · 2− 4)− 42

(
4 dy
dx

+ 2
)

(4 · 2− 4)2
=

8(4)− 16(4 dy
dx

+ 2)

16
= −4

dy

dx
.

4
dy

dx
= −4

dy

dx
,

Solving for
dy

dx
, we have:

dy

dx
= 0.

The tangent is a horizontal line through (4, 2), hence its equation is y = 2.

26. First, we must find the slope of the tangent at the origin, that is
dy

dx

∣∣∣
(0,0)

. Rewriting y =
x

y + a
as y(y + a) = x so that

we have
y2 + ay = x

and differentiating implicitly gives

2y
dy

dx
+ a

dy

dx
= 1

dy

dx
(2y + a) = 1

dy

dx
=

1

2y + a
.

Substituting x = 0, y = 0 yields
dy

dx

∣∣∣∣
(0,0)

=
1

a
. Using the point-slope formula for a line, we have that the equation for

the tangent line is

y − 0 =
1

a
(x− 0) or y =

x

a
.
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27. First, we must find the slope of the tangent,
dy

dx

∣∣∣∣
(a,0)

. We differentiate implicitly, obtaining:

2

3
x−

1
3 +

2

3
y−

1
3
dy

dx
= 0 ,

dy

dx
= −

2
3
x−

1
3

2
3
y−

1
3

= −
3
√
y

3
√
x

.

Substitution yields,
dy

dx

∣∣∣∣
(a,0)

=
3
√

0
3
√
a

= 0. The tangent is a horizontal line through (a, 0), hence its equation is y = 0.

Problems

28. (a) By implicit differentiation, we have:

2x+ 2y
dy

dx
− 4 + 7

dy

dx
= 0

(2y + 7)
dy

dx
= 4− 2x

dy

dx
=

4− 2x

2y + 7
.

(b) The curve has a horizontal tangent line when dy/dx = 0, which occurs when 4− 2x = 0 or x = 2. The curve has a
horizontal tangent line at all points where x = 2.
The curve has a vertical tangent line when dy/dx is undefined, which occurs when 2y + 7 = 0 or when y = −7/2.
The curve has a vertical tangent line at all points where y = −7/2.

29. (a) Taking derivatives implicitly, we get

2

25
x+

2

9
y
dy

dx
= 0

dy

dx
=
−9x

25y
.

(b) The slope is not defined anywhere along the line y = 0. This ellipse intersects that line in two places, (−5, 0) and
(5, 0). (These are the “ends” of the ellipse where the tangent is vertical.)

30. (a) If x = 4 then 16 + y2 = 25, so y = ±3. We find
dy

dx
implicitly:

2x+ 2y
dy

dx
= 0

dy

dx
= −x

y

So the slope at (4, 3) is − 4
3

and at (4,−3) is 4
3

. The tangent lines are:

(y − 3) = −4

3
(x− 4) and (y + 3) =

4

3
(x− 4)

(b) The normal lines have slopes that are the negative of the reciprocal of the slopes of the tangent lines. Thus,

(y − 3) =
3

4
(x− 4) so y =

3

4
x

and
(y + 3) = −3

4
(x− 4) so y = −3

4
x

are the normal lines.
(c) These lines meet at the origin, which is the center of the circle.
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31. (a) Solving for dy
dx

by implicit differentiation yields

3x2 + 3y2 dy

dx
− y2 − 2xy

dy

dx
= 0

dy

dx
=

y2 − 3x2

3y2 − 2xy
.

(b) We can approximate the curve near x = 1, y = 2 by its tangent line. The tangent line will have slope (2)2−3(1)2

3(2)2−2(1)(2)
=

1
8

= 0.125. Thus its equation is
y = 0.125x+ 1.875

Using the y-values of the tangent line to approximate the y-values of the curve, we get:

x 0.96 0.98 1 1.02 1.04

approximate y 1.995 1.9975 2.000 2.0025 2.005

(c) When x = 0.96, we get the equation 0.963 + y3 − 0.96y2 = 5, whose solution by numerical methods is 1.9945,
which is close to the one above.

(d) The tangent line is horizontal when dy
dx

is zero and vertical when dy
dx

is undefined. These will occur when the numerator
is zero and when the denominator is zero, respectively.

Thus, we know that the tangent is horizontal when y2 − 3x2 = 0⇒ y = ±
√

3x. To find the points that satisfy
this condition, we substitute back into the original equation for the curve:

x3 + y3 − xy2 = 5

x3 ± 3
√

3x3 − 3x3 = 5

x3 =
5

±3
√

3− 2

So x ≈ 1.1609 or x ≈ −0.8857.

Substituting,
y = ±

√
3x so y ≈ 2.0107 or y ≈ 1.5341.

Thus, the tangent line is horizontal at (1.1609, 2.0107) and (−0.8857, 1.5341).
Also, we know that the tangent is vertical whenever 3y2−2xy = 0, that is, when y = 2

3
x or y = 0. Substituting

into the original equation for the curve gives us x3 +( 2
3
x)3−( 2

3
)2x3 = 5. This means x3 ≈ 5.8696, so x ≈ 1.8039,

y ≈ 1.2026. The other vertical tangent is at y = 0, x = 3
√

5.

32. The slope of the tangent to the curve y = x2 at x = 1 is 2 so the equation of such a tangent will be of the form y = 2x+c.
As the tangent must pass through (1, 1), c = −1 and so the required tangent is y = 2x− 1.

Any circle centered at (8, 0) will be of the form

(x− 8)2 + y2 = R2.

The slope of this curve at (x, y) is given by implicit differentiation:

2(x− 8) + 2yy′ = 0

or
y′ =

8− x
y

For the tangent to the parabola to be tangential to the circle we need

8− x
y

= 2

so that at the point of contact of the circle and the line the coordinates are given by (x, y) when y = 4−x/2. Substituting
into the equation of the tangent line gives x = 2 and y = 3. From this we conclude that R2 = 45 so that the equation of
the circle is

(x− 8)2 + y2 = 45.

33. (a) Differentiating both sides of the equation with respect to P gives

d

dP

(
4f2P

1− f2

)
=
dK

dP
= 0.
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By the product rule

d

dP

(
4f2P

1− f2

)
=

d

dP

(
4f2

1− f2

)
P +

(
4f2

1− f2

)
· 1

=

(
(1− f2)(8f)− 4f2(−2f)

(1− f2)2

)
df

dP
P +

(
4f2

1− f2

)

=

(
8f

(1− f2)2

)
df

dP
P +

(
4f2

1− f2

)
= 0.

So
df

dP
=
−4f2/(1− f2)

8fP/(1− f2)2
=
−1

2P
f(1− f2).

(b) Since f is a fraction of a gas, 0 ≤ f ≤ 1. Also, in the equation relating f and P we can’t have f = 0, since that
would implyK = 0, and we can’t have f = 1, since the left side is undefined there. So 0 < f < 1. Thus 1−f 2 > 0.
Also, pressure can’t be negative, and from the equation relating f and P , we see that P can’t be zero either, so P > 0.
Therefore df/dP = −(1/2P )f(1−f 2) < 0 always. This means that at larger pressures less of the gas decomposes.

34. Let the point of intersection of the tangent line with the smaller circle be (x1, y1) and the point of intersection with the
larger be (x2, y2). Let the tangent line be y = mx + c. Then at (x1, y1) and (x2, y2) the slopes of x2 + y2 = 1 and
y2 +(x−3)2 = 4 are alsom. The slope of x2 +y2 = 1 is found by implicit differentiation: 2x+2yy′ = 0 so y′ = −x/y.
Similarly, the slope of y2 + (x− 3)2 = 4 is y′ = −(x− 3)/y. Thus,

m =
y2 − y1

x2 − x1
= −x1

y1
= − (x2 − 3)

y2
,

where y1 =
√

1− x2
1 and y2 =

√
4− (x2 − 3)2. The positive values for y1 and y2 follow from Figure 3.7 and from

our choice of m > 0. We obtain
x1√

1− x2
1

=
x2 − 3√

4− (x2 − 3)2

x2
1

1− x2
1

=
(x2 − 3)2

4− (x2 − 3)2

x2
1[4− (x2 − 3)2] = (1− x2

1)(x2 − 3)2

4x2
1 − (x2

1)(x2 − 3)2 = (x2 − 3)2 − x2
1(x2 − 3)2

4x2
1 = (x2 − 3)2

2|x1| = |x2 − 3|.
From the picture x1 < 0 and x2 < 3. This gives x2 = 2x1 + 3 and y2 = 2y1. From

y2 − y1

x2 − x1
= −x1

y1
,

substituting y1 =
√

1− x2
1, y2 = 2y1 and x2 = 2x1 + 3 gives

x1 = −1

3
.

From x2 = 2x1 + 3 we get x2 = 7/3. In addition, y1 =
√

1− x2
1 gives y1 = 2

√
2/3, and finally y2 = 2y1 gives

y2 = 4
√

2/3.

−1 1 2 3 4 5

−2

−1

1

2

x

y

Figure 3.7
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35. y = x
m
n . Taking nth powers of both sides of this expression yields (y)n = (x

m
n )n, or yn = xm.

d

dx
(yn) =

d

dx
(xm)

nyn−1 dy

dx
= mxm−1

dy

dx
=
m

n

xm−1

yn−1

=
m

n

xm−1

(xm/n)n−1

=
m

n

xm−1

xm−
m
n

=
m

n
x(m−1)−(m−m

n
) =

m

n
x
m
n
−1.

Solutions for Section 3.8

Exercises

1. Using the chain rule,
d

dx
(cosh(2x)) = (sinh(2x)) · 2 = 2 sinh(2x).

2. Using the chain rule,
d

dz
(sinh(3z + 5)) = cosh(3z + 5) · 3 = 3 cosh(3z + 5).

3. Using the chain rule,
d

dt
(cosh(sinh t)) = sinh(sinh t) · cosh t

.

4. Using the product rule,
d

dt

(
t3 sinh t

)
= 3t2 sinh t+ t3 cosh t.

5. Using the chain rule,
d

dt

(
cosh2 t

)
= 2 cosh t · sinh t.

.

6. Using the product and chain rules,
d

dt
(cosh(3t) sinh(4t)) = 3 sinh(3t) sinh(4t) + 4 cosh(3t) cosh(4t).

7. Using the chain rule twice,
d

dt

(
cosh(et

2

)
)

= sinh(et
2

) · et2 · 2t = 2tet
2

sinh(et
2

).

8. Using the chain rule,
d

dx
(tanh(3 + sinhx)) =

1

cosh2(3 + sinhx)
· coshx.

9. Using the chain rule twice,

d

dy
(sinh (sinh(3y))) = cosh (sinh(3y)) · cosh(3y) · 3

= 3 cosh(3y) · cosh (sinh(3y)) .

10. Using the chain rule,

d

dθ
(ln (cosh(1 + θ))) =

1

cosh(1 + θ)
· sinh(1 + θ) =

sinh(1 + θ)

cosh(1 + θ)
= tanh(1 + θ).

11. Using the chain rule, f ′(t) = 2 cosh t sinh t− 2 sinh t cosh t = 0. This is to be expected since cosh2 t− sinh2 t = 1.

12. Substitute x = 0 into the formula for sinhx. This yields

sinh 0 =
e0 − e−0

2
=

1− 1

2
= 0.
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13. Substituting −x for x in the formula for sinhx gives

sinh(−x) =
e−x − e−(−x)

2
=
e−x − ex

2
= −e

x − e−x
2

= − sinhx.

14. Using the formula for sinhx and the fact that d(e−x)/dx = −e−x, we see that

d

dx

(
ex − e−x

2

)
=
ex + e−x

2
= coshx.

15. By definition sinhx = (ex − e−x)/2 so, since eln t = t and e− ln t = 1/eln t = 1/t, we have

sinh(ln t) =
eln t − e− ln t

2
=
t− 1/t

2
=
t2 − 1

2t
.

16. By definition coshx = (ex + e−x)/2 so, since eln t = t and e− ln t = 1/eln t = 1/t, we have

cosh(ln t) =
eln t + e− ln t

2
=
t+ 1/t

2
=
t2 + 1

2t
.

Problems

17. The graph of sinhx in the text suggests that

As x→∞, sinhx→ 1

2
ex.

As x→ −∞, sinhx→ −1

2
e−x.

Using the facts that

As x→∞, e−x → 0,

As x→ −∞, ex → 0,

we can obtain the same results analytically:

As x→∞, sinhx =
ex − e−x

2
→ 1

2
ex.

As x→ −∞, sinhx =
ex − e−x

2
→ −1

2
e−x.

18. First we observe that

sinh(2x) =
e2x − e−2x

2
.

Now let’s calculate

(sinhx)(coshx) =

(
ex − e−x

2

)(
ex + e−x

2

)

=
(ex)2 − (e−x)2

4

=
e2x − e−2x

4

=
1

2
sinh(2x).

Thus, we see that
sinh(2x) = 2 sinhx coshx.
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19. First, we observe that

cosh(2x) =
e2x + e−2x

2
.

Now let’s use the fact that ex · e−x = 1 to calculate

cosh2 x =

(
ex + e−x

2

)2

=
(ex)2 + 2ex · e−x + (e−x)2

4

=
e2x + 2 + e−2x

4
.

Similarly, we have

sinh2 x =

(
ex − e−x

2

)2

=
(ex)2 − 2ex · e−x + (e−x)2

4

=
e2x − 2 + e−2x

4
.

Thus, to obtain cosh(2x), we need to add (rather than subtract) cosh2 x and sinh2 x, giving

cosh2 x+ sinh2 x =
e2x + 2 + e−2x + e2x − 2 + e−2x

4

=
2e2x + 2e−2x

4

=
e2x + e−2x

2
= cosh(2x).

Thus, we see that the identity relating cosh(2x) to coshx and sinhx is

cosh(2x) = cosh2 x+ sinh2 x.

20. Recall that
sinhA =

1

2
(eA − e−A) and coshA =

1

2
(eA + e−A).

Now substitute, expand and collect terms:

sinhA coshB + sinhB coshA =
1

2
(eA − e−A) · 1

2
(eB + e−B) +

1

2
(eB − e−B) · 1

2
(eA + e−A)

=
1

4

(
eA+B + eA−B − e−A+B − e−(A+B)

+eB+A + eB−A − e−B+A − e−A−B
)

=
1

2

(
eA+B − e−(A+B)

)

= sinh(A+B).

21. Recall that
sinhA =

1

2
(eA − e−A) and coshA =

1

2
(eA + e−A).

Now substitute, expand and collect terms:
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coshA coshB + sinhB sinhA =
1

2
(eA + e−A) · 1

2
(eB + e−B) +

1

2
(eB − e−B) · 1

2
(eA − e−A)

=
1

4

(
eA+B + eA−B + e−A+B + e−(A+B)

+eB+A − eB−A − e−B+A + e−A−B
)

=
1

2

(
eA+B + e−(A+B)

)

= cosh(A+B).

22. Using the definition of coshx and sinhx, we have cosh 2x =
e2x + e−2x

2
and sinh 3x =

e3x − e−3x

2
. Therefore

lim
x→∞

cosh(2x)

sinh(3x)
= lim

x→∞

e2x + e−2x

e3x − e−3x

= lim
x→∞

e2x(1 + e−4x)

e2x(ex − e−5x)

= lim
x→∞

1 + e−4x

ex − e−5x

= 0.

23. Using the definition of sinhx, we have sinh 2x =
e2x − e−2x

2
. Therefore

lim
x→∞

e2x

sinh(2x)
= lim

x→∞

2e2x

e2x − e−2x

= lim
x→∞

2

1− e−4x

= 2.

24. Using the definition of coshx and sinhx, we have coshx2 =
ex

2

+ e−x
2

2
and sinhx2 =

ex
2 − e−x2

2
. Therefore

lim
x→∞

sinh(x2)

cosh(x2)
= lim

x→∞

ex
2 − e−x2

ex2 + e−x2

= lim
x→∞

ex
2

(1− e−2x2

)

ex2(1 + e−2x2)

= lim
x→∞

1− e−2x2

1 + e−2x2

= 1.

25. Note that

sinh kx

cosh 2x
=
ekx − e−kx
e2x + e−2x

=
e2x(e(k−2)x − e−(k+2)x)

e2x(1 + e−4x)

=
e(k−2)x − e−(k+2)x

1 + e−4x
.

If k = 2, then the limit as x→∞ is 1.
If |k| > 2, then the limit as x→∞ does not exist.
If |k| < 2, then the limit as x→∞ is 0.
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26. Note that

e−3x cosh kx = e−3x e
kx + e−kx

2

=
e(k−3)x + e−(k+3)x

2
.

If |k| = 3, then the limit as x→∞ is 1/2.
If |k| > 3, then the limit as x→∞ does not exist.
If |k| < 3, then the limit as x→∞ is 0.

27. (a) The graph in Figure 3.8 looks like the graph of y = coshx, with the minimum at about (0.5, 6.3).

−3 3

20

40 y = 2ex + 5e−x

(0.5, 6.3)
x

y

Figure 3.8

(b) We want to write

y = 2ex + 5e−x = A cosh(x− c) =
A

2
ex−c +

A

2
e−(x−c)

=
A

2
exe−c +

A

2
e−xec

=

(
Ae−c

2

)
ex +

(
Aec

2

)
e−x.

Thus, we need to choose A and c so that

Ae−c

2
= 2 and

Aec

2
= 5.

Dividing gives

Aec

Ae−c
=

5

2

e2c = 2.5

c =
1

2
ln 2.5 ≈ 0.458.

Solving for A gives

A =
4

e−c
= 4ec ≈ 6.325.

Thus,
y = 6.325 cosh(x− 0.458).

Rewriting the function in this way shows that the graph in part (a) is the graph of coshx shifted to the right by 0.458
and stretched vertically by a factor of 6.325.
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28. We want to show that for any A, B with A > 0, B > 0, we can find K and c such that

y = Aex +Be−x =
Ke(x−c) +Ke−(x−c)

2

=
K

2
exe−c +

K

2
e−xec

=

(
Ke−c

2

)
ex +

(
Kec

2

)
e−x.

Thus, we want to find K and c such that

Ke−c

2
= A and

Kec

2
= B.

Dividing, we have

Kec

Ke−c
=
B

A

e2c =
B

A

c =
1

2
ln
(
B

A

)
.

If A > 0, B > 0, then there is a solution for c. Substituting to find K, we have

Ke−c

2
= A

K = 2Aec = 2Ae(ln(B/A))/2

= 2Aeln
√
B/A = 2A

√
B

A
= 2
√
AB.

Thus, if A > 0, B > 0, there is a solution for K also.
The fact that y = Aex + Be−x can be rewritten in this way shows that the graph of y = Aex + Be−x is the graph

of coshx, shifted over by c and stretched (or shrunk) vertically by a factor of K.

29. (a) Since the cosh function is even, the height, y, is the same at x = −T/w and x = T/w. The height at these endpoints
is

y =
T

w
cosh

(
w

T
· T
w

)
=
T

w
cosh 1 =

T

w

(
e1 + e−1

2

)
.

At the lowest point, x = 0, and the height is

y =
T

w
cosh 0 =

T

w
.

Thus the “sag” in the cable is given by

Sag =
T

w

(
e+ e−1

2

)
− T

w
=
T

w

(
e+ e−1

2
− 1

)
≈ 0.54

T

w
.

(b) To show that the differential equation is satisfied, take derivatives

dy

dx
=
T

w
· w
T

sinh
(
wx

T

)
= sinh

(
wx

T

)

d2y

dx2
=
w

T
cosh

(
wx

T

)
.

Therefore, using the fact that 1 + sinh2 a = cosh2 a and that cosh is always positive, we have:

w

T

√
1 +

(
dy

dx

)2

=
w

T

√
1 + sinh2

(
wx

T

)
=
w

T

√
cosh2

(
wx

T

)

=
w

T
cosh

(
wx

T

)
.

So
w

T

√
1 +

(
dy

dx

)2

=
d2y

dx2
.
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30.

x

y
(0, 615)

(265, 0)

We know x = 0 and y = 615 at the top of the arch, so

615 = b− a cosh(0/a) = b− a.
This means b = a+ 615. We also know that x = 265 and y = 0 where the arch hits the ground, so

0 = b− a cosh(265/a) = a+ 615− a cosh(265/a).

We can solve this equation numerically on a calculator and get a ≈ 100, which means b ≈ 715. This results in the
equation

y ≈ 715− 100 cosh
(
x

100

)
.

31. (a) Substituting x = 0 gives

tanh 0 =
e0 − e−0

e0 + e−0
=

1− 1

2
= 0.

(b) Since tanhx =
ex − e−x
ex + e−x

and ex + e−x is always positive, tanhx has the same sign as ex − e−x. For x > 0, we

have ex > 1 and e−x < 1, so ex− e−x > 0. For x < 0, we have ex < 1 and e−x > 1, so ex− e−x < 0. For x = 0,
we have ex = 1 and e−x = 1, so ex − e−x = 0. Thus, tanhx is positive for x > 0, negative for x < 0, and zero for
x = 0.

(c) Taking the derivative, we have
d

dx
(tanhx) =

1

cosh2 x
.

Thus, for all x,
d

dx
(tanhx) > 0.

Thus, tanhx is increasing everywhere.
(d) As x→∞ we have e−x → 0; as x→ −∞, we have ex → 0. Thus

lim
x→∞

tanhx = lim
x→∞

(
ex − e−x
ex + e−x

)
= 1,

lim
x→−∞

tanhx = lim
x→−∞

(
ex − e−x
ex + e−x

)
= −1.

Thus, y = 1 and y = −1 are horizontal asymptotes to the graph of tanhx. See Figure 3.9.

−5 5

−1

1

x

y

Figure 3.9: Graph of y = tanhx

(e) The graph of tanhx suggests that tanhx is increasing everywhere; the fact that the derivative of tanhx is positive
for all x confirms this. Since tanhx is increasing for all x, different values of x lead to different values of y, and
therefore tanhx does have an inverse.
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Solutions for Section 3.9

Exercises

1. With f(x) =
√

1 + x, the chain rule gives f ′(x) = 1/(2
√

1 + x), so f(0) = 1 and f ′(0) = 1/2. Therefore the tangent
line approximation of f near x = 0,

f(x) ≈ f(0) + f ′(0)(x− 0),

becomes √
1 + x ≈ 1 +

x

2
.

This means that, near x = 0, the function
√

1 + x can be approximated by its tangent line y = 1 + x/2. (See Figure 3.10.)

−2 −1 0 1 2

1

2

x

y
y = 1 + x/2

y =
√

1 + x

Figure 3.10

2. With f(x) = ex, the tangent line approximation to f near x = 0 is f(x) ≈ f(0) + f ′(0)(x − 0) which becomes
ex ≈ e0 + e0x = 1 + 1x = 1 + x. Thus, our local linearization of ex near x = 0 is ex ≈ 1 + x.

3. With f(x) = 1/x, we see that the tangent line approximation to f near x = 1 is

f(x) ≈ f(1) + f ′(1)(x− 1),

which becomes
1

x
≈ 1 + f ′(1)(x− 1).

Since f ′(x) = −1/x2, f ′(1) = −1. Thus our formula reduces to

1

x
≈ 1− (x− 1) = 2− x.

This is the local linearization of 1/x near x = 1.

4. With f(x) = 1/(
√

1 + x), we see that the tangent line approximation to f near x = 0 is

f(x) ≈ f(0) + f ′(0)(x− 0),

which becomes
1√

1 + x
≈ 1 + f ′(0)x.

Since f ′(x) = (−1/2)(1 + x)−3/2, f ′(0) = −1/2. Thus our formula reduces to

1√
1 + x

≈ 1− x/2.

This is the local linearization of
1√

1 + x
near x = 0.

5. Let f(x) = e−x. Then f ′(x) = −e−x. So f(0) = 1, f ′(0) = −e0 = −1. Therefore, e−x ≈ f(0) + f ′(0)x = 1− x.

6. With f(x) = ex
2

, we get a tangent line approximation of f(x) ≈ f(1) + f ′(1)(x − 1) which becomes ex
2 ≈ e +(

2xex
2
) ∣∣∣∣

x=1

(x− 1) = e+ 2e(x− 1) = 2ex− e. Thus, our local linearization of ex
2

near x = 1 is ex
2 ≈ 2ex− e.
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7. From Figure 3.11, we see that the error has its maximum magnitude at the end points of the interval, x = ±1. The
magnitude of the error can be read off the graph as less than 0.2 or estimated as

|Error| ≤ |1− sin 1| = 0.159 < 0.2.

The approximation is an overestimate for x > 0 and an underestimate for x < 0.

−1 1

−1

1 x

sinx

6

?
Error

x

y

Figure 3.11

−1 1

1

2

3

1 + x

ex

6

?
Error

x

y

Figure 3.12

8. Figure 3.12 shows that 1 + x is an underestimate of ex for −1 ≤ x ≤ 1. On this interval, the error has the largest
magnitude at x = 1. Its magnitude can be estimated from the graph as less than 0.8, or estimated as

|Error| = e− 1− 1 = 0.718 < 0.8.

Problems

9. (a) Since
d

dx
(cosx) = − sinx,

the slope of the tangent line is− sin(π/4) = −1/
√

2. Since the tangent line passes through the point (π/4, cos(π/4)) =
(π/4, 1/

√
2), its equation is

y − 1√
2

= − 1√
2

(
x− π

4

)

y = − 1√
2
x+

1√
2

(
π

4
+ 1
)
.

Thus, the tangent line approximation to cosx is

cosx ≈ − 1√
2
x+

1√
2

(
π

4
+ 1
)
.

(b) From Figure 3.13, we see that the tangent line approximation is an overestimate.
(c) From Figure 3.13, we see that the maximum error for 0 ≤ x ≤ π/2 is either at x = 0 or at x = π/2. The error can

either be estimated from the graph, or as follows. At x = 0,

|Error| =
∣∣∣∣cos 0− 1√

2

(
π

4
+ 1
)∣∣∣∣ = 0.262 < 0.3.

At x = π/2,

|Error| =
∣∣∣∣cos

π

2
+

1√
2

π

2
− 1√

2

(
π

4
+ 1
)∣∣∣∣ = 0.152 < 0.2.

Thus, for 0 ≤ x ≤ π/2, we have
|Error| < 0.3.
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π/4 π/2

1/
√

2

6?Error

cosx

Tangent Line

− 1√
2
x+

1√
2

(
π

4
+ 1

)

x

Figure 3.13

10. (a) Let f(x) = (1 + x)k. Then f ′(x) = k(1 + x)k−1. Since

f(x) ≈ f(0) + f ′(0)(x− 0)

is the tangent line approximation, and f(0) = 1, f ′(0) = k, for small x we get

f(x) ≈ 1 + kx.

(b) Since
√

1.1 = (1 + 0.1)1/2 ≈ 1 + (1/2)0.1 = 1.05 by the above method, this estimate is about right.
(c) The real answer is less than 1.05. Since (1.05)2 = (1 + 0.05)2 = 1 + 2(1)(0.05) + (0.05)2 = 1.1 + (0.05)2 > 1.1,

we have (1.05)2 > 1.1 Therefore √
1.1 < 1.05.

Graphically, this because the graph of
√

1 + x is concave down, so it bends below its tangent line. Therefore the true
value (

√
1.1) which is on the curve is below the approximate value (1.05) which is on the tangent line.

11. Since the line meets the curve at x = 1, we have a = 1. Since the point with x = 1 lies on both the line and the curve,
we have

f(a) = f(1) = 2 · 1− 1 = 1.

The approximation is an underestimate because the line lies under the curve. Since the linear function approximates f(x),
we have

f(1.2) ≈ 2(1.2)− 1 = 1.4.

12. (a) From the figure, we see a = 2. The point with x = 2 lies on both the line and the curve. Since

y = −3 · 2 + 7 = 1,

we have
f(a) = 1.

Since the slope of the line is −3, we have
f ′(a) = −3.

(b) We use the line to approximate the function, so

f(2.1) ≈ −3(2.1) + 7 = 0.7.

This is an underestimate, because the line is beneath the curve for x > 2. Similarly,

f(1.98) ≈ −3(1.98) + 7 = 1.06.

This is an overestimate because the line is above the curve for x < 2.
The approximation f(1.98) ≈ 1.06 is likely to be more accurate because 1.98 is closer to 2 than 2.1 is. Since

the graph of f(x) appears to bend away from the line at approximately the same rate on either side of x = 2, in this
example, the error is larger for points farther from x = 2.

13. We have f(1) = 1 and f ′(1) = 4. Thus

E(x) = x4 − (1 + 4(x− 1)).

Values of E(x)/(x− 1) near x = 1 are in Table 3.3.
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Table 3.3

x 1.1 1.01 1.001
E(x)/(x− 1) 0.641 0.060401 0.006004

From the table, we can see that
E(x)

(x− 1)
≈ 6(x− 1),

so k = 6 and
E(x) ≈ 6(x− 1)2.

In addition, f ′′(1) = 12, so

E(x) ≈ 6(x− 1)2 =
f ′′(1)

2
(x− 1)2.

The same result can be obtained by rewriting the function x4 using x = 1 + (x− 1) and expanding:

x4 = (1 + (x− 1))4 = 1 + 4(x− 1) + 6(x− 1)2 + 4(x− 1)3 + (x− 1)4.

Thus,
E(x) = x4 − (1 + 4(x− 1)) = 6(x− 1)2 + 4(x− 1)3 + (x− 1)4.

For x near 1, the value of x− 1 is small, so we ignore powers of x− 1 higher than the first, giving

E(x) ≈ 6(x− 1)2.

14. We have f(0) = 1 and f ′(0) = 0. Thus
E(x) = cosx− 1.

Values for E(x)/(x− 0) near x = 0 are in Table 3.4.

Table 3.4

x 0.1 0.01 0.001
E(x)/(x− 0) −0.050 −0.0050 −0.00050

From the table, we can see that
E(x)

(x− 0)
≈ −0.5(x− 0),

so k = −1/2 and

E(x) ≈ −1

2
(x− 0)2 = −1

2
x2.

In addition, f ′′(0) = −1, so

E(x) ≈ −1

2
x2 =

f ′′(0)

2
x2.

15. We have f(0) = 1 and f ′(0) = 1. Thus
E(x) = ex − (1 + x).

Values of E(x)/(x− 0) near x = 0 are in Table 3.5.

Table 3.5

x 0.1 0.01 0.001
E(x)/(x− 0) 0.052 0.0050 0.00050

From the table, we can see that
E(x)

(x− 0)
≈ 0.5(x− 0)

so k = 1/2 and

E(x) ≈ 1

2
(x− 0)2 =

1

2
x2.

In addition, f ′′(0) = 1, so

E(x) ≈ 1

2
x2 =

f ′′(0)

2
x2
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16. We have f(1) = 1 and f ′(1) = 1/2. Thus

E(x) =
√
x− (1 +

1

2
(x− 1)).

Values of E(x)/(x− 1) near x = 1 are in Table 3.6.

Table 3.6

x 1.1 1.01 1.001
E(x)/(x− 1) −0.0119 −0.00124 −0.000125

From the table, we can see that
E(x)

(x− 1)
≈ −0.125(x− 1)

so k = −1/8 and

E(x) ≈ −1

8
(x− 1)2.

In addition, f ′′(1) = −1/4, so

E(x) ≈ −1

8
(x− 1)2 =

f ′′(1)

2
(x− 1)2.

17. We have f(1) = 0 and f ′(1) = 1. Thus
E(x) = lnx− (x− 1).

Values of E(x)/(x− 1) near x = 1 are in Table 3.7.

Table 3.7

x 1.1 1.01 1.001
E(x)/(x− 1) −0.047 −0.0050 −0.00050

From the table, we see that
E(x)

(x− 1)
≈ −0.5(x− 1),

so k = −1/2 and

E(x) ≈ −1

2
(x− 1)2.

In addition, f ′′(1) = −1, so

E(x) ≈ −1

2
(x− 1)2 =

f ′′(1)

2
(x− 1)2.

18. The local linearization of ex near x = 0 is 1 + 1x so

ex ≈ 1 + x.

Squaring this yields, for small x,
e2x = (ex)2 ≈ (1 + x)2 = 1 + 2x+ x2.

Local linearization of e2x directly yields
e2x ≈ 1 + 2x

for small x. The two approximations are consistent because they agree: the tangent line approximation to 1 + 2x+ x2 is
just 1 + 2x.

The first approximation is more accurate. One can see this numerically or by noting that the approximation for e2x

given by 1 + 2x is really the same as approximating ey at y = 2x. Since the other approximation approximates ey at
y = x, which is twice as close to 0 and therefore a better general estimate, it’s more likely to be correct.

19. (a) Let f(x) = 1/(1 + x). Then f ′(x) = −1/(1 + x)2 by the chain rule. So f(0) = 1, and f ′(0) = −1. Therefore, for
x near 0, 1/(1 + x) ≈ f(0) + f ′(0)x = 1− x.

(b) We know that for small y, 1/(1 + y) ≈ 1 − y. Let y = x2; when x is small, so is y = x2. Hence, for small x,
1/(1 + x2) ≈ 1− x2.

(c) Since the linearization of 1/(1 + x2) is the line y = 1, and this line has a slope of 0, the derivative of 1/(1 + x2) is
zero at x = 0.
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20. The local linearizations of f(x) = ex and g(x) = sinx near x = 0 are

f(x) = ex ≈ 1 + x

and
g(x) = sinx ≈ x.

Thus, the local linearization of ex sinx is the local linearization of the product:

ex sinx ≈ (1 + x)x = x+ x2 ≈ x.

We therefore know that the derivative of ex sinx at x = 0 must be 1. Similarly, using the local linearization of 1/(1 + x)
near x = 0, 1/(1 + x) ≈ 1− x, we have

ex sinx

1 + x
= (ex)(sinx)

(
1

1 + x

)
≈ (1 + x)(x)(1− x) = x− x3

so the local linearization of the triple product
ex sinx

1 + x
at x = 0 is simply x. And therefore the derivative of

ex sinx

1 + x
at

x = 0 is 1.

21. (a) Suppose

g = f(r) =
GM

r2
.

Then
f ′(r) =

−2GM

r3
.

So
f(r + ∆r) ≈ f(r)− 2GM

r3
(∆r).

Since f(r + ∆r)− f(r) = ∆g, and g = GM/r2, we have

∆g ≈ −2
GM

r3
(∆r) = −2g

∆r

r
.

(b) The negative sign tells us that the acceleration due to gravity decreases as the distance from the center of the earth
increases.

(c) The fractional change in g is given by
∆g

g
≈ −2

∆r

r
.

So, since ∆r = 4.315 km and r = 6400 km, we have

∆g

g
≈ −2

(
4.315

6400

)
= −0.00135 = −0.135%.

22. (a) Suppose g is a constant and

T = f(l) = 2π

√
l

g
.

Then
f ′(l) =

2π√
g

1

2
l−1/2 =

π√
gl
.

Thus, local linearity tells us that
f(l + ∆l) ≈ f(l) +

π√
gl

∆l.

Now T = f(l) and ∆T = f(l + ∆l)− f(l), so

∆T ≈ π√
gl

∆l = 2π

√
l

g
· 1

2

∆l

l
=
T

2

∆l

l
.
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(b) Knowing that the length of the pendulum increases by 2% tells us that

∆l

l
= 0.02.

Thus,

∆T ≈ T

2
(0.02) = 0.01T.

So
∆T

T
≈ 0.01.

Thus, T increases by 1%.

23. (a) Considering l as a constant, we have

T = f(g) = 2π

√
l

g
.

Then,

f ′(g) = 2π
√
l
(
−1

2
g−3/2

)
= −π

√
l

g3
.

Thus, local linearity gives

f(g + ∆g) ≈ f(g)− π
√

l

g3
(∆g).

Since T = f(g) and ∆T = f(g + ∆g)− f(g), we have

∆T ≈ −π
√

l

g3
∆g = −2π

√
l

g

∆g

2g
=
−T
2

∆g

g
.

∆T ≈ −T
2

∆g

g
.

(b) If g increases by 1%, we know
∆g

g
= 0.01.

Thus,
∆T

T
≈ −1

2

∆g

g
= −1

2
(0.01) = −0.005,

So, T decreases by 0.5%.

24. Since f has a positive second derivative, its graph is concave up, as in Figure 3.14 or 3.15. This means that the graph of
f(x) is above its tangent line. We see that in both cases

f(1 + ∆x) ≥ f(1) + f ′(1)∆x.

(The diagrams show ∆x positive, but the result is also true if ∆x is negative.)

1 1 + ∆x

f(1)

f(1) + f ′(1)∆x
f(1 + ∆x)

Tangent line
Slope = f ′(1)

f(x)

x

y

Figure 3.14

1 1 + ∆x

f(1)

f(1) + f ′(1)∆x

f(1 + ∆x)

Tangent line
Slope = f ′(1)

f(x)

x

y

Figure 3.15
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25. (a) Since f ′ is decreasing, f ′(5) is larger.
(b) Since f ′ is decreasing, its derivative, f ′′, is negative. Thus, f ′′(5) is negative, so 0 is larger.
(c) Since f ′′(x) is negative for all x, the graph of f is concave down. Thus the graph of f(x) is below its tangent line.

From Figure 3.16, we see that f(5 + ∆x) is below f(5) + f ′(5)∆x. Thus, f(5) + f ′(5)∆x is larger.

5 5 + ∆x

Tangent line
Slope = f ′(5)

f(x)
6

?
f ′(5)∆x

6

?

f(5)

-� ∆x

6

?

f(5 + ∆x)

x

Figure 3.16

26. Note that

[f(x)g(x)]′ = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h
.

We use the hint: For small h, f(x+ h) ≈ f(x) + f ′(x)h, and g(x+ h) ≈ g(x) + g′(x)h. Therefore

f(x+ h)g(x+ h)− f(x)g(x) ≈ [f(x) + hf ′(x)][g(x) + hg′(x)]− f(x)g(x)

= f(x)g(x) + hf ′(x)g(x) + hf(x)g′(x)

+h2f ′(x)g′(x)− f(x)g(x)

= hf ′(x)g(x) + hf(x)g′(x) + h2f ′(x)g′(x).

Therefore

lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h
= lim

h→0

hf ′(x)g(x) + hf(x)g′(x) + h2f ′(x)g′(x)

h

= lim
h→0

h (f ′(x)g(x) + f(x)g′(x) + hf ′(x)g′(x))

h

= lim
h→0

(
f ′(x)g(x) + f(x)g′(x) + hf ′(x)g′(x)

)

= f ′(x)g(x) + f(x)g′(x).

A more complete derivation can be given using the error term discussed in the section on Differentiability and Linear
Approximation in Chapter 2. Adapting the notation of that section to this problem, we write

f(x+ h) = f(x) + f ′(x)h+ Ef (h) and g(x+ h) = g(x) + g′(x)h+ Eg(h),

where lim
h→0

Ef (h)

h
= lim
h→0

Eg(h)

h
= 0. (This implies that lim

h→0
Ef (h) = lim

h→0
Eg(h) = 0.)

We have

f(x+ h)g(x+ h)− f(x)g(x)

h
=
f(x)g(x)

h
+ f(x)g′(x) + f ′(x)g(x) + f(x)

Eg(h)

h
+ g(x)

Ef (h)

h

+f ′(x)g′(x)h+ f ′(x)Eg(h) + g′(x)Ef (h) +
Ef (h)Eg(h)

h
− f(x)g(x)

h

The terms f(x)g(x)/h and −f(x)g(x)/h cancel out. All the remaining terms on the right, with the exception of the
second and third terms, go to zero as h→ 0. Thus, we have

[f(x)g(x)]′ = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h
= f(x)g′(x) + f ′(x)g(x).



3.9 SOLUTIONS 165

27. Note that

[f(g(x))]′ = lim
h→0

f(g(x+ h))− f(g(x))

h
.

Using the local linearizations of f and g, we get that

f(g(x+ h))− f(g(x)) ≈ f
(
g(x) + g′(x)h

)
− f(g(x))

≈ f (g(x)) + f ′(g(x))g′(x)h− f(g(x))

= f ′(g(x))g′(x)h.

Therefore,

[f(g(x))]′ = lim
h→0

f(g(x+ h))− f(g(x))

h

= lim
h→0

f ′(g(x))g′(x)h

h

= lim
h→0

f ′(g(x))g′(x) = f ′(g(x))g′(x).

A more complete derivation can be given using the error term discussed in the section on Differentiability and Linear
Approximation in Chapter 2. Adapting the notation of that section to this problem, we write

f(z + k) = f(z) + f ′(z)k + Ef (k) and g(x+ h) = g(x) + g′(x)h+ Eg(h),

where lim
h→0

Eg(h)

h
= lim
k→0

Ef (k)

k
= 0.

Now we let z = g(x) and k = g(x+ h)− g(x). Then we have k = g′(x)h+ Eg(h). Thus,

f(g(x+ h))− f(g(x))

h
=
f(z + k)− f(z)

h

=
f(z) + f ′(z)k + Ef (k)− f(z)

h
=
f ′(z)k + Ef (k)

h

=
f ′(z)g′(x)h+ f ′(z)Eg(h)

h
+
Ef (k)

k
·
(
k

h

)

= f ′(z)g′(x) +
f ′(z)Eg(h)

h
+
Ef (k)

k

[
g′(x)h+ Eg(h)

h

]

= f ′(z)g′(x) +
f ′(z)Eg(h)

h
+
g′(x)Ef (k)

k
+
Eg(h) · Ef (k)

h · k
Now, if h → 0 then k → 0 as well, and all the terms on the right except the first go to zero, leaving us with the term
f ′(z)g′(x). Substituting g(x) for z, we obtain

[f(g(x))]′ = lim
h→0

f(g(x+ h))− f(g(x))

h
= f ′(g(x))g′(x).

28. We want to show that

lim
x→a

f(x)− f(a)

x− a = L.

Substituting for f(x) we have

lim
x→a

f(x)− f(a)

x− a = lim
x→a

f(a) + L(x− a) + EL(x)− f(a)

x− a

= lim
x→a

(
L+

EL(x)

x− a

)
= L+ lim

x→0

EL(x)

x− a = L.

Thus, we have shown that f is differentiable at x = a and that its derivative is L, that is, f ′(a) = L.
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Solutions for Section 3.10

Exercises

1. False. The derivative, f ′(x), is not equal to zero everywhere, because the function is not continuous at integral values of
x, so f ′(x) does not exist there. Thus, the Constant Function Theorem does not apply.

2. False. The horse that wins the race may have been moving faster for some, but not all, of the race. The Racetrack Principle
guarantees the converse—that if the horses start at the same time and one moves faster throughout the race, then that horse
wins.

3. True. If g(x) is the position of the slower horse at time x and h(x) is the position of the faster, then g ′(x) ≤ h′(x) for
a < x < b. Since the horses start at the same time, g(a) = h(a), so, by the Racetrack Principle, g(x) ≤ h(x) for
a ≤ x ≤ b. Therefore, g(b) ≤ h(b), so the slower horse loses the race.

4. True. If f ′ is positive on [a, b], then f is continuous and the Increasing Function Theorem applies. Thus, f is increasing
on [a, b], so f(a) < f(b).

5. False. Let f(x) = x3 on [−1, 1]. Then f(x) is increasing but f ′(x) = 0 for x = 0.

6. No, it does not satisfy the hypotheses. The function does not appear to be differentiable. There appears to be no tangent
line, and hence no derivative, at the “corner.”

No, it does not satisfy the conclusion as there is no horizontal tangent.

7. Yes, it satisfies the hypotheses and the conclusion. This function has two points, c, at which the tangent to the curve is
parallel to the secant joining (a, f(a)) to (b, f(b)), but this does not contradict the Mean Value Theorem. The function is
continuous and differentiable on the interval [a, b].

8. No, it does not satisfy the hypotheses. This function does not appear to be continuous.
No, it does not satisfy the conclusion as there is no horizontal tangent.

9. No. This function does not satisfy the hypotheses of the Mean Value Theorem, as it is not continuous.
However, the function has a point c such that

f ′(c) =
f(b)− f(a)

b− a .

Thus, this satisfies the conclusion of the theorem.

Problems

10. Let f(x) = sinx and g(x) = x. Then f(0) = 0 and g(0) = 0. Also f ′(x) = cosx and g′(x) = 1, so for all x ≥ 0
we have f ′(x) ≤ g′(x). So the graphs of f and g both go through the origin and the graph of f climbs slower than the
graph of g. Thus the graph of f is below the graph of g for x ≥ 0 by the Racetrack Principle. In other words, sinx ≤ x
for x ≥ 0.

11. Let g(x) = lnx and h(x) = x − 1. For x ≥ 1, we have g′(x) = 1/x ≤ 1 = h′(x). Since g(1) = h(1), the
Racetrack Principle with a = 1 says that g(x) ≤ h(x) for x ≥ 1, that is, lnx ≤ x − 1 for x ≥ 1. For 0 < x ≤ 1,
we have h′(x) = 1 ≤ 1/x = g′(x). Since g(1) = h(1), the Racetrack Principle with b = 1 says that g(x) ≤ h(x) for
0 < x ≤ 1, that is, lnx ≤ x− 1 for 0 < x ≤ 1.

12.

1

1

y = ex

y = x+ 1

y = x

y = x− 1

y = lnx

x

y

Graphical solution: If f and g are inverse functions then the graph of g is just the graph of f reflected through the
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line y = x. But ex and lnx are inverse functions, and so are the functions x+ 1 and x− 1. Thus the equivalence is clear
from the figure.

Algebraic solution: If x > 0 and
x+ 1 ≤ ex,

then, replacing x by x− 1, we have
x ≤ ex−1.

Taking logarithms, and using the fact that ln is an increasing function, gives

lnx ≤ x− 1.

We can also go in the opposite direction, which establishes the equivalence.

13. The Decreasing Function Theorem is: Suppose that f is continuous on [a, b] and differentiable on (a, b). If f ′(x) < 0 on
(a, b), then f is decreasing on [a, b]. If f ′(x) ≤ 0 on (a, b), then f is nonincreasing on [a, b].

To prove the theorem, we note that if f is decreasing then −f is increasing and vice-versa. Similarly, if f is non-
increasing, then −f is nondecreasing. Thus if f ′(x) < 0, then −f ′(x) > 0, so −f is increasing, which means f is
decreasing. And if f ′(x) ≤ 0, then −f ′(x) ≥ 0, so −f is nondecreasing, which means f is nonincreasing.

14. Use the Racetrack Principle, Theorem 3.10, with g(x) = x. Since f ′(x) ≤ g′(x) for all x and f(0) = g(0), then
f(x) ≤ g(x) = x for all x ≥ 0.

15. First apply the Racetrack Principle, Theorem 3.10, to f ′(t) and g(t) = 3t. Since f ′′(t) ≤ g′(t) for all t and f ′(0) = 0 =
g(0), then f ′(t) ≤ 3t for all t ≥ 0. Next apply the Racetrack Principle again to f(t) and h(t) = 3

2
t2. Since f ′(t) ≤ h′(t)

for all t ≥ 0 and f(0) = 0 = h(0), then f(t) ≤ h(t) = 3
2
t2 for all t ≥ 0.

16. Apply the Constant Function Theorem, Theorem 3.9, to h(x) = f(x) − g(x). Then h′(x) = 0 for all x, so h(x) is
constant for all x. Since h(5) = f(5)− g(5) = 0, we have h(x) = 0 for all x. Therefore f(x)− g(x) = 0 for all x, so
f(x) = g(x) for all x.

17. By the Mean Value Theorem, Theorem 3.7, there is a number c, with 0 < c < 1, such that

f ′(c) =
f(1)− f(0)

1− 0
.

Since f(1)− f(0) > 0, we have f ′(c) > 0.
Alternatively if f ′(c) ≤ 0 for all c in (0, 1), then by the Increasing Function Theorem, f(0) ≥ f(1).

18. Since f ′′(t) ≤ 7 for 0 ≤ t ≤ 2, if we apply the Racetrack Principle with a = 0 to the functions f ′(t) − f ′(0) and 7t,
both of which go through the origin, we get

f ′(t)− f ′(0) ≤ 7t for 0 ≤ t ≤ 2.

The left side of this inequality is the derivative of f(t)− f ′(0)t, so if we apply the Racetrack Principle with a = 0 again,
this time to the functions f(t)− f ′(0)t and (7/2)t2 + 3, both of which have the value 3 at t = 0, we get

f(t)− f ′(0)t ≤ 7

2
t2 + 3 for 0 ≤ t ≤ 2.

That is,

f(t) ≤ 3 + 4t+
7

2
t2 for 0 ≤ t ≤ 2.

In the same way, we can show that the lower bound on the acceleration, 5 ≤ f ′′(t) leads to:

f(t) ≥ 3 + 4t+
5

2
t2 for 0 ≤ t ≤ 2.

If we substitute t = 2 into these two inequalities, we get bounds on the position at time 2:

21 ≤ f(2) ≤ 25.

19. Consider the function f(x) = h(x)− g(x). Since f ′(x) = h′(x)− g′(x) ≥ 0, we know that f is nondecreasing by the
Increasing Function Theorem. This means f(x) ≤ f(b) for a ≤ x ≤ b. However, f(b) = h(b)− g(b) = 0, so f(x) ≤ 0,
which means h(x) ≤ g(x).

20. If f ′(x) = 0, then both f ′(x) ≥ 0 and f ′(x) ≤ 0. By the Increasing and Decreasing Function Theorems, f is both
nondecreasing and nonincreasing, so f is constant.
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21. Let h(x) = f(x)− g(x). Then h′(x) = f ′(x)− g′(x) = 0 for all x in (a, b). Hence, by the Constant Function Theorem,
there is a constant C such that h(x) = C on (a, b). Thus f(x) = g(x) + C.

22. We will show f(x) = Cex by deducing that f(x)/ex is a constant. By the Constant Function Theorem, we need only
show the derivative of g(x) = f(x)/ex is zero. By the quotient rule (since ex 6= 0), we have

g′(x) =
f ′(x)ex − exf(x)

(ex)2
.

Since f ′(x) = f(x), we simplify and obtain

g′(x) =
f(x)ex − exf(x)

(ex)2
=

0

e2x
= 0,

which is what we needed to show.

23. Apply the Racetrack Principle to the functions f(x)−f(a) andM(x−a); we can do this since f(a)−f(a) = M(a−a)
and f ′(x) ≤ M . We conclude that f(x) − f(a) ≤ M(x − a). Similarly, apply the Racetrack Principle to the functions
m(x− a) and f(x)− f(a) to obtain m(x− a) ≤ f(x)− f(a). If we substitute x = b into these inequalities we get

m(b− a) ≤ f(b)− f(a) ≤M(b− a).

Now, divide by b− a.

24. (a) Since f ′′(x) ≥ 0, f ′(x) is nondecreasing on (a, b). Thus f ′(c) ≤ f ′(x) for c ≤ x < b and f ′(x) ≤ f ′(c) for
a < x ≤ c.

(b) Let g(x) = f(c)+f ′(c)(x−c) and h(x) = f(x). Then g(c) = f(c) = h(c), and g′(x) = f ′(c) and h′(x) = f ′(x).
If c ≤ x < b, then g′(x) ≤ h′(x), and if a < x ≤ c, then g′(x) ≥ h′(x), by (a). By the Racetrack Principle,
g(x) ≤ h′(x) for c ≤ x < b and for a < x ≤ c, as we wanted.

Solutions for Chapter 3 Review

Exercises

1. f ′(t) =
d

dt

(
2tet − 1√

t

)
= 2et + 2tet +

1

2t3/2
.

2.

dw

dz
=

(−3)(5 + 3z)− (5− 3z)(3)

(5 + 3z)2

=
−15− 9z − 15 + 9z

(5 + 3z)2
=

−30

(5 + 3z)2

3. f ′(x) =
3x2

9
(3 lnx− 1) +

x3

9

(
3

x

)
= x2 lnx− x2

3
+
x2

3
= x2 lnx

4. f ′(θ) = −1(1 + e−θ)−2(e−θ)(−1) =
e−θ

(1 + e−θ)2
.

5. Since h(θ) = θ(θ−1/2 − θ−2) = θθ−1/2 − θθ−2 = θ1/2 − θ−1, we have h′(θ) =
1

2
θ−1/2 + θ−2.

6. f ′(θ) = − sin θ
cos θ

= − tan θ.

7. d

dy
ln ln(2y3) =

1

ln(2y3)

1

2y3
6y2 =

3

y ln(2y3)
.

8. g′(x) =
d

dx

(
xk + kx

)
= kxk−1 + kx ln k.

9. y′ = 0

10. dz

dθ
= 3 sin2 θ cos θ
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11.

f ′(t) = 2 cos(3t+ 5) · (− sin(3t+ 5))3

= −6 cos(3t+ 5) · sin(3t+ 5)

12.

M ′(α) = 2 tan(2 + 3α) · 1

cos2(2 + 3α)
· 3

= 6 · tan(2 + 3α)

cos2(2 + 3α)

13. s′(θ) =
d

dθ
sin2(3θ − π) = 6 cos(3θ − π) sin(3θ − π).

14. h′(t) =
1

e−t − t
(
−e−t − 1

)
.

15.
d

dθ

(
sin(5− θ)

θ2

)
=

cos(5− θ)(−1)θ2 − sin(5− θ)(2θ)
θ4

= −θ cos(5− θ) + 2 sin(5− θ)
θ3

.

16. w′(θ) =
1

sin2 θ
− 2θ cos θ

sin3 θ

17. g′(x) =
d

dx

(
x

1
2 + x−1 + x−

3
2

)
=

1

2
x−

1
2 − x−2 − 3

2
x−

5
2 .

18. g′(w) =
d

dw

(
1

2w + ew

)
= −2w ln 2 + ew

(2w + ew)2
.

19. s′(x) =
d

dx
(arctan(2− x)) =

−1

1 + (2− x)2
.

20. r′(θ) =
d

dθ

(
e(e

θ+e−θ)
)

= e(e
θ+e−θ) (eθ − e−θ

)
.

21. Using the chain rule, we get:
m′(n) = cos(en) · (en)

22. Using the chain rule we get:

k′(α) = etan(sinα)(tan(sinα))′ = etan(sinα) · 1

cos2(sinα)
· cosα.

23. Here we use the product rule, and then the chain rule, and then the product rule.

g′(t) = cos(
√
tet) + t(cos

√
tet)′ = cos(

√
tet) + t(− sin(

√
tet) · (

√
tet)′)

= cos(
√
tet)− t sin(

√
tet) ·

(√
tet +

1

2
√
t
et
)

24. f ′(r) = e(tan 2 + tan r)e−1(tan 2 + tan r)′ = e(tan 2 + tan r)e−1
(

1

cos2 r

)

25. d

dx
xetan x = etan x + xetan x 1

cos2 x
.

26. dy

dx
= 2e2x sin2(3x) + e2x(2 sin(3x) cos(3x)3) = 2e2x sin(3x)(sin(3x) + 3 cos(3x))

27. g′(x) =
6x

1 + (3x2 + 1)2
=

6x

9x4 + 6x2 + 2

28. dy

dx
= (ln 2)2sin x cosx · cosx+ 2sin x(− sinx) = 2sin x

(
(ln 2) cos2 x− sinx

)



170 Chapter Three /SOLUTIONS

29. h(x) = ax · ln e = ax, so h′(x) = a.

30. k′(x) = a

31. f ′(θ) = kekθ

32. Using the product rule and factoring gives f ′(t) = e−4kt(cos t− 4k sin t).

33. Using the product rule gives

H ′(t) = 2ate−ct − c(at2 + b)e−ct

= (−cat2 + 2at− bc)e−ct.

34. d

dθ

√
a2 − sin2 θ =

1

2
√
a2 − sin2 θ

(−2 sin θ cos θ) = − sin θ cos θ√
a2 − sin2 θ

.

35. Using the chain rule gives f ′(x) = 5 ln(a)a5x.

36. Using the quotient rule gives

f ′(x) =
(−2x)(a2 + x2)− (2x)(a2 − x2)

(a2 + x2)2
=
−4a2x

(a2 + x2)2
.

37. Using the quotient rule gives

w′(r) =
2ar(b+ r3)− 3r2(ar2)

(b+ r3)2

=
2abr − ar4

(b+ r3)2
.

38. Using the quotient rule gives

f ′(s) =

−2s
√
a2 + s2 − s√

a2+s2
(a2 − s2)

(a2 + s2)

=
−2s(a2 + s2)− s(a2 − s2)

(a2 + s2)3/2

=
−2a2s− 2s3 − a2s+ s3

(a2 + s2)3/2

=
−3a2s− s3

(a2 + s2)3/2
.

39. dy

dx
=

1

1 +
(

2
x

)2
(−2

x2

)
=
−2

x2 + 4

40. Using the chain rule gives r′(t) =
cos( t

k
)

sin( t
k

)

(
1

k

)
.

41. Since g(w) = 5(a2 − w2)−2, g′(w) = −10(a2 − w2)−3(−2w) =
20w

(a2 − w2)3

42.

dy

dx
=

(ex + e−x)(ex + e−x)− (ex − e−x)(ex − e−x)

(ex + e−x)2

=
(ex + e−x)2 − (ex − e−x)2

(ex + e−x)2
=

(e2x + 2 + e−2x)− (e2x − 2 + e−2x)

(ex + e−x)2

=
4

(ex + e−x)2
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43. g′(u) =
aeau

a2 + b2

44. Using the quotient and chain rules, we have

dy

dx
=

(aeax + ae−ax)(eax + e−ax)− (eax − e−ax)(aeax − ae−ax)

(eax + e−ax)2

=
a(eax + e−ax)2 − a(eax − e−ax)2

(eax + e−ax)2

=
a[(e2ax + 2 + e−2ax)− (e2ax − 2 + e−2ax)]

(eax + e−ax)2

=
4a

(eax + e−ax)2

45. Using the quotient rule gives

g′(t) =

(
k
kt

+ 1
)

(ln(kt)− t)− (ln(kt) + t)
(
k
kt
− 1
)

(ln(kt)− t)2

g′(t) =

(
1
t

+ 1
)

(ln(kt)− t)− (ln(kt) + t)
(

1
t
− 1
)

(ln(kt)− t)2

g′(t) =
ln(kt)/t− 1 + ln(kt)− t− ln(kt)/t− 1 + ln(kt) + t

(ln(kt)− t)2

g′(t) =
2 ln(kt)− 2

(ln(kt)− t)2
.

46. Using the quotient and chain rules

dz

dt
=

d
dt

(et
2

+ t) · sin(2t)− (et
2

+ t) d
dt

(sin(2t))

(sin(2t))2

=

(
et

2 · d
dt

(t2) + 1
)

sin(2t)− (et
2

+ t) cos(2t) d
dt

(2t)

sin2(2t)

=
(2tet

2

+ 1) sin(2t)− (et
2

+ t)2 cos(2t)

sin2(2t)
.

47. Using the chain rule twice:

f ′(t) = cos
√
et + 1

d

dt

√
et + 1 = cos

√
et + 1

1

2
√
et + 1

· d
dt

(et + 1) = cos
√
et + 1

1

2
√
et + 1

et = et
cos
√
et + 1

2
√
et + 1

.

48. Using the chain rule twice:

g′(y) = e2e(y
3) d

dy

(
2e(y3)

)
= 2e2e(y

3)

e(y3) d

dy
(y3) = 6y2e(y3)e2e(y

3)

.

49. g′(x) = −1

2
(5x4 + 2).

50. y′ = −12x3 − 12x2 − 6.

51. g(z) = z5 + 5z4 − z
g′(z) = 5z4 + 20z3 − 1.

52. f ′(z) = (2 ln 3)z + (ln 4)ez.

53. g′(x) =
d

dx
(2x− x−1/3 + 3x − e) = 2 +

1

3x
4
3

+ 3x ln 3.

54. f ′(x) = 6x(ex − 4) + (3x2 + π)ex = 6xex − 24x+ 3x2ex + πex.
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55. f ′(θ) = 2θ sin θ + θ2 cos θ + 2 cos θ − 2θ sin θ − 2 cos θ = θ2 cos θ.

56.
dy

dθ
=

1

2
(cos(5θ))−

1
2 (− sin(5θ) · 5) + 2 sin(6θ) cos(6θ) · 6

= −5

2

sin(5θ)√
cos(5θ)

+ 12 sin(6θ) cos(6θ)

57. r′(θ) =
d

dθ
sin[(3θ − π)2] = cos[(3θ − π)2] · 2(3θ − π) · 3 = 6(3θ − π) cos[(3θ − π)2].

58. Using the product and chain rules, we have

dy

dx
= 3(x2 + 5)2(2x)(3x3 − 2)2 + (x2 + 5)3[2(3x3 − 2)(9x2)]

= 3(2x)(x2 + 5)2(3x3 − 2)[(3x3 − 2) + (x2 + 5)(3x)]

= 6x(x2 + 5)2(3x3 − 2)[6x3 + 15x− 2].

59. Since tan(arctan(kθ)) = kθ, because tangent and arctangent are inverse functions, we have N ′(θ) = k.

60. Using the product rule gives h′(t) = kekt(sin at+ cos bt) + ekt(a cos at− b sin bt).

61. f ′(x) =
d

dx
(2− 4x− 3x2)(6xe − 3π) = (−4− 6x)(6xe − 3π) + (2− 4x− 3x2)(6exe−1).

62. f ′(t) = 4(sin(2t)− cos(3t))3[2 cos(2t) + 3 sin(3t)]

63. Since cos2 y + sin2 y = 1, we have s(y) = 3
√

1 + 3 =
3
√

4. Thus s′(y) = 0.

64.

f ′(x) = (−2x+ 6x2)(6− 4x+ x7) + (4− x2 + 2x3)(−4 + 7x6)

= (−12x+ 44x2 − 24x3 − 2x8 + 6x9) + (−16 + 4x2 − 8x3 + 28x6 − 7x8 + 14x9)

= −16− 12x+ 48x2 − 32x3 + 28x6 − 9x8 + 20x9

65.

h′(x) =
(
− 1

x2
+

2

x3

)(
2x3 + 4

)
+
(

1

x
− 1

x2

)(
6x2
)

= −2x+ 4− 4

x2
+

8

x3
+ 6x− 6

= 4x− 2− 4x−2 + 8x−3

66. Note: f(z) = (5z)1/2 + 5z1/2 + 5z−1/2 −
√

5z−1/2 +
√

5, so f ′(z) =
5

2
(5z)−1/2 +

5

2
z−1/2 − 5

2
z−3/2 +

√
5

2
z−3/2.

67.

3x2 + 3y2 dy

dx
− 8xy − 4x2 dy

dx
= 0

(3y2 − 4x2)
dy

dx
= 8xy − 3x2

dy

dx
=

8xy − 3x2

3y2 − 4x2

68. Differentiating implicitly on both sides with respect to x,

a cos(ay)
dy

dx
− b sin(bx) = y + x

dy

dx

(a cos(ay)− x)
dy

dx
= y + b sin(bx)

dy

dx
=

y + b sin(bx)

a cos(ay)− x .
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69. We wish to find the slope m = dy/dx. To do this, we can implicitly differentiate the given formula in terms of x:

x2 + 3y2 = 7

2x+ 6y
dy

dx
=

d

dx
(7) = 0

dy

dx
=
−2x

6y
=
−x
3y

.

Thus, at (2,−1), m = −(2)/3(−1) = 2/3.

70. Taking derivatives implicitly, we find

dy

dx
+ cos y

dy

dx
+ 2x = 0

dy

dx
=

−2x

1 + cos y

So, at the point x = 3, y = 0,
dy

dx
=

(−2)(3)

1 + cos 0
=
−6

2
= −3.

71. First, we differentiate with respect to x:

x · dy
dx

+ y · 1 + 2y
dy

dx
= 0

dy

dx
(x+ 2y) = −y

dy

dx
=
−y

x+ 2y
.

At x = 3, we have

3y + y2 = 4

y2 + 3y − 4 = 0

(y − 1)(y + 4) = 0.

Our two points, then, are (3, 1) and (3,−4).

At (3, 1),
dy

dx
=

−1

3 + 2(1)
= −1

5
; Tangent line: (y − 1) = −1

5
(x− 3).

At (3,−4),
dy

dx
=
−(−4)

3 + 2(−4)
= −4

5
; Tangent line: (y + 4) = −4

5
(x− 3).

Problems

72. (a) Applying the product rule to h(x) we get h′(1) = t′(1)s(1) + t(1)s′(1) ≈ (−2) · 3 + 0 · 0 = −6.
(b) Applying the product rule to h(x) we get h′(0) = t′(0)s(0) + t(0)s′(0) ≈ (−2) · 2 + 2 · 2 = 0.

(c) Applying the quotient rule to p(x) we get p′(0) =
t′(0)s(0)− t(0)s′(0)

(s(0))2
≈ (−2) · 2− 2 · 2

22
= −2.

Note that since t(x) is a linear function whose slope looks like −2 from the graph, t′(x) ≈ −2 everywhere. To find
s′(1), draw a line tangent to the curve at the point (1, s(1)), and estimate the slope.

73. Since r(x) = s(t(x)), the chain rule gives r′(x) = s′(t(x)) · t′(x). Thus,

r′(0) = s′(t(0)) · t′(0) ≈ s′(2) · (−2) ≈ (−2)(−2) = 4.

Note that since t(x) is a linear function whose slope looks like −2 from the graph, t′(x) ≈ −2 everywhere. To find
s′(2), draw a line tangent to the curve at the point (2, s(2)), and estimate the slope.
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74. (a) Applying the chain rule we get h′(1) = s′(s(1)) · s′(1) ≈ s′(3) · 0 = 0.
(b) Applying the chain rule we get h′(2) = s′(s(2)) · s′(2) ≈ s′(2) · s′(2) = (−2)2 = 4.

To find s′(2), draw a line tangent to the curve at the point (2, s(2)), and estimate the slope.

75. We need to find all values for x such that
dy

dx
= s′(s(x)) · s′(x) = 0.

This is the case when either s′(s(x)) = 0 or s′(x) = 0. From the graph we see that s′(x) = 0 when x ≈ 1. Also,
s′(s(x)) = 0 when s(x) ≈ 1, which happens when x ≈ −0.4 or x ≈ 2.4.

To find s′(a), for any a, draw a line tangent to the curve at the point (a, s(a)), and estimate the slope.

76. (a) Applying the product rule we get h′(−1) = 2 · (−1) · t(−1) + (−1)2 · t′(−1) ≈ (−2) · 4 + 1 · (−2) = −10.
(b) Applying the chain rule we get p′(−1) = t′((−1)2) · 2 · (−1) = −2 · t′(1) ≈ (−2) · (−2) = 4.

Note that since t(x) is a linear function whose slope looks like −2 from the graph, t′(x) ≈ −2 everywhere.

77. We have r(1) = s(t(1)) ≈ s(0) ≈ 2. By the chain rule, r′(x) = s′(t(x)) · t′(x), so

r′(1) = s′(t(1)) · t′(1) ≈ s′(0) · (−2) ≈ 2(−2) = −4.

Thus the equation of the tangent line is
y − 2 = −4(x− 1)

y = −4x+ 6.

Note that since t(x) is a linear function whose slope looks like −2 from the graph, t′(x) ≈ −2 everywhere. To find
s′(0), draw a line tangent to the curve at the point (0, s(0)), and estimate the slope.

78. We have
(f−1)′(5) =

1

f ′(f−1(5))
.

From the graph of f(x) we see that f−1(5) = 13. From the graph of f ′(x) we see that f ′(13) = 0.36. Thus (f−1)′(5) =
1/0.36 = 2.8.

79. We have
(f−1)′(10) =

1

f ′(f−1(10))
.

From the graph of f(x) we see that f−1(10) = 23. From the graph of f ′(x) we see that f ′(23) = 0.62. Thus
(f−1)′(10) = 1/0.62 = 1.6.

80. We have
(f−1)′(15) =

1

f ′(f−1(15))
.

From the graph of f(x) we see that f−1(15) = 30. From the graph of f ′(x) we see that f ′(30) = 0.73. Thus
(f−1)′(15) = 1/0.73 = 1.4.

81. Since W is proportional to r3, we have W = kr3 for some constant k. Thus, dW/dr = k(3r2) = 3kr2. Thus, dW/dr
is proportional to r2.

82. Taking the values of f , f ′, g, and g′ from the table we get:

(a) h(4) = f(g(4)) = f(3) = 1.
(b) h′(4) = f ′(g(4))g′(4) = f ′(3) · 1 = 2.
(c) h(4) = g(f(4)) = g(4) = 3.
(d) h′(4) = g′(f(4))f ′(4) = g′(4) · 3 = 3.
(e) h′(4) = (f(4)g′(4)− g(4)f ′(4)) /f2(4) = −5/16.
(f) h′(4) = f(4)g′(4) + g(4)f ′(4) = 13.

83. (a) H ′(2) = r′(2)s(2) + r(2)s′(2) = −1 · 1 + 4 · 3 = 11.

(b) H ′(2) =
r′(2)

2
√
r(2)

=
−1

2
√

4
= −1

4
.

(c) H ′(2) = r′(s(2))s′(2) = r′(1) · 3, but we don’t know r′(1).
(d) H ′(2) = s′(r(2))r′(2) = s′(4)r′(2) = −3.

84. (a) f(x) = x2 − 4g(x)
f ′(x) = 2x− 4g′(x)
f ′(2) = 2(2)− 4(−4) = 4 + 16 = 20
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(b) f(x) = x
g(x)

f ′(x) = g(x)−xg′(x)

(g(x))2

f ′(2) = g(2)−2g′(2)

(g(2))2
= 3−2(−4)

(3)2
= 11

9

(c) f(x) = x2g(x)
f ′(x) = 2xg(x) + x2g′(x)
f ′(2) = 2(2)(3) + (2)2(−4) = 12− 16 = −4

(d) f(x) = (g(x))2

f ′(x) = 2g(x) · g′(x)
f ′(2) = 2(3)(−4) = −24

(e) f(x) = x sin(g(x))
f ′(x) = sin(g(x)) + x cos(g(x)) · g′(x)

f ′(2) = sin(g(2)) + 2 cos(g(2)) · g′(2)

= sin 3 + 2 cos(3) · (−4)

= sin 3− 8 cos 3

(f) f(x) = x2 ln(g(x))

f ′(x) = 2x ln(g(x)) + x2( g
′(x)
g(x)

)

f ′(2) = 2(2) ln 3 + (2)2(−4
3

)

= 4 ln 3− 16
3

85. (a) f(x) = x2 − 4g(x)
f(2) = 4− 4(3) = −8
f ′(2) = 20
Thus, we have a point (2,−8) and slope m = 20. This gives

−8 = 2(20) + b

b = −48, so

y = 20x− 48.

(b) f(x) =
x

g(x)

f(2) =
2

3

f ′(2) =
11

9
Thus, we have point (2, 2

3
) and slope m = 11

9
. This gives

2

3
= (

11

9
)(2) + b

b =
2

3
− 22

9
=
−16

9
, so

y =
11

9
x− 16

9
.

(c) f(x) = x2g(x)
f(2) = 4 · g(2) = 4(3) = 12
f ′(2) = −4
Thus, we have point (2, 12) and slope m = −4. This gives

12 = 2(−4) + b

b = 20, so

y = −4x+ 20.

(d) f(x) = (g(x))2

f(2) = (g(2))2 = (3)2 = 9
f ′(2) = −24
Thus, we have point (2, 9) and slope m = −24. This gives

9 = 2(−24) + b

b = 57, so

y = −24x+ 57.
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(e) f(x) = x sin(g(x))
f(2) = 2 sin(g(2)) = 2 sin 3
f ′(2) = sin 3− 8 cos 3
We will use a decimal approximation for f(2) and f ′(2), so the point (2, 2 sin 3) ≈ (2, 0.28) and m ≈ 8.06. Thus,

0.28 = 2(8.06) + b

b = −15.84, so

y = 8.06x− 15.84.

(f) f(x) = x2 ln g(x)
f(2) = 4 ln g(2) = 4 ln 3 ≈ 4.39

f ′(2) = 4 ln 3− 16

3
≈ −0.94.

Thus, we have point (2, 4.39) and slope m = −0.94. This gives

4.39 = 2(−0.94) + b

b = 6.27, so

y = −0.94x+ 6.27.

86. When we zoom in on the origin, we find that two functions are not defined there. The other functions all look like straight
lines through the origin. The only way we can tell them apart is their slope.

The following functions all have slope 0 and are therefore indistinguishable:
sinx− tanx, x2

x2+1
, x− sinx, and 1−cos x

cos x
.

These functions all have slope 1 at the origin, and are thus indistinguishable:
arcsinx, sin x

1+sin x
, arctanx, ex − 1, x

x+1
, and x

x2+1
.

Now, sin x
x
− 1 and −x lnx both are undefined at the origin, so they are distinguishable from the other functions. In

addition, while sin x
x
− 1 has a slope that approaches zero near the origin, −x lnx becomes vertical near the origin, so

they are distinguishable from each other.
Finally, x10 + 10

√
x is the only function defined at the origin and with a vertical tangent there, so it is distinguishable

from the others.

87. It makes sense to define the angle between two curves to be the angle between their tangent lines. (The tangent lines are
the best linear approximations to the curves). See Figure 3.17. The functions sinx and cosx are equal at x = π

4
.

For f1(x) = sinx, f ′1(
π

4
) = cos(

π

4
) =

√
2

2

For f2(x) = cosx, f ′2(
π

4
) = − sin(

π

4
) = −

√
2

2
.

Using the point (π
4
,
√

2
2

) for each tangent line we get y =
√

2
2
x+

√
2

2
(1− π

4
) and y = −

√
2

2
x+

√
2

2
(1 + π

4
), respectively.

π
4

√
2

2

(
1− π

4

)

√
2

2

(
1 + π

4

)

α
β

y = sinx

y = −
√

2
2 x+

√
2

2

(
1 + π

4

)

y =
√

2
2 x+

√
2

2

(
1− π

4

)

y = cosx
x

y

Figure 3.17

√
2

2

(
1− π

4

)

√
2

2

(
1 + π

4

)

1
2α

π
4

6

?

√
2π
8

y

Figure 3.18

There are two possibilities of how to define the angle between the tangent lines, indicated by α and β above. The
choice is arbitrary, so we will solve for both. To find the angle, α, we consider the triangle formed by these two lines and
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the y-axis. See Figure 3.18.

tan
(

1

2
α
)

=

√
2π/8

π/4
=

√
2

2

1

2
α = 0.61548 radians

α = 1.231 radians, or 70.5◦.

Now let us solve for β, the other possible measure of the angle between the two tangent lines. Since α and β are
supplementary, β = π − 1.231 = 1.909 radians, or 109.4◦.

88. The curves meet when 1 + x− x2 = 1− x+ x2, that is when 2x(1− x) = 0 so that x = 1 or x = 0. Let

y1(x) = 1 + x− x2 and y2(x) = 1− x+ x2.

Then
y1
′ = 1− 2x and y2

′ = −1 + 2x.

At x = 0, y1
′ = 1, y2

′ = −1 so that y1
′ · y2

′ = −1 and the curves are perpendicular. At x = 1, y1
′ = −1, y2

′ = 1
so that y1

′ · y2
′ = −1 and the curves are perpendicular.

89. The curves meet when 1 − x3/3 = x − 1, that is when x3 + 3x − 6 = 0. So the roots of this equation give us the x-
coordinates of the intersection point. By numerical methods, we see there is one solution near x = 1.3. See Figure 3.19.
Let

y1(x) = 1− x3

3
and y2(x) = x− 1.

So we have
y1
′ = −x2 and y2

′ = 1.

However, y2
′(x) = +1, so if the curves are to be perpendicular when they cross, then y1

′ must be −1. Since y1
′ = −x2,

y1
′ = −1 only at x = ±1 which is not the point of intersection. The curves are therefore not perpendicular when they

cross.

−2 −1

1

2

−20

−15

−10

−5

5

y = x3 + 3x− 6

x

y

Figure 3.19

90. Differentiating gives
dy

dx
= lnx+ 1− b.

To find the point at which the graph crosses the x-axis, set y = 0 and solve for x:

0 = x lnx− bx
0 = x(lnx− b).

Since x > 0, we have

lnx− b = 0

x = eb.

At the point (eb, 0), the slope is
dy

dx
= ln

(
eb
)

+ 1− b = b+ 1− b = 1.

Thus the equation of the tangent line is

y − 0 = 1(x− eb)
y = x− eb.
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91. Using the definition of coshx and sinhx, we have cosh 2x =
e2x + e−2x

2
and sinh 3x =

e3x − e−3x

2
. Therefore

lim
x→−∞

cosh(2x)

sinh(2x)
= lim

x→−∞

e2x + e−2x

e3x − e−3x

= lim
x→−∞

e−2x(e4x + 1)

e−2x(e5x − e−x)

= lim
x→−∞

e4x + 1

e5x − e−x
= 0.

92. Using the definition of sinhx we have sinh 2x =
e2x − e−2x

2
. Therefore

lim
x→−∞

e−2x

sinh(2x)
= lim

x→−∞

2e−2x

e2x − e−2x

= lim
x→−∞

2

e4x − 1

= −2.

93. Using the definition of coshx and sinhx, we have coshx2 =
ex

2

+ e−x
2

2
and sinhx2 =

ex
2 − e−x2

2
. Therefore

lim
x→−∞

sinh(x2)

cosh(x2)
= lim

x→−∞

ex
2 − e−x2

ex2 + e−x2

= lim
x→−∞

ex
2

(1− e−2x2

)

ex2(1 + e−2x2)

= lim
x→−∞

1− e−2x2

1 + e−2x2

= 1.

94. (a)
dg

dr
= GM

d

dr

(
1

r2

)
= GM

d

dr

(
r−2
)

= GM(−2)r−3 = −2GM

r3
.

(b)
dg

dr
is the rate of change of acceleration due to the pull of gravity. The further away from the center of the earth, the

weaker the pull of gravity is. So g is decreasing and therefore its derivative,
dg

dr
, is negative.

(c) By part (a),

dg

dr

∣∣∣∣
r=6400

= −2GM

r3

∣∣∣∣
r=6400

= −2(6.67× 10−20)(6× 1024)

(6400)3
≈ −3.05× 10−6.

(d) It is reasonable to assume that g is a constant near the surface of the earth.

95. The population of Mexico is given by the formula

M = 84(1 + 0.026)t = 84(1.026)t million

and that of the US by
U = 250(1 + 0.007)t = 250(1.007)t million,

where t is measured in years (t = 0 corresponds to the year 1990). So,

dM

dt

∣∣∣∣
t=0

= 84
d

dt
(1.026)t

∣∣∣∣
t=0

= 84(1.026)t ln(1.026)

∣∣∣∣
t=0

≈ 2.156

and
dU

dt

∣∣∣∣
t=0

= 250
d

dt
(1.007)t

∣∣∣∣
t=0

= 250(1.007)t ln(1.007)

∣∣∣∣
t=0

≈ 1.744
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Since
dM

dt

∣∣∣∣
t=0

>
dU

dt

∣∣∣∣
t=0

, the population of Mexico was growing faster in 1990.

96. (a) If the distance s(t) = 20e
t
2 , then the velocity, v(t), is given by

v(t) = s′(t) =
(

20e
t
2

)′
=
(

1

2

)(
20e

t
2

)
= 10e

t
2 .

(b) Observing the differentiation in (a), we note that

s′(t) = v(t) =
1

2

(
20e

t
2

)
=

1

2
s(t).

Substituting s(t) for 20e
t
2 , we obtain s′(t) = 1

2
s(t).

97. (a)

30

P = 30e−3.23×10−5h

P

h

(b)
dP

dh
= 30e−3.23×10−5h(−3.23× 10−5)

so
dP

dh

∣∣∣∣
h=0

= −30(3.23× 10−5) = −9.69× 10−4

Hence, at h = 0, the slope of the tangent line is −9.69× 10−4, so the equation of the tangent line is

y − 30 = (−9.69× 10−4)(h− 0)

y = (−9.69× 10−4)h+ 30.

(c) The rule of thumb says
Drop in pressure from
sea level to height h

=
h

1000

But since the pressure at sea level is 30 inches of mercury, this drop in pressure is also (30− P ), so

30− P =
h

1000

giving
P = 30− 0.001h.

(d) The equations in (b) and (c) are almost the same: both have P intercepts of 30, and the slopes are almost the same
(9.69 × 10−4 ≈ 0.001). The rule of thumb calculates values of P which are very close to the tangent lines, and
therefore yields values very close to the curve.

(e) The tangent line is slightly below the curve, and the rule of thumb line, having a slightly more negative slope, is
slightly below the tangent line (for h > 0). Thus, the rule of thumb values are slightly smaller.

98.
dy

dt
= −7.5(0.507) sin(0.507t) = −3.80 sin(0.507t)

(a) When t = 6, we have
dy

dt
= −3.80 sin(0.507 · 6) = −0.38 meters/hour. So the tide is falling at 0.38 meters/hour.

(b) When t = 9, we have
dy

dt
= −3.80 sin(0.507 · 9) = 3.76 meters/hour. So the tide is rising at 3.76 meters/hour.

(c) When t = 12, we have
dy

dt
= −3.80 sin(0.507 · 12) = 0.75 meters/hour. So the tide is rising at 0.75 meters/hour.

(d) When t = 18, we have
dy

dt
= −3.80 sin(0.507 · 18) = −1.12 meters/hour. So the tide is falling at 1.12 meters/hour.
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99. Since we’re given that the instantaneous rate of change of T at t = 30 is 2, we want to choose a and b so that the derivative
of T agrees with this value. Differentiating, T ′(t) = ab · e−bt. Then we have

2 = T ′(30) = abe−30b or e−30b =
2

ab

We also know that at t = 30, T = 120, so

120 = T (30) = 200− ae−30b or e−30b =
80

a

Thus
80

a
= e−30b =

2

ab
, so b = 1

40
= 0.025 and a = 169.36.

100. (a) Differentiating, we see

v =
dy

dt
= −2πωy0 sin(2πωt)

a =
dv

dt
= −4π2ω2y0 cos(2πωt).

(b) We have

y = y0 cos(2πωt)

v = −2πωy0 sin(2πωt)

a = −4π2ω2y0 cos(2πωt).

So

Amplitude of y is |y0|,
Amplitude of v is |2πωy0| = 2πω|y0|,
Amplitude of a is |4π2ω2y0| = 4π2ω2|y0|.

The amplitudes are different (provided 2πω 6= 1). The periods of the three functions are all the same, namely 1/ω.
(c) Looking at the answer to part (a), we see

d2y

dt2
= a = −4π2ω2 (y0 cos(2πωt))

= −4π2ω2y.

So we see that
d2y

dt2
+ 4π2ω2y = 0.

101. (a) Since lim
t→∞

e−0.1t = 0, we see that lim
t→∞

1000000

1 + 5000e−0.1t
= 1000000. Thus, in the long run, close to 1,000,000

people will have had the disease. This can be seen in the figure below.

1,000,000 N(t)

t

N

(b) The rate at which people fall sick is given by the first derivative N ′(t).
N ′(t) ≈ ∆N

∆t
, where ∆t = 1 day.

N ′(t) =
500,000,000

e0.1t(1 + 5000e−0.1t)2
=

500,000,000

e0.1t + 25,000,000e−0.1t + 104
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In Figure 3.20, we see that the maximum value of N ′(t) is approximately 25,000. Therefore the maximum
number of people to fall sick on any given day is 25,000. Thus there are no days on which a quarter million or more
get sick.

50 100 150 200

5,000

10,000

15,000

20,000

25,000

N ′(t)

t

dN
dt

Figure 3.20

102. (a) The statement f(2) = 4023 tells us that when the price is $2 per gallon, 4023 gallons of gas are sold.
(b) Since f(2) = 4023, we have f−1(4023) = 2. Thus, 4023 gallons are sold when the price is $2 per gallon.
(c) The statement f ′(2) = −1250 tells us that if the price increases from $2 per gallon, the sales decrease at a rate of

1250 gallons per $1 increase in price.
(d) The units of (f−1)′(4023) are dollars per gallon. We have

(f−1)′(4023) =
1

f ′(f−1(4023))
=

1

f ′(2)
= − 1

1250
= −0.0008.

Thus, when 4023 gallons are already sold, sales decrease at the rate of one gallon per price increase of 0.0008 dollars.
In others words, an additional gallon is sold if the price drops by 0.0008 dollars.

103. Since f(20) = 10, we have f−1(10) = 20, so (f−1)′(10) =
1

f ′(f−1(10))
=

1

f ′(20)
. Therefore (f−1)′(10)f ′(20) =

1.
Option (b) is wrong.

104. Since f(x) is decreasing, its inverse function f−1(x) is also decreasing. Thus (f−1)′(x) ≤ 0 for all x. Option (b) is
incorrect.

105. (a) If y = lnx, then

y′ =
1

x

y′′ = − 1

x2

y′′′ =
2

x3

y′′′′ = −3 · 2
x4

and so
y(n) = (−1)n+1(n− 1)!x−n.

(b) If y = xex, then

y′ = xex + ex

y′′ = xex + 2ex

y′′′ = xex + 3ex

so that
y(n) = xex + nex.



182 Chapter Three /SOLUTIONS

(c) If y = ex cosx, then

y′ = ex(cosx− sinx)

y′′ = −2ex sinx

y′′′ = ex(−2 cosx− 2 sinx)

y(4) = −4ex cosx

y(5) = ex(−4 cosx+ 4 sinx)

y(6) = 8ex sinx.

Combining these results we get

y(n) = (−4)(n−1)/4ex(cosx− sinx), n = 4m+ 1, m = 0, 1, 2, 3, . . .

y(n) = −2(−4)(n−2)/4ex sinx, n = 4m+ 2, m = 0, 1, 2, 3, . . .

y(n) = −2(−4)(n−3)/4ex(cosx+ sinx), n = 4m+ 3, m = 0, 1, 2, 3, . . .

y(n) = (−4)(n/4)ex cosx, n = 4m, m = 1, 2, 3, . . . .

106. (a) We multiply through by h = f · g and cancel as follows:

f ′

f
+
g′

g
=
h′

h(
f ′

f
+
g′

g

)
· fg =

h′

h
· fg

f ′

f
· fg +

g′

g
· fg =

h′

h
· h

f ′ · g + g′ · f = h′,

which is the product rule.
(b) We start with the product rule, multiply through by 1/(fg) and cancel as follows:

f ′ · g + g′ · f = h′

(f ′ · g + g′ · f) · 1

fg
= h′ · 1

fg

(f ′ · g) · 1

fg
+ (g′ · f) · 1

fg
= h′ · 1

fg

f ′

f
+
g′

g
=
h′

h
,

which is the additive rule shown in part (a).

107. This problem can be solved by using either the quotient rule or the fact that

f ′

f
=

d

dx
(ln f) and

g′

g
=

d

dx
(ln g).

We use the second method. The relative rate of change of f/g is (f/g)′/(f/g), so

(f/g)′

f/g
=

d

dx
ln

(
f

g

)
=

d

dx
(ln f − ln g) =

d

dx
(ln f)− d

dx
(ln g) =

f ′

f
− g′

g
.

Thus, the relative rate of change of f/g is the difference between the relative rates of change of f and of g.

CAS Challenge Problems

108. (a) Answers from different computer algebra systems may be in different forms. One form is:

d

dx
(x+ 1)x = x(x+ 1)x−1 + (x+ 1)x ln(x+ 1)

d

dx
(sinx)x = x cosx(sinx)x−1 + (sinx)x ln(sinx)
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(b) Both the answers in part (a) follow the general rule:

d

dx
f(x)x = xf ′(x) (f(x))x−1 + (f(x))x ln(f(x)).

(c) Applying this rule to g(x), we get

d

dx
(lnx)x = x(1/x)(lnx)x−1 + (lnx)x ln(lnx) = (lnx)x−1 + (lnx)x ln(lnx).

This agrees with the answer given by the computer algebra system.
(d) We can write f(x) = eln(f(x)). So

(f(x))x = (eln(f(x)))x = ex ln(f(x)).

Therefore, using the chain rule and the product rule,

d

dx
(f(x))x =

d

dx
(x ln(f(x))) · ex ln(f(x)) =

(
ln(f(x)) + x

d

dx
ln(f(x))

)
ex ln(f(x))

=

(
ln(f(x)) + x

f ′(x)

f(x)

)
(f(x))x = ln(f(x)) (f(x))x + xf ′(x) (f(x))x−1

= xf ′(x) (f(x))x−1 + (f(x))x ln(f(x)).

109. (a) A CAS gives f ′(x) = 1.
(b) By the chain rule,

f ′(x) = cos(arcsinx) · 1√
1− x2

.

Now cos t = ±
√

1− sin2 t. Furthermore, if −π/2 ≤ t ≤ π/2 then cos t ≥ 0, so we take the positive square root
and get cos t =

√
1− sin2 t. Since −π/2 ≤ arcsinx ≤ π/2 for all x in the domain of arcsin, we have

cos(arcsinx) =
√

1− (sin(arcsinx))2 =
√

1− x2,

so
d

dx
sin(arcsin(x)) =

√
1− x2 · 1√

1− x2
= 1.

(c) Since sin(arcsin(x)) = x, its derivative is 1.

110. (a) A CAS gives g′(r) = 0.
(b) Using the product rule,

g′(r) =
d

dr
(2−2r) · 4r + 2−2r d

dr
(4r) = −2 ln 2 · 2−2r4r + 2−2r ln 4 · 4r

= − ln 4 · 2−2r4r + ln 4 · 2−2r4r = (− ln 4 + ln 4)2−2r4r = 0 · 2−2r4r = 0.

(c) By the laws of exponents, 4r = (22)r = 22r , so 2−2r4r = 2−2r22r = 20 = 1. Therefore, its derivative is zero.

111. (a) A CAS gives h′(t) = 0
(b) By the chain rule

h′(t) =
d
dt

(
1− 1

t

)

1− 1
t

+
d
dt

(
t
t−1

)
t
t−1

=
1
t2

t−1
t

+

1
t−1
− t

(t−1)2

t
t−1

=
1

t2 − t +
(t− 1)− t
t2 − t =

1

t2 − t +
−1

t2 − t = 0.

(c) The expression inside the first logarithm is 1 − (1/t) = (t − 1)/t. Using the property logA + logB = log(AB),
we get

ln
(

1− 1

t

)
+ ln

(
t

t− 1

)
= ln

(
t− 1

t

)
+ ln

(
t

t− 1

)

= ln
(
t− 1

t
· t

1− t
)

= ln 1 = 0.

Thus h(t) = 0, so h′(t) = 0 also.
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CHECK YOUR UNDERSTANDING

1. True. Since d(xn)/dx = nxn−1, the derivative of a power function is a power function, so the derivative of a polynomial
is a polynomial.

2. False, since
d

dx

(
π

x2

)
=

d

dx

(
πx−2

)
= −2πx−3 =

−2π

x3
.

3. True, since cos θ and therefore cos2 θ are periodic, and

d

dθ
(tan θ) =

1

cos2 θ
.

4. False. Since
d

dx
ln(x2) =

1

x2
· 2x =

2

x
and

d2

dx2
ln(x2) =

d

dx

(
2

x

)
= − 2

x2
,

we see that the second derivative of ln(x2) is negative for x > 0. Thus, the graph is concave down.

5. True. Since f ′(x) is the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

the function f must be defined for all x.

6. True. The slope of f(x) + g(x) at x = 2 is the sum of the derivatives, f ′(2) + g′(2) = 3.1 + 7.3 = 10.4.

7. False. The product rule gives
(fg)′ = fg′ + f ′g.

Differentiating this and using the product rule again, we get

(fg)′′ = f ′g′ + fg′′ + f ′g′ + f ′′g = fg′′ + 2f ′g′ + f ′′g.

Thus, the right hand side is not equal to fg′′ + f ′′g in general.

8. True. If f(x) is periodic with period c, then f(x+ c) = f(x) for all x. By the definition of the derivative, we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

and

f ′(x+ c) = lim
h→0

f(x+ c+ h)− f(x+ c)

h
.

Since f is periodic, for any h 6= 0, we have

f(x+ h)− f(x)

h
=
f(x+ c+ h)− f(x+ c)

h
.

Taking the limit as h→ 0, we get that f ′(x) = f ′(x+ c), so f ′ is periodic with the same period as f(x).

9. True; differentiating the equation with respect to x, we get

2y
dy

dx
+ y + x

dy

dx
= 0.

Solving for dy/dx, we get that
dy

dx
=
−y

2y + x
.

Thus dy/dx exists where 2y + x 6= 0. Now if 2y + x = 0, then x = −2y. Substituting for x in the original equation,
y2 + xy − 1 = 0, we get

y2 − 2y2 − 1 = 0.

This simplifies to y2 + 1 = 0, which has no solutions. Thus dy/dx exists everywhere.

10. True. We have tanhx = (sinhx) / coshx = (ex − e−x)/(ex + e−x). Replacing x by −x in this expression gives
(e−x − ex)/(e−x + ex) = − tanhx.

11. False. The second, fourth and all even derivatives of sinhx are all sinhx.
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12. True. The definitions of sinhx and coshx give

sinhx+ coshx =
ex − e−x

2
+
ex + e−x

2
=

2ex

2
= ex.

13. False. Since (sinhx)′ = coshx > 0, the function sinhx is increasing everywhere so can never repeat any of its values.

14. False. Since (sinh2 x)′ = 2 sinhx coshx and (2 sinhx coshx)′ = 2 sinh2 x + 2 cosh2 x > 0, the function sinh2 x is
concave up everywhere.

15. False. If f(x) = |x|, then f(x) is not differentiable at x = 0 and f ′(x) does not exist at x = 0.

16. False. If f(x) = lnx, then f ′(x) = 1/x, which is decreasing for x > 0.

17. False; the fourth derivative of cos t+C, whereC is any constant, is indeed cos t. But any function of the form cos t+p(t),
where p(t) is a polynomial of degree less than or equal to 3, also has its fourth derivative equal to cos t. So cos t+ t2 will
work.

18. False; For example, the inverse function of f(x) = x3 is x1/3, and the derivative of x1/3 is (1/3)x−2/3, which is not
1/f ′(x) = 1/(3x2).

19. False; for example, if both f(x) and g(x) are constant functions, such as f(x) = 6, g(x) = 10, then (fg)′(x) = 0, and
f ′(x) = 0 and g′(x) = 0.

20. True; looking at the statement from the other direction, if both f(x) and g(x) are differentiable at x = 1, then so is their
quotient, f(x)/g(x), as long as it is defined there, which requires that g(1) 6= 0. So the only way in which f(x)/g(x)
can be defined but not differentiable at x = 1 is if either f(x) or g(x), or both, is not differentiable there.

21. False; for example, if both f and g are constant functions, then the derivative of f(g(x)) is zero, as is the derivative of
f(x). Another example is f(x) = 5x+ 7 and g(x) = x+ 2.

22. True. Since f ′′(x) > 0 and g′′(x) > 0 for all x, we have f ′′(x) + g′′(x) > 0 for all x, which means that f(x) + g(x) is
concave up.

23. False. Let f(x) = x2 and g(x) = x2 − 1. Let h(x) = f(x)g(x). Then h′′(x) = 12x2 − 2. Since h′′(0) < 0, clearly h
is not concave up for all x.

24. False. Let f(x) = 2x2 and g(x) = x2. Then f(x)− g(x) = x2, which is concave up for all x.

25. False. Let f(x) = e−x and g(x) = x2. Let h(x) = f(g(x)) = e−x
2

. Then h′(x) = −2xe−x
2

and h′′(x) = (−2 +

4x2)e−x
2

. Since h′′(0) < 0, clearly h is not concave up for all x.

26. (a) False. Only if k = f ′(a) is L the local linearization of f .
(b) False. Since f(a) = L(a) for any k, we have limx→a(f(x)− L(x)) = f(a)− L(a) = 0, but only if k = f ′(a) is

L the local linearization of f .

27. (a) This is not a counterexample. Although the product rule says that (fg)′ = f ′g + fg′, that does not rule out the
possibility that also (fg)′ = f ′g′. In fact, if f and g are both constant functions, then both f ′g + fg′ and f ′g′ are
zero, so they are equal to each other.

(b) This is not a counterexample. In fact, it agrees with the product rule:

d

dx
(xf(x)) =

(
d

dx
(x)
)
f(x) + x

d

dx
f(x) = f(x) + xf ′(x) = xf ′(x) + f(x).

(c) This is not a counterexample. Although the product rule says that

d

dx
(f(x)2) =

d

dx
f(x) · f(x) = f ′(x)f(x) + f(x)f ′(x) = 2f(x)f ′(x),

it could be true that f ′(x) = 1, so that the derivative is also just 2f(x). In fact, f(x) = x is an example where this
happens.

(d) This would be a counterexample. If f ′(a) = g′(a) = 0, then

d

dx
(f(x)g(x))

∣∣∣
x=a

= f ′(a)g(a) + f(a)g′(a) = 0.

So fg cannot have positive slope at x = a. Of course such a counterexample could not exist, since the product rule
is true.
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28. True, by the Increasing Function Theorem, Theorem 3.8.

29. False. For example, let f(x) = x+ 5, and g(x) = 2x− 3. Then f ′(x) ≤ g′(x) for all x, but f(0) > g(0).

30. False. For example, let f(x) = 3x+ 1 and g(x) = 3x+ 7.

31. False. For example, if f(x) = −x, then f ′(x) ≤ 1 for all x, but f(−2) = 2, so f(−2) > −2.

32. The function f(x) = |x| is continuous on [−1, 1], but there is no number c, with −1 < c < 1, such that

f ′(c) =
|1| − | − 1|
1− (−1)

= 0;

that is, the slope of f(x) = |x| is never 0.

33. Let f be defined by

f(x) =

{
x if 0 ≤ x < 2

19 if x = 2

Then f is differentiable on (0, 2) and f ′(x) = 1 for all x in (0, 2). Thus there is no c in (0, 2) such that

f ′(c) =
f(2)− f(0)

2− 0
=

19

2
.

The reason that this function does not satisfy the conclusion of the Mean Value Theorem is that it is not continuous
at x = 2.

34. Let f be defined by

f(x) =

{
x2 if 0 ≤ x < 1

1/2 if x = 1.

Then f is not continuous at x = 1, but f is differentiable on (0, 1) and f ′(x) = 2x for 0 < x < 1. Thus, c = 1/4
satisfies

f ′(c) =
f(1)− f(0)

1− 0
=

1

2
, since f ′

(
1

4

)
= 2 · 1

4
=

1

2
.

PROJECTS FOR CHAPTER THREE

1. Let r = i/100. (For example if i = 5%, r = 0.05.) Then the balance, $B, after t years is given by

B = P (1 + r)t,

where $P is the original deposit. If we are doubling our money, then B = 2P , so we wish to solve for t in the
equation 2P = P (1 + r)t. This is equivalent to

2 = (1 + r)t.

Taking natural logarithms of both sides and solving for t yields

ln 2 = t ln(1 + r),

t =
ln 2

ln(1 + r)
.

We now approximate ln(1 + r) near r = 0. Let f(r) = ln(1 + r). Then f ′(r) = 1/(1 + r). Thus, f(0) = 0
and f ′(0) = 1, so

f(r) ≈ f(0) + f ′(0)r

becomes
ln(1 + r) ≈ r.

Therefore,

t =
ln 2

ln(1 + r)
≈ ln 2

r
=

100 ln 2

i
≈ 70

i
,

as claimed. We expect this approximation to hold for small values of i; it turns out that values of i up to 10
give good enough answers for most everyday purposes.
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2. (a) (i) Set f(x) = sinx, so f ′(x) = cosx. Guess x0 = 3. Then

x1 = 3− sin 3

cos 3
≈ 3.1425

x2 = x1 −
sinx1

cosx1
≈ 3.1415926533,

which is correct to one billionth!
(ii) Newton’s method uses the tangent line at x = 3, i.e. y − sin 3 = cos(3)(x − 3). Around x = 3,

however, sinx is almost linear, since the second derivative sin′′(π) = 0. Thus using the tangent line
to get an approximate value for the root gives us a very good approximation.

3
x

� tangent line

� f(x) = sinx

(iii) For f(x) = sinx, we have

f(3) = 0.14112

f(4) = −0.7568,

so there is a root in [3, 4]. We now continue bisecting:

[3, 3.5] : f(3.5) = −0.35078 (bisection 1)
[3, 3.25] : f(3.25) = −0.10819 (bisection 2)

[3.125, 3.25] : f(3.125) = 0.01659 (bisection 3)
[3.125, 3.1875] : f(3.1875) = −0.04584 (bisection 4)

We continue this process; after 11 bisections, we know the root lies between 3.1411 and 3.1416, which
still is not as good an approximation as what we get from Newton’s method in just two steps.

(b) (i) We have f(x) = sinx− 2
3x and f ′(x) = cosx− 2

3 .
Using x0 = 0.904,

x1 = 0.904− sin(0.904)− 2
3 (0.904)

cos(0.904)− 2
3

≈ 4.704,

x2 = 4.704− sin(4.704)− 2
3 (4.704)

cos(4.704)− 2
3

≈ −1.423,

x3 = −1.433− sin(−1.423)− 2
3 (−1.423)

cos(−1.423)− 2
3

≈ −1.501,

x4 = −1.499− sin(−1.501)− 2
3 (−1.501)

cos(−1.501)− 2
3

≈ −1.496,

x5 = −1.496− sin(−1.496)− 2
3 (−1.496)

cos(−1.496)− 2
3

≈ −1.496.
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Using x0 = 0.905,

x1 = 0.905− sin(0.905)− 2
3 (0.905)

cos(0.905)− 2
3

≈ 4.643,

x2 = 4.643− sin(4.643)− 2
3 (4.643)

cos(4.643)− 2
3

≈ −0.918,

x3 = −0.918− sin(−0.918)− 2
3 (−0.918)

cos(−0.918)− 2
3

≈ −3.996,

x4 = −3.996− sin(−3.996)− 2
3 (−3.996)

cos(−3.996)− 2
3

≈ −1.413,

x5 = −1.413− sin(−1.413)− 2
3 (−1.413)

cos(−1.413)− 2
3

≈ −1.502,

x6 = −1.502− sin(−1.502)− 2
3 (−1.502)

cos(−1.502)− 2
3

≈ −1.496.

Now using x0 = 0.906,

x1 = 0.906− sin(0.906)− 2
3 (0.906)

cos(0.906)− 2
3

≈ 4.584,

x2 = 4.584− sin(4.584)− 2
3 (4.584)

cos(4.584)− 2
3

≈ −0.509,

x3 = −0.510− sin(−0.509)− 2
3 (−0.509)

cos(−0.509)− 2
3

≈ .207,

x4 = −1.300− sin(.207)− 2
3 (.207)

cos(.207)− 2
3

≈ −0.009,

x5 = −1.543− sin(−0.009)− 2
3 (−0.009)

cos(−0.009)− 2
3

≈ 0,

(ii) Starting with 0.904 and 0.905 yields the same value, but the two paths to get to the root are very
different. Starting with 0.906 leads to a different root. Our starting points were near the maximum
value of f . Consequently, a small change in x0 makes a large change in x1.


