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CHAPTER SIX

Solutions for Section 6.1

Exercises

1. See Figure 6.1.
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2. See Figure 6.2.

3. See Figure 6.3.
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1

1

x

F (0) = 0

F (0) = 1

Figure 6.4

4. See Figure 6.4.

5. By the Fundamental Theorem of Calculus, we know that

f(2)− f(0) =

∫ 2

0

f ′(x)dx.

Using a left-hand sum, we estimate
∫ 2

0
f ′(x)dx ≈ (10)(2) = 20. Using a right-hand sum, we estimate

∫ 2

0
f ′(x)dx ≈

(18)(2) = 36. Averaging, we have ∫ 2

0

f ′(x)dx ≈ 20 + 36

2
= 28.

We know f(0) = 100, so

f(2) = f(0) +

∫ 2

0

f ′(x)dx ≈ 100 + 28 = 128.

Similarly, we estimate ∫ 4

2

f ′(x)dx ≈ (18)(2) + (23)(2)

2
= 41,
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so

f(4) = f(2) +

∫ 4

2

f ′(x)dx ≈ 128 + 41 = 169.

Similarly, ∫ 6

4

f ′(x)dx ≈ (23)(2) + (25)(2)

2
= 48,

so

f(6) = f(4) +

∫ 6

4

f ′(x)dx ≈ 169 + 48 = 217.

The values are shown in the table.

x 0 2 4 6
f(x) 100 128 169 217

6. The change in f(x) between 0 and 2 is equal to
∫ 2

0
f ′(x) dx. A left-hand estimate for this integral is (17)(2) = 34 and a

right hand estimate is (15)(2) = 30. Our best estimate is the average, 32. The change in f(x) between 0 and 2 is +32.
Since f(0) = 50, we have f(2) = 82. We find the other values similarly. The results are shown in Table 6.1.

Table 6.1

x 0 2 4 6
f(x) 50 82 107 119

7. (a) The value of the integral is negative since the area below the x-axis is greater than the area above the x-axis. We
count boxes: The area below the x-axis includes approximately 11.5 boxes and each box has area (2)(1) = 2, so

∫ 5

0

f(x)dx ≈ −23.

The area above the x-axis includes approximately 2 boxes, each of area 2, so
∫ 7

5

f(x)dx ≈ 4.

So we have ∫ 7

0

f(x)dx =

∫ 5

0

f(x)dx+

∫ 7

5

f(x)dx ≈ −23 + 4 = −19.

(b) By the Fundamental Theorem of Calculus, we have

F (7)− F (0) =

∫ 7

0

f(x)dx

so,

F (7) = F (0) +

∫ 7

0

f(x)dx = 25 + (−19) = 6.

8. Since dP/dt is negative for t < 3 and positive for t > 3, we know that P is decreasing for t < 3 and increasing for
t > 3. Between each two integer values, the magnitude of the change is equal to the area between the graph dP/dt and
the t-axis. For example, between t = 0 and t = 1, we see that the change in P is −1. Since P = 2 at t = 0, we must
have P = 1 at t = 1. The other values are found similarly, and are shown in Table 6.2.

Table 6.2

t 1 2 3 4 5
P 1 0 −1/2 0 1
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Problems

9. (a) Critical points of F (x) are the zeros of f : x = 1 and x = 3.
(b) F (x) has a local minimum at x = 1 and a local maximum at x = 3.
(c) See Figure 6.5.

Notice that the graph could also be above or below the x-axis at x = 3.
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x

Figure 6.5

−2 2 4
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x

Figure 6.6

10. (a) Critical points of F (x) are x = −1, x = 1 and x = 3.
(b) F (x) has a local minimum at x = −1, a local maximum at x = 1, and a local minimum at x = 3.
(c) See Figure 6.6.

11. See Figure 6.7. Note that since f(x1) = 0 and f ′(x1) < 0, F (x1) is a local maximum; since f(x3) = 0 and f ′(x3) > 0,
F (x3) is a local minimum. Also, since f ′(x2) = 0 and f changes from decreasing to increasing about x = x2, F has an
inflection point at x = x2.

x1 x2 x3

F (x)

x

Figure 6.7

x1 x2 x3

F (x)

x

Figure 6.8

12. See Figure 6.8. Note that since f(x2) = 0, f ′(x2) > 0, so F (x2) is a local minimum. Since f ′(x1) = 0 and f changes
from decreasing to increasing at x = x1, F has an inflection point at x = x1.

13. See Figure 6.9. Note that since f(x1) = 0, F (x1) is either a local minimum or a point of inflection; it is impossible to tell
which from the graph. Since f ′(x3) = 0, and f ′ changes sign around x = x3, F (x3) is an inflection point. Also, since
f ′(x2) = 0 and f changes from increasing to decreasing about x = x2, F has another inflection point at x = x2.

x1 x2 x3

F (x)

x

Figure 6.9
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14. Between t = 0 and t = 1, the particle moves at 10 km/hr for 1 hour. Since it starts at x = 5, the particle is at x = 15
when t = 1. See Figure 6.10. The graph of distance is a straight line between t = 0 and t = 1 because the velocity is
constant then.

Between t = 1 and t = 2, the particle moves 10 km to the left, ending at x = 5. Between t = 2 and t = 3, it moves
10 km to the right again. See Figure 6.10.

As an aside, note that the original velocity graph is not entirely realistic as it suggests the particle reverses direction
instantaneously at the end of each hour. In practice this means the reversal of direction occurs over a time interval that is
short in comparison to an hour.

15. (a) Starting at x = 3, we are given that f(3) = 0. Moving to the left on the interval 2 < x < 3, we have f ′(x) = −1,
so f(2) = f(3)− (1)(−1) = 1. On the interval 0 < x < 2, we have f ′(x) = 1, so

f(0) = f(2) + 1(−2) = −1.

Moving to the right from x = 3, we know that f ′(x) = 2 on 3 < x < 4. So f(4) = f(3) + 2 = 2. On the interval
4 < x < 6, f ′(x) = −2 so

f(6) = f(4) + 2(−2) = −2.

On the interval 6 < x < 7, we have f ′(x) = 1, so

f(7) = f(6) + 1 = −2 + 1 = −1.

2 4 6

−2

2

x

y

(b) In part (a) we found that f(0) = −1 and f(7) = −1.
(c) The integral

∫ 7

0
f ′(x) dx is given by the sum

∫ 7

0

f ′(x) dx = (1)(2) + (−1)(1) + (2)(1) + (−2)(2) + (1)(1) = 0.

Alternatively, knowing f(7) and f(0) and using the Fundamental Theorem of Calculus, we have
∫ 7

0

f ′(x) dx = f(7)− f(0) = −1− (−1) = 0.

16. We can start by finding four points on the graph of F (x). The first one is given: F (2) = 3. By the Fundamental Theorem
of Calculus, F (6) = F (2) +

∫ 6

2
F ′(x)dx. The value of this integral is −7 (the area is 7, but the graph lies below the

x-axis), so F (6) = 3 − 7 = −4. Similarly, F (0) = F (2) − 2 = 1, and F (8) = F (6) + 4 = 0. We sketch a graph of
F (x) by connecting these points, as shown in Figure 6.11.
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17. The critical points are at (0, 5), (2, 21), (4, 13), and (5, 15). A graph is given in Figure 6.12.

18. Looking at the graph of g′ in Figure 6.13, we see that the critical points of g occur when x = 15 and x = 40, since
g′(x) = 0 at these values. Inflection points of g occur when x = 10 and x = 20, because g ′(x) has a local maximum or
minimum at these values. Knowing these four key points, we sketch the graph of g(x) in Figure 6.14.

We start at x = 0, where g(0) = 50. Since g′ is negative on the interval [0, 10], the value of g(x) is decreasing there.
At x = 10 we have

g(10) = g(0) +

∫ 10

0

g′(x) dx

= 50− (area of shaded trapezoid T1)

= 50−
(

10 + 20

2
· 10
)

= −100.

Similarly,

g(15) = g(10) +

∫ 15

10

g′(x) dx

= −100− (area of triangle T2)

= −100− 1

2
(5)(20) = −150.

Continuing,

g(20) = g(15) +

∫ 20

15

g′(x) dx = −150 +
1

2
(5)(10) = −125,

and

g(40) = g(20) +

∫ 40

20

g′(x) dx = −125 +
1

2
(20)(10) = −25.

We now find concavity of g(x) in the intervals [0, 10], [10, 15], [15, 20], [20, 40] by checking whether g ′(x) increases
or decreases in these same intervals. If g′(x) increases, then g(x) is concave up; if g′(x) decreases, then g(x) is concave
down. Thus we finally have the graph of g(x) in Figure 6.14.

15 40
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?

T2

x

Figure 6.13

x
g(x)(0, 50)

(10,−100)

(15,−150)

(20,−125)

(40,−25)

Figure 6.14

19. Between time t = 0 and time t = B, the velocity of the cork is always positive, which means the cork is moving upward.
At time t = B, the velocity is zero, and so the cork has stopped moving altogether. Since shortly thereafter the velocity
of the cork becomes negative, the cork will next begin to move downward. Thus when t = B the cork has risen as far as
it ever will, and is riding on top of the crest of the wave.

From time t = B to time t = D, the velocity of the cork is negative, which means it is falling. When t = D, the
velocity is again zero, and the cork has ceased to fall. Thus when t = D the cork is riding on the bottom of the trough of
the wave.

Since the cork is on the crest at time B and in the trough at time D, it is probably midway between crest and trough
when the time is midway between B and D. Thus at time t = C the cork is moving through the equilibrium position on
its way down. (The equilibrium position is where the cork would be if the water were absolutely calm.) By symmetry,
t = A is the time when the cork is moving through the equilibrium position on the way up.

Since acceleration is the derivative of velocity, points where the acceleration is zero would be critical points of the
velocity function. Since point A (a maximum) and point C (a minimum) are critical points, the acceleration is zero there.
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A possible graph of the height of the cork is shown in Figure 6.15. The horizontal axis represents a height equal to
the average depth of the ocean at that point (the equilibrium position of the cork).

time

height
B

A

C

D

Figure 6.15

2 4 6 8
t (minutes)

adrenaline
concentration (µg/ml)

Figure 6.16

20. The rate of change is negative for t < 5 and positive for t > 5, so the concentration of adrenaline decreases until t = 5
and then increases. Since the area under the t-axis is greater than the area over the t-axis, the concentration of adrenaline
goes down more than it goes up. Thus, the concentration at t = 8 is less than the concentration at t = 0. See Figure 6.16.

21. (a) The total volume emptied must increase with time and cannot decrease. The smooth graph (I) that is always increasing
is therefore the volume emptied from the bladder. The jagged graph (II) that increases then decreases to zero is the
flow rate.

(b) The total change in volume is the integral of the flow rate. Thus, the graph giving total change (I) shows an antideriva-
tive of the rate of change in graph (II).

22. The graph of f(x) = 2 sin(x2) is shown in Figure 6.17. We see that there are roots at x = 1.77 and x = 2.51. These are
the critical points of F (x). Looking at the graph, it appears that of the three areas marked, A1 is the largest, A2 is next,
and A3 is smallest. Thus, as x increases from 0 to 3, the function F (x) increases (by A1), decreases (by A2), and then
increases again (by A3). Therefore, the maximum is attained at the critical point x = 1.77.

What is the value of the function at this maximum? We know that F (1) = 5, so we need to find the change in F
between x = 1 and x = 1.77. We have

Change in F =

∫ 1.77

1

2 sin(x2) dx = 1.17.

We see that F (1.77) = 5 + 1.17 = 6.17, so the maximum value of F on this interval is 6.17.
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2
A2

3

A3

−2

2

x

Figure 6.17

23.
x1 x2

x3 x4

x5

x

f ′(x)

x1 x2 x3

x4

x5

x

f(x)

(a) f(x) is greatest at x1.
(b) f(x) is least at x5.
(c) f ′(x) is greatest at x3..
(d) f ′(x) is least at x5.
(e) f ′′(x) is greatest at x1.
(f) f ′′(x) is least at x5.
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24. Both F (x) and G(x) have roots at x = 0 and x = 4. Both have a critical point (which is a local maximum) at x = 2.
However, since the area under g(x) between x = 0 and x = 2 is larger than the area under f(x) between x = 0 and
x = 2, the y-coordinate of G(x) at 2 will be larger than the y-coordinate of F (x) at 2. See below.

1 32 4

F (x)

G(x)

x

25. (a) Suppose Q(t) is the amount of water in the reservoir at time t. Then

Q′(t) =
Rate at which water

in reservoir is changing
=

Inflow
rate

− Outflow
rate

Thus the amount of water in the reservoir is increasing when the inflow curve is above the outflow, and decreasing
when it is below. This means that Q(t) is a maximum where the curves cross in July 1993 (as shown in Figure 6.18),
and Q(t) is decreasing fastest when the outflow is farthest above the inflow curve, which occurs about October 1993
(see Figure 6.18).

To estimate values of Q(t), we use the Fundamental Theorem which says that the change in the total quantity
of water in the reservoir is given by

Q(t) − Q(Jan’93) =

∫ t

Jan93

(inflow rate− outflow rate) dt

or Q(t) = Q(Jan’93) +

∫ t

Jan93

(inflow rate− outflow rate) dt.

Jan (93) April July Oct Jan(94)

rate of flow
(millions of gallons/day)

Outflow

Inflow

Q(t) is max

?
Q(t) is min

?

Q(t) is decreasing most rapidly

R

Q(t) is increasing
most rapidly

	

Jan (93) April July Oct Jan(94)

Q(t)
millions of gallons

Figure 6.18
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(b) See Figure 6.18. Maximum in July 1993. Minimum in Jan 1994.
(c) See Figure 6.18. Increasing fastest in May 1993. Decreasing fastest in Oct 1993.
(d) In order for the water to be the same as Jan ’93 the total amount of water which has flowed into the reservoir must be

0. Referring to Figure 6.19, we have
∫ July94

Jan93

(inflow− outflow)dt = −A1 +A2 −A3 +A4 = 0

giving A1 +A3 = A2 +A4

Jan (‘93) April July Oct Jan (‘94) April July

rate of flow
(millions of gallons/day)

Inflow

Outflow
A1

A2 A3
A4

Figure 6.19

Solutions for Section 6.2

Exercises

1. 5x

2. 5
2
x2

3. 1
3
x3

4. 1
3
t3 + 1

2
t2

5. sin t

6. 2
3
z

3
2

7. ln |z|

8. −1

t

9. − 1

2z2

10. ez

11. − cos t

12. 2
3
t3 + 3

4
t4 + 4

5
t5

13. t4

4
− t3

6
− t2

2

14. y5

5
+ ln |y|

15. sin t+ tan t

16. t2 + 1

t
= t+

1

t
, which has antiderivative

t2

2
+ ln |t|

17. − cos 2θ

18. et + 5
1

5
e5t = et + e5t

19. 1
3
(t+ 1)3
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20. 5x

ln 5

21. 5

2
x2 − 2

3
x

3
2

22. F (t) =

∫
6t dt = 3t2 + C

23. H(x) =

∫
(x3 − x) dx =

x4

4
− x2

2
+ C

24. F (x) =

∫
(x2 − 4x+ 7) dx =

x3

3
− 2x2 + 7x+ C

25. R(t) =

∫
(t3 + 5t− 1) dt =

t4

4
+

5

2
t2 − t+ C

26. F (z) =

∫
(z + ez) dz =

z2

2
+ ez + C

27. G(t) =

∫ √
t dt =

2

3
t3/2 + C

28. G(x) =

∫
(sinx+ cosx) dx = − cosx+ sinx+ C

29. H(x) =

∫
(4x3 − 7) dx = x4 − 7x+ C

30. P (t) =

∫
(2 + sin t) dt = 2t− cos t+ C

31. P (t) =

∫
1√
t
dt = 2t1/2 + C

32. G(x) =

∫
5

x3
dx = − 5

2x2
+ C

33. f(x) = 3, so F (x) = 3x+ C. F (0) = 0 implies that 3 · 0 + C = 0, so C = 0. Thus F (x) = 3x is the only possibility.

34. f(x) = 2x, so F (x) = x2 + C. F (0) = 0 implies that 02 + C = 0, so C = 0. Thus F (x) = x2 is the only possibility.

35. f(x) = −7x, so F (x) = −7x2

2
+ C. F (0) = 0 implies that − 7

2
· 02 + C = 0, so C = 0. Thus F (x) = −7x2/2 is the

only possibility.

36. f(x) = 1
4
x, so F (x) = x2

8
+ C. F (0) = 0 implies that 1

8
· 02 + C = 0, so C = 0. Thus F (x) = x2/8 is the only

possibility.

37. f(x) = x2, so F (x) =
x3

3
+C. F (0) = 0 implies that

03

3
+C = 0, so C = 0. Thus F (x) =

x3

3
is the only possibility.

38. f(x) = x1/2, so F (x) = 2
3
x3/2 + C. F (0) = 0 implies that 2

3
· 03/2 + C = 0, so C = 0. Thus F (x) = 2

3
x3/2 is the

only possibility.

39. f(x) = 2 + 4x+ 5x2, so F (x) = 2x+ 2x2 + 5
3
x3 +C. F (0) = 0 implies that C = 0. Thus F (x) = 2x+ 2x2 + 5

3
x3

is the only possibility.

40. f(x) = sinx, so F (x) = − cosx + C. F (0) = 0 implies that − cos 0 + C = 0, so C = 1. Thus F (x) = − cosx+ 1
is the only possibility.

41.
∫

5x dx =
5

2
x2 + C.

42.
∫
x3 dx =

x4

4
+ C

43.
∫

sin θ dθ = − cos θ + C

44.
∫

(x3 − 2) dx =
x4

4
− 2x+ C
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45.
∫

(t2 +
1

t2
) dt =

t3

3
− 1

t
+ C

46.
∫

4
√
w dw =

8

3
w3/2 + C

47.
∫

(x2 + 5x+ 8) dx =
x3

3
+

5x2

2
+ 8x+ C

48.
∫

4

t2
dt = −4

t
+ C

49. 2t2 + 7t+ C

50. sin θ + C

51. 5ez + C

52. x2

2
+ 2x1/2 + C

53. − cos t+ C

54. πx+
x12

12
+ C

55.
∫ (

t3/2 + t−3/2
)
dt =

2t5/2

5
− 2t−1/2 + C

56. sin(x+ 1) + C

57. 1
2
e2r + C

58.
∫

1

ez
dz =

∫
e−z dz = −e−z + C

59.
∫ (

y − 1

y

)2

dy =

∫ (
y2 − 2 +

1

y2

)
dy =

y3

3
− 2y − 1

y
+ C

60.
∫ 3

0

(x2 + 4x+ 3) dx =

(
x3

3
+ 2x2 + 3x

)∣∣∣∣
3

0

= (9 + 18 + 9)− 0 = 36

61.
∫ 3

1

1

t
dt = ln |t|

∣∣∣∣
3

1

= ln |3| − ln |1| = ln 3 ≈ 1.0986.

62.
∫ π/4

0

sinx dx = − cosx

∣∣∣∣
π/4

0

= − cos
π

4
− (− cos 0) = −

√
2

2
+ 1 = 0.293.

63.
∫ 2

0

3ex dx = 3ex
∣∣∣∣
2

0

= 3e2 − 3e0 = 3e2 − 3 = 19.167.

64.
∫ 5

2

(x3 − πx2) dx =

(
x4

4
− πx3

3

)∣∣∣∣
5

2

=
609

4
− 39π ≈ 29.728.

65.
∫ 1

0

sin θ dθ = − cos θ

∣∣∣∣
1

0

= 1− cos 1 ≈ 0.460.

66. Since
1 + y2

y
=

1

y
+ y,

∫ 2

1

1 + y2

y
dy =

(
ln |y|+ y2

2

)∣∣∣∣
2

1

= ln 2 +
3

2
≈ 2.193.

67.
∫ 2

0

(
x3

3
+ 2x

)
dx =

(
x4

12
+ x2

)∣∣∣∣
2

0

=
4

3
+ 4 = 16/3 ≈ 5.333.

68.
∫ π/4

0

(sin t+ cos t) dt = (− cos t+ sin t)

∣∣∣∣
π/4

0

=

(
−
√

2

2
+

√
2

2

)
− (−1 + 0) = 1.

69.
∫ 1

0

2ex dx = 2ex
∣∣∣∣
1

0

= 2e− 2 ≈ 3.437.
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70.
∫ −1

−3

2

r3
dr = −r−2

∣∣∣∣
−1

−3

= −1 +
1

9
= −8/9 ≈ −0.889.

71. Since (tanx)′ =
1

cos2 x
,
∫ π/4

0

1

cos2 x
dx = tanx

∣∣∣∣
π/4

0

= tan
π

4
− tan 0 = 1.

Problems

72. We have

Area =

∫ 4

1

x2 dx =
x3

3

∣∣∣∣
4

1

=
43

3
− 13

3
=

64− 1

3
= 21.

73. The graph crosses the x-axis where

7− 8x+ x2 = 0

(x− 7)(x− 1) = 0;

so x = 1 and x = 7. See Figure 6.20. The parabola opens upward and the region is below the x-axis, so

Area = −
∫ 7

1

(7− 8x+ x2) dx

= −
(

7x− 4x2 +
x3

3

)∣∣∣∣
7

1

= 36.

1 7

y = 7− 8x+ x2

x

Figure 6.20

74. Since y = 0 only when x = 0 and x = 1, the area lies between these limits and is given by

Area =

∫ 1

0

x2(1− x)2dx =

∫ 1

0

x2(1− 2x+ x2) dx =

∫ 1

0

(x2 − 2x3 + x4) dx

=
x3

3
− 2

4
x4 +

x5

5

∣∣∣∣
1

0

=
1

30
.

75. Since y = x3(1− x) is positive for 0 ≤ x ≤ 1 and y = 0, when x = 0, 1, the area is given by

Area =

∫ 1

0

x3(1− x) dx =

∫ 1

0

(x3 − x4) dx =
x4

4
− x5

5

∣∣∣∣
1

0

=
1

20
.

76. The graph is shown in the figure below. Since cos θ ≥ sin θ for 0 ≤ θ ≤ π/4, we have

Area =

∫ π/4

0

(cos θ − sin θ) dθ

= (sin θ + cos θ)
∣∣∣
π/4

0

=
1√
2

+
1√
2
− 1 =

√
2− 1.

π
4

?

y = cos θ

	

y = sin θ

θ
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77. Since the graph of y = ex is above the graph of y = cosx (see the figure below), we have

Area =

∫ 1

0

(ex − cosx) dx

=

∫ 1

0

ex dx−
∫ 1

0

cosx dx

= ex
∣∣∣
1

0
− sinx

∣∣∣
1

0

= e1 − e0 − sin 1 + sin 0

= e− 1− sin 1.

1 π
2

y = ex

y = cosx

x

78. The area is given by

A =

∫ 1

−1

(coshx− sinhx) dx = (sinhx− coshx)

∣∣∣∣
1

−1

= sinh 1− cosh 1− (sinh(−1)− cosh(−1))

= 2 sinh 1.

79. The area under f(x) = 8x between x = 1 and x = b is given by
∫ b

1
(8x)dx. Using the Fundamental Theorem to evaluate

the integral:

Area = 4x2

∣∣∣∣
b

1

= 4b2 − 4.

Since the area is 192, we have

4b2 − 4 = 192

4b2 = 196

b2 = 49

b = ±7.

Since b is larger than 1, we have b = 7.

80. The graph of y = x2 − c2 has x-intercepts of x = ±c. See Figure 6.21. The shaded area is given by

Area = −
∫ c

−c
(x2 − c2) dx

= −2

∫ c

0

(x2 − c2) dx

= −2

(
x3

3
− c2x

)∣∣∣∣
c

0

= −2

(
c3

3
− c3

)
=

4

3
c3.

We want c to satisfy (4c3)/3 = 36, so c = 3.
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−c c

−c2

y = x2 − c2

x

y

Figure 6.21

105

34.33

50

100

x

f(x) = x2 + 1

Figure 6.22

81. We have

Average value =
1

10− 0

∫ 10

0

(x2 + 1)dx =
1

10

(
x3

3
+ x

)∣∣∣∣
10

0

=
1

10

(
103

3
+ 10− 0

)
=

103

3
.

We see in Figure 6.22 that the average value of 103/3 ≈ 34.33 for f(x) looks right.

82. The average value of v(x) on the interval 1 ≤ x ≤ c is

1

c− 1

∫ c

1

6

x2
dx =

1

c− 1

(
− 6

x

) ∣∣∣∣
c

1

=
1

c− 1

(−6

c
+ 6
)

=
6

c
.

Since
1

c− 1

∫ c

1

6

x2
dx = 1, we have

6

c
= 1, so c = 6.

83. (a) The average value of f(t) = sin t over 0 ≤ t ≤ 2π is given by the formula

Average =
1

2π − 0

∫ 2π

0

sin t dt

=
1

2π
(− cos t)

∣∣∣∣
2π

0

=
1

2π
(− cos 2π − (− cos 0)) = 0.

We can check this answer by looking at the graph of sin t below. The area below the curve and above the t-axis
over the interval 0 ≤ t ≤ π,A1, is the same as the area above the curve but below the t-axis over the interval
π ≤ t ≤ 2π,A2. When we take the integral of sin t over the entire interval 0 ≤ t ≤ 2π, we get A1 −A2 = 0.

π 2π

A1

A2

t

(b) Since ∫ π

0

sin t dt = − cos t

∣∣∣∣
π

0

= − cosπ − (− cos 0) = −(−1)− (−1) = 2,

the average value of sin t on 0 ≤ t ≤ π is given by

Average value =
1

π

∫ π

0

sin t dt =
2

π
.
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84. The area beneath the curve in Figure 42.1 is given by
∫ a

0

y dx =

∫ a

0

(
√
a−√x)2dx =

[
a x− 4

√
a x3/2

3
+
x2

2

]a

0

=
a2

6
.

The area of the square is a2 so the area above the curve is 5a2/6. Thus, the ratio of the areas is 5 to 1.

a
0

a

x

y

Figure 6.23: The curve√
x+
√
y =
√
a

85. The curves y = x and y = xn cross at x = 0 and x = 1. For 0 < x < 1, the curve y = x is above y = xn. Thus the
area is given by

An =

∫ 1

0

(x− xn)d x =

[
x2

2
− xn+1

n+ 1

]1

0

=
1

2
− 1

n+ 1
→ 1

2
.

Since xn → 0 for 0 ≤ x < 1, as n→∞, the area between the curves approaches the area under the line y = x between
x = 0 and x = 1.

86. Since C ′(x) = 4000 + 10x we want to evaluate the indefinite integral
∫

(4000 + 10x) dx = 4000x+ 5x2 +K

where K is a constant. Thus C(x) = 5x2 + 4000x + K, and the fixed cost of 1,000,000 riyal means that C(0) =
1,000,000 = K. Therefore, the total cost is

C(x) = 5x2 + 4000x+ 1,000,000.

Since C(x) depends on x2, the square of the depth drilled, costs will increase dramatically when x grows large.

87. (a) See Figure 6.24.

3 7

16

t

CCl4 dumped

Figure 6.24

(b) 7 years, because t2 − 14t+ 49 = (t− 7)2 indicates that the rate of flow was zero after 7 years.
(c)

Area under the curve = 3(16) +

∫ 7

3

(t2 − 14t+ 49) dt

= 48 +
(

1

3
t3 − 7t2 + 49t

) ∣∣∣∣
7

3

= 48 +
343

3
− 343 + 343− 9 + 63− 147

=
208

3
= 69.333 cubic yards.
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Solutions for Section 6.3

Exercises

1. y =

∫
(x3 + 5) dx =

x4

4
+ 5x+ C

2. y =

∫ (
8x+

1

x

)
dx = 4x2 + ln |x|+ C

3. W =

∫
4
√
t dt =

8

3
t3/2 + C

4. r =

∫
3 sin p dp = −3 cos p+ C

5. Since y = x+ sinx− π, we differentiate to see that dy/dx = 1 + cosx, so y satisfies the differential equation. To show
that it also satisfies the initial condition, we check that y(π) = 0:

y = x+ sinx− π
y(π) = π + sinπ − π = 0.

6. y =

∫
(6x2 + 4x) dx = 2x3 + 2x2 + C. If y(2) = 10, then 2(2)3 + 2(2)2 + C = 10 and C = 10− 16− 8 = −14.

Thus, y = 2x3 + 2x2 − 14.

7. P =

∫
10et dt = 10et + C. If P (0) = 25, then 10e0 + C = 25 so C = 15. Thus, P = 10et + 15.

8. s =

∫
(−32t+ 100) dt = −16t2 + 100t+ C. If s = 50 when t = 0, then −16(0)2 + 100(0) + C = 50, so C = 50.

Thus s = −16t2 + 100t+ 50.

9. Integrating gives ∫
dq

dz
dz =

∫
(2 + sin z) dz = 2z − cos z + C.

If q = 5 when z = 0, then 2(0)− cos(0) + C = 5 so C = 6. Thus q = 2z − cos z + 6.

10. We differentiate y = xe−x + 2 using the product rule to obtain

d y

d x
= x

(
e−x(−1)

)
+ (1)e−x + 0

= −xe−x + e−x

= (1− x)e−x,

and so y = xe−x + 2 satisfies the differential equation. We now check that y(0) = 2:

y = xe−x + 2

y(0) = 0e0 + 2 = 2.

Problems

11. (a) Acceleration = a(t) = −9.8 m/sec2

Velocity = v(t) = −9.8t+ 40 m/sec
Height = h(t) = −4.9t2 + 40t+ 25 m
.

(b) At the highest point,
v(t) = −9.8t+ 40 = 0,

so
t =

40

9.8
= 4.08 seconds.

At that time, h(4.08) = 106.6 m. We see that the tomato reaches a height of 106.6 m, at 4.08 seconds after it is
thrown.

(c) The tomato lands when h(t) = 0, so
−4.9t2 + 40t+ 25 = 0.

The solutions are t = −0.58 and t = 8.75 seconds. We see that it lands 8.75 seconds after it is thrown.
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12. (a) y =

∫
(2x+ 1) dx, so the solution is y = x2 + x+ C.

(b)

-C = −2

-C = 0

-C = 2

x

y

-C = −2

-C = 0

-C = 2 � y(1) = 5

x

y

(c) At y(1) = 5, we have 12 + 1 + C = 5 and so C = 3. Thus we have the solution y = x2 + x+ 3.

13.
dy

dt
= k
√
t = kt1/2

y =
2

3
kt3/2 + C.

Since y = 0 when t = 0, we have C = 0, so

y =
2

3
kt3/2.

14. (a) To find the height of the balloon, we integrate its velocity with respect to time:

h(t) =

∫
v(t) dt

=

∫
(−32t+ 40) dt

= −32
t2

2
+ 40t+ C.

Since at t = 0, we have h = 30, we can solve for C to get C = 30, giving us a height of

h(t) = −16t2 + 40t+ 30.

(b) To find the average velocity between t = 1.5 and t = 3, we find the total displacement and divide by time.

Average velocity =
h(3)− h(1.5)

3− 1.5
=

6− 54

1.5
= −32 ft/sec.

The balloon’s average velocity is 32 ft/sec downward.
(c) First, we must find the time when h(t) = 6. Solving the equation −16t2 + 40t+ 30 = 6, we get

6 = −16t2 + 40t+ 30

0 = −16t2 + 40t+ 24

0 = 2t2 − 5t− 3

0 = (2t+ 1)(t− 3).

Thus, t = −1/2 or t = 3. Since t = −1/2 makes no physical sense, we use t = 3 to calculate the balloon’s
velocity. At t = 3, we have a velocity of v(3) = −32(3) + 40 = −56 ft/sec. So the balloon’s velocity is 56 ft/sec
downward at the time of impact.

15. Since the car’s acceleration is constant, a graph of its velocity against time t is linear, as shown below.

6

80

t (seconds)

v (mph)
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The acceleration is just the slope of this line:

dv

dt
=

80− 0 mph
6 sec

=
40

3
= 13.33

mph
sec

.

To convert our units into ft/sec2,
40

3
· mph

sec
· 5280 ft

1 mile
1 hour

3600 sec
= 19.55

ft
sec2

16. Since the acceleration a = dv/dt, where v is the velocity of the car, we have

dv

dt
= −0.6t+ 4.

Integrating gives

v = −0.6
t2

2
+ 4t+ C.

The car starts from rest, so v = 0 when t = 0, and thereforeC = 0. If x is the distance from the starting point, v = dx/dt
and

dx

dt
= −0.3t2 + 4t,

so
x = −0.3

3
t3 +

4

2
t2 + C = −0.1t3 + 2t2 + C.

Since x = 0 when t = 0, we have C = 0, so
x = −0.1t3 + 2t2.

We want to solve for t when x = 100:
100 = −0.1t3 + 2t2.

This equation can be rewritten as

0.1t3 − 2t2 + 100 = 0

t3 − 20t2 + 1000 = 0.

The equation can be solved numerically, or by tracing along a graph, or by factoring

(t− 10)(t2 − 10t− 100) = 0.

The solutions are t = 10 and t = 10±
√

500
2

= −6.18, 16.18. Since we are told 0 ≤ t ≤ 12, the solution we want is
t = 10 sec.

17. (a)

A

t

v

5 sec

v(t)

80 ft/sec

(b) The total distance is represented by the shaded region A, the area under the graph of v(t).
(c) The area A, a triangle, is given by

A =
1

2
(base)(height) =

1

2
(5 sec)(80 ft/sec) = 200 ft.

(d) Using integration and the Fundamental Theorem of Calculus, we have A =
∫ 5

0
v(t) dt or A = s(5) − s(0), where

s(t) is an antiderivative of v(t).
We have that a(t), the acceleration, is constant: a(t) = k for some constant k. Therefore v(t) = kt+C for some

constantC. We have 80 = v(0) = k(0)+C = C, so that v(t) = kt+80. Putting in t = 5, 0 = v(5) = (k)(5)+80,
or k = −80/5 = −16.

Thus v(t) = −16t + 80, and an antiderivative for v(t) is s(t) = −8t2 + 80t + C. Since the total distance
traveled at t = 0 is 0, we have s(0) = 0 which means C = 0. Finally, A =

∫ 5

0
v(t) dt = s(5) − s(0) =

(−8(5)2 + (80)(5))− (−8(0)2 + (80)(0)) = 200 ft, which agrees with the previous part.
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18. Since the acceleration is constant, a graph of the velocity versus time looks like this:

30
t (sec)

v (mph)

200 mph

A

The distance traveled in 30 seconds, which is how long the runway must be, is equal to the area represented by A.
We have A = 1

2
(base)(height). First we convert the required velocity into miles per second.

200 mph =
200 miles

hour

(
1 hour

60 minutes

)(
1 minute

60 seconds

)

=
200

3600

miles

second

=
1

18
miles/second.

Therefore A = 1
2
(30 sec)(200 mph) = 1

2
(30 sec)

(
1
18

miles/sec
)

= 5
6

miles.

19. (a) Since the velocity is constantly decreasing, and v(6) = 0, the car stops after 6 seconds.

t (sec) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

v(t) (ft/sec) 30 27.5 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5 0

(b) Over the interval a ≤ t ≤ a + 1
2

, the left-hand velocity is v(a), and the right-hand velocity is v(a + 1
2
). Since we

are considering half-second intervals, ∆t = 1
2

, and n = 12. The left sum is 97.5 ft., and the right sum is 82.5 ft.
(c) Area A in the figure below represents distance traveled.

A =
1

2
(base)(height) =

1

2
· 6 · 30 = 90 ft.

6

30

t (seconds)

velocity (ft/sec)

A

Deceleration
= 5 ft/sec2

(d) The velocity is constantly decreasing at a rate of 5 ft/sec per second, i.e. after each second the velocity has dropped
by 5 units. Therefore v(t) = 30− 5t.

An antiderivative for v(t) is s(t), where s(t) = 30t − 5
2
t2. Thus by the Fundamental Theorem of Calculus,

the distance traveled = s(6) − s(0) = (30(6) − 5
2
(6)2) − (30(0) − 5

2
(0)2) = 90 ft. Since v(t) is decreasing, the

left-hand sum in part (b) overestimates the distance traveled, while the right-hand sum underestimates it.
The area A is equal to the average of the left-hand and right-hand sums: 90 ft = 1

2
(97.5 ft + 82.5 ft). The

left-hand sum is an overestimate of A; the right-hand sum is an underestimate.
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20. (a)

5

highest
point

10

ground

−160

160

t (sec)

v(t)

A

(b) The highest point is at t = 5 seconds. The object hits the ground at t = 10 seconds, since by symmetry if the object
takes 5 seconds to go up, it takes 5 seconds to come back down.

(c) The maximum height is the distance traveled when going up, which is represented by the areaA of the triangle above
the time axis.

Area =
1

2
(160 ft/sec)(5 sec) = 400 feet.

(d) The slope of the line is−32, so v(t) = −32t+ 160. Antidifferentiating, we get s(t) = −16t2 + 160t+ s0. s0 = 0,
so s(t) = −16t2 + 160t. At t = 5, s(t) = −400 + 800 = 400 ft.

21. The equation of motion is y = − gt2

2
+v0t+y0 = −16t2+128t+320. Taking the first derivative, we get v = −32t+128.

The second derivative gives us a = −32.

(a) At its highest point, the stone’s velocity is zero:
v = 0 = −32t+ 128, so t = 4.

(b) At t = 4, the height is y = −16(4)2 + 128(4) + 320 = 576 ft
(c) When the stone hits the beach,

y = 0 = −16t2 + 128t+ 320

0 = −t2 + 8t+ 20 = (10− t)(2 + t).

So t = 10 seconds.
(d) Impact is at t = 10. The velocity, v, at this time is v(10) = −32(10) + 128 = −192 ft/sec. Upon impact, the stone’s

velocity is 192 ft/sec downward.

22. (a) a(t) = 1.6, so v(t) = 1.6t+ v0 = 1.6t, since the initial velocity is 0.
(b) s(t) = 0.8t2 + s0, where s0 is the rock’s initial height.

23. (a) s = v0t−16t2, where v0 = initial velocity, and v = s′ = v0−32t. At the maximum height, v = 0, so v0 = 32tmax.
Plugging into the distance equation yields 100 = 32t2max − 16t2max = 16t2max, so tmax = 5

2
seconds, from which we

get v0 = 32
(

5
2

)
= 80 ft/sec.

(b) This time g = 5 ft/sec2, so s = v0t − 2.5t2 = 80t − 2.5t2, and v = s′ = 80 − 5t. At the highest point, v = 0, so
tmax = 80

5
= 16 seconds. Plugging into the distance equation yields s = 80(16)− 2.5(16)2 = 640 ft.

24. The height of an object above the ground which begins at rest and falls for t seconds is

s(t) = −16t2 +K,

where K is the initial height. Here the flower pot falls from 200 ft, so K = 200. To see when the pot hits the ground,
solve −16t2 + 200 = 0. The solution is

t =

√
200

16
≈ 3.54 seconds.

Now, velocity is given by s′(t) = v(t) = −32t. So, the velocity when the pot hits the ground is

v(3.54) ≈ −113.1 ft/sec,

which is approximately 77 mph downward.

25. The first thing we should do is convert our units. We’ll bring everything into feet and seconds. Thus, the initial speed of
the car is

70 miles
hour

(
1 hour

3600 sec

)(
5280 feet

1 mile

)
≈ 102.7 ft/sec.
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We assume that the acceleration is constant as the car comes to a stop. A graph of its velocity versus time is given in
Figure 6.25. We know that the area under the curve represents the distance that the car travels before it comes to a stop,
157 feet. But this area is a triangle, so it is easy to find t0, the time the car comes to rest. We solve

1

2
(102.7)t0 = 157,

which gives
t0 ≈ 3.06 sec.

Since acceleration is the rate of change of velocity, the car’s acceleration is given by the slope of the line in Fig-
ure 6.25. Thus, the acceleration, k, is given by

k =
102.7− 0

0− 3.06
≈ −33.56 ft/sec2.

Notice that k is negative because the car is slowing down.

t0
t

102.7 ft/sec

y

y = v(t)

Figure 6.25: Graph of velocity versus time

Solutions for Section 6.4

Exercises

1. By the Fundamental Theorem, f(x) = F ′(x). Since f is positive and increasing, F is increasing and concave up. Since
F (0) =

∫ 0

0
f(t)dt = 0, the graph of F must start from the origin. See Figure 6.26.

x

F (x)

Figure 6.26

F (x)

x

Figure 6.27

2. By the Fundamental Theorem, f(x) = F ′(x). Since f is positive and decreasing, F is increasing and concave down.
Since F (0) =

∫ 0

0
f(t)dt = 0, the graph of F must start from the origin. See Figure 6.27.

3. Since f is always positive, F is always increasing. F has an inflection point where f ′ = 0. Since F (0) =
∫ 0

0
f(t)dt = 0,

F goes through the origin. See Figure 6.28.

x

F (x)

Figure 6.28

x

F (x)

Figure 6.29

4. Since f is always non-negative, F is increasing. F is concave up where f is increasing and concave down where f is
decreasing; F has inflection points at the critical points of f . Since F (0) =

∫ 0

0
f(t)dt = 0, the graph of F goes through

the origin. See Figure 6.29.
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5. Table 6.3

x 0 0.5 1 1.5 2
I(x) 0 0.50 1.09 2.03 3.65

6. Using the Fundamental Theorem, we know that the change in F between x = 0 and x = 0.5 is given by

F (0.5)− F (0) =

∫ 0.5

0

sin t cos t dt ≈ 0.115.

Since F (0) = 1.0, we have F (0.5) ≈ 1.115. The other values are found similarly, and are given in Table 6.4.

Table 6.4

b 0 0.5 1 1.5 2 2.5 3

F (b) 1 1.11492 1.35404 1.4975 1.41341 1.17908 1.00996

7. (a) Again using 0.00001 as the lower limit, because the integral is improper, gives Si(4) = 1.76, Si(5) = 1.55.
(b) Si(x) decreases when the integrand is negative, which occurs when π < x < 2π.

8. If f ′(x) = sin(x2), then f(x) is of the form

f(x) = C +

∫ x

a

sin(t2) dt.

Since f(0) = 7, we take a = 0 and C = 7, giving

f(x) = 7 +

∫ x

0

sin(t2) dt.

9. If f ′(x) =
sinx

x
, then f(x) is of the form

f(x) = C +

∫ x

a

sin t

t
dt.

Since f(1) = 5, we take a = 1 and C = 5, giving

f(x) = 5 +

∫ x

1

sin t

t
dt.

10. If f ′(x) = Si(x), then f(x) is of the form

f(x) = C +

∫ x

a

Si(t) dt.

Since f(0) = 2, we take a = 0 and C = 2, giving

f(x) = 2 +

∫ x

0

Si(t) dt.

Problems

11. See Figure 6.30.

x1

x2

x3

F (x)

Figure 6.30

20 40 60

−10

10

20

x

F ′

Figure 6.31
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12. We know that F (x) increases for x < 50 because the derivative of F is positive there. See Figure 6.31. Similarly, F (x)
decreases for x > 50. Therefore, the graph of F rises until x = 50, and then it begins to fall. Thus, the maximum value
attained by F is F (50). To evaluate F (50), we use the Fundamental Theorem:

F (50)− F (20) =

∫ 50

20

F ′(x) dx,

which gives

F (50) = F (20) +

∫ 50

20

F ′(x) dx = 150 +

∫ 50

20

F ′(x) dx.

The definite integral equals the area of the shaded region under the graph of F ′, which is roughly 350. Therefore, the
greatest value attained by F is F (50) ≈ 150 + 350 = 500.

13. Since F ′(x) = e−x
2

and F (0) = 2, we have

F (x) = F (0) +

∫ x

0

e−t
2

dt = 2 +

∫ x

0

e−t
2

dt.

Substituting x = 1 and evaluating the integral numerically gives

F (1) = 2 +

∫ 1

0

e−t
2

dt = 2.747.

14. Since G′(x) = cos(x2) and G(0) = −3, we have

G(x) = G(0) +

∫ x

0

cos(t2) dt = −3 +

∫ x

0

cos(t2) dt.

Substituting x = −1 and evaluating the integral numerically gives

G(−1) = −3 +

∫ −1

0

cos(t2) dt = −3.905.

15. cos(x2).

16. (1 + x)200.

17. arctan(x2).

18. d

dt

∫ π

t

cos(z3) dz =
d

dt

(
−
∫ t

π

cos(z3) dz

)
= − cos(t3).

19. d

dx

∫ 1

x

ln t dt =
d

dx

(
−
∫ x

1

ln t dt

)
= − lnx.

20. Considering Si(x2) as the composition of Si(u) and u(x) = x2, we may apply the chain rule to obtain

d

dx
=
d(Si(u))

du
· du
dx

=
sinu

u
· 2x

=
2 sin(x2)

x
.

21. (a) The definition of g gives g(0) =
∫ 0

0
f(t) dt = 0.

(b) The Fundamental Theorem gives g′(1) = f(1) = −2.
(c) The function g is concave upward where g′′ is positive. Since g′′ = f ′, we see that g is concave up where f is

increasing. This occurs on the interval 1 ≤ x ≤ 6.
(d) The function g decreases from x = 0 to x = 3 and increases for 3 < x ≤ 8, and the magnitude of the increase is

more than the magnitude of the decrease. Thus g takes its maximum value at x = 8.
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22. (a) Since
d

dt
(cos(2t)) = −2 sin(2t), we have F (π) =

∫ π

0

sin(2t) dt = −1

2
cos(2t)

∣∣∣
π

0
= −1

2
(1− 1) = 0.

(b) F (π) = (Area above t-axis)− (Area below t-axis) = 0. (The two areas are equal.)

π

−1

1
sin 2t

x

(c) F (x) ≥ 0 everywhere. F (x) = 0 only at integer multiples of π. This can be seen for x ≥ 0 by noting F (x) =
(Area above t-axis) − (Area below t-axis), which is always non-negative and only equals zero when x is an integer
multiple of π. For x > 0

F (−x) =

∫ −x

0

sin 2t dt

= −
∫ 0

−x
sin 2t dt

=

∫ x

0

sin 2t dt = F (x),

since the area from −x to 0 is the negative of the area from 0 to x. So we have F (x) ≥ 0 for all x.

23. (a) F ′(x) =
1

lnx
by the Construction Theorem.

(b) For x ≥ 2, F ′(x) > 0, so F (x) is increasing. Since F ′′(x) = − 1

x(lnx)2
< 0 for x ≥ 2, the graph of F (x) is

concave down.
(c)

1 2 3 4 5 6

1

2

3

x

F (x)

24. If we let f(x) =
∫ x

2
sin(t2) dt and g(x) = x3, using the chain rule gives

d

dx

∫ x3

2

sin(t2) dt = f ′(g(x)) · g′(x) = sin((x3)2) · 3x2 = 3x2 sin(x6).

25. If we let f(t) =
∫ t

1
cos(x2) dx and g(t) = sin t, using the chain rule gives

d

dt

∫ sin t

1

cos(x2) dx = f ′(g(t)) · g′(t) = cos((sin t)2) · cos t = cos(sin2 t)(cos t).

26. Since
∫ 3

cos x
et

2

dt = −
∫ cos x

3
et

2

dt, if we let f(x) =
∫ x

3
et

2

dt and g(x) = cosx, using the chain rule gives

d

dx

∫ 3

cos x

et
2

dt = − d

dx

∫ cos x

3

et
2

dt = −f ′(g(x)) · g′(x) = −e(cos x)2(− sinx) = sinxecos2 x.
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27. We split the integral at x = 1 (or any other point we choose):
∫ t3

et

√
1 + x2 dx =

∫ t3

1

√
1 + x2 dx+

∫ 1

et

√
1 + x2 dx =

∫ t3

1

√
1 + x2 dx−

∫ et

1

√
1 + x2 dx.

Differentiating each part separately and using the chain rule gives

d

dt

∫ t3

et

√
1 + x2 dx =

d

dt

∫ t3

1

√
1 + x2 dx− d

dt

∫ et

1

√
1 + x2 dx

=
√

1 + (t3)2 · 3t2 −
√

1 + (et)2 · et

= 3t2
√

1 + t6 − et
√

1 + e2t.

28. The indefinite integral of a function is a function whose derivative is the integrand. Thus s′(t) = v(t− t0).

29. By the Fundamental Construction Theorem, s′(t) = v(t). Hence, by the Fundamental Theorem of Calculus,
∫ b
a
v(t) dt =

s(b)− s(a).

30. The derivative of s(t − t0) is s′(t − t0), so s′(t − t0) = v(t). Substituting w = t − t0, so that t = w + t0, we get
s′(w) = v(w + t0). Renaming w to t, we get s′(t) = v(t+ t0).

31. We have (d/dx)(g(2x)) = f(2x). Also, by the chain rule, (d/dx)(g(2x)) = 2g ′(2x). So 2g′(2x) = f(2x), hence
g′(2x) = (1/2)f(2x), and so g′(x) = (1/2)f(x).

32. Since g(ax) is an antiderivative for af(x),

d

dx
g(ax) = af(x), so, by the chain rule, ag′(ax) = af(x).

Thus g′(ax) = f(x). Putting w = ax, so that x = w/a, we get g′(w) = f(w/a), or, changing the name of w to x,
g′(x) = f(x/a).

33.
d

dx
[x erf(x)] = erf(x)

d

dx
(x) + x

d

dx
[erf(x)]

= erf(x) + x
d

dx

(
2√
π

∫ x

0

e−t
2

dt

)

= erf(x) +
2√
π
xe−x

2

.

34. If we let f(x) = erf(x) and g(x) =
√
x, then we are looking for d

dx
[f(g(x))]. By the chain rule, this is the same as

g′(x)f ′(g(x)). Since

f ′(x) =
d

dx

(
2√
π

∫ x

0

e−t
2

dt

)

=
2√
π
e−x

2

and g′(x) =
1

2
√
x

, we have

f ′(g(x)) =
2√
π
e−x,

and so
d

dx
[erf(
√
x)] =

1

2
√
x

2√
π
e−x =

1√
πx

e−x.

35. If we let f(x) =
∫ x

0
e−t

2

dt and g(x) = x3, then we use the chain rule because we are looking for d
dx
f(g(x)) =

f ′(g(x)) · g′(x). Since f ′(x) = e−x
2

, we have

d

dx

(∫ x3

0

e−t
2

dt

)
= f ′(x3) · 3x2 = e−(x3)2 · 3x2 = 3x2e−x

6

.
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36. We split the integral
∫ x3

x
e−t

2

dt into two pieces, say at t = 1 (though it could be at any other point):

∫ x3

x

e−t
2

dt =

∫ x3

1

e−t
2

dt+

∫ 1

x

e−t
2

dt =

∫ x3

1

e−t
2

dt−
∫ x

1

e−t
2

dt.

We have used the fact that
∫ 1

x
e−t

2

dt = −
∫ x

1
e−t

2

dt. Differentiating gives

d

dx

(∫ x3

x

e−t
2

dt

)
=

d

dx

(∫ x3

1

e−t
2

dt

)
− d

dx

(∫ x

1

e−t
2

dt

)

For the first integral, we use the chain rule with g(x) = x3 as the inside function, so the final answer is

d

dx

(∫ x3

x

e−t
2

dt

)
= e−(x3)2 · 3x2 − e−x2

= 3x2e−x
6 − e−x2

.

Solutions for Section 6.5

Exercises

1. (a) The object is thrown from an initial height of y = 1.5 meters.
(b) The velocity is obtained by differentiating, which gives v = −9.8t + 7 m/sec. The initial velocity is v = 7 m/sec

upward.
(c) The acceleration due to gravity is obtained by differentiating again, giving g = −9.8 m/sec2, or 9.8 m/sec2 down-

ward.

2. Since height is measured upward, the initial position of the stone is h(0) = 250 meters and the initial velocity is v = −20
m/sec. The acceleration due to gravity is g = −9.8 m/sec2. Thus, the height at time t is given by h(t) = −4.9t2 − 20t+
250 meters.

Problems

3. The velocity as a function of time is given by: v = v0 + at. Since the object starts from rest, v0 = 0, and the velocity
is just the acceleration times time: v = −32t. Integrating this, we get position as a function of time: y = −16t2 + y0,
where the last term, y0, is the initial position at the top of the tower, so y0 = 400 feet. Thus we have a function giving
position as a function of time: y = −16t2 + 400.

To find at what time the object hits the ground, we find t when y = 0. We solve 0 = −16t2 + 400 for t, getting
t2 = 400/16 = 25, so t = 5. Therefore the object hits the ground after 5 seconds. At this time it is moving with a
velocity v = −32(5) = −160 feet/second.

4. In Problem 3 we used the equation 0 = −16t2 + 400 to learn that the object hits the ground after 5 seconds. In a more
general form this is the equation y = − g

2
t2 + v0t+ y0, and we know that v0 = 0, y0 = 400 ft. So the moment the object

hits the ground is given by 0 = − g
2
t2 + 400. In Problem 3 we used g = 32 ft/sec2, but in this case we want to find a g

that results in the object hitting the ground after only 5/2 seconds. We put in 5/2 for t and solve for g:

0 = −g
2

(
5

2
)
2

+ 400, so g =
2(400)

(5/2)2
= 128 ft/sec2.

5. a(t) = −32. Since v(t) is the antiderivative of a(t), v(t) = −32t + v0. But v0 = 0, so v(t) = −32t. Since s(t) is
the antiderivative of v(t), s(t) = −16t2 + s0, where s0 is the height of the building. Since the ball hits the ground in 5
seconds, s(5) = 0 = −400 + s0. Hence s0 = 400 feet, so the window is 400 feet high.

6. Let time t = 0 be the moment when the astronaut jumps up. If acceleration due to gravity is 5 ft/sec2 and initial velocity
is 10 ft/sec, then the velocity of the astronaut is described by

v(t) = 10− 5t.
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Suppose y(t) describes his distance from the surface of the moon. By the Fundamental Theorem,

y(t)− y(0) =

∫ t

0

(10− 5x) dx

y(t) = 10t− 1

2
5t2.

since y(0) = 0 (assuming the astronaut jumps off the surface of the moon).
The astronaut reaches the maximum height when his velocity is 0, i.e. when

dy

dt
= v(t) = 10− 5t = 0.

Solving for t, we get t = 2 sec as the time at which he reaches the maximum height from the surface of the moon. At this
time his height is

y(2) = 10(2)− 1

2
5(2)2 = 10 ft.

When the astronaut is at height y = 0, he either just landed or is about to jump. To find how long it is before he comes
back down, we find when he is at height y = 0. Set y(t) = 0 to get

0 = 10t− 1

2
5t2

0 = 20t− 5t2

0 = 4t− t2

0 = t(t− 4).

So we have t = 0 sec (when he jumps off) and t = 4 sec (when he lands, which gives the time he spent in the air).

7. Let the acceleration due to gravity equal −k meters/sec2, for some positive constant k, and suppose the object falls from
an initial height of s(0) meters. We have a(t) = dv/dt = −k, so that

v(t) = −kt+ v0.

Since the initial velocity is zero, we have
v(0) = −k(0) + v0 = 0,

which means v0 = 0. Our formula becomes

v(t) =
ds

dt
= −kt.

This means

s(t) =
−kt2

2
+ s0.

Since

s(0) =
−k(0)2

2
+ s0,

we have s0 = s(0), and our formula becomes

s(t) =
−kt2

2
+ s(0).

Suppose that the object falls for t seconds. Assuming it has not hit the ground, its height is

s(t) =
−kt2

2
+ s(0),

so that the distance traveled is

s(0)− s(t) =
kt2

2
meters,

which is proportional to t2.
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8. (a) t =
s

1
2
vmax

, where t is the time it takes for an object to travel the distance s, starting from rest with uniform

acceleration a. vmax is the highest velocity the object reaches. Since its initial velocity is 0, the mean of its highest
velocity and initial velocity is 1

2
vmax.

(b) By Problem 7, s = 1
2
gt2, where g is the acceleration due to gravity, so it takes

√
200/32 = 5/2 seconds for the body

to hit the ground. Since v = gt, vmax = 32( 5
2
) = 80 ft/sec. Galileo’s statement predicts (100 ft)/(40 ft/sec) = 5/2

seconds, and so Galileo’s result is verified.
(c) If the acceleration is a constant a, then s = 1

2
at2, and vmax = at. Thus

s
1
2
vmax

=
1
2
at2

1
2
at

= t.

9. (a) Since s(t) = − 1
2
gt2, the distance a body falls in the first second is

s(1) = −1

2
· g · 12 = −g

2
.

In the second second, the body travels

s(2)− s(1) = −1

2

(
g · 22 − g · 12

)
= −1

2
(4g − g) = −3g

2
.

In the third second, the body travels

s(3)− s(2) = −1

2

(
g · 32 − g · 22

)
= −1

2
(9g − 4g) = −5g

2
,

and in the fourth second, the body travels

s(4)− s(3) = −1

2

(
g · 42 − g · 32

)
= −1

2
(16g − 9g) = −7g

2
.

(b) Galileo seems to have been correct. His observation follows from the fact that the differences between consecutive
squares are consecutive odd numbers. For, if n is any number, then n2 − (n − 1)2 = 2n − 1, which is the nth odd
number (where 1 is the first).

10. If r is the distance from the center of the earth,

g =
GM

r2
,

so at 2 meters
9.8 =

GM

(6.4× 106 + 2)2
.

At 100 meters above the ground,

gnew =
GM

(6.4× 106 + 100)2

so

gnew

9.8
=

GM

(6.4× 106 + 100)2

/
GM

(6.4× 106 + 2)2

gnew = 9.8

(
6, 400, 002

6, 400, 100

)2

= 9.79969 . . . m/sec2.

Thus, to the first decimal place, the acceleration due to gravity is still 9.8 m/sec2 at 100 m above the ground.
At 100,000 meters above the ground,

gnew = 9.8

(
6, 400, 002

6, 500, 000

)2

= 9.5m/sec2.
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Solutions for Chapter 6 Review

Exercises

1. See Figure 6.32

1
x

F (0) = 0

F (0) = 1

Figure 6.32

1
x

F (0) = 0

F (0) = 1

Figure 6.33

2. See Figure 6.33

3. 5
2
x2 + 7x+ C

4.
∫

(4t+
1

t
) dt = 2t2 + ln |t|+ C

5.
∫

(2 + cos t) dt = 2t+ sin t+ C

6.
∫

7ex dx = 7ex + C

7.
∫

(3ex + 2 sinx) dx = 3ex − 2 cosx+ C

8.
∫

(x+ 3)2 dx =

∫
(x2 + 6x+ 9) dx =

x3

3
+ 3x2 + 9x+ C

9.
∫

8√
x
dx = 16x1/2 + C

10. 3 ln |t|+ 2

t
+ C

11. ex + 5x+ C

12. 2
5
x5/2 − 2 ln |x|+ C

13. tanx+ C

14. 1

ln 2
2x + C, since

d

dx
(2x) = (ln 2) · 2x

15.
∫

(x+ 1)2 dx =
(x+ 1)3

3
+ C.

Another way to work the problem is to expand (x+ 1)2 to x2 + 2x+ 1 as follows:
∫

(x+ 1)2 dx =

∫
(x2 + 2x+ 1) dx =

x3

3
+ x2 + x+ C.

These two answers are the same, since
(x+ 1)3

3
=
x3 + 3x2 + 3x+ 1

3
=
x3

3
+ x2 + x +

1

3
, which is

x3

3
+ x2 + x,

plus a constant.

16.
∫

(x+ 1)3 dx =
(x+ 1)4

4
+ C.

Another way to work the problem is to expand (x+ 1)3 to x3 + 3x2 + 3x+ 1:
∫

(x+ 1)3 dx =

∫
(x3 + 3x2 + 3x+ 1) dx =

x4

4
+ x3 +

3

2
x2 + x+ C.

It can be shown that these answers are the same by expanding
(x+ 1)4

4
.
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17. 1
10

(x+ 1)10 + C

18. Since f(x) =
x+ 1

x
= 1 +

1

x
, the indefinite integral is x+ ln |x|+ C

19. Since f(x) = x+ 1 +
1

x
, the indefinite integral is

1

2
x2 + x+ ln |x|+ C

20. 3 sin t+ 2t3/2 + C

21. 3 sinx+ 7 cosx+ C

22. 2 ln |x| − π cosx+ C

23. 2ex − 8 sinx+ C

24. P (t) =

∫
1

t
dt = ln |t|+ C

25. F (x) =

∫
1

x2
dx = − 1

x
+ C

26. F (x) =

∫
cosx dx = sinx+ C

27. G(x) =

∫
sinx dx = − cosx+ C

28. F (x) =

∫
(ex − 1) dx = ex − x+ C

29. F (x) =

∫
5ex dx = 5ex + C

30. H(t) =

∫
5

t
dt = 5 ln |t|+ C

31. F (t) =

∫ (
t+

1

t

)
dt =

t2

2
+ ln |t|+ C

32. F (x) =

∫
f(x) dx =

∫
x2 dx =

x3

3
+C. If F (0) = 4, then F (0) = 0 +C = 4 and thus C = 4. So F (x) =

x3

3
+ 4.

33. We have F (x) =
x4

4
+ 2x3− 4x+C. Since F (0) = 4, we have 4 = 0 +C, so C = 4. So F (x) =

x4

4
+ 2x3− 4x+ 4.

34. F (x) =

∫ √
x dx =

2

3
x3/2 + C. If F (0) = 4, then F (0) = 0 + C = 4 and thus C = 4. So F (x) =

2

3
x3/2 + 4.

35. F (x) =

∫
ex dx = ex + C. If F (0) = 4, then F (0) = 1 + C = 4 and thus C = 3. So F (x) = ex + 3.

36. F (x) =

∫
sinx dx = − cosx+ C. If F (0) = 4, then F (0) = −1 + C = 4 and thus C = 5. So F (x) = − cosx+ 5.

37. F (x) =

∫
cosx dx = sinx+ C. If F (0) = 4, then F (0) = 0 + C = 4 and thus C = 4. So F (x) = sinx+ 4.

38. We have ∫ 3

1

(6x2 + 8x+ 5)dx = (2x3 + 4x2 + 5x)
∣∣3
1

= (54 + 36 + 15)− (2 + 4 + 5) = 94.

Problems

39.
∫ 3

0

x2 dx =
x3

3

∣∣∣∣
3

0

= 9− 0 = 9.

40. Since y = x3−x = x(x−1)(x+1), the graph crosses the axis at the three points shown in Figure 6.34. The two regions
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have the same area (by symmetry). Since the graph is below the axis for 0 < x < 1, we have

Area = 2

(
−
∫ 1

0

(
x3 − x

)
dx

)

= −2

[
x4

4
− x2

2

]1

0

= −2
(

1

4
− 1

2

)
=

1

2
.

−1 1

y = x3 − x

x

y

Figure 6.34

−π
3

π
3

y = 1
2

(
3
π
x
)2

y = cosx

x

Figure 6.35

41. The area we want (the shaded area in Figure 6.35) is symmetric about the y-axis and so is given by

Area = 2

∫ π/3

0

(
cosx− 1

2

(
3

π
x
)2
)
dx

= 2

∫ π/3

0

cosx dx−
∫ π/3

0

9

π2
x2 dx

= 2 sinx

∣∣∣∣
π/3

0

− 9

π2
· x

3

3

∣∣∣∣
π/3

0

= 2 ·
√

3

2
− 3

π2
· π

3

33
=
√

3− π

9
.

42. Since y < 0 from x = 0 to x = 1 and y > 0 from x = 1 to x = 3, we have

Area = −
∫ 1

0

(
3x2 − 3

)
dx+

∫ 3

1

(
3x2 − 3

)
dx

= −
(
x3 − 3x

) ∣∣∣∣
1

0

+
(
x3 − 3x

) ∣∣∣∣
3

1

= −(−2− 0) + (18− (−2)) = 2 + 20 = 22.

43. (a) See Figure 6.36. Since f(x) > 0 for 0 < x < 2 and f(x) < 0 for 2 < x < 5, we have

Area =

∫ 2

0

f(x) dx−
∫ 5

2

f(x) dx

=

∫ 2

0

(x3 − 7x2 + 10x) dx−
∫ 5

2

(x3 − 7x2 + 10x) dx

=

(
x4

4
− 7x3

3
+ 5x2

)∣∣∣∣
2

0

−
(
x4

4
− 7x3

3
+ 5x2

)∣∣∣∣
5

2

=
[(

4− 56

3
+ 20

)
− (0− 0 + 0)

]
−
[(

625

4
− 875

3
+ 125

)
−
(

4− 56

3
+ 20

)]

=
253

12
.
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2

5
x

Figure 6.36: Graph of f(x) = x3 − 7x2 + 10x

(b) Calculating
∫ 5

0
f(x) dx gives

∫ 5

0

f(x) dx =

∫ 5

0

(x3 − 7x2 + 10x) dx

=

(
x4

4
− 7x3

3
+ 5x2

)∣∣∣∣
5

0

=
(

625

4
− 875

3
+ 125

)
− (0− 0 + 0)

= −125

12
.

This integral measures the difference between the area above the x-axis and the area below the x-axis. Since the
definite integral is negative, the graph of f(x) lies more below the x-axis than above it. Since the function crosses
the axis at x = 2, ∫ 5

0

f(x) dx =

∫ 2

0

f(x) dx+

∫ 5

2

f(x) dx =
16

3
− 63

4
=
−125

12
,

whereas

Area =

∫ 2

0

f(x) dx−
∫ 5

2

f(x) dx =
16

3
+

64

4
=

253

12
.

44. Since the area under the curve is 6, we have
∫ b

1

1√
x
dx = 2x1/2

∣∣∣∣
b

1

= 2b1/2 − 2(1) = 6.

Thus b1/2 = 4 and b = 16.

45. The graph of y = c(1−x2) has x-intercepts of x = ±1. See Figure 6.37. Since it is symmetric about the y-axis, we have

Area =

∫ 1

−1

c(1− x2) dx = 2c

∫ 1

0

(1− x2) dx

= 2c

(
x− x3

3

)∣∣∣∣
1

0

=
4c

3
.

We want the area to be 1, so
4c

3
= 1, giving c =

3

4
.

−1 1

c

y = c(1− x2)

x

y

Figure 6.37

π
2

π
x

y

A

B

	

Height =
sinx− x(x− π)

Figure 6.38
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46. The curves intersect at (0, 0) and (π, 0). At any x-coordinate the “height” between the two curves is sinx − x(x − π).
See Figure 6.38.

Thus the total area is
∫ π

0

[sinx− x(x− π)] dx = =

∫ π

0

(sinx− x2 + πx) dx

=

(
− cosx− x3

3
+
πx2

2

)∣∣∣∣
π

0

=

(
1− π3

3
+
π3

2

)
− (−1)

= 2 +
π3

6
.

Another approach is to notice that the area between the two curves is (area A) + (area B).

Area B = −
∫ π

0

x(x− π) dx since the function is negative on 0 ≤ x ≤ π

= −
(
x3

3
− πx2

2

)∣∣∣∣
π

0

=
π3

2
− π3

3
=
π3

6
;

Area A =

∫ π

0

sinx dx = − cosx

∣∣∣∣
π

0

= 2.

Thus the area is 2 +
π3

6
.

47. See Figure 6.39. The average value of f(x) is given by

Average =
1

9− 0

∫ 9

0

√
x dx =

1

9

(
2

3
x3/2

∣∣∣∣
9

0

)
=

1

9

(
2

3
93/2 − 0

)
=

1

9
18 = 2.

9

2 Average value

f(x) =
√
x

Figure 6.39

48. The total amount of discharge is the integral of the discharge rate from t = 0 to t = 3:

Total discharge =

∫ 3

0

(t2 − 14t+ 49) dt

=

(
t3

3
− 7t2 + 49t

)∣∣∣∣
3

0

= (9− 63 + 147)− 0

= 93 cubic meters.

49. (a) Since f ′(t) is positive on the interval 0 < t < 2 and negative on the interval 2 < t < 5, the function f(t) is
increasing on 0 < t < 2 and decreasing on 2 < t < 5. Thus f(t) attains its maximum at t = 2. Since the area
under the t-axis is greater than the area above the t-axis, the function f(t) decreases more than it increases. Thus, the
minimum is at t = 5.

(b) To estimate the value of f at t = 2, we see that the area under f ′(t) between t = 0 and t = 2 is about 1 box, which
has area 5. Thus,

f(2) = f(0) +

∫ 2

0

f ′(t)dt ≈ 50 + 5 = 55.
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The maximum value attained by the function is f(2) ≈ 55.
The area between f ′(t) and the t-axis between t = 2 and t = 5 is about 3 boxes, each of which has an area of

5. Thus

f(5) = f(2) +

∫ 5

2

f ′(t)dt ≈ 55 + (−15) = 40.

The minimum value attained by the function is f(5) = 40.
(c) Using part (b), we have f(5)− f(0) = 40− 50 = −10. Alternately, we can use the Fundamental Theorem:

f(5)− f(0) =

∫ 5

0

f ′(t)dt ≈ 5− 15 = −10.

50. (a) We know that
∫ 3

0
f ′(x)dx = f(3) − f(0) from the Fundamental Theorem of Calculus. From the graph of f ′ we

can see that
∫ 3

0
f ′(x)dx = 2− 1 = 1 by subtracting areas between f ′ and the x-axis. Since f(0) = 0, we find that

f(3) = 1. Similar reasoning gives f(7) =
∫ 7

0
f ′(x)dx = 2− 1 + 2− 4 + 1 = 0.

(b) We have f(0) = 0, f(2) = 2, f(3) = 1, f(4) = 3, f(6) = −1, and f(7) = 0. So the graph, beginning at x = 0,
starts at zero, increases to 2 at x = 2, decreases to 1 at x = 3, increases to 3 at x = 4, then passes through a zero as
it decreases to −1 at x = 6, and finally increases to 0 at 7. Thus, there are three zeroes: x = 0, x = 5.5, and x = 7.

(c)

1 2 3 4 5 6 7
−1

1

2

3

x

y

51. See Figure 6.40.

x1 x2 x3 x4

x

f(x)

?

Point of
inflection

Figure 6.40

x1 x2 x3 x4

f(x)

x

Local min

?

Inflection point

?

Local max

?
Inflection
point

�

Figure 6.41

52. See Figure 6.41.

53. We have
d

dx

∫ x

2

arccos(t7) dt = arccosx7.

54. We have
d

dt

∫ 7

t

log(x6) dx = − log t6.

55. If we let f(x) =
∫ x

5
cos(t3) dt and g(x) = ex, using the chain rule gives

d

dx

∫ ex

5

cos(t3) dt = f ′(g(x)) · g′(x) = cos((ex)3) · ex = ex cos(e3x).
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56. Since
∫ 17

sin x
tan3 t dt = −

∫ sin x

17
tan3 t dt, if we let f(x) =

∫ x
17

tan3 t dt and g(x) = sinx, using the chain rule gives

d

dx

∫ 17

sin x

tan3 t dt = − d

dx

∫ sin x

17

tan3 t dt = −f ′(g(x)) · g′(x)

= − tan3(sinx) · cosx = −(cosx) tan3(sinx).

57. We split the integral at x = 1 (or any other point we choose):

∫ cos t

t5

47x dx =

∫ cos t

1

47x dx+

∫ 1

t5

47x dx =

∫ cos t

1

47x dx−
∫ t5

1

47x dx.

Differentiating each part separately and using the chain rule gives

d

dt

∫ cos t

t5

47x dx =
d

dt

∫ cos t

1

47x dx− d

dt

∫ t5

1

47x dx

= 47 cos t(− sin t)− 47t5(5t4)

= −(sin t)47 cos t − 5t447t5 .

58. We split the integral at x = 1 (or any other point we choose):

∫ 4 sin t

et

1 + x

1 + x2
dx =

∫ 4 sin t

1

1 + x

1 + x2
dx+

∫ 1

et

1 + x

1 + x2
dx =

∫ 4 sin t

1

1 + x

1 + x2
dx−

∫ et

1

1 + x

1 + x2
dx.

Differentiating each part separately and using the chain rule gives

d

dt

∫ 4 sin t

et

1 + x

1 + x2
dx =

d

dt

∫ 4 sin t

1

1 + x

1 + x2
dx− d

dt

∫ et

1

1 + x

1 + x2
dx.

=
1 + 4 sin t

1 + (4 sin t)2
4 cos t− 1 + et

1 + (et)2
et

= 4 cos t
1 + 4 sin t

1 + 16 sin2 t
− et 1 + et

1 + e2t

59. F (x) represents the net area between (sin t)/t and the t-axis from t = π
2

to t = x, with area counted as negative for
(sin t)/t below the t-axis. As long as the integrand is positive F (x) is increasing. Therefore, the global maximum of
F (x) occurs at x = π and is given by the area

A1 =

∫ π

π/2

sin t

t
dt.

At x = π/2, F (x) = 0. Figure 6.42 shows that the area A1 is larger than the area A2. Thus F (x) > 0 for π
2
< x ≤ 3π

2
.

Therefore the global minimum is F ( π
2

) = 0.

π
2

π
3π
2

−1

1

t

y

A1 A2

6
6

y = sin t
t

Figure 6.42
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60. Since B is the graph of a decreasing function, the graph of its derivative should fall below the x-axis. Thus, f ′ could be C
and f could be B. Since the graph of B is above the x-axis and represents a decreasing function, the function

∫ x
0
f(t) dt

should be increasing and concave down. Thus, A could be the graph of
∫ x

0
f(t) dt.

61. A function whose derivative is ex
2

is of the form

f(x) = C +

∫ x

a

et
2

dt for some value of C.

(a) To ensure that the function goes through the point (0, 3), we take a = 0 and C = 3:

f(x) = 3 +

∫ x

0

et
2

dt.

(b) To ensure that the function goes through (−1, 5), we take a = −1 and C = 5:

f(x) = 5 +

∫ x

−1

et
2

dt.

62. We know the height is given by
s = −25t2 + 72t+ 40,

so the velocity is given by
v = −50t+ 72

and the acceleration is given by
a = −50.

The acceleration due to gravity is −50 ft/sec2 downward. Since v(0) = 72, the object was thrown at 72 ft/sec. Since
s(0) = 40, the object was thrown from a height of 40 ft.

63. The graph of h(t) must slope downward most steeply when h′(t) has its minimum. The graph of h(t) should have its
minimum about two-thirds of the way through the time interval (when the graph of h′(t) intersects the x-axis), and have
its final value about half-way between its maximum and minimum values. A possible graph of h(t) is given in Figure 6.43.
The placement of the horizontal axis below the graph is arbitrary.

h(t)

t

Figure 6.43

64. Let v be the velocity and s be the position of the particle at time t. We know that a = dv/dt, so acceleration is the slope
of the velocity graph. Similarly, velocity is the slope of the position graph. Graphs of v and s are shown in Figures 6.44
and 6.45, respectively.

1 2 3 4 5 6 7
t

v

Figure 6.44: Velocity against time

1 2 3 4 5 6 7
t

s

Figure 6.45: Position against time
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65. (a) Since 6 sec = 1/10 min,

Angular acceleration =
2500− 1100

1/10
= 14,000 revs/min2.

(b) We know angular acceleration is the derivative of angular velocity. Since

Angular acceleration = 14,000,

we have
Angular velocity = 14,000t+ C.

Measuring time from the moment at which the angular velocity is 1100 revs/min, we have C = 1100. Thus,

Angular velocity = 14,000t+ 1100.

Thus the total number of revolutions performed during the period from t = 0 to t = 1/10 min is given by

Number of
revolutions

=

∫ 1/10

0

(14000t+ 1100)dt = 7000t2 + 1100t

∣∣∣∣
1/10

0

= 180 revolutions.

66. (a) Since the rotor is slowing down at a constant rate,

Angular acceleration =
260− 350

1.5
= −60 revs/min2.

Units are revolutions per minute per minute, or revs/min2.
(b) To decrease from 350 to 0 revs/min at a deceleration of 60 revs/min2,

Time needed =
350

60
≈ 5.83 min.

(c) We know angular acceleration is the derivative of angular velocity. Since

Angular acceleration = −60 revs/min2,

we have
Angular velocity = −60t+ C.

Measuring time from the moment when angular velocity is 350 revs/min, we get C = 350. Thus

Angular velocity = −60t+ 350.

So, the total number of revolutions made between the time the angular speed is 350 revs/min and stopping is given
by:

Number of revolutions =

∫ 5.83

0

(Angular velocity) dt

=

∫ 5.83

0

(−60t+ 350)dt = −30t2 + 350t

∣∣∣∣
5.83

0

= 1020.83 revolutions.

67. (a) Using g = −32 ft/sec2, we have

t (sec) 0 1 2 3 4 5
v(t) (ft/sec) 80 48 16 −16 −48 −80

(b) The object reaches its highest point when v = 0, which appears to be at t = 2.5 seconds. By symmetry, the object
should hit the ground again at t = 5 seconds.

(c) Left sum = 80(1) + 48(1) + 16( 1
2
) = 136 ft , which is an overestimate.

Right sum = 48(1) + 16(1) + (−16)( 1
2
) = 56 ft , which is an underestimate.

Note that we used a smaller third rectangle of width 1/2 to end our sum at t = 2.5.
(d) We have v(t) = 80− 32t, so antidifferentiation yields s(t) = 80t− 16t2 + s0.

But s0 = 0, so s(t) = 80t− 16t2.
At t = 2.5, s(t) = 100 ft., so 100 ft. is the highest point.
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68. The velocity of the car decreases at a constant rate, so we can write: dv/dt = −a. Integrating this gives v = −at + C.
The constant of integration C is the velocity when t = 0, so C = 60 mph = 88 ft/sec, and v = −at + 88. From this
equation we can see the car comes to rest at time t = 88/a.

Integrating the expression for velocity we get s = − a
2
t2 + 88t + C, where C is the initial position, so C = 0. We

can use fact that the car comes to rest at time t = 88/a after traveling 200 feet. Start with

s = −a
2
t2 + 88t,

and substitute t = 88/a and s = 200:

200 = −a
2

(
88

a

)2

+ 88
(

88

a

)
=

882

2a

a =
882

2(200)
= 19.36 ft/sec2

69. (a) In the beginning, both birth and death rates are small; this is consistent with a very small population. Both rates begin
climbing, the birth rate faster than the death rate, which is consistent with a growing population. The birth rate is then
high, but it begins to decrease as the population increases.

(b)

≈ 6 10 15 20
time (hours)

bacteria/hour

B

D

≈ 6 10 15 20
time (hours)

B −D

bacteria/hour

Figure 6.46: Difference between B and D is greatest at t ≈ 6

The bacteria population is growing most quickly when B − D, the rate of change of population, is maximal;
that happens when B is farthest above D, which is at a point where the slopes of both graphs are equal. That point is
t ≈ 6 hours.

(c) Total number born by time t is the area under the B graph from t = 0 up to time t. See Figure 6.47.
Total number alive at time t is the number born minus the number that have died, which is the area under the B

graph minus the area under the D graph, up to time t. See Figure 6.48.

5 10 15 20

bacteria

B
D

time (hours)

Figure 6.47: Number born by time t is∫ t
0
B(x) dx

5 ≈ 11 15 20

bacteria

B

D

time (hours)
N

Figure 6.48: Number alive at time t is∫ t
0

(B(x)−D(x)) dx

From Figure 6.48, we see that the population is at a maximum when B = D, that is, after about 11 hours. This
stands to reason, because B −D is the rate of change of population, so population is maximized when B −D = 0,
that is, when B = D.
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70.

t1 2t1 t3
t (time)

H (height)

Suppose t1 is the time to fill the left side to the top of the middle ridge. Since the container gets wider as you go up,
the rate dH/dt decreases with time. Therefore, for 0 ≤ t ≤ t1, graph is concave down.

At t = t1, water starts to spill over to right side and so depth of left side does not change. It takes as long for the
right side to fill to the ridge as the left side, namely t1. Thus the graph is horizontal for t1 ≤ t ≤ 2t1.

For t ≥ 2t1, water level is above the central ridge. The graph is climbing because the depth is increasing, but at a
slower rate than for t ≤ t1 because the container is wider. The graph is concave down because width is increasing with
depth. Time t3 represents the time when container is full.

71. • For [0, t1], the acceleration is constant and positive and the velocity is positive so the displacement is positive. Thus,
the work done is positive.

• For [t1, t2], the acceleration, and therefore the force, is zero. Therefore, the work done is zero.
• For [t2, t3], the acceleration is negative and thus the force is negative. The velocity, and thus the displacement, is

positive; therefore the work done is negative.
• For [t3, t4], the acceleration (and thus the force) and the velocity (and thus the displacement) are negative. Thus, the

work done is positive.
• For [t2, t4], the acceleration and thus the force is constant and negative. Velocity both positive and negative; total

displacement is 0. Since force is constant, work is 0.

CAS Challenge Problems

72. (a) We have ∆x =
(b− a)

n
and xi = a+ i(∆x) = a+ i

(
b− a
n

)
, so, since f(xi) = xi

3,

Riemann sum =

n∑

i=1

f(xi)∆x =

n∑

i=1

[
a+ i

(
b− a
n

)]3 (
b− a
n

)
.

(b) A CAS gives

n∑

i=1

[
a+

i(b− a)

n

]3
(b− a)

n
= − (a− b)(a3(n− 1)2 + (a2b+ ab2)(n2 − 1) + b3(n+ 1)3)

4n2
.

Taking the limit as n→∞ gives

lim
n→∞

n∑

i=1

[
a+ i

(
b− a
n

)]3 (
b− a
n

)
= − (a+ b)(a− b)(a2 + b2)

4
.

(c) The answer to part (b) simplifies to
b4

4
− a4

4
. Since

d

dx

(
x4

4

)
= x3, the Fundamental Theorem of Calculus says

that ∫ b

a

x3dx =
x4

4

∣∣∣∣
b

a

=
b4

4
− a4

4
.
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73. (a) A CAS gives ∫
e2x dx =

1

2
e2x

∫
e3x dx =

1

3
e3x

∫
e3x+5 dx =

1

3
e3x+5.

(b) The three integrals in part (a) obey the rule
∫
eax+b dx =

1

a
eax+b.

(c) Checking the formula by calculating the derivative

d

dx

(
1

a
eax+b

)
=

1

a

d

dx
eax+b

by the constant multiple rule

=
1

a
eax+b d

dx
(ax+ b) by the chain rule

=
1

a
eax+b · a = eax+b.

74. (a) A CAS gives
∫

sin(3x) dx = −1

3
cos(3x)

∫
sin(4x) dx = −1

4
cos(4x)

∫
sin(3x− 2) dx = −1

3
cos(3x− 2).

(b) The three integrals in part (a) obey the rule
∫

sin(ax+ b) dx = − 1

a
cos(ax+ b).

(c) Checking the formula by calculating the derivative

d

dx

(
−1

a
cos(ax+ b)

)
= −1

a

d

dx
cos(ax+ b) by the constant multiple rule

= −1

a
(− sin(ax+ b))

d

dx
(ax+ b) by the chain rule

= −1

a
(− sin(ax+ b)) · a = sin(ax+ b).

75. (a) A CAS gives
∫

x− 2

x− 1
dx = x− ln |x− 1|

∫
x− 3

x− 1
dx = x− 2 ln |x− 1|

∫
x− 1

x− 2
dx = x+ ln |x− 2|

Although the absolute values are needed in the answer, some CASs may not include them.
(b) The three integrals in part (a) obey the rule

∫
x− a
x− b dx = x+ (b− a) ln |x− b|.

(c) Checking the formula by calculating the derivative

d

dx
(x+ (b− a) ln |x− b|) = 1 + (b− a)

1

x− b by the sum and constant multiple rules

=
(x− b) + (b− a)

x− b =
x− a
x− b
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76. (a) A CAS gives
∫

1

(x− 1)(x− 3)
dx =

1

2
(ln |x− 3| − ln |x− 1|)

∫
1

(x− 1)(x− 4)
dx =

1

3
(ln |x− 4| − ln |x− 1|)

∫
1

(x− 1)(x+ 3)
dx =

1

4
(ln |x+ 3| − ln |x− 1|).

Although the absolute values are needed in the answer, some CASs may not include them.
(b) The three integrals in part (a) obey the rule

∫
1

(x− a)(x− b) dx =
1

b− a (ln |x− b| − ln |x− a|).

(c) Checking the formula by calculating the derivative

d

dx

(
1

b− a (ln |x− b| − ln |x− a|)
)

=
1

b− a
(

1

x− b −
1

x− a
)

=
1

b− a

(
(x− a)− (x− b)

(x− a)(x− b)

)

=
1

b− a

(
b− a

(x− a)(x− b)

)
=

1

(x− a)(x− b) .

CHECK YOUR UNDERSTANDING

1. True. A function can have only one derivative.

2. True. Check by differentiating d
dx

(2(x+ 1)3/2) = 2 · 3
2
(x+ 1)1/2 = 3

√
x+ 1.

3. True. Any antiderivative of 3x2 is obtained by adding a constant to x3.

4. True. Any antiderivative of 1/x is obtained by adding a constant to ln |x|.
5. False. Differentiating using the product and chain rules gives

d

dx

(−1

2x
e−x

2
)

=
1

2x2
e−x

2

+ e−x
2

.

6. False. It is not true in general that
∫
xf(x)dx = x

∫
f(x)dx, so this statement is false for many functions f(x). For

example, if f(x) = 1, then
∫
xf(x) dx = x2/2 + C, but x

∫
f(x) dx = x(x+ C).

7. True. Adding a constant to an antiderivative gives another antiderivative.

8. True. If F (x) is an antiderivative of f(x), then F ′(x) = f(x), so dy/dx = f(x). Therefore, y = F (x) is a solution to
this differential equation.

9. True. If y = F (x) is a solution to the differential equation dy/dx = f(x), then F ′(x) = f(x), so F (x) is an antideriva-
tive of f(x).

10. True. If acceleration is a(t) = k for some constant k, k 6= 0, then we have

Velocity = v(t) =

∫
a(t)dt =

∫
kdt = kt+ C1,

for some constant C1. We integrate again to find position as a function of time:

Position = s(t) =

∫
v(t)dt =

∫
(kt+ C1)dt =

kt2

2
+ C1t+ C2,

for some constant C2. Since k 6= 0, this is a quadratic polynomial.

11. True. Since F (x) and G(x) are antiderivatives of the same function on an interval, F (x) − G(x) is a constant function.
Thus F (10)−G(10) = F (5)−G(5) > 0.
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12. False. In an initial value problem the value of y is specified at one value of x, but it does not have to be x = 0.

13. False. The solution of the initial value problem dy/dx = 1 with y(0) = −5 is a solution of the differential equation that
is not positive at x = 0.

14. True. If dy/dx = f(x) > 0, then all solutions y(x) have positive derivative and thus are increasing functions.

15. True. Two solutions y = F (x) and y = G(x) of the same differential equation dy/dx = f(x) are both antiderivatives of
f(x) and hence they differ by a constant: F (x)−G(x) = C for all x. Since F (3) 6= G(3) we have C 6= 0.

16. True. If y = f(x) satisfies the differential equation dy/dx = sinx/x, then f ′(x) = sinx/x. Since (f(x) + 5)′ =
f ′(x) = sinx/x, the function y = f(x) + 5 is also a solution of the same differential equation.

17. True. All solutions of the differential equation dy/dt = 3t2 are in the family y(t) = t3 +C of antiderivatives of 3t2. The
initial condition y(1) = π tells us that y(1) = π = 13 + C, so C = π − 1. Thus y(t) = t3 + π − 1 is the only solution
of the initial value problem.

18. False. For a counterexample, take f(x) = g(x) = 1. Then F (x) = x and G(x) = x are antiderivatives of f(x) and
g(x), but F (x) ·G(x) = x2 is not an antiderivative of f(x) · g(x) = 1.

19. True. The derivative of F (x)−G(x) is (F (x)−G(x))′ = f(x)− f(x) = 0, so F (x)−G(x) is a constant function.

20. True. The Construction Theorem for Antiderivatives gives a method for building an antiderivative with a definite integral.

21. True. Suppose t is measured in seconds from when the ball was thrown. The acceleration a = dv/dt is −32 ft/sec2, so
the velocity of the ball is v = −32t + C feet/second at time t. At t = 0 the velocity is −10, so v = −32t − 10. Since
v = ds/dt, an antiderivative gives the height s = −16t2 − 10t+K feet of the ball at time t. Since the ball starts at the
top of the building, s = 100 when t = 0. Substituting gives s = −16t2 − 10t + 100. The ball hits the ground when
s = 0, so we solve 0 = −16t2 − 10t + 100. The positive solution t = 2.2 tells us that the ball hits the ground after
2.2 seconds.

22. True, by the Second Fundamental Theorem of Calculus.

23. True. We see that

F (5)− F (3) =

∫ 5

0

f(t)dt−
∫ 3

0

f(t)dt =

∫ 5

3

f(t)dt.

24. False. If f is positive then F is increasing, but if f is negative then F is decreasing.

25. True. Since F and G are both antiderivatives of f , they must differ by a constant. In fact, we can see that the constant C
is equal to

∫ 2

0
f(t)dt since

F (x) =

∫ x

0

f(t)dt =

∫ x

2

f(t)dt+

∫ 2

0

f(t)dt = G(x) + C.

26. True, since
∫ x

0
(f(t) + g(t))dt =

∫ x
0
f(t)dt+

∫ x
0
g(t)dt.

PROJECTS FOR CHAPTER SIX

1. (a) If the poorest p% of the population has exactly p% of the goods, then F (x) = x.
(b) Any such F is increasing. For example, the poorest 50% of the population includes the poorest 40%, and

so the poorest 50% must own more than the poorest 40%. Thus F (0.4) ≤ F (0.5), and so, in general, F is
increasing. In addition, it is clear that F (0) = 0 and F (1) = 1.

The graph of F is concave up by the following argument. Consider F (0.05) − F (0.04). This is the
fraction of resources the fifth poorest percent of the population has. Similarly, F (0.20) − F (0.19) is the
fraction of resources that the twentieth poorest percent of the population has. Since the twentieth poorest
percent owns more than the fifth poorest percent, we have

F (0.05)− F (0.04) ≤ F (0.20)− F (0.19).

More generally, we can see that

F (x1 + ∆x)− F (x1) ≤ F (x2 + ∆x)− F (x2)
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for any x1 smaller than x2 and for any increment ∆x. Dividing this inequality by ∆x and taking the limit
as ∆x→ 0, we get

F ′(x1) ≤ F ′(x2).

So, the derivative of F is an increasing function, i.e. F is concave up.
(c) G is twice the shaded area below in the following figure. If the resource is distributed evenly, then G is

zero. The larger G is, the more unevenly the resource is distributed. The maximum possible value of G is
1.

1

F (x)

y = x

x

2. (a) In Figure 6.49, the area of the shaded region is F (M). Thus, F (M) =
∫M

0
y(t) dt and, by the Fundamental

Theorem, F ′(M) = y(M).

M
t (time in years)

y (annual yield)

F (M)

Figure 6.49

(b) Figure 6.50 is a graph of F (M). Note that the graph of y looks like the graph of a quadratic function.
Thus, the graph of F looks like a cubic.

10 20 30 40 50 60

5000

10000

15000

20000

M (time in years)

F (total yield)

F (M)

Figure 6.50

(c) We have

a(M) =
1

M
F (M) =

1

M

∫ M

0

y(t) dt.
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(d) If the function a(M) takes on its maximum at some point M , then a′(M) = 0. Since

a(M) =
1

M
F (M),

differentiating using the quotient rule gives

a′(M) =
MF ′(M)− F (M)

M2
= 0,

so MF ′(M) = F (M). Since F ′(M) = y(M), the condition for a maximum may be written as

My(M) = F (M)

or as
y(M) = a(M).

To estimate the value of M which satisfies My(M) = F (M), use the graph of y(t). Notice that
F (M) is the area under the curve from 0 to M , and that My(M) is the area of a rectangle of base M and
height y(M). Thus, we want the area under the curve to be equal to the area of the rectangle, or A = B
in Figure 6.51. This happens when M ≈ 50 years. In other words, the orchard should be cut down after
about 50 years.

50
t (time in years)

y (annual yield) Area B

?

Area A -

Figure 6.51


