7.1 SOLUTIONS

CHAPTER SEVEN

407

Solutions for Section 7.1

Exercises

1. (a) We substitute w = 1 + 22, dw = 2z dx.

z=1 w=2
Ldav:1 ldwzlln\w\ In2.
o 142 2 J,_, w 2
Tr= w= 1
(b) We substitute w = cosx, dw = — sinx dx.
=% . w=v2/2
4
/ ST gy = 7/ 1 dw
oo COST wel w
= —1In|w| o = —1n£ = l1 2
B B 2 2
1
2. (a) L sin( +1) =2z cos( 21 L sin(z® + 1) = 3z% cos(z® + 1)
(b) () 3 bln( 241)+ (i) isin(z®+1)+C

(c) () —= cos( 211 + C (ii) fé cos(z® +1) + C
3. We use the substitution w = 3z, dw = 3 dx.

/ e¥dr =

Check: (1% + C) = Le7(3) = *”.

4. We use the substitution w = —z, dw = — dx.

/e_wdx = —/ewdw =—-€e"+C=—-e"+C.

Check: -L(—e "4+ C) = —(—e ") =e"".
5. We use the substitution w = —0.2¢, dw = —0.2 dt.

w w 1 3x
/e dw = 36 +C’—3 + C.

Wl

2
/25670‘2tdt = 752 e¥dw = —125¢¥ + C = —125¢ %% + C.

Check: 4 (—125¢~ "% + C) = —125¢~ "% (—0.2) = 25e~ ",
6. We use the substitution w = t2, dw = 2¢ dt.

/tcos(t2)dt = % /cos(w)dw = %sin(w) +C = %sin(tQ) +C.

d, 1 . 2
Check: E(i sin(t?) + C) = = cos( %)(2t) = tcos(t?).

7. We use the substitution w = 2x, dw = 2dx.
" 1 [ 1 1
sin(2z)dx = 3 sin(w)dw = ~3 cos(w) + C = ~3 cos(2z) + C.

Check: L (—1 cos(2z) + C) = 3 sin(2z)(2) = sin(22).
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8. We use the substitution w = 3 — ¢, dw = — dt.
/sin(3 —t)dt = — /sin(w)dw = —(—cos(w)) + C =cos(3—1t) + C.

Check: £ (cos(3 — t) + C) = —sin(3 — t)(—1) = sin(3 — ¢).

9. We use the substitution w = —z2, dw = —2x dz.

Check: %(7%6712 +C) = (72$)(7%6712) =ze ™,

10. We use the substitution w = y? + 5, dw = 2y dy.

1
[ sy a=g [+ 5@
Y S Kl
—2/11) dw—2 9 +C
= Lwris’ e
18 ’

Check: d%(lis(f +5°+0C) = %[9@2 +5)%2y)] = y(v® +5)%

11. We use the substitution w = ¢ — 3, dw = 3t dt.

/152(153 —3)'%at = %/(tS —3)'93¢t%dt) = /wlo (% dw)

1 wll 1 3 11
7§T+07§(t 73) + C.
Check: 118 — 3y o) = L8~ 3)10(3e2) = 28 — 3)10.
dt'33 3

12. We use the substitution w = 1 4 223, dw = 622 dx.

20422 dr = [w(hdw) = ()10 = Lt 4o
N 6 T 63 18 ’

,d Tl 2\3 }_i 3\2/p 2\ _ 2 312
Check: dx[18(1+2$) + 0] = B0+ 207 (62%)] = (1 + 207)°.

13. We use the substitution w = 22 + 3, dw = 2z dx.
/m(x2 +3) de = /w2(%dw) = %% +C = %(ZEQ +3)° +C.

Check: % [%(mQ +3)° + C} = é [3(2® +3)*(22)] = x(2® +3)°.

14. We use the substitution w = 22 — 4, dw = 2z dx.

/:c(x2 — ) dy = %/(az2 —4)"?(2wdzx) = %/w7/2 dw

i 1 2 4)\9/2 ),l(g 2 7/2) _ 2 NT/2
Check.dx(g(ac 977 +0) = 5 (5@ - 07?) 20 = 0(a® - )72



15.

16.

17.

18.

19.

20.

21.

7.1 SOLUTIONS

In this case, it seems easier not to substitute.

[rasnta= [er v = [ot vt et
5 4 3
-y v .y
=S+ 5+ +C
d (v v 4 3 2 2 2
Chec dy<5+2+3+c Yy +2y"+y =y (y+1)
We use the substitution w = 2t — 7, dw = 2dt.
(2t—7)73dt:l w™ dw = — w74+0:i(2t—7)74+0.
2 (2)(74) 148
o d 1 74 }_ 74 73 _ 73
Check: dt[148(2t N O] = - = 2t -1)™
We use the substitution w = y + 5, dw = dy, to get
dy dw
—— = — =1 C=1 5|+ C.
V= [ =mful+C=lnly+ 5+
Check'i(ln\ +5\+C’)—;
Ty R
We use the substitution w = 4 — z, dw = —dx.

1 1 1

d
Check: —(—2v4d—z+C)=-2- = —1= .
ec da:( v ) 2 Vi-—z 4—x

In this case, it seems easier not to substitute.

5
/(x2—|—3)2d:v:/(a:4—|—6x2+9)d:c:%—1—2333—1—92:—1—0.

5
Check: % [% +22° +9x+0} =a' + 622 +9= (2" +3)%

We use the substitution w = x> + 1, dw = 3z? dz, to get
1 1 1
/$26x3+1 dx = g/e“’ dw = ge“’ +C = gexg'H +C.

Check: % (%em%rl + C) = %613“ 322 = g2e” L,

We use the substitution w = cos 8 + 5, dw = — sin 6 df.
/sin0(0050+5)7d0 = 7/w7dw = f%wg +C
1 8
= —g(cose +5)°+C.
Check:

dr 1 8 =L T (s
dH{ 8(cos€+5) +C}— 3 8(cosf +5)" - (—sinh)

=sinf(cosf +5)°

409



410 Chapter Seven /SOLUTIONS

22. We use the substitution w = cos 3t, dw = —3sin 3t dt.

/VCOSBtsiHStdt —%/\/wdw

1 2 3 2 3

= —— . —w?2 = —— 3 2 .
3 3V +C 9(005375) +C
Check:

4 {— g (cos 3t) 3

2 3 1 .
7 —N—C} ——5-5(005315)2 - (—sin3t) -3

= +/cos 3t sin 3t.

23. We use the substitution w = sin @, dw = cos 6 df.

7 T
/sin6000s0d0:/w6dw:w7+02 Sm7‘g+c.

d [sin” 0
Check: 0 [ -

24. We use the substitution w = sin o, dw = cos a. da.

4 .4
/sin?’acosada:/w?’dw:%JrC: s1n4oz+c,.

+ C} = sin® O cos 6.

.4
3 1
Check: i (MH @ +C> = 1 -4sin® a - cosa = sin® a cos a.

da 4
25. We use the substitution w = sin 56, dw = 5 cos 56 df.
. 6 _1 6 _ 1 ’l.U7 _ 1 .7
/sm 50 cos 50 df = 5/w dw = 5( - )+ C = 35 Sin 50 + C.

df " 35
Note that we could also use Problem 23 to solve this problem, substituting w = 56 and dw = 5 d#f to get:

Check: i(i sin” 50 + C) = % [7 sin® 50] (5 cos 50) = sin® 56 cos 56.

/ sin® 560 cos 50 do = % / sin® w cos w dw

1 sin”w 1 7
== = —si 0 .
5( - )+ C 35sm5 +C

26. We use the substitution w = cos 2z, dw = —2sin 2z dz.

tan2x dr = sin 2z dr = —l d_w
cos 2z 2 w

1 1
:—§1n|w\+C:—§ln|cos2x|+C.

Check:
d 1 1 1 .
a [-51H‘COSQCE| +Cj| = —5 . m - —2sin 2z
2
_ smer = tan 2z
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27. We use the substitution w = In z, dw = % dz.

2 3 3
/(lnj) dz:/dewzw——l—C:(lnz) +C.

~d [(Inz)? .1 > 1 (Inz)?
Check.dz{ 3 +C:|3-3(lnz) o=

28. We use the substitution w = e + ¢, dw = (e* + 1) dt.
et +1 1 .
/etthdt: Edw:ln|w\+C’:ln\e +t+C.
et +1
et +t°
29. We use the substitution w = y? + 4, dw = 2y dy.

Check: %(ln|et +t|4+0C) =

y 1 dw 1 1 2
dy=- | — =21 C=_1 4)+C.

/y2+4 y=3 w 2n|w|—|— 2n(y+ )+
(We can drop the absolute value signs since y* + 4 > 0 for all 3.)

d (1, , 11 y
Check: = | =1 4 _— .
K Ty {2 n(y” + HC} 2+ v’ +4

214
30. We use the substitution w = v/z, dw = ﬁ de.

/Cosﬁdx: cosw(2dw) = 2sinw + C = 2sin/z + C.

NE
1 o
Check: %(QSin\/E—i— C) =2cosvx (m) = Co\b/;:_/i.
1
31. We use the substitution w = /y, dw = —— dy.
VY NG
VY
e—dy:2/ewdw:26w+C:26ﬂ+C.
VY
VY
Check: 1(26\@ +0) =2evY. SLE S
dy 2y VY

32. We use the substitution w = z + €%, dw = (1 + €”) dx.

14€” dw
— 1" _dr= == =9,/ C =2/ z 4+ (.
Vize T Ve AT rhens
d — 5 1 ool oy 1+e”
Check: dx(Q\/a:Jre +C)=2 2(m+e) z.(1+e )_7\/9@.

33. We use the substitution w = 2 4+ e*, dw = e* dx.

/ = dm:/d—w:ln|w|+C:ln(2+em)+C.
w

24 e®
(We can drop the absolute value signs since 2 4+ ¢® > 0 for all z.)
d 1 e’
Check: —[In(2 z = o .
ec da:[n( +e%)+C] e e e

34. We use the substitution w = 22 + 2z + 19, dw = 2(z + 1)dz.

(z + 1)dz 1 [dw 1 1 2
P S /st — =21 C==1 2 19 C.
/x2+2x+19 5 ) w ~pmiwlrC=gnlem e+ 19)+

(We can drop the absolute value signs, since 2% + 2z + 19 = (z 4+ 1)? + 18 > 0 for all z.)
1.1 2 1 1 z+1
Check: —[=1 2 9 =c5—FF—"020+2)= 5—F—.
ek g 2 1)) = S T T e 1o
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35.

36.

37.

38.

39.

40.

41.

42,

43.
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We use the substitution w = 1 + 3t2, dw = 6t dt.

t 1.1
/1+3t2dt /w(Gd )= n|w|+C n( +3t%) + C.
(We can drop the absolute value signs since 1 + 3t > 0 for all t).

drl 11 ¢
Check: In(1 + 3¢ - -
ec ﬁ[ (+3)+C} 61332 %) = T3

We use the substitution w = e® + e~ %, dw = (e — e™ %) dx.

et —e ” dw > .
(We can drop the absolute value signs since e” + e~ * > 0 for all z).
Check: di[ln(ez +e )+ 0] = ¥(ez —e ).
x

et e %
2
/‘t+t+ dt

1
t/1+ + m:m&mm—;+a

It seems easier not to substitute.

2
Check: di(t+2ln\t|——+0)—1+ + = ! _t%l).

We use the substitution w = sin(z?), dw = 2$ cos(z?) dx.

x cos(x _1 w*%dwzl % \/smT—s-C
m 2 3
2
Check - \/W )+ C) = ————[cos(z?)]2z = M_
2 (352) sin(z?)

Since d(sinh z) /dx = cosh z, we have

/cosha; dxr = sinhz + C.
Since d(cosh 3t)/dt = 3 sinh 3t, we have
/sinh 3tdt = é cosh 3t + C.

Since d(cosh z)/dz = sinh z, the chain rule shows that

d
E (ecosh 2) _ (Sinh Z)ecosh z )

Thus,
/(sinh z)eCOSh “dz = e 4 C.

Since d(sinh(2w + 1)) /dw = 2 cosh(2w + 1), we have

/cosh(Zw +1)dw = %sinh(Zw +1)+C.

We use the substitution w = 22 and dw = 2zdx so

1 1 1
/J:coshﬂc2 dxr = E/Coshw dw = §sinhw+C’= §sinhx2+0.

. . Loood Tl
Check this answer by taking the derivative: I [5 sinh z® + C’] = x coshz”.
x



4.

45.
46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

7.1 SOLUTIONS
Use the substitution w = cosh z and dw = sinh x dx so

1 1
/coshQ:csinh:cd:c:/w2 dw = §w3+C: gcoshsm—i—C.

. . .o.od Tl .
Check this answer by taking the derivative: I [§ cosh® x + C} = cosh® z sinh z.
x

The general antiderivative is f (mt® + 4t) dt = (m/4)t* 4 2% + C.
Make the substitution w = 3z, dw = 3 dx. We have

sin3zdr = %/sinwdw: %(fcosw)JrC: 7%C083$+C.

Make the substitution w = 22, dw = 2z dz. We have

2z cos(z?) dax = /coswdw =sinw+ C =sinz® + C.

Make the substitution w = ¢*, dw = 3t* dt. The general antiderivative is f 12t% cos(t?) dt = 4sin(t3) 4 C.
Make the substitution w = 2 — 5z, then dw = —5dx. We have

/sin(2 — bz)dx = /sinw (fé) dw = f%(fcosw) +C = %005(2 —5z) 4+ C.
Make the substitution w = sin x, dw = cos x dx. We have

e cosrdr= [ e“dw=¢e"+C=¢€""4C.

Make the substitution w = 22 + 1, dw = 2z dz. We have
1 1 1
z 1 %Uzgln|w|+C:§1n(x2+1)+C’.

211772
(Notice that since 2% +1 >0, |2 + 1| = 2 + 1.)
Make the substitution w = 2z, then dw = 2dx. We have

1 1 1 1
/3cos2 2z du = g/COS2’w (5) dw

ZE/de:étanw—i—C:étanQa:—i—C.

6 cos2 w

™

/ cos(z + 7) dx = sin(x + 7r)|0 =sin(27) —sin(r) =0—-0=10
0

We substitute w = 7z. Then dw = 7 dx.

= w=m/2 1 1 /2 1
/ cosmxdr = / cosw(=dw) = —(sinw) ==
om0 ™ T ™

=

w=0 0
/2 /2 1
/ e cos 0 sinfdo = e~ cos 6 —e” cos(w/2) _ e~ cos(0) —1—=
0 0 e
2 2
2 2 2 2
/2$€x dr=¢"| =¢* —e' =e*—e=e(e* - 1)
1 1
We substitute w = /z = 23 . Then dw = lmf% dx = 1 dx
Ve =3 RET
8 ¥z =8 =8 8
/ i—dm:/ e’ (3dw) = 3e" =377 =3(e* —e).
1 Va2 z=1 z=1 1
We substitute w =t + 2, so dw = dt.
t=e—2 w=e e
1 d
/ —dt:/ — =lnjw|| =lne—Inl=1.
t=—1 t+2 w=1 1

413
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59. We substitute w = /z. Then dw = %xil/Qdaz.

r=4 w=2
cos /T
dr = cosw(2dw)
L)

=2(sin2 —sin1).

60. We substitute w = 1 + 22. Then dw = 2z dz.

r=2 w=5
z 1 /1 1/1 2
/Z:O 7(1+m2)2d“”—/w:1 o (32) =3 (3) TF
61. , , ,
E 4 2
/(a: vonydr=" 422 a0
-1 -1 -1
1
-1 _Z
62/ 1+y = tan y_1—2.
1 3
63. / —dr=Inz| =In3.
z 1
o - () ()%
t+7 t+7 10 8) 40
2
2 2 2 14
6s. / Vatsde =2l =20 =2m= 2

—1

66. It turns out that sinz cannot be integrated using elementary methods. However, the function is decreasing on [1,2]. One
way to see this is tg graph the function on a calculator or computer, as has been done below:
Y
1
0.75
0.5
0.25

—0.25 L

sin2 sinl

So since our function is monotonic, the error for our left- and right-hand sums is less than or equal to ’

0.61At. So with 13 intervals, our error will be less than 0.05. With n = 13, the left sum is about 0.674, and the right sum
is about 0.644. For more accurate sums, with n = 100 the left sum is about 0.6613 and the right sum is about 0.6574. The
actual integral is about 0.6593.

67. Letw = /y + 1,50y = w? — 1 and dy = 2w dw. Thus

/y\/y—kldy:/(wQ—l)wadw—Z/w —w? dw

2 5 2 4 2 5/2 2 3/2
=Zw - = ==z 1 - = 1 .
Fw = gw +C 5(y+ ) 3(y+ e+ C

68. Letw = (24 1)'/3,50 z = w® — 1 and dz = 3w? dw. Thus

/z(z+1)1/3d2:/(wS—l)w3w2dw:3/w6—w3dw

= §w7—§w4—|—C— (z+1)7/3—2(z+1)4/3+0.

7 4

\]lw
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69. Letw = v/t + 1,50t = w? — 1 and dt = 2w dw. Thus

2 2 132 2
¢ +t (w D)7+ (w” - 1)2walw*2 wt — w? dw
N w
2 5 2 3 2 5/2 2 3/2
=—-w’ - = C==-(t+1 —=(t+1 C.
FW = Sw + 5(—i— ) 3(-i- )T+

70. Letw = 2+ 2/, 0z = ((w — 2)/2)* = (w/2 — 1)?, and dx = 2(w/2 — 1)(1/2) dw = (w/2 — 1) dw. Thus

/2+d§ﬁ:/(w/2‘l)d”:/(%—%) e

:f71n|w|+c_ (2+2f) In|2+2vz| +C
:1+\/_—1n|2+2\/_|+0:\/_—1n|2+2\/5|+0-

In the last line, the 1 has been combined with the C'.
71. Letw = /7 — 2,50 2 = w? + 2 and dz = 2w dw. Thus

/xzx/x—de:/(w2+2)2w2wdw:2/w6+4w4+4w2dw

_2 7,8 5 85
= 7w + 5w + 3w +C
2 8 8
=z 2)7/2+5(x 2)5/2+§(x ¥y o

72. Letw = /1 — 2,50 2 =1 — w” and dz = —2w dw. Thus
/(z+2)\/1fzdz:/(17w2+2)w(72w)dw:2/w473w2dw

zgw ot 4O = 21— 22— 21— 2)*? 4

Cﬂll\?

73. Letw = /T + 1,50t = w? — 1 and dt = 2w dw. Thus

t
2wdw-2 w? — 1dw
[ 7 / /
J’_

2
74. Letw = 2z + 1,s0x = 3 (w® — 1) and dz = w dw. Thus
3z —2 3 5w’ _—1)_2wdw— 302~ T aw
«Tw w ]2 2
1407 1 32 1 1/2
=W 2w+C’— 2(2x+1) 2(2m+1) +C.

Problems

75. (a) This integral can be evaluated using integration by substitution. We use w = z2, dw = 2zdz.
. 2 1 . 1 1 2
rsinz“dr = 3 sin(w)dw = ~3 cos(w) + C = —3 cos(z”) + C.
(b) This integral cannot be evaluated using a simple integration by substitution.

(c) This integral cannot be evaluated using a simple integration by substitution.
(d) This integral can be evaluated using integration by substitution. We use w = 1 + 22, dw = 2zdx.

T 1 1 1, -1 -1
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(e) This integral cannot be evaluated using a simple integration by substitution.
(f) This integral can be evaluated using integration by substitution. We use w = 2 + cos x, dw = — sin zdx.

/ﬂdx:7/ldw:—ln\w|+C:*1n|2+C05x|+C'
2+ cosx w

76. (a) Ifw =1t/2, then dw = (1/2)dt. When t = 0, w = 0; when t = 4, w = 2. Thus,

/04g(t/2)dt:/02g(w)2dw=2/029(w)dw=2'5:10.

(b) If w=2—t,thendw = —dt. Whent = 0, w = 2; whent = 2, w = 0. Thus,

/029(2—t)dt—/209(w)(—dw)—+/02g(w)dw_5.

77. (a) If w = 2t, then dw = 2dt. Whent = 0, w = 0; when t = 0.5, w = 1. Thus,

/00‘5f<2t)dt— /Olﬂw)%dw— %/Olﬂw)dw— X

(b) If w=1—t,then dw = —dt. Whent = 0, w = 1; when ¢t = 1, w = 0. Thus,

/Olf(l—t)dt_/Iof(w)(—dw)_Jr/olf(w)dw_&

(¢) If w=3— 2t,then dw = —2dt. Whent = 1, w = 1; whent = 1.5, w = 0. Thus,

/11‘5f(3—2t)dt=/10f(w) (—%dw) =+%/01f(w)dw= %

78. (a) The Fundamental Theorem gives

™ 39| 1\ 1\3
/ cos2esin0d9:fcos 0‘ = (1) — (=1) =0.

. 3 3 3
This agrees with the fact that the function f(#) = cos? #sin@ is odd and the interval of integration is centered at
x = 0, thus we must get O for the definite integral.
(b) The area is given by

cos® 0
3

I G ) Lt
3 3

Area :/ cos> 0sinfdf = —
0

0

79. Since f(z) = 1/(z + 1) is positive on the interval z = 0 to = = 2, we have

2
=In3—Inl=1In3.
0

2
Area:/O xildx:ln(:erl)

The area is In 3 ~ 1.0986.
80. To find the area under the graph of f(z) = ze

2 . .
*”, we need to evaluate the definite integral

2 2
/ ze” du.
0

This is done in Example 10, Section 7.1, using the substitution w = x2, the result being

z 1
/ ze” dr = =(e* —1).
o 2
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81. See Figure 7.1. The period of V' = Vj sin(wt) is 27 /w, so the area under the first arch is given by

T/ w
Area = / Vo sin(wt) dt
0

/W

Vo
—_ 3 t
= cos(wt)

VO 0
=- cos(m) + " cos(0)
Vo Vo 2Vo
=+ 8y =20
(1) + (1)
v
Vo+
Cl t flz) = 1
™ 0.54931
Vo sin(wt) 2‘ v
Figure 7.1 Figure 7.2

1
82. If f(z) = ——, the average value of f on the interval 0 < x < 2 is defined to be
z+1

83.

84.

2 2
1 1 dx
2—0/0 ﬂm)dm*i/o s+ 1

We’ll integrate by substitution. We let w = = + 1 and dw = dz, and we have
=In3—-Inl=1In3.

/Jc_2 dx /w_3 dw
= — =Ilnw
x=0 x + 1 w=1 w 1

Thus, the average value of f(z)on 0 < x < 21is % In 3 =~ 0.5493. See Figure 7.2.

3

(@) /4x(x2 +1)dx = /(495d + 4z) dx = 2* + 22° + C.
(b) fw = 2% + 1, then dw = 2z dz.

/4x(x2+1)d1::/2wdw=w2+C:(x2+1)2+C.

417

(c) The expressions from parts (a) and (b) look different, but they are both correct. Note that (av2 + 1)2 +C =z +
222 + 1 + C. In other words, the expressions from parts (a) and (b) differ only by a constant, so they are both correct

antiderivatives.

(a) We first try the substitution w = sin 6, dw = cos 0 df. Then

2 .2
sin@ cos 6 df = wdw:%_FC:Ser_‘_C.

(b) If we instead try the substitution w = cos 0, dw = — sin 6 df, we get
2 2
/sin@cosedﬁz— wdwz—%—l—C:—coszg—&—C’.
(c) Once we note that sin 260 = 2sin  cos 0, we can also say

sin 6 cos 0 df = % sin 260 d6.

Substituting w = 26, dw = 2 df, the above equals

cos w L C— _00529 LC

1
1 sinwdw = —

(d) All these answers are correct. Although they have different forms, they differ from each other only in terms of a
constant, and thus they are all acceptable antiderivatives. For example, 1 — cos? § = sin® 8, so sin?0 _ _ # + %

sin-6 —
Thus the first two expressions differ only by a constant C.

o . 2 .
Similarly, cos20 = cos®§ — sin®0 = 2cos® — 1, so —<220 = <20 4 1 and thus the second and third
expressions differ only by a constant. Of course, if the first two expressions and the last two expressions differ only

in the constant C, then the first and last only differ in the constant as well.
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85. We substitute w = 1 — z into Ip,,n. Then dw = —dz,and z = 1 — w.
Whenz =0, w = 1,and whenz = 1, w = 0, so

Im,n

/01 2™ (1 — z)"da = /10(1 — w) MW" (—dw)

0 1
—/ w" (1 —w)"dw = / w"' (1 —w)"dw = Lym.
1 0

86. (a) In 1990, we have P = 5.3¢%°14(%) — 5 3 billion people.
In 2000, we have P = 5.3¢%-014(19) — 6.1 billion people.

(b) We have
1 (" oo, _ 1 53 oo
A lation = e =—-——e"
verage population 10-0 /O 5.3e dt 0 0‘0146
o 1 5.3 0.14 0 ) o
10 (0.014 (e ¢)) =57

The average population of the world during the 1990s was 5.7 billion people.

87. (a) Attimet = 0, the rate of oil leakage = 7(0) = 50 thousand liters/minute.
At t = 60, rate = r(60) = 15.06 thousand liters/minute.
(b) To find the amount of oil leaked during the first hour, we integrate the rate from ¢ = 0 to ¢ = 60:

60 50 60
Oil leaked = [ 50002 gt — (__ efvozt)
0 0.02

= —2500e 1% + 2500e° = 1747 thousand liters.

88. (a) E(t) = 1.4¢%°"
(b)
Total Consumption for the Century
100 years

Average Yearly Consumption =

1 100
= 1.4e%97 gt

100 J/,
100]
0

— (0.014) [ﬁ(a - 60)]

= 0.2(67 — 1) ~ 219 million megawatt-hours.

1 0.07t
(0.014) [0.076

(c) We are looking for ¢ such that E(t) = 219:

1.4e%°7 ~ 219
e’ 0" = 156.4.

Taking natural logs,

0.07t =1n156.4
5.05
t~ —— ~72.18.
0.07
Thus, consumption was closest to the average during 1972.

(d) Between the years 1900 and 2000 the graph of E(t) looks like
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E(t)
1.4e7

E(t) = 1.4€0-07¢

219

L | t
1900 1950 2000
(t=0) (t = 50) (t = 100)

From the graph, we can see the ¢ value such that F(t) = 219. It lies to the right of ¢ = 50, and is thus in the
second half of the century.

89. Sincev = Z—ZL, it follows that h(t) = /v(t) dt and h(0) = ho. Since

o) = T (1 o) = 9

k k k '
we have
ht)= [o@ydt="2 [a— "9 [ e wtar.
k k
The first integral is simply %t + C. To evaluate the second integral, make the substitution w = — %t. Then
dw = _k dt,
m
SO
/efﬁtdt: /ew (—%) dw = —%ew—l—C: e mt 4+ C
Thus

Since h(0) = ho,

Thus

2 2
hty=29p 4+ Mot _ 9 4 gy

ht)="9; M9 (1 - e*%t) + ho.

90. Since v is given as the velocity of a falling body, the height h is decreasing, so v = — %, and it follows that h(t) =
—/v(t) dt and h(0) = ho. Letw = eVt + ¢~V9% Then

dw =/ gk (et\/g_k — e_t\/g_k> dt,



420 Chapter Seven /SOLUTIONS

TS —ty/gk
SO = (e —e dt. Therefore,
Vo = )
71&\/_
- t)dt = — \/>
/’U() / t\/__’_eft ok
:fﬁ/; (V7 -V
k et\/g_k+e*t\/9_k
,\/E (l aw
k w/ \/gk
-/ =3 k2 In|w|+C
= _E In (et\/ﬁ +e_tm) +C
Since 1 2
h(O):fgln(eO+e)+C—fn7+C ho,

we have C = hg + 11172 Thus,

t\/gk —t+/gk
h(t):f%1n< ok “\/_)+ln72+ho f%m (%) + ho.

91. (a) In the first case, we are given that Rg = 1000 widgets/year. So we have R = 1000e°'5¢. To determine the total
number sold, we need to integrate this rate over the time period from 0 to 10. So the total number of widgets sold is

10

10 1000
/ 1000e” " dt = —— %' =6667(e"® — 1) ~ 23,211 widgets.
0 0

0.15

In the second case, the total number of widgets sold is

10

10
/ 150,000,000 %" d¢ = 1,000,000,000¢°°*|  ~ 3.5 billion widgets.
0

0
(b) We want to determine 7" such that

’ 100062 15¢ gt ~ 23211
0 2 .

Evaluating both sides, we get

6667(e”°T —1) = 11,606
6667e%'°" = 18273
" 15T = 2,740
0.157T =1.01, so T = 6.7 years.

Similarly, in the second case,
/T 150,000,000 1% ¢ ~ 200,000,000
) ’ ~ 2
0
Evaluating both sides, we get

(1 billion) (e ' — 1) = 1.75 billion
Q01T _ o o
T =~ 6.7 years
So the half way mark is reached at the same time regardless of the initial rate.

(c) Since half the widgets are sold in the last 3% years of the decade, if each widget is expected to last 3% years, their
claim could easily be true.
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Solutions for Section 7.2

Exercises

1. Letw = arctanz, v’ = 1. Thenv = z and v’ = Integrating by parts, we get:

z2’

1
1-arctanxdr =z -arctanx — | - —— dx.
1+ 22

To compute the second integral use the substitution, z = 1 + 2.

/ S 1 %:%ln|z|+():%ln(l+m2)+0.

T+22% 72
Thus,
1

/arctanmdm =z -arctanz — 3 In(1+2°) + C.

2. Letu = t,v" = sint. Thus, v = — cost and v’ = 1. With this choice of u and v, integration by parts gives:
/tsintdt = —tcost — /(—cost) dt
= —tcost+sint + C.

3. Letu = t2, v = sint implying v = — cost and u’ = 2t. Integrating by parts, we get:

/t2 sintdt = —t* cost — /Qt(— cost) dt.
Again, applying integration by parts with u = ¢, v’ = cost, we have:
/tcostdt =tsint +cost + C.

Thus
/tzsintdtz —t?cost + 2tsint + 2cost + C.

5t

4. Letu=tandv' =€, sou' =landv = fe
Then fte& dt = %te575 — f %est dt = éte& — 2—1565t +C.
5. Letu=t*andv’ = €”,sou’ =2tand v = te".

Then ft265t dt = éthSt — %fte‘r’t dt.
Using Problem 4, we have [ t*e™ dt = $t°e®" — 2(te® — 5e”') +C
_ ét265t . 2_25te5t + %GStJrc.
6. Letu = pand v’ = e("%Y? ¢/ = 1. Thus, v = f e(70-VP gp = —10e(~ VP With this choice of u and v, integration

by parts gives:
/p6(70'1>p dp _ p(_loe(fo.l)p) _ /(_106(7041);7) dp

= —10pe VP 4 10/6<70'1)p dp

—10pe~OYP _ 100e70VP 4 C.

7. Letu=z+1,v" = €**. Thus, v = %62Z and v’ = 1. Integrating by parts, we get:

/(er De*dz = (z+1) - %622 - / %e2z dz

1 1
= i(z +1)e** — Z€2z +C

1
= 1(22 +1)e* + C.
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1 .
8. Letu =Iny, v’ = y. Then, v = %yz and v’ = —. Integrating by parts, we get:
Y

ylnydy = gy — | =4 1 dy
2 2 Y

1, 1
=_y’Iny— = [ yd
Y Iny 2/yy
19 1
= Zy’lny— >y* + C.
5Y Iy — Ty +

9. Letu =Inzandv' = 2% sou’ =1 andv =

Then

z?
=
4

4 3 4
3 - N _x
/m Inzxdr = 1 Inx / 1 dx 1 Inx 16+C.

1
10. Letu =In5g, v' = ¢°. Then v = 1¢° and v’ = = Integrating by parts, we get:
q

5 1 1, 1
1 = —qg°1 — i
/q nb5qdq 4 n 5q /(5 5q) 4 dq

1, 1 s
=>¢%Inbg— — .
6q nbq 36q +C

11. Letu = 6% and v" = cos 30, so u’ = 26 and v = 3 sin 36.
Then f 02 cos 30 do = %02 sin 360 — % f 0 sin 30 df. The integral on the right hand side is simpler than our original
integral, but to evaluate it we need to again use integration by parts.
To find [ 6sin36dh, letu = 6 and v' = sin36, sou’ = 1 and v = — 3% cos 36.

This gives
. 1 1 1 1 .
/931n39d0 = —§0c0339+ 3 /c0539d9 = —50c0539 + 9 sin 36 + C.
Thus,
0 cos30d0 = 207 sin30 + 20.cos30 — — sin30 4 C
cos =3 sin 5 cos a7 sin .
12. Letu = sinf and v/ = sin#, so v’ = cosf and v = — cos 6. Then

/sin20d9: —sin9c059+/c0529d9
:—sin9cos(9+/(1—sin20)d9

:fsin9c059+/1d6’f/sin29d0.

By adding f sin® @ df to both sides of the above equation, we find that 2 f sin®0df = —sinfcosf + 6 + C, so
[sin®60df = —%sinfcosf+ § + C".
13. Letu = cos(3a + 1) and v" = cos(3a + 1), so u’ = —3sin(3a + 1), and v = % sin(3cr + 1). Then
/cos2 Ba+1)da = /(cos(3a + 1)) cos(3a + 1) dav
1 . .2
=3 cos(3a+ 1)sin(3ac+ 1) + [ sin”(3a + 1) dov

= % cos(3a+ 1) sin(3a + 1) + / (1 — cos®(3a + 1)) da

= % cos(3a+ 1)sin(3a + 1) + o — /c032(3a + 1) da.
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15.

16.

17.

18.

19.

20.
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By adding f cos?(3a + 1) da to both sides of the above equation, we find that
2/0052(3a +1)da = %cos(i&a +1)sin(3a+1)+a+C,

which gives

/cos2(3a +1)da = é cos(3a+ 1) sin(3a + 1) + % +C.

2Int
Letu = (Int)*>and v’ = 1,50’ = ;1 and v = t. Then

/(lnt)th =t(Int)* - 2/1ntdt =t(Int)* — 2tInt 4 2t 4+ C.
(We use the fact that / Inzdx = zlnx — x + C, aresult which can be derived using integration by parts.)
Letu =yandv' = (y+3)"/%,sou’ = landv = Z(y + 3)%/%

2 2 2 4
/y\/y+3dy: gy(y+3)3/2—/—(y+3)3/2dy:gy(y+3)3/2—1—5(y+3)5/2+0-

w

Letu=t+2and v =2+ 3t,sou’ = landv = 2(2+ 3t)*. Then

/(t+2)m6ﬁ = %(t+2)(2+3t)3/2 - %/(2+3t)3/2dt
_2 3/27i 5/2
= 9(t+2)(2+3t) 135(2+3t) +C.

Letu =0+ 1and v =sin(d+1),sou’ = 1 and v = —cos(f + 1).

/(0 +1)sin(@ +1)df = —(0 4 1) cos(0 + 1) + /cos(9 +1)dé

=—(0+1)cos(f +1)+sin(@+1)+C.

Letu = 2,v" = e *. Thusv = —e~* and v’ = 1. Integration by parts gives:

/zefz dz = —ze % — /(—efz) dz
=—z2¢ " - " 4+C
=—(z+1e " +C.

Letu =Inz, o' =2 2 Thenv = —z~ ! and v’ = !, Integrating by parts, we get:
/x_2 Inzde=—z 'lnz— /(—1:_1) sz dx
=z 'lnz—2z"'+C.
Letu=yandv' = ==, sou' = landv = —2(5 — )2

5—y

Y _ 1/2 1/2 _ 1/2 4 3/2
dy = —2y(5 — 2 5— dy = —2y(5 — — =(5— C.
/m y y(5—y) "+ /( y) " dy y(5—y) 36—y

423
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21.

22,

23.

24,

25.
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t+7 —1/2
dt+7 dt.
/\/57 /

" To calculate the first integral, we use integration by parts. Letu = t and v’ = \/%, sou’ =landv = —2(5—t)
en

1/2

t 1/2 1/2 12 4 3/2
——dt = -2t(5 — +2 [ (-t dt =—-2t(b—t —-(b-t +C.
/ Wi (6-1) / (5-1) (6-1) 3(6-1)
We can calculate the second integral directly: 7 /(5 —)7Y? = —14(5 — t)"/? + C1. Thus

t+7 12 4 3/2 1/2
dt = 5—1t —-(5—t —14(5 -1 + Ch.
[ a2 - {6 -0 - 16— 0 4 G

% and v = % Then

/x(lnx)4dm = M - 2/x(lnx)3dx.

f z(Inx)® dx is somewhat less complicated than f z(Inz)* dz. To calculate it, we again try integration by parts, this
time letting « = (Inz)® (instead of (Inz)*) and v’ = x. We find

/x(lnx)Sdm _ %2(1“)3 - g/x(lnx)QdaE.

Once again, express the given integral in terms of a less-complicated one. Using integration by parts two more times, we

find that
2 z? 2
/x(lnx) dx = 7(1nx) f/x(lnx) dz

2 2
/xlnxd:p: %lnxf%JrC.

Letu = (Inz)* andv' = z,s0 v/ =

and that

Putting this all together, we have

2
/x(lnx)4 dx = %(lnx)4 —z*(nx)® + 33132(1n:v)2 - §x2 Inx + %m2 +C.

;2 and v = w. Then

—w

Let u = arcsinw and v’ = 1,sou’ =

arcsin w dw = w arcsinw — dw =warcsinw + /1 — w2+ C.
/ /Vlfw2

Let w = arctan7z and v’ = 1, so v’ = 1+49z2 and v = z. Now f % can be evaluated by the substitution
w=1+492% dw = 982 dz, so
Tz dz edw 1 dw 1
=7 2 = — —:—1 C_—l 1449 C
/1+4922 w 14/w nfwl+0 = 57 In(1+492%) +
So

1
/arctan Tzdz = zarctan 7z — 7 In(1 + 492%) + C.

This integral can first be simplified by making the substitution w = z2, dw = 2z dz. Then

1
/xarctanx2 dr = Q/arctanwdw.

To evaluate f arctan w dw, we’ll use integration by parts. Let u = arctanw and v’ = 1, so u’
Then

= 1+w2 and v = w.

1
arctanw dw = warctanw — | ——— dw = warctanw — = In|1+w? +C.
14+ w? 2
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Since 1 + w? is never negative, we can drop the absolute value signs. Thus, we have

1 1
/marctanac2 dz = 3 (332 arctan z” — 3 In(1+ (z*)%) + C)

1 1
= 51’2 arctan 2> — 1 In(1+z*) + C.

2 2
26. Letu = 2” and v’ = ze” ,sou’ = 2z and v = 1e” . Then

1 1 1
/x3em2 de = 51‘26952 - /xez2 de = §x26z2 — 5612 +C.

Note that we can also do this problem by substitution and integration by parts. If we let w = x2, so dw = 2z dz, then

1 . . -
/ 23e® dx = 3 / we" dw. We could then perform integration by parts on this integral to get the same result.

27. To simplify matters, let us try the substitution w = >, dw = 3z dz. Then

1
/$E5COSI3d1': g/wcoswdw.

Now we integrate by parts. Let u = w and v’ = cosw, so 4’ = 1 and v = sin w. Then

1 1
g/wcoswdw: §[wsinw—/sinwdw}

1
= g[wsinw +cosw] + C
1 1 :
= §:c3 sinz® + 3 cosz® +C
28. Letu = z,u’ = 1 and v' = sinh z, v = cosh z. Integrating by parts, we get

/azsinhxdaj:xcosha:f/coshxdx

= zcoshx —sinhx + C.

29, Letu =z — 1,4’ = 1 and v’ = cosh z, v = sinh . Integrating by parts, we get

/(1’— 1)coshz dx = (x — 1) sinhx — /sinhx dz
= (x — 1)sinhx — coshz + C.

5
=5Inb -4~ 4.047

1

5
30. / Intdt = (tlnt —t)
1

5

=cosH + 5sind — cos3 — 3sin3 ~ —3.944.

5
31. / zcosx dr = (cosx + xsinx)
3 3

32. We use integration by parts. Letu = zand v’ = e~ *,sou’ = landv = —e™ *.

10

10
+ / e “dz
0 0

10

10
Then / ze dz = —ze ®
0

= —10e " + (—e77)

0
=—-1le °+1
0.9995.

Q

3 1 1N 9
33. / tlntdt:(fflntfft) = -1In3 -2~ 2944.
) 2 27/ 2
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34. We use integration by parts. Let u = arctany and v’ = 1, sou’ = ﬁ and v = y. Thus
1

1
Y
_ dy
0 /0 L4y

1

1
/ arctany dy = (arctany)y
0

—%1n|1+y2\

0

P ISEENNEN

In2 =~ 0.439.

N =

5

=6In6 -5~ 5.751.

3s. / In(1+t)dt = ((1+t)In(1+1¢) — (141))

. . . 1
36. We use integration by parts. Let u = arcsin z and v’ = 1, so v’ = Wi and v = z. Then
—z

1—/lzdzw—/lzdz
o Jo V1—22 2 J, VI—22

1
/ arcsin z dz = z arcsin z
0

1
z
To find —=_ dz, we substitute w = 1 — 22, so dw = —2zdz.
/o V=22

Then
z=1 w=0 w=1
z 1 _1 1 1 1
—dz=—= w 2dw= - w2 dw=w?
/z:o V1— 22 2 /wzl 2 /w:o

Thus our final answer is 5 — 1 ~ 0.571.

37. To simplify the integral, we first make the substitution z = u?, so dz = 2u du. Then

u=1 z=1
. 2 .
/ varcsinu” du = / arcsin z dz.
u=0 z=0

From Problem 36, we know that f 01 arcsinzdz = 5 — 1. Thus,

1
. 2
/ warcsinu” du =
0

N =

™
(5 — 1)~ 0285,

N | =

Problems

38. (a) This integral can be evaluated using integration by parts with u = z, v’ = sin z.
(b) We evaluate this integral using the substitution w = 1 + z3.
(c) We evaluate this integral using the substitution w = z2.
(d) We evaluate this integral using the substitution w = 3.
(e) We evaluate this integral using the substitution w = 3z + 1.
(f) This integral can be evaluated using integration by parts with u = 22, v’ = sin x.

(g2) This integral can be evaluated using integration by parts with v = Inz, v’ = 1.
39. 27

f(z) =zsinz

T
7\/2#

—27
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The graph of f(x) = x sin z is shown above. The first positive zero is at z = T, so, using integration by parts,

us
Area :/ zsinx dx
0

™ ™
+/ cosx dx
0 0

™

= —X COST

s

+sinz
0 0
= —mcosm — (—0cos0) + sinm — sin0 = 7.

= —X COSXT

40. From integration by parts in Problem 12, we obtain
.2 1. 1
sin®“ 0df = -3 sin 0 cos 6 + 50 + C.

Using the identity given in the book, we have

. 9 . 1 — cos 260 71 _1,
/sm 6’d9—/72 df = 29 4s1n20—1—C’.

Although the answers differ in form, they are really the same, since (by one of the standard double angle formulas)

fisin% = 71(2sin€c056’) = 7§Sin96089.

41. Integration by parts: let u = cos @ and v’ = cos 0, so u’ = —sin @ and v = sin 6.
/0052 0df = sinfcosf — /(— sin 0)(sin @) d6
= sinf cos 6§ + /sin2 0do.

Now use sin? § = 1 — cos? 6.
/cos2t9d9 = sinfcosf + /(1 — cos” 0) df
= sin9c050+/ d0—/c0520d9.
Adding f cos? 6 df to both sides, we have
2/60520d9 =sinfcosf+ 60+ C
2 1 . ]- /
/COS 6do = ismﬂcosGJr §0+C .

1+cos 26
—s -

/cos20d0:/wd0:%0+isin2€+0.

Use the identity cos? 6 =

2
The only difference is in the two terms %sin&cosﬁ and isin 20, but since sin20 = 2sinfcosf, we have
1 sin260 = 1(2sinfcosf) = 3 sin 6 cos b, so there is no real difference between the formulas.
42. First, letw = e” and v’ = sinz, sou’ = e* and v = — cos x.
Thus f e’sinzdr = —e” cosx + f e” cos x dx. To calculate f e” cos = dx, we again need to use integration by parts.
Letu = e® and v’ = cosz, sou’ = e and v = sin z.

Thus
x T . T .
/e cosxdr =e smm—/e sinz dzx.
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This gives
x . x . x xT .
/e sinzdr =e”sinx — e cosxf/e sin x dx.

By adding f e” sin z dz to both sides, we obtain
2/696 sinzdr = e”(sinz — cosz) + C.
c 1 ., .
Thus /e sinzdr = ¢ (sinz — cosz) + C.
This problem could also be done in other ways; for example, we could have started with u = sinx and v’ = €* as well.
43. Letu = e’ and v’ = cos 6, so v’ = e and v = sin . Then f e’ cos0dl = e sinf — feg sin 0 d6.
1
In Problem 42 we found that / e’ sinzdx = 569” (sinz — cosz) + C.
/69 cosOdf = e’ sinfh — [%eg(sinﬁ — cos 9)} +C

= %ee(sinﬂ + cos@) + C.

44. We integrate by parts. Since in Problem 42 we found that f e’sinxdr = %ez (sinz — cosz), we let w = z and

v =e"sinz,sou’ = 1landv = Je*(sinz — cosx).
Then [ ze”sinzdx = Sze (sinz — cosx) — 5 /e (sinz — cosz) dx
| 1 z . 1 ©
= —ze”(sinz —cosz) — = [ e*sinzdr+ = | " coszdx.
2 2 2
Using Problems 42 and 43, we see that this equals
1 o 1. 1., .
5 Te (sinz — cosz) — 1€ (sinz — cosz) + 1€ (sinz + cosz) + C

1 1
= Exex(sinnc —cosx) + 5696 cosz + C.

45. Again we use Problems 42 and 43. Integrate by parts, letting v = 6 and v’ = €’ cos@, so v’ = 1 and v = %ee(sin 0+
cos 6). Then

/069 cosfdf = %Hee(sine—i—cose)— %/ea(sine—i—cosa)dG
1 4, . 1 0 . 1 0
= 596 (s1n9—|—c059)—§/e 51n9d0—§/e cos 6 df

= %Gee(sinO + cosf) — %eg(sine —cost) — %(sin@ +cosf) +C
= %Gee(siDG + cos ) — %ee sin@ + C.

46. We integrate by parts. Since we know what the answer is supposed to be, it’s easier to choose v and v’. Let u = 2™ and
v/ =e% sou =nz" ! and v = e®. Then

1
/m"ez dr = x"e” fn/x" e’ dx.
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47. We integrate by parts. Let u = ™ and v = cos az, sou’ = na"™ " and v = L sin az. Then

1 _14,1
/x" cosardr = —z" sinax — /(nx” Y (= sin az) da
a a

_ 1 n . n n—1 .
= —X smaxr — — x sin ax dx.
a a

48. We integrate by parts. Let u = 2" and v’ = sinax,sou’ = nz" ' andv = f% cos azx.
n o _: 1 n n—1 1
Then [ z"sinazxdr = ——z" cosaz — [ (nz"™ ")(—= cosaz)dx
a a

1 n 1
= ——g"cosar+ — [ 2" cosaxdx.
a a

49. We integrate by parts. Since we know what the answer is supposed to be, it’s easier to choose v and v’. Let u = cos™

and v’ = cosx, so v’ = (n — 1) cos™ 2

Then

z(—sinz) and v = sin z.

/cos" zdr = cos" ' zsinz + (n— 1) / cos" % zsin’® x dzx
=cos" 'xsinz + (n—1) / cos" % z(1 — cos® z) dx
= cos" ' zsinz — (n — 1)/005" zdr+ (n—1) /cos"i2 zdz.
Thus, by adding (n — 1) f cos™ x dx to both sides of the equation, we find
n/cos" zdr = cos" ' zsinz + (n— 1) /cos”*2 zdz,

1 1 . n—1 2
SO /cos" dr = —cos" " xsinz + —— [ cos" " xdx.
n n

429

—1

T

50. (a) One way to avoid integrating by parts is to take the derivative of the right hand side instead. Since f €*? sin bz dx is

the antiderivative of e®” sin bz,

a

e sinbx = %[e‘m(A sinbz + B cosbz) 4+ C|

= ae””(Asinbr + B cosbr) + e**(Abcos bx — Bbsin bx)
= e"*[(aA — bB) sinbz + (aB + bA) cos bx].

Thus aA — bB = 1 and aB + bA = 0. Solving for A and B in terms of a and b, we get

a b
a? + b2’ a? + b2

Thus
@ ginby = e (——— sinb b sbr) + C
e SImoxr =e (mbln .’K—mcob 33) + C.

(b) If we go through the same process, we find

ae””[(aA — bB) sinbx + (aB + bA) cos bzx] = e** cos bz.
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Thus aA — bB = 0, and aB + bA = 1. In this case, solving for A and B yields

b a
= B = .
a? + b2’ a? + b2

Thus [ ** cosbx = e”(ﬁ sinbz + 397 cosbx) + C.

U e

— £(10)g(10) — £(0)g(0) — 2 / 2g(x) de.

51. Since f'(z) = 2w, integration by parts tells us that

/0 " f) (@) de =

We can use left and right Riemann Sums with Az = 2 to approximate f 010 zg(x) dx:

Leftsum =~ 0- g(0)Az 4+ 2- g(2)Az + 4 - g(4)Az + 6 - g(6)Az + 8 - g(8)Ax
= (0(2.3) + 2(3.1) + 4(4.1) + 6(5.5) + 8(5.9)) 2 = 205.6.

Right sum =~ 2 - g(2)Az +4 - g(4)Az + 6 - g(6)Az + 8 - g(8)Ax + 10 - g(10)Ax
= (2(3.1) + 4(4.1) + 6(5.5) + 8(5.9) + 10(6.1)) 2 = 327.6.

A good estimate for the integral is the average of the left and right sums, so

10
/ zg(x) dx ~ w = 266.6.
0

Substituting values for f and g, we have

‘/ ﬂ@d@ﬁm:fﬂmmm)—ﬂMMm—Z/mxm@dw
~ 10%(6.1) — 0°(2.3) — 2(266.6) = 76.8 ~ 77.

52. Using integration by parts we have

/0 (@) = / e

=1-f1 = [F(1) = f(0)]
:27075+6:&

53. (a) We have

F(a) :/ z?e " dx
0
a a
—|—/ 2ze” “dx
0 0
—|—2/ e “dx
0 0

a

2 —x
= —T €

= (—z’e " —2ze™ ")

= (—z’e " —2ze " — 2 ")

0
= —a’e " —2ae " — 2" +2.
(b) F(a) is increasing because z2e ™" is positive, so as a increases, the area under the curve from 0 to a also increases
and thus the integral increases.
(c) We have F'(a) = a®e™, so
F'(a) =2ae™ " —a’e™* = a(2 —a)e™ .
We see that ' (a) > 0 for 0 < a < 2, so F is concave up on this interval.



7.2 SOLUTIONS 431

54. We have

5S.

56.

3
Bioavailability = / 15te™ %2 dt.
0

We first use integration by parts to evaluate the indefinite integral of this function. Let w = 15t and v’ = e~ °-2'dt, so
u' = 15dt and v = —5e 2", Then,

/15te*°'2tdt: (15t)(—5e*°'2f)—/(—5e*°'2t)(15dt)

= —T75te” " 4 75/6‘“% = —T75te” " — 375¢ " 4 C.

Thus,
3
= —329.29 + 375 = 45.71.
0
The bioavailability of the drug over this time interval is 45.71 (ng/ml)-hours.

3
/ 15te” "2 dt = (—75te” "% — 375e02")
0

(a) Increasing Vj increases the maximum value of V, since this maximum is Vj. Increasing w or ¢ does not affect the
maximum of V.
(b) Since
av
i —wVp sin(wt + ¢),
the maximum of dV/dt is wVp. Thus, the maximum of dV/dt is increased if V or w is increased, and is unaffected
if ¢ is increased.

(c) The period of V' = Vj cos(wt + ¢) is 27 /w, so

27 /w
Average value = ﬁ /0 (Vo cos(wt + ¢))2 dt.

Substituting © = wt + ¢, we have de = wdt. Whent = 0, x = ¢, and when t = 27 /w, x = 27 + ¢. Thus,

w e 1
Average value = — / Vi (cosz)> = da
2m 4) w

V2 [rte

= o , (cosx)? da.

2

Using integration by parts and the fact that sin? z = 1 — cos® z, we see that

B ‘/02 1 ) 2w+
Average value = o |3 (coszsinz + :c)] .
Vi . .
= i [cos(2m + ¢) sin(2m + @) + (27 + ¢) — cos psin @ — ¢]
8, W
C 4n 27

Thus, increasing Vj increases the average value; increasing w or ¢ has no effect.
However, it is not in fact necessary to compute the integral to see that w does not affect the average value, since all
w’s dropped out of the average value expression when we made the substitution x = wt + ¢.

T

(a) We know that % = 7, so the total energy E used in the first 7" hours is given by £ = / te” " dt. We use
0

1 _—at

integration by parts. Letu = ¢,v" = ¢~ **. Thenv/ = 1,v = —Ze

T
E:/ te” "t dt
0
T
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(b)

. 1 T 1 .
TlgnooE T oa Tlgnoo (e“T) + a? (1 Tlgnoo eaT) '
Since @ > 0, the second limit on the right hand side in the above expression is 0. In the first limit, although both the

numerator and the denominator go to infinity, the denominator e*” goes to infinity more quickly than T does. So in
. . . T .
the end the denominator e®” is much greater than the numerator 7". Hence Thm —= = 0. (You can check this by
—o0 €
1

T
graphing y = — on a calculator or computer for some values of a.) Thus lim E' = —.
e T a

— 00

57. (a) We want to compute C'1, with C; > 0, such that

/01 (1(2))? do = /01 (Cy sin(rz))? do = C? /01 sin?(nz) do = 1.

We use integration by parts with u = v’ = sin(7z).
Sou' = 7 cos(rz) and v = — < cos(mz). Thus

1

0

1 1
/ sin®(rz) dz = —% sin(mwz) cos(mzx)| + / cos®(mz) dx
0 0

1

+ /01(1 — sin*(nz)) da.

-1 sin(mzx) cos(mx)
T

0

Moving f 01 sin?(mz) do from the right side to the left side of the equation and solving, we get

1

1 1
2/ sin®(rz) dz = 1 sin(mx) cos(mz)| + / lde =0+1=1,
0 & 0

0

! 1
/ sin®(rz) de = =.
o 2

1 1 C
/ (U1 (x))? do = C’f/ sin®(7x) dz = 71
0 0
So, to normalize ¥y, we take C; > 0 such that

2
%:1 SO 01:\/5.

SO

Thus, we have

(b) To normalize ¥,,, we want to compute C',, with C, > 0, such that

/01 (Un(x))® do=Cq /01 sin®(nmz) do = 1.

The solution to part (a) shows us that
1 1
/s.in2 (wt) dt = ~5r sin(7t) cos(mt) + 3 / 1dt.

In the integral for ¥,,, we make the substitution t = nz, so dr = %dt. Since ¢ = 0 when z = 0 and ¢ = n when

x = 1, we have
1 n
/ sin®(nrx) de = / sin®(t) dt
0 0

1 .
( o sin(7t) cos(mt)

n 1
(0+5)=%

/01 (U, (2))* de = C? /01 sin®(nmz) de =

So to normalize W¥,,, we take C,, such that

+l/ 1dt
o 2/,

S 3~ 3lr

Thus, we have
Cn

2
%:1 so C, =2
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Solutions for Section 7.3

Exercises
1
1. Ee( 30)(—3 cos b + sinf) + C.

(Leta=—3,b=1in1I-9.)

2. ém‘i Inz — %x" + C. (Letn = 5in I1I-13.)

3. The integrand, a polynomial, *, multiplied by sin 5z, is in the form of III-15. There are only three successive derivatives
of z* before 0 is reached (namely, 3z2, 6z, and 6), so there will be four terms. The signs in the terms will be —+4—, as
given in III-15, so we get

/xBSin5xdx: f%m3cos5x+ % 43x251n5x+ % - 6x cos b — % -6sinbx + C.

4. Formula ITI-13 applies only to functions of the form z™ In z, so we’ll have to multiply out and separate into two integrals.
/(Jc2 +3)Inxdr = /x2lnxdaz+ 3/lnxd:c4
Now we can use formula III-13 on each integral separately, to get
2 133 1133
/(x +3)Inzdx = ?lnx oy +3(zxlnz —z) + C.

5. Note that you can’t use substitution here: letting w = x> + 5 does not work, since there is no dw = 32 dz in the
integrand. What will work is simply multiplying out the square: (z*® 4 5)? = 2° + 102® 4 25. Then use I-1:

/(m3+5)2dat:/dem+10/x3dx+25/1dx:%x7+10~im4+25x+0.

6. —%cosg’w—i—c

(Let x = cos w, as suggested in IV-23. Then — sin w dw = dx, and f sin w cos* w dw = — f ztdz.)

7. flsin?’xcosmf §singr:cosgr:Jr %erC.

(Use IV-17.)
1 y
8. — arctan == + C.
V3 V3
(Let @ = v/3 in V-24).
13 35 3 3) 2
9. (233 4:1@ +4x 3 e+ C.

(Leta = 2,p(x) = 2® in I1I-14.)
10. We first factor out the 9 and then use formula V-24:

_de [ dr 1 1 i E)ic
922 +16 [ 9(x2+16/9) 9 4/3 4/3

1 3z
=7 arctan (I) + C.

11. We first factor out the 16 and then use formula V-28 to get

/ﬁ‘/m‘ifﬁ

1 . x

=12 arcsin (ﬂ) +C
1 . 4x

=12 arcsin (?) + C.
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12. The integral suggests formula VI-29, but is not a perfect match because of the coefficient of 9. One way to deal with the

9 is to factor it out, so that, using formula IV-29,
5 2
2 2
Ty (3)

zlln

dx dzx 1 dx
/ V922 + 25 7/ V/9(z2 +25/9) 5/ Va4 (5/3)2 3

Alternatively, we can write

+C.

dx B / dx
/ 92% + 25 (3)2 + 25
We now use the substitution w = 3z, so that dw = 3dz, and the integral becomes
Ldw 1 1
3 = —ln‘er \/w2+25‘ +C=-In|3z+ /922 + 25|+ C.
/ Vw2 +25 3 3 | |
5 . . 3
13. 16 Sin 360 sin 50 + 16 €08 30 cosb0 + C.
(Leta =3,b=>5in1I-12.)

14. % cos 30 sin 50 — % sin 36 cos 50 + C.
(Leta = 3,b = 5in II-10.)

1, 2 2\ 5.
15. (22— S+ = )
(3"” 99”*27)6 +c
(Let a = 3,p(x) = 2? in I1I-14.)
16. Lev° 4 ¢
. §€ —|— .

(Substitute w = 3, dw = 3z2 dz. It is not necessary to use the table.)

14 435 45 8 8) 3z

17. (=o' == Bl B C.
(3“’ of T Tgrttgr)e T
(Let a = 3,p(x) = 2 in I1I-14.)

18. Substitute w = 5u, dw = 5 du. Then

/u5 In(5u) du = 5—16 w® Inw dw

1.1 4 1
= E(éw lnwf%w +0C)
= éuﬁ In 5u — %qf + C.

Oruse In5u =1Inb5 + Inu.

/u51n5udu:ln5/u5du+/u5lnudu

u6

1 1
= €1n5 + 6u6 Inu— %uG + C  (using II-13)
u® 1 5

19. Letm = 3 in IV-21.

1 d 1 sinz " 1 1 d
———dr = = - T
cos3 T 2cos?2x 2 cos T

1

71 sin x L
T 2cos?2z 4

sinx + 1

by IV-22.
sinx — 1’ +Cby
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20. Use long division to reorganize the integral:

21.

22,

23.

24.

25.

26.

27.

/Z—tidt:/(l—i—%) dt:/dt—&-/mdt

To get this second integral, let a = 1,b = —1 in V-26, so

2
/;Jridt:t+1n|t71|fln|t+1\+C.

1
Substitute w = z2, dw = 2z dz. Then / 23 sina® do = 3 /w sinw dw. By III-15, we have

2

/wsinwdw: —%wcosw—}- %sinw—l—C: —%a: cosx® + %sinxz—i—C.

%(7005 2y sin Ty — 2sin 2y cos Ty) + C.
(eta=2,b=7inl-11.)

1 1 1
/y2 sin 2y dy = —§y2 cos 2y + Z(Qy) sin 2y + 5(2) cos2y + C

= 7%y2cos2y+ %ysinZer icos2y+C.

(Use a = 2,p(y) = y? in II-15.)

1
ﬂ65’”(5 sin3z — 3cos3z) + C.
(Leta =5,b=3inlI-8.)
Use IV-21 twice to get the exponent down to 1:

1 do — 1 sinx i § 1 d
cos® x T dcostz 4 cos3 T

1 d 1 sinz n 1 1 d
T == -~ T
cos3 T 2cos2x 2 cos T

1
/ dr = 1 In
cos T 2
Putting this all together gives

/ 1 do — 1 sinz 3 sinx 3 1

Now use 1V-22 to get
(sinz) +1
(sinz) — 1

K22

(sinz) + 1
(sinz) — 1

cos® x 4costr 8cos?z 16

e

Substitute w = 260, dw = 2 df. Then use IV-19, letting m = 2.

1 1 1 1, cosw 1 1
e dh == dw = =(— C=——" 4C=——"_40C.
/sin220 2/sin2w v 2( sinw)+ 2tanw+ 2tan29+

Substitute w = 30, dw = 3 df. Then use IV-19, letting m = 3.

1 1 1 1 1 cosw 1 1
== | ——dw==|—= - d
/sin330 3/sin3w . 3[ 2sin2w+2/sinw w}
1
2

1cosw 1 cos(w) — 1

- - Cos\w) — - V-2
6sin?w 6 { " cos(w) + 1 + C} by IV-20
1 cos 36 1 cos(30) — 1

- IR MY i i) (5
6sin’30 12 cos(30) + 1 +

435
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28. Substitute w = 7x, dw = 7 dx. Then use IV-21.

1 dx—l 1 dw—l lsmerg 1 dw
cost Tx 7] costw 7 13cosdw 3 cos2 w

1 sinw " 2 [sinw C’}
T 2lcosdw @ 21
1 tanw 2

== ¢
21 cos? w + 21 anw +C

1 tan7zx
= — — t 7 C.
21 cos? Tx + 21 an T +

COs w

29.
;dx— ;d:c—l(ln|x+l\—ln|z+3|)+6’
224+42+3 7 ) (z+D(@+3) 2

(Leta = —1 and b = —3 in V-26).

30. Using the advice in IV-23, since both m and n are even and since n is negative, we convert everything to cosines, since

cos z is in the denominator.
. 4
/tan4rdm:/sm4mda§
cos* x
1 —
:/( C(ls 2x)? de
cos
:/ i / dx—|—/1dx.
cos
1 1 sinx 2 1
dr = = = d
/cos‘*x v 3cos3x+3/c032x *

/ 12 d — sinx L
cos? x cosx

By IV-21

Substituting back in, we get

1 si 4 si
tan4:1cdac=—smm ——Mnx—i—x—i—C.
3cosdx 3cosw

31
/L = —%(ln|z| —In|z—3|)+C.

(Leta = 0,b = 3in V-26.)

dy / dy 1
=— | —————=—"(In|ly—2|-In|ly+2|) + C.
/4—y2 (y+2)(y—2) gl =2 lv+2)

(Leta = 2,b = —2in V-26.)

33. arctan(z +2) + C.
(Substitute w = z 4 2 and use V-24, letting a = 1.)

32.

34.

1 1
/y2+4y+5 Y /1+(y+2)2 y = arctan(y +2) +

(Substitute w = y + 2, and let @ = 1 in V-24).

1 1 1
/x2+4x+4dx_/(x+2)2d$__m+2+C'

35.

You need not use the table.
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36. We use the method of IV-23 in the table. Using the Pythagorean Identity, we rewrite the integrand:
sin®z = (sin2 1:) sinx = (1 — cos® 1:) sinz = sinz — cos® zsin z.

Thus, we have
-3 . 2 .
/sm rdr = / (smx — cos xsmm) dx

. 2 .
:/smxdx—/cos rsinx dz.

The first of these new integrals can be easily found. The second can be found using the substitution w = cosx so
dw = — sin x dz. The second integral becomes
/coszxsinxdx =— /dew
13
=—= C
3 T
1
=-3 cos®z + C,

so the final answer is

.3 . 2 .
/sm a:da::/smxdxf/c;os xsinz dz

= —cosz + (1/3) cos® z + C.

37.
/sin3 36 cos” 30 df = /(sin 36)(cos® 30)(1 — cos” 36) df
= /sin 36/(cos® 30 — cos” 36) df.
Using an extension of the tip given in rule IV-23, we let w = cos 36, dw = —3sin 36 db.

/sin 36(cos” 30 — cos” 30) df = f% /(w2 —w") dw

1w w
3l e
__1 3 1 5
= 9(005 30) + 15 (cos” 30) + C.

38. If we make the substitution w = 222 then dw = 4z dz, and the integral becomes:

1
/ze2z2 cos(22%) dz = 1 /ew cosw dw

Now we can use Formula 9 from the table of integrals to get:

i/ew cos w dw

= 0| — ==

—
N[ =

e’ (cosw + sinw) + C

e’ (cosw + sinw) + C

222

e** " (cos 22% +sin22%) 4+ C
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39. Since cosh? z — sinh® 2 = 1 we rewrite sinh® x as sinh « sinh?® z = sinh 2(cosh? 2 — 1). Then

/sinh3 xcosh® z do = /sinh z(cosh® z — 1) cosh?® z dx

= /(cosh4 & — cosh® z) sinh z dz.

Now use the substitution w = cosh x, dw = sinh x dx to find
/(w4 —w?) dw = %ws — %w?’ +C = %coshSa:— %coshga:—i—C.
40. Since cosh? z — sinh® 2 = 1 we rewrite cosh®  as cosh x cosh? & = cosh (1 + sinh? z). This gives
/sinh2 xcosh® z do = /sinh2 z(sinh® z 4 1) cosh x dx
= /(sinh4 & + sinh® z) cosh z dz.
Now use the substitution w = sinh z, dw = cosh z dz to find
/(w4—w2)dw: %w5 — éw?’—&—C: %sinh5m+ ésinh3x+C.
41. Substitute w = 3a, dw = 3da. Then da = % dw. We have

a={5 1 w=7
sin3ada = = sin w dw
_ 3 ).
a=0 w=0

1
= ——-cosw

(V2 12
o3\ 2 3 2 )7
1 1
1 1
42. ——dx = ——dx.
/0 2roz+1” /0 (z+1)? ¢
We substitute w = = + 1, so dw = dz. Note that when x = 1, we have w = 2, and when z = 0, we have w = 1.

=1 w=2
1 1 1
. dr= ~dw=——
/:1;:() (z+1)? * L:1 w? v w

43. Let w = = + 2, giving dw = dz. When x = 0, w = 2, and when x = 1, w = 3. Thus,

1 3
B Gl ) BN D R
o (@+2)2+1 , w241

For the last integral, we make the substitution v = w? + 1, du = 2w dw. Then, we have

Pow 1 ’
2
/2 w2+1dw:fln|w + 1|

w=2
1 1
= —— 1==.
2+ 2

w=1

2
2
1
= 5(111\10\ —1In|5|)
1. /10y 1
=5 (5) =3

44. Letw = 22, dw = 2z dx. When = 0, w = 0, and when z = %,w: %.Then
1 P 1
/~/§ xdx 2 gdw 1 . 2
— arcsinw
0

1 1
= §(arcsin 5~ arcsin0) = %

Vi—t ), VI—w? 2

0
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45. Using II-10 in the integral table, if m # +n, then

/ sin m6 sin né do

-

™

1

= —5———5[mcosmbsinnd — nsinmb cos nd]
m

n2 —

-

1

= ———l[(mcosmmsinnm — nsinmn cosnm) —

(m cos(—mm) sin(—nm) — nsin(—mm) cos(—nm))]

But sin k7w = 0 for all integers k, so each term reduces to 0, making the whole integral reduce to 0.

46. Using formula II-11, if m # +n, then

™

/ cosmb cosnb df =

™

5 (1 cos mf sin nf — m sin mf cos no)
m

n2 —

-

We see that in the evaluation, each term will have a sin k7 term, so the expression reduces to 0.

47. (a)
1
1! Vo
— 5(12 = sin(12
=0/, Vo cos(120mt)dt T90m sin(1207t) i
Vo .
= To0m [sin(1207) — sin(0)]
_ W _
= 1207T[0 0] =0.
(b) Let’s find the average of V2 first.
—2 1 !
V™ = Average of Vie — V3de
1-0J,
1 1
= —— [ (Vbcos(120xt))?dt
1-0J,
1
=Vy / cos® (120mt)dt
0

dx

Now, let 1207t = ddt = .
ow, le L T, an 207

2

V=

2
So, the average of V2 is V70 andV =

(©) Vo =2V =110v2 ~ 156 volts.

So

2 1207
Vo 2
cos” xdx.
0

1207
1‘2/?; (% coszsinx + %x) o 1I-18
1‘2/(())277 60m = VTOQ'

average of V2 = %.

48. (a) Since R(T) is the rate or production, we find the total production by integrating:

/ R(t) dt:/ (A + Be 'sin(2nt)) dt

N
=NA+ B/ e~ 'sin(2nt) dt.
0
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Leta = —1 and b = 27 in II-8.
N

B

“NA+ —2 ¢
Ty ae©

(= sin(2mt) — 27 cos(2nt))

Since N is an integer (so sin 2r N = 0 and cos 27N = 1),

2w

N
71—&-4772(1_6 ).

N
/ R(t)dt = NA+ B
0

Thus the total production is N A + 13-7T4§ s (1 — e ™) over the first N years.

(b) The average production over the first NV years is

N __ _—N
R(t)dt — A4 2B 1—e .
o N 1+ 472 N

(¢) As N — o0, A + 11’:52 1*;]_N — A, since the second term in the sum goes to 0. This is why A is called the

average!
(d) When ¢ gets large, the term Be ™" sin(2mt) gets very small. Thus, R(t) ~ A for most ¢, so it makes sense that the

average of J;)N R(t)dtis Aas N — oo.
(e) This model is not reasonable for long periods of time, since an oil well has finite capacity and will eventually “run
dry.” Thus, we cannot expect average production to be close to constant over a long period of time.

49. We want to calculate L
/ Cp sin(nwz) - Cp, sin(mrz) dx.
0

We use II-11 from the table of integrals with a = nm, b = mm. Since n # m, we see that

1 1
/ U(z) U (x)de = C’nCm/ sin(nmz) sin(mnz) d
0 0

C,.C . .
= — 55— (nmcos(nmx) sin(mmx) — mmsin(nmz) cos(mmnz))
m2mw2 — n2m

1

0

CnCm ) )
= 2 = )2 (n7r cos(nm) sin(mm) — mm sin(nm) cos(mm)

—nm cos(0) sin(0) + m sin(0) COS(O))
=0

since sin(0) = sin(nm) = sin(mm) = 0.

Solutions for Section 7.4

Exercises

1. Since 25 — x? = (5 — z)(5 + ), we take
20 A B

25 — 2 _5—m+5+x'

So,

20 = A(5 + ) + B(5 — )
20 = (A — B)z + 5A + 5B,



7.4 SOLUTIONS
giving
A—B=0
5A+ 5B = 20.
Thus A = B = 2and 20 9 9

25—22 H5—2  bH4+a

. Since 6z + 2° = z(6 + ), we take
z+1 A B

6x+22 x 6+z

So,
z+1=A(6+z)+ Bz
z+1=(A+ B)x+6A4,
giving
A+B=1
6A = 1.

Thus A =1/6,and B = 5/6 so
v+l _1/6 ., 5/6

6x + 2 T 6+

. Since y® — 4y = y(y — 2)(y + 2), we take

8 _A,. B C
yv-4y y y—2 y+2
So,
8= Ay —2)(y+2)+ By(y +2) + Cy(y — 2)
8= (A+ B+ C)y’ + (2B — 20)y — 4A,
giving
A+B+C=0
2B—2C =0
—4A = 8.
Thus A=—-2,B=C =1s0
8 -2 1 1

= "4 .
v-4dy oy y—2 y+2

. Since 5% + 35 +2 = (s + 2)(s + 1), we have
21+s)  201+4s) 2

s(s24+3s+2)  s(s+2)(s+1) s(s+2)’

so we take
2 _A B
s(s+2) s s+2
Thus,
2=A(s+2)+ Bs
2= (A+ B)s+2A4,
giving
A+B=0
2A =2.
Thus A =1and B = —1 and
2(1+s) 1 1

s(s2+35+2) s s+2

a4
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5. Since s* —1 = (s> —1)(s> +1) = (s — 1)(s + 1)(s®> + 1), we have

2 __ A B  Cs+D
st—1 s—1 s+1 s24+1°

Thus,
2=A(s+1)(s*+1)+ B(s —1)(s°+ 1) + (Cs + D)(s — 1)(s + 1)
2=(A4+B+C)s’+(A-B+D)s>+(A+B—-C)s+(A—B-D),
giving
A+B+C=0
A—-B+D=0
A+B-C=0
A—B—-D=2.

From the first and third equations we find A + B = 0 and C' = 0. From the second and fourth we find A — B = 1 and
D=-1.Thus A=1/2and B = —1/2and

2 1. 11
si—1" 2(s—1) 2(s+1) s241°

6. Since y® —y? +y — 1= (y — 1)(y* + 1), we take
2y A By+C
Y-y ty—1 y—1 ¢y2+1

So,
2y = A(y* +1) + (By + CO)(y — 1)
2y = (A+B)y*+ (C - B)y+A-C,
giving
A+B=0
-B+C =2
A-C=0.
Thus A=C =1,B=—1s0
2y 1 1—y

. = + :
vy +y—-1 y—-1 y*+1

3

7. Since w* — w® = w*(w — 1), we have

1 A B C D
- w-1 wlw e
Thus,
1= Aw® 4+ B(w — D)w® + C(w — 1w + D(w — 1)
1= (A+ B)w® 4 (=B + C)w® + (=C + D)w + (-D),
giving
A+B=0
-B+C=0
~C+D=0
-D=1.

Thus A=1,B=-1,C=—1and D = —1so
1 1 1 1 1
wt—wd w-1 w w
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11.

12.

13.

14.

15.
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Using the result of Problem 1, we have

/ 20 dmz/fﬁ%dm—i—/ 2 dr =—-2In|5—z|+2In|5+z| + C.

25 — 2 5+

Using the result of Problem 2, we have

1
/ v+l dac:/ /6dm+/ 5/6 dac:%(ln|x|+51n|6+x|)+0.

6z + x? T 6+ x

Using the result of Problem 3, we have

8 -2 1 1
/y3_4ydy=/7dy+/mdy+/mdy=—21n|y|+1n|y—2|+1n|y+2|+0-

Using the result of Exercise 4, we have

21+ s) _ 1 1 B
/—3(32+3s+2)d8_/(s s+2) ds=1In|s| —In|s + 2| + C.

Using the result of Exercise 5, we have

2 1 1 1 1 1
ds — _ _ ds=-In|s— 1] — =1 1) — arct C.
/54—1 8 /(2(5—1) 20s + 1) s2+1) s=gmnls—1] = 5lnfs + 1| —arctans +

Using the result of Problem 6, we have

2y _ 1 1—y _ 1 2

Using the result of Exercise 7, we have

1 1 1 1 1 1 1
/mdw:/(ﬁ‘a—m‘ﬁ) dw =nfw— 1] =Infw]+ 7+ 705 +C.

We let

32 —8z+1 A LB C
3 —4224+24+6 x—-2 z+1 z-—3

giving
327 —8z4+1=A@+1)(z—3)+ Bz —-2)(z—3) +C(z —2)(z + 1)
32> —8x+1=(A+B+C)z* — (2A+ 5B+ C)z — 3A + 6B — 2C
SO

A+B+C=3
—2A—-5B—-C=-8
—-3A+4+6B-2C =1.

Thus, A=B=C =1,s0

32 —8x+1 dx dx dxr
— — _dr= =1 —2|+1 1| +1 — K.
/m3—4w2+x+6dx /w—2+/m+l+/x—3 nlz | +Infe+1]+Inje— 3]+
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16. We let
B, C
2 -1

23 — 22 x2(x—1)

1 1 A
=+
xT

giving
1= Az(z—1)+ Bz —1) + Cz*
=(A+C)z°+(B— Az —B

SO

A+C=0
B-A=0
-B=1.

Thus, A=B=-1,C =1,so0
L:— d_a:_ d :—ln|x|+x_1+ln|x—l\+K.
3 — 22 T 2 a:—l

10z + 2 _ 10z + 2 A +B$+C
23 —br2+x—5 (x—5)(z2+1) =x-5 z2+1

17. We let

giving
10z +2 = A(z> + 1)+ (Bx + C)(z — 5)
10z 42 = (A+ B)2® + (C —5B)z + A — 5C

SO

A+B=0
C—-5B=10
A-5C=2.

Thus, A=2,B=-2,C =0, so
10z + 2 2z _ 9
/w3—5x2+x—5 /— —/w2+1da:—21n|m—5|—ln‘x —&—1‘—&—[(.

18. Division gives

z* 4+ 122% 4 1522 + 252 + 11 . 42® + 25z + 11
x3 + 1222 + 11z N o3+ 1222 + 11z
Since 2% + 122 + 11z = z(z + 1)(x + 11), we write

4o* +2524+11 A, B C

3+ 1222+ 11z = z+1 x4+11

giving
4z + 252 + 11 = Az + 1)(x + 11) + Bz(z + 11) + Cz(z + 1)
4 + 250 +11 = (A+ B+ C)z° + (12A+11B+ C)z + 114

SO

A+B+C=4
12A+11B+C =25
11A =11.

Thus, A=B=1,C =2so
zt + 1223 4+ 1522 + 25z + 11 dzx 2dzx
dr = zdr +
3 4+ 1222 4+ 11z x+1 z+11

2
= m7—|—1n|x|—&-ln|x—l—1|—|—21n|x—l—11|—|—K.
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Division gives
x4+3x3+2x2+1_x2+ 1
22+ 3z +2 B 2243z +2°
Since 2% 4+ 3z + 2 = (z + 1)(z + 2), we write
1 B 1 _ 4 B
224+3x+2 (z4+1D)(x+2) z4+1 z+2
giving
1=Az+2)+B(z+1)
1=(A+B)z+2A+B
SO
A+B=0
2A+B=1.

Thus, A=1,B=—1so
4 3 2
=+ 3x” + 227 + 1 Y dx dx
dr = d —
/ 2+ 3z +2 v /x m+/$+1 /$+2

3
:%+ln|x+1\—ln\x+2|+C.

445

20. Since z = (3/2) sint, we have dz = (3/2) cos t dt. Substituting into the integral gives
1 1 (3 ) / 1 1 L. (2
———= [ ————(=cost|dt= —dt:—t—i—C:—arcsm(—)—l—C.
/\/9*4:62 /\/9—95in2t 2 2 2 2 3
21. Completing the square gives 2> + 4z + 5 = 1 + (z + 2)2. Since « + 2 = tant and dx = (1/ cos® t)dt, we have
;dzf _ ;dt* dt =t + C = arctan(x + 2) + C
22 +4x+5 | 14tan?t cos2t - h ’
22. Since x = sint + 2, we have
4o — 3 —a® = 4(sint +2) — 3 — (sint 4+ 2)> =1 —sin’ t = cos’ ¢
and dx = cost dt, so substitution gives
/ ! —/ ! costdt—/dt—t+C—arcsin(x—2)—|—C
Vix — 3 — x? Vecos? t .
23. (a) Substitute w = z® 4 10, so dw = 2z dx.
(b) Substitute x = v/10tan 6.
Problems
24. Since 2% + 2z 4+ 2 = (z + 1) + 1, we have
1 1
————dr = | —————dx.
/w2+2m+2 v /(:p+1)2+1 v
Substitute © + 1 = tan 6, so x = (tanf) — 1.
25. Since 22 + 6x + 9 is a perfect square, we write

S ! dr= | ————da
224+6x+25 " ) (22+6x+9)+16 | (x+3)2+16

We use the trigonometric substitution x + 3 = 4tanf, so z = 4tan — 3.
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26. Since y® 4+ 3y +3 = (y +3/2)%> + (3 —9/4) = (y + 3/2)? 4 3/4, we have

dy _ dy
y?+3y+3 (y+3/2)2+3/4

Substitute y + 3/2 = tan 6, so y = (tand) — 3/2.
27. Since 2% + 2z + 2 = (z + 1)? 4 1, we have

B S M s R
22 +2x+2 ) (x+1)2+17

Substitute w = (z + 1)2, so dw = 2(z + 1) dz.
This integral can also be calculated without completing the square, by substituting w = z? + 2z + 2, so dw =
2(x + 1) dz.

28. Since 2z — 2> =1 — (z — 1), we have

4 1
——dz = 4/ — dz.
/v2z—z2 V1—(z—1)2
Substitute z — 1 = sin @, so z = (sin ) + 1.
29. Since 2z — 22 =1 — (z — 1)?, we have
z—1 z—1
——dz = | —————d=z.
V2z =22 / 1—(z—1)2
Substitute w = 1 — (z — 1)%, so dw = —2(z — 1) dz.
30. Since t* + 4t + 7 = (t +2)* + 3, we have

/(t +2)sin(t” + 4t +7) dt = /(t +2) sin((t +2)° + 3) dt.

Substitute w = (¢ + 2)% + 3, so dw = 2(¢ + 2) dt.
This integral can also be computed without completing the square, by substituting w = ¢ + 4t + 7, so dw =
(2t +4) dt.

31. Since #? — 46 = (0 — 2)® — 4, we have
/(2 —0) cos(0 — 460) do = /—(9 —2)cos((0 —2)° —4) d6.
Substitute w = (6 — 2)% — 4, so dw = 2(6 — 2) db.

This integral can also be computed without completing the square, by substituting w = 62 —46, so dw = (20—4) d6.
32. We write

1 _ A B
(x=5)(x—-3) x-5 z-3
giving
1=A(x—3)+ B(z —5)
1=(A+ B)x— (3A+5B)
$O
A+B=0
—3A-5B=1.

Thus, A=1/2,B=—1/2,s0

1 1/2 1/2 1 1
N7 o == — - I = _1 - - _1 - .
/( e 3)dac / de /m de 2n|x 5] 2n|31: 3|+ C
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33. We write
1 A n B
(x+2)(x+3) z+2 =x+3’
giving
1=A(x+3)+ Bz +2)
1=(A+B)z+ (3A+2B)
sO
A+B=0
3A+2B =1.

34.

35.

Thus, A=1,B = —1, so

1 1 1

We write
1 A B

(z+T7)(z—2) 7w+7+x—2’

giving
1=Ax—-2)+ Bz +7)
1=(A+B)z+ (—2A+7B)

SO

A+B=0
—2A+7B=1.

Thus, A= —-1/9, B =1/9, so

. =N~ = — — - = _7__1 _1 _2 .
/(:v ol 2)dﬂc /:c 7dx+/ de n|x+3|+9n|x |+C

The denominator 2> — 3z + 2 can be factored as (z — 1)(xz — 2). Splitting the integrand into partial fractions with
denominators (z — 1) and (z — 2), we have

T _ x A n B
22-3x+2 (z—1)(x—-2) =x-1 z-2

Multiplying by (x — 1)(z — 2) gives the identity
z=A(x—-2)+B(z—1)

$0
x=(A+ B)x —2A— B.

Since this equation holds for all z, the constant terms on both sides must be equal. Similarly, the coefficient of x on both
sides must be equal. So

—2A-B=0
A+B=1
Solving these equations gives A = —1, B = 2 and the integral becomes

T 1 1
———dr = — d. 2 de = —1 — 1]+ 21 -2 .
[t = [y [ = mle s 2mie -2l



448

36.

37.

38.

39.

40.
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This can be done by formula V-26 in the integral table or by partial fractions

dz dz 1 1
— = - — dz =1 -1 1 .
/z2+z /z(z+1) /(z z—l—l) z=Inlz —Injz+1]+C

11
z4+1 224z

Check: d 1
— (In|z] =Injz+1|+C) == —
z z

We know 2 4 52 4+ 4 = (2 + 1)(z + 4), so we can use V-26 of the integral table with @ = —1 and b = —4 to write
dz 1
— = (1 1 -1 4 C.
/x2+5x+4 3(11‘35"‘ | —Injz +4]|) +
We use partial fractions and write
1 A B

3p_3p2 3P 1-P

multiply through by 3P(1 — P), and then solve for A and B, getting A = 1 and B = 1/3. So

_dp (L, 1 \,p_ L [dP 1 [ dP
3P —-3P2 3P  3(1-P) 3/ P 3)]1-P

1 1 1
=-In|P|l—zln|l1-P ==1 .
3InlPl— glfl= P|+C = gln| 5| +C
Using partial fractions, we have:
3x+1 3z +1 A + B

22-3r+2 (z—1)(x—-2) =x-1 z-2
Multiplying by (z — 1) and (z — 2), this becomes
3z+1=A(x—2)+ Bz —1)
=(A+B)x—2A—-B

A+B=3
—2A-B=1

Solving this system yields A = —4 and B = 7. So,
3z 41 4 7
/x2—3x+2d$_/(_x—1 q:—Q)dx
dx dx
=—4 7
/ac—1+ /:c—2

—4ln|z—1|+7In|z — 2|+ C.

which produces the system of equations

Since 2% + 3y + 1 = (2y + 1)(y + 1), we write
yt2 _ A B
22 +3y+1  2y+1 y+1’

giving
y+2=Ay+1)+BR2y+1)
y+2=(A+2B)y+ A+ B
SO
A+4+2B=1
A+ B=2.
Thus, A =3, B = —1,s0

y+2
4T g — dy==% 12 1] -1 1|+ C.
/2y2+3y+1 y = /2y+1 /y+1 Yy n2y+ 1/ —Inly + 1+
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42,
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Since #® 4 x = x(x® 4 1) cannot be factored further, we write

m—i—lié Bx +C
B4z =z 2 +1°

Multiplying by 2(2? + 1) gives

r4+1=A("+1)+ (Bx+C)z
t4+1=(A+ Bz’ + Czx + A,

so
A+B=0
c=1
A=1.

Thus, A= C =1, B = —1, and we have

r+1 do — (l fx+1 dm x dx dx
3+ - T a:2+1 x2—|—1 2 +1

=lIn|x| — Eln}x —l—l} + arctanz + K.

Since 2% 4+ x* = 2%(1 + 2?) cannot be factored further, we write

x—2 A+£+CCE+D
2+t w 142"
Multiplying by z2(1 4+ z?) gives
r—2=Az(1+2%) + B(1 +2%) + (Cx 4+ D)z”
t—2=(A+C)z® + (B + D)z’ + Az + B,

S0
A+C=0
B+D=0
A=1

B = -2.

Thus, A=1,B=-2,C = —1, D = 2, and we have

T —2 B 1 2 —x+2 _ dx dx rdr dx
/az2+x4dm_/(aj :c2+ 1+x2>dm_/x 2/3: /1+m2 /1+x2

2 1
:ln|x|+;—§ln‘l+x ‘+2arctanx—|—K.

Let x = 3sin 6 so dz = 3 cos 0 df, giving

.2 in2
e — Mgcosgdgz/wdozg/sin?‘@d@.

2
x
/\/9—552 N +/9 — 9sin26 3cosb

Integrating by parts and using the identity cos” 6 + sin® 6 = 1 gives

/sin29d9:—sin90059+/cos20d0=—sin@cos@+/(1—sin20)d9

/sin20d9: —%sin&cos@-ﬁ- g +C.

449
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44.

45.

46.

47.
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Since sinf = x/3 and cos § = \/1 —22/9 =+/9 — x2/3, and 0 = arcsin(z/3), we have

332 .2 9 . 9
/ﬁda@=9/sm 9d9:—§smecosﬁ+§9+0

V9 _ 12
g~§%+garcsm(3)+0——§ 9—x2+§arcsin(§>+0

Lety = 5tan 6 so dy = (5/cos? §) df. Since 1 + tan? @ = 1/ cos® 0, we have

2 2
y _ 25 tan” 6 5 B 2
/ 25+ y? dy = / 25(1+tan%60) cos?0 o = S/tan 0.do.

Using 1 4 tan® @ = 1/ cos® @ again gives

2
Y _ 2 _ 1 ) _ .
/25+y2 dy—5/tan 9d0_5/(—cos?€ 1) dfd=5tan6 — 50 + C.

In addition, since § = arctan(y/5), we get

2
)
/ %5+ dy = y — barctan <5> + C.
Lett = tan @ so dt = (1/cos? 8)df. Since v/1 + tan? § = 1/ cos #, we have

l/cos 0 cos a0 — cos 6 "
t2 vV1+ t2 tan2 01 + tan? tan? @ cos? @ o sin? 6

The last integral can be evaluated by guess-and-check or by substituting w = sin #. The result is

cos@ _ 1 ‘C
t2 \/1 + t2 sin? 6 " siné
Since ¢t = tanf and 1/ cos?6 =1+ tan? 6, we have

1 1
V1 + tan2 0 N Vit

cosf =

In addition, tan @ = sin 6/ cos 0 so

t
sinf = tanf cosf = .
V1+4t2
Thus
dt 142
=— + C.
/t2\/1+t2 t

Since (4 — 22)3/2 = (/4 = 22)3, we substitute z = 2sin 6, so dz = 2 cos 6 df. We get

dz _ 2 cos 6 db _ 2cosn9d0_l db —ltane—s—C
(4—22)3/2 | (4—4sin%6)3/2 8cos30 4 ) cos20 4

Since sin @ = z/2, we have cos 0 = /1 — (2/2)? = (V4 — 22)/2, s0

dizfltanﬁ—i—c lsm0+ _1 z/2 Lo— z e
(4—22)32 " 4 deost T A(VE—22)/2  4/d— 22

We have
10 A Bs+C

(s4+2)(s2+1)  s+2 s241°

Thus,

10 = A(s®> + 1) + (Bs + C)(s + 2)
10 = (A+ B)s> + (2B + C)s + (A +20),
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giving
A+B=0
2B+C =0
A+2C = 10.
Thus, from the first two equations we have C = —2B = 2A, which, when used in the third, gives 5A = 10, so that
A =2 B = -2 and C = 4. We now have
10 _ 2 %442 2 4
(s+2)(s2+1) s+2  $£2+1  s+2 s2+1 2+1’
SO
10 2 2s 4 )
— —ds = - ds =21 2] —1 1| +4arct C.
/(s+2)<s2+1) ’ /(s+2 FT ) B 2l 2 —ha st 1]+ darctans +

. Completing the square, we get
2+ 4r4+13=(x+2)* +9.

We use the substitution 2 + 2 = 3tant, then dx = (3/ cos® t) dt. Since tan® ¢ + 1 = 1/ cos® t, the integral becomes

1 1 3 11 2
dz= : dt = [ = dt = > arct c.
/(x+2)2—|—9 v /9tan2t—|—9 cos? £ /3 3aman< 3 )+

. Using the substitution w = e*, we get dw = e”dz, so we have

| e=twrn®= | ey

(w—l)l(w+2) %(wl—liw—li—2)’

et [ )

(Injw—-1]—-Injw+2))+C

But

SO

(In|e® = 1] —Inle” +2|) + C.

. Notice that because is negative for 2 < z < 3,

Y A R
Area = /2 (x—l)(x—4)d .

(z— 1)(96 4)

Using partial fractions gives

3z A B (A+B)x—B—4A
(z—1(x—4) -1 x—-4  (z—1)(z—4)

Multiplying through by (x — 1)(z — 4) gives
3z =(A+ B)z— B—4A

so A= —1and B = 4. Thus

3 3z P 4
,/2 mdangl (x_l+x_4)da¢:(ln|x71\741n|x74\) =5In2.
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51. We have N
2
Area:/ %dw.
o @+ 1D)(z+ 1)

32+ 7A:c+B+ C
(z24+1)(z+1) 2+1  z+1
(Az+ B)(z +1) + C(2* + 1)
(x24+1)(x+1)
(A+C)2*+ (A+B)z+B+C
@+ D@+ 1)

Using partial fractions gives

Thus

32° +x=(A+C)z* + (A+ Bz + B+ C,
giving

3=A+C, 1=A+B, and 0=B+C,
with solution

A=2B=-1,C=1.

Thus
1 2
Area:/ #dm
o (@2+1D)(z+1)
B 1(23;_ 1 —l—l)dm
a o \z2+1 22+1  =z+1
1
= In(z® + 1) — arctanz + In |z + 1]
0
=2In2 — /4.
52. We have

1/2 {L‘2
Area = ——dx.
/0 V1—1x2
Letz = sin so dx = cosfdf and /1 — 22 = /1 —sin? @ = cos§. When x = 0,0 = 0. When z = 1/2,0 = /6.

/1/2 xz /6 Sil’l20 /6 )
7dx:/ 7cos0d9:/ sin” 0 df
0 V1 — 22 0 v/1—sin%6 0
/6
V3
3

™

12

2 2

(9 sin@cos@)

0
The integral f sin? @ df is done using parts and the identity cos? § 4+ sin® 6 = 1.
53. We have

V2 23
Area = ——dx.
/0 V4 — a2
Let z = 2sinf so dz = 2cosfdf and v4 — 22 = /4 —4sin?0 = 2cosf. When £ = 0,0 = 0 and when
(2sin 0)?

r=+2,0=m/4
/\/§ 3?3 e /Tr/
o V4-—uz? 0o \/4—(2sinh)?

4
/4 /4
8/ sin® 0 do = 8/ (sin @ — sin 0 cos” ) do
0 0

/4
cos® 0 2 5
=8| —cosf + =8|lz-——%= ).
( 3 . 3 6v2

2 cos 6 df
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54. We have

5S.

56.

3
1
Area = —dx.
/0 Va2 +9
Let 2 = 3tan 0 so dz = (3/ cos® 0)d6 and

. 2
\/ﬁ: 9sin €+9_ 3

cos2 0 cosf’

When z = 0,60 = 0 and when x = 3,60 = 7/4. Thus

371 dx = " ! 3 do = " 1 . 3 do " 1 dé
0o VIZF9 - o V9tan2§ +9cos2f o 3/cosf cos2f o cos

7r/4_1ln 1/V2+1| 1ln<1+\/§)
1/vV2-1 V2—-1)°

zlln
2

sinf +1
sinf — 1

T2

2

0

This answer can be simplified to In(1 4 v/2) by multiplying the numerator and denominator of the fraction by (v/2 4 1)
and using the properties of logarithms. The integral f (1/ cos 6)d0 is done using the Table of Integrals.

We have

3
1
Area = ——dx
/\/g xvax? +9
Let 2z = 3tan 0 so de = (3/ cos® 8)df and

. . 2 .
[t o_ sinf [9sin” 6 _ 9sin
TV es+9 3(:056‘\/ cos2 0 +9 cos2 0’

When z = /3,0 = 7/6 and when = = 3,0 = 7/4. Thus

3 /4 /4
[ ommte= [ s wxa®=3 | gt
v TVz2+9 /6 9sinf/cos?20 cos?0 3 Jae sin 0

/4
_ 1.1, jeosO—1 _ (Ve VB2
3 2 cosf + 1 o 6 1/\/§+1 \/§/2+1
1 1-+2 V342
== |(In +In .
6 142 V3 =2

This answer can be simplified by multiplying the first fraction by (1 — 1/2) in numerator and denominator and the second
one by (/3 + 2). This gives

Area =

1 1
5 (n(3 - 2V2) 4 In(7 + 4V/3)) = s (G- 2V2)(7 + 4V3)).
The integral [(1/sin 0)df is done using the Table of Integrals.

Using partial fractions, we write
1 A B

1—22 1+m+1—a:
1=AQ1-2)+B(l+z)=(B—A)z+ A+ B.
So,B—A=0and A+ B =1, giving A = B = 1/2. Thus

dx 1 1 1 1
/1—:1’2 _§/<1+x+m> dx—i(ln\1+a:|—ln|1—x\)+0.

Using the substitution = = sin 6, we get dx = cos 0 df, we have

dxr cosf cos 1
/1—&02 7/1—sin29d07/00529d97/cos@da.
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The Table of Integrals Formula IV-22 gives

dz 1 1 (sinf) + 1 1. |z+1
= do=—-In|—F—F"F— = -1 .
/1—9:2 /cose 2™ Gmey 1| T¢ 72 n‘$—1‘+c
The properties of logarithms and the fact that |z — 1| = |1 — x| show that the two results are the same:
1 z+1 1
—In 1 1 — .
310 |5| = 5 nlt+ e~ Inf1 - al)

57. Using partial fractions, we write
2z A B
2 = +
z2-1 z+1 z-1
2e =A(x—1)+B(x+1)=(A+B)x— A+ B.
So,A+ B=2and —A+ B =0, giving A = B = 1. Thus

2x 1 1

Using the substitution w = 2% — 1, we get dw = 2z dx, so we have

/f—mdx:/d—w:ln|w|—|—C:1n|m2—1|+C’.
¢ —1 w

The properties of logarithms show that the two results are the same:

ln|:c+1|—|—1n|m—1|:1n|(:c+1)(m—1)|:ln|:c2—1|.

58. Using partial fractions, we write
322+1 3241 A Bxz+C
x3+x:1:(x2+1):; 2 +1
32° +1=A(z" +1) + (Bx + C)xz = (A4 B)z® + Cx + A.
So,A+ B =3,C =0and A =1, giving B = 2. Thus

3z2 +1 1 2 5
/x3—|—w dm:/<g+$2—+1> dm:1n|az|+ln}x +1}+C.

Using the substitution w = x® 4 z, we get dw = (32 + 1)dx, so we have

2
/33: +1dm:/d%:ln|w\+C:1n}x3+x|+C.

3+

The properties of logarithms show that the two results are the same:

ln\x|—|—ln’x2—|—1’—|—C:ln|x(x2—|—1)’—|—C':ln‘ﬂc3+m’+0.

59. (a) We differentiate:

i(_ 1 )_ 1 11 11
do tanf,/  tan26 0052975“1_@‘; cos2f  sin?6’

1 1
/sin29 40 = ~ tan@ e

(b) Lety = /5siné so dy = /5 cos 6 df giving

Thus,

/ / 5COS@ / \/5(3050
\/5— 5sin? 04/5 — 5sin? sin? 6+/5 cos 6

1
_g/sm Hdo_ 5tan0+c
Since sin § = y/+/5, we have cos § = \/1 — (y/V/5)2 = \/5 — y2/+/5. Thus,
VE—y 5— 2
1 AL I VAR ]

+C=-

dy B
y21/5 — 42 5tan 6 (y/\/_) 5y
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61.

62.

63.

7.4 SOLUTIONS

(a) If a # b, we have

1 1 1 1 1

(b) If a = b, we have
1 1 1
/<x—a><m—a> d“/(x—a)? =i e

(a) If a # b, we have

T 1 a b 1

(b) If a = b, we have

T 1 a a
/(m—a)2dx/<x—a+(x—a)2> dl:fln|x—a\—x_a+0.

2 —a= (2 - Va)(@ +/a).

This means that we can use partial fractions:

(a) If a > 0, then

1 A B

foa_ac—\/(E—’—x—&-\/ﬁ’

giving
1 = Al + va) + Bz — Va),
so A+ B=0and (A — B)ya=1.Thus, A= —B = 1/(2V/a).
So

1 1 1 1 1
/de/wa(x_ﬁ—m) dazfm(ln’z—\/ﬂ—ln‘z—l—\/ﬂ)—ka

(b) If a = 0, we have

%dm:flJrC.
x x

(¢) Ifa < 0, then —a > 0s0 x> — a = x? + (—a) cannot be factored. Thus

1 1 1 x
/x2*ad:c— x2+(a)dm—\/__aarctan<\/__a>+0.

(a) We integrate to find

b g—w <1+ L )dx:b(ln\m|fln|1fx|)+C:bln‘ a ’+C,
x( ) z 1-

1—=z x 1—=x

SO

(b) We know that £(0.01) = 0 so

Butb > 0andInz = O means z = 1, so

0.01(1 — a)
0.99a
0.01(1 — a) = 0.99a

0.01 — 0.01a = 0.99a
a = 0.01.

455
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(c) We know that £(0.5) = 1 so

—bIn99,b= —- =0.218.

0.5-0.99
1=0bn ( ) In 99

0.5-0.01
(d) We have

0.9
0.218 1 0.9(1 — 0.01)

£(0.9) = / dz = In ( ) — 1.478.
001 T(1 =) In 99 0.01(1 - 0.9)

[ kda
T_/O (a—x)(b—x)"

k e D
(a—z)b—2) a—z b—=
k=C(b—1z)+ D(a—x)

k= —(C+ D)z +Cb+ Da

64. (a) We want to evaluate the integral

Using partial fractions, we have

o)
0=—-(C+D)
k= Cb+ Da,

giving .

C=-D= b—a

Thus, the time is given by

- T kda ok “/2( 11 )d
)y (a—z)(b—=z) b—a ), a—z b-xz)

i 1 In|b v
_m(—n|a—x|+ n| —x\)o
k b—ax||*?
= n
b—a a—zxllg

k 2b—a b
=i (") e (D)
b—a a a
_k In <2b — a)
T b—a b '
(b) A similar calculation with z instead of a/2 leads to the following expression for the time
o kdx k
T = / = In
o (a—2)(b—2) b-0a

:bfa(ln _ln(g>)'

As z9 — a, the value of |a — zo| — 0, so |b — x| /|a — zo| — oco. Thus, T" — oo as o — a. In other words, the
time taken tends to infinity.

zo

b—=x

a—T

0
b*{Eo

a — To

Solutions for Section 7.5

Exercises

1. (a) The approximation LEFT(2) uses two rectangles, with the height of each rectangle determined by the left-hand
endpoint. See Figure 7.3. We see that this approximation is an underestimate.
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il . ]

a b a b

Figure 7.3 Figure 7.4

(b) The approximation RIGHT(2) uses two rectangles, with the height of each rectangle determined by the right-hand
endpoint. See Figure 7.4. We see that this approximation is an overestimate.

(c) The approximation TRAP(2) uses two trapezoids, with the height of each trapezoid given by the secant line connect-
ing the two endpoints. See Figure 7.5. We see that this approximation is an overestimate.

a b

Figure 7.5

(d) The approximation MID(2) uses two rectangles, with the height of each rectangle determined by the height at the
midpoint. Alternately, we can view MID(2) as a trapezoid rule where the height is given by the tangent line at
the midpoint. Both interpretations are shown in Figure 7.6. We see from the tangent line interpretation that this
approximation is an underestimate

Figure 7.6

2. (a) The approximation LEFT(2) uses two rectangles, with the height of each rectangle determined by the left-hand
endpoint. See Figure 7.7. We see that this approximation is an overestimate.

a b a b

Figure 7.7 Figure 7.8
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(b) The approximation RIGHT(2) uses two rectangles, with the height of each rectangle determined by the right-hand
endpoint. See Figure 7.8. We see that this approximation is an underestimate.

(c) The approximation TRAP(2) uses two trapezoids, with the height of each trapezoid given by the secant line connect-
ing the two endpoints. See Figure 7.9. We see that this approximation is an underestimate.

a b

Figure 7.9

(d) The approximation MID(2) uses two rectangles, with the height of each rectangle determined by the height at the
midpoint. Alternately, we can view MID(2) as a trapezoid rule where the height is given by the tangent line at
the midpoint. Both interpretations are shown in Figure 7.10. We see from the tangent line interpretation that this
approximation is an overestimate.

N
N

Figure 7.10

3. (a) The approximation LEFT(2) uses two rectangles, with the height of each rectangle determined by the left-hand
endpoint. See Figure 7.11. We see that this approximation is an underestimate.

——

a b a b
Figure 7.1 Figure 7.12

(b) The approximation RIGHT(2) uses two rectangles, with the height of each rectangle determined by the right-hand
endpoint. See Figure 7.12. We see that this approximation is an overestimate.

(c) The approximation TRAP(2) uses two trapezoids, with the height of each trapezoid given by the secant line connect-
ing the two endpoints. See Figure 7.13. We see that this approximation is an underestimate.

a b

Figure 7.13
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4. (a)

(b)
©

(d)
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The approximation MID(2) uses two rectangles, with the height of each rectangle determined by the height at the
midpoint. Alternately, we can view MID(2) as a trapezoid rule where the height is given by the tangent line at
the midpoint. Both interpretations are shown in Figure 7.14. We see from the tangent line interpretation that this
approximation is an overestimate.

—

d
|
|
|
|
|
|
|
|
|

s}
f=al

Figure 7.14

The approximation LEFT(2) uses two rectangles, with the height of each rectangle determined by the left-hand
endpoint. See Figure 7.15. We see that this approximation is an overestimate.

Q\ x T

a b a b
Figure 7.15 Figure 7.16

The approximation RIGHT(2) uses two rectangles, with the height of each rectangle determined by the right-hand
endpoint. See Figure 7.16. We see that this approximation is an underestimate.

The approximation TRAP(2) uses two trapezoids, with the height of each trapezoid given by the secant line connect-
ing the two endpoints. See Figure 7.17. We see that this approximation is an overestimate.

a b

Figure 7.17

The approximation MID(2) uses two rectangles, with the height of each rectangle determined by the height at the
midpoint. Alternately, we can view MID(2) as a trapezoid rule where the height is given by the tangent line at
the midpoint. Both interpretations are shown in Figure 7.18. We see from the tangent line interpretation that this
approximation is an underestimate.

Figure 7.18
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5. (a) The approximation LEFT(2) uses two rectangles, with the height of each rectangle determined by the left-hand
endpoint. See Figure 7.19. We see that this approximation is an underestimate (that is, it is more negative).

a b a b

Figure 7.19 Figure 7.20

(b) The approximation RIGHT(2) uses two rectangles, with the height of each rectangle determined by the right-hand
endpoint. See Figure 7.20. We see that this approximation is an overestimate (that is, it is less negative).

(c) The approximation TRAP(2) uses two trapezoids, with the height of each trapezoid given by the secant line connect-
ing the two endpoints. See Figure 7.21. We see that this approximation is an overestimate (that is, it is less negative).

a b

| x

Figure 7.21

(d) The approximation MID(2) uses two rectangles, with the height of each rectangle determined by the height at the
midpoint. Alternately, we can view MID(2) as a trapezoid rule where the height is given by the tangent line at
the midpoint. Both interpretations are shown in Figure 7.22. We see from the tangent line interpretation that this
approximation is an underestimate (that is, it is more negative).

I
|
|
|
|
|
1
%

Figure 7.22

6. (a) The approximation LEFT(2) uses two rectangles, with the height of each rectangle determined by the left-hand
endpoint. See Figure 7.23. We see that this approximation is an overestimate (that is, it is less negative).

a b a b

—

Figure 7.23 Figure 7.24
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(b) The approximation RIGHT(2) uses two rectangles, with the height of each rectangle determined by the right-hand
endpoint. See Figure 7.24. We see that this approximation is an underestimate (that is, it is more negative).

(c) The approximation TRAP(2) uses two trapezoids, with the height of each trapezoid given by the secant line connect-
ing the two endpoints. See Figure 7.25. We see that this approximation is an overestimate (that is, it is less negative).

8

Figure 7.25

(d) The approximation MID(2) uses two rectangles, with the height of each rectangle determined by the height at the
midpoint. Alternately, we can view MID(2) as a trapezoid rule where the height is given by the tangent line at
the midpoint. Both interpretations are shown in Figure 7.26. We see from the tangent line interpretation that this
approximation is an underestimate (that is, the approximation is more negative).

N

Figure 7.26

7. (a) Since two rectangles are being used, the width of each rectangle is 3. The height is given by the left-hand endpoint
so we have
LEFT(2) = f(0) -3+ f(3)-3=0%-3+3%.3=27.

(b) Since two rectangles are being used, the width of each rectangle is 3. The height is given by the right-hand endpoint
so we have
RIGHT(2) = f(3) -3+ f(6) -3 =3%-3+6-3 =135.

(c) We know that TRAP is the average of LEFT and RIGHT and so

TRAP(2) = 27+135

81.
(d) Since two rectangles are being used, the width of each rectangle is 3. The height is given by the height at the midpoint
so we have
MID(2) = f(1.5) -3+ f(4.5) -3 = (1.5)> - 3+ (4.5)° - 3 = 67.5.

8. (a)
LEFT(2) = 2- f(0) 4+ 2- f(2)
=2.142-5
=12
RIGHT(2) = 2- f(2) + 2- f(4)
=2.5+2-17

=44
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(b)
flz) =2 +1 flz) =22 +1
Area shaded Area shaded
= LEFT(2) = RIGHT(2)
x X
2 4 2 4
LEFT(2) is an underestimate, while RIGHT(2) is an overestimate.
9. (a)
MID(2) =2 f(1) +2- f(3)
=2-242-10
=24
TRAP(2) — LEFT(2) —|—2 RIGHT(2)
12 4+ 44
= D) (see Problem 8)
=28
(b)
flz) =2®+1 fl@)y=22+1
Area shaded Area shaded
=MID(2) =TRAP(2)
—/l X T xX
2 4 2 4

MID(2) is an underestimate, since f(z) = 2 + 1 is concave up and a tangent line will be below the curve.
TRAP(2) is an overestimate, since a secant line lies above the curve.

10. (a) Since two rectangles are being used, the width of each rectangle is /2. The height is given by the left-hand endpoint

so we have . . . ) )
LEFT(2) = f(0) - % + f(m/)2)- % = sin0 - % + sin(m/2) - % = %.
(b) Since two rectangles are being used, the width of each rectangle is 7w /2. The height is given by the right-hand endpoint
so we have

RIGHT(2) = f(7/2) - % + f(m) - % = sin(7/2) - % + sin(7) - % =&
(c) We know that TRAP is the average of LEFT and RIGHT and so

pi 4 pi :
7 T3 pt

TRAPQ) = 22 = 7.

(d) Since two rectangles are being used, the width of each rectangle is /2. The height is given by the height at the
midpoint so we have
i V2r
=5

MID(2) = f(/4) - %i + f(3m/4) %i — sin(n/4) - %i +sin(3r/4)- 2
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Problems

11.

12.

13.

14.

(@ () Let f(z) = ﬁ The left-hand Riemann sum is

1 1 2 7

01 (5)+1(5) -+ (5))

N
T 8\64 65 68 73 80 89 ' 100 ' 113

~ 8(0.1020) = 0.8160.

(i) Let f(z) = {3z The right-hand Riemann sum is

1 1 2 3

- il zZ 2 1
() () e r(§) )
N
8 73 100 113 128

1
~ 0.8160 — — = 0. .
0.8160 6 0.7535

(iii) The trapezoid rule gives us that

LEFT(8) + RIGHT(8)
2

TRAP(8) = ~ 0.7847.

is decreasing over the interval. Thus

(b) Since 1 + z? is increasing for z > 0, so 1 Jr1372
S|
RIGHT(8) < / —— dz < LEFT(8)
o 1+

0.7535 < 7 < 0.8160
3.014 < 7 < 3.264.
Let s(t) be the distance traveled at time ¢ and v(t) be the velocity at time ¢. Then the distance traveled during the interval

0<t<6is

s(6) — s(0) = s(t)

0

6
/ s'(t)dt (by the Fundamental Theorem)
0

= /O ' u(t) dt.

We estimate the distance by estimating this integral.

From the table, we find: LEFT(6) = 31, RIGHT(6) = 39, TRAP(6) = 35.
Since the function is decreasing, LEFT is an overestimate and RIGHT is an underestimate. Since the graph is concave
down, secant lines lie below the graph so TRAP is an underestimate and tangent lines lie above the graph so MID is an
overestimate. We can see that MID and TRAP are closer to the exact value than LEFT and RIGHT. In order smallest to
largest, we have:
RIGHT(n) < TRAP(n) < Exact value < MID(n) < LEFT(n).
For a decreasing function whose graph is concave up, the diagrams below show that RIGHT < MID < TRAP < LEFT.
Thus,
(a) 0.664 = LEFT, 0.633 = TRAP, 0.632 = MID, and 0.601 = RIGHT.
(b) 0.632 < true value < 0.633.
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15.
16.
17.
18.
19.

20.

21.

22.

Chapter Seven /SOLUTIONS

AN

RIGHT = 0.601 MID = 0.632 TRAP = 0.633 LEFT = 0.664

f(z
fz
flz
flz

(a) Since f(z) is closer to horizontal (that is, | f’| < |g’|), LEFT and RIGHT will be more accurate with f(z).
(b) Since g(z) has more curvature, MID and TRAP will be more accurate with f(z).

is increasing, so RIGHT gives an overestimate and LEFT gives an underestimate.
is concave down, so MID gives an overestimate and TRAP gives an underestimate.

is decreasing and concave up, so LEFT and TRAP give overestimates and RIGHT and MID give underestimates.

NN N

is concave up, so TRAP gives an overestimate and MID gives an underestimate.

(a) TRAP(4) gives probably the best estimate of the integral. We cannot calculate MID(4).

LEFT(4) =3-100+3-97+3-90+ 3 - 78 = 1095

RIGHT@4) =3-974+3-90+3- 784+ 3 - 55 = 960
TRAP#4) = w = 1027.5.
(b) Because there are no points of inflection, the graph is either concave down or concave up. By plotting points, we see
that it is concave down. So TRAP(4) is an underestimate.
27

27
(a) / sinfdf = —cosf| =0.
0

0
(b) MID(1) is O since the midpoint of 0 and 27 is 7, and sin 7 = 0. Thus MID(1) = 2x(sin7) = 0. The midpoints we
use for MID(2) are 7/2 and 37 /2, and sin(7/2) = — sin(37/2). Thus MID(2) = 7 sin(7/2) 4+ 7 sin(37/2) = 0.

(c) MID(3) =0.

In general, MID(n) = 0 for all n, even though your calculator (because of round-off error) might not return
it as such. The reason is that sin(z) = —sin(27 — ). If we use MID(n), we will always take sums where we are
adding pairs of the form sin(z) and sin(27 — x), so the sum will cancel to 0. (If n is odd, we will get a sin 7 in the
sum which does not pair up with anything — but sin 7 is already 0.)

(@) R
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The graph of y = /2 — 22 is the upper half of a circle of radius v/2 centered at the origin. The integral
represents the area under this curve between the lines x = 0 and z = 1. From the picture, we see that this area can
be split into 2 parts, A1 and Az. Notice since OQ = QP = 1, AOQP is isosceles. Thus /POQ = /ROP = %,
and A, is exactly é of the entire circle. Thus the total area is

2 1-1

Area:A1—|—A2:éﬂ-(\/§) + — = +

NS
N =

(b) LEFT(5) ~ 1.32350, RIGHT(5) ~ 1.24066, T
TRAP(5) ~ 1.28208, MID(5) ~ 1.28705

Exact value ~ 1.285398163

Left-hand error ~ —0.03810, Right-hand error ~ 0.04474,
Trapezoidal error ~ 0.00332, Midpoint error ~ —0.001656

Thus right-hand error > trapezoidal error > 0 > midpoint error > left-hand error, and |midpt error| < |trap error| <
[left-error| < |right-error|.

23. We approximate the area of the playing field by using Riemann sums. From the data provided,
LEFT(10) = RIGHT(10) = TRAP(10) = 89,000 square feet.

Thus approximately
89,000 sq. ft.

SS9 L 445 1bs. of fertili
200 sq. ft./Ib. S of Terttizer

should be necessary.

24,

|

|

|

|

|

|

|

‘ |
|

/\‘ |
|

| |
| |
| |
| |
| |
| |
L |

a=xo 1 ) Tn-1 Tp=2>0

From the diagram, the difference between RIGHT (n) and LEFT(n) is the area of the shaded rectangles.

RIGHT (n) = f(z1)Az + f(z2)Az + -+ + f(zn)Az
LEFT(n) = f(z0)Az + f(z1)Az + - + f(zn-1)Ax
Notice that the terms in these two sums are the same, except that RIGHT (n) contains f(zn)Az (= f(b)Az), and
LEFT(n) contains f(zo)Az (= f(a)Az). Thus

RIGHT (1) = LEFT(n) + f(zn)Az — f(z0)Az
= LEFT(n) + f(b)Az — f(a)Ax

25.

LEFT(n) + RIGHT (n)
2
_ LEFT(n) + LEFT(n) + f(b)Az — f(a)Ax
2
= LEFT(n) + 5 (/(5) — f(a))Aa

TRAP(n) =
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26.
a = to t1 to ts ta t2n =b
o 1 T2 Tn
Divide the interval [a, b] into n pieces, by xo, 1, X2, ..., Zn, and also into 2n pieces, by to, t1, t2, .. ., t2n. Then
the x’s coincide with the even t’s, so xo = to, 1 = t2, T2 = t4, ..., Tn = ton and At = %Am.

LEFT(n) = f(zo)Az + f(z1)Az + -+ + f(zn-1)Ax
Since MID(n) is obtained by evaluating f at the midpoints ¢1, 3, ts, . . . of the x intervals, we get
MID(n) = f(t1)Az + f(ts)Az + - - + f(tan—1)Ax

Now
LEFT(2n) = f(to)At + f(t1)At + f(t2) At + -+ + f(tan—1)At.
Regroup terms, putting all the even ¢’s first, the odd ¢’s last:

LEFT(QTL) = f(to)At =4 f(tg)At 4+ -4 f(tznfg)At + f(tl)At + f(t3)At + -+ f(tgnfl)At

—f(wo)A—-i-f(SEl)g-&- +f($En71)A +f(t1)&+f(t3)&+ +f(t2n71)%

LEFT(n)/2 MID(n)/2
So L
LEFT(2n) = 5 (LEFT(n) + MID(n))

27. Whenn = 10, wehave a = 1;b = 2; Az = 15; f(a) = 1; f(b) = 3.
LEFT(10) ~ 0.71877, RIGHT(10) ~ 0.66877, TRAP(10) ~ 0.69377
We have
RIGHT(10) = LEFT(10) + f(b)Az — f(a)Az = 0.71877 + 5(3) — 15(1) = 0.66877, and TRAP(10) =
LEFT(10) + &2 (f(b) — f(a)) = 0.71877+ (3 — 1) = 0. 69377
so the equations are verified.

28. First, we compute:

Il
o
=
|
—
o
TN
Slw
~_
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RIGHT(10) = LEFT(10) + 24 = 3.156 + 2.4 = 5.556.

TRAP(10) = LEFT(10) + £ (2.4) = 3.156 + 1.2 = 4.356.

LEFT(20) = 1 (LEFT(10) + MID(10)) = 3(3.156 + 3.242) = 3.199.
RIGHT(20) = LEFT(20) + 2.4 = 3.199 + 1.2 = 4.399.

TRAP(20) = LEFT(20) + £(1.2) = 3.199 + 0.6 = 3.799.

Solutions for Section 7.6

Exercises

1. We saw in Problem 7 in Section 7.5 that, for this definite integral, we have LEFT(2) = 27, RIGHT(2) = 135, TRAP(2) =
81, and MID(2) = 67.5. Thus,

2MID(2) + TRAP(2)  2(67.5) + 81
3 - 3 o

6 3
/ xQd:E:m—
0 3 0

and so SIMP(2) gives the exact value of the integral in this case.

2. (a) From Problem 9 on page 462, for f04(x2 + 1) dz, we have MID(2)= 24 and TRAP(2)= 28. Thus,

SIMP(2) = 72.

Notice that

2MID(2) + TRAP(2)
3
2(24) + 28
3
76

3

4(m2+1)dw: CA
J e (i)

(¢) Error= 0. Simpson’s Rule gives the exact answer.

SIMP(2) =

(b) y
64 76

Problems

3. @ Table 7.1 Errors for the left and right rule
approximations to ff % dx = 0.6931471806 . . .

n LEFT(n) | Lefterror || RIGHT(n) | Right error
2 0.833333 | —0.14019 || 0.583333 | 0.10981
4 || 0.759524 | —0.06638 || 0.634524 | 0.05862
8 0.725372 | —0.03222 || 0.662872 | 0.03028
16 [ 0.709016 | —0.01587 || 0.677766 | 0.01538
32 || 0.701021 | —0.00787 || 0.685396 | 0.00775
64 | 0.697069 | —0.00392 || 0.689256 | 0.00389
128 || 0.695104 | —0.00196 || 0.691198 | 0.00195

(b) The left errors are negative and the right errors are positive. This occurs because f(z) = 1/x is decreasing, meaning
that the left sums are overestimates and the right sums are underestimates. Doubling n approximately halves the error.
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©

(d)
(e)

4. (a)
(b)

5. (a)
(b)

©

(d)

Table 7.2  Errors for the trapezoid and midpoint rule
approximations to ff % dxr = 0.6931471806 . ..

n TRAP(n) Trap error MID(n) Mid error
2 0.708333 | —0.01518 0.685714 | 0.00743
4 0.697024 | —0.00387 0.691220 | 0.00193
8 0.694122 | —0.00097 0.692661 | 0.00049
16 || 0.6933912 | —0.000244 | 0.6930252 | 0.000122
32 || 0.6932082 | —0.000061 || 0.6931166 | 0.000031
64 || 0.6931624 | —0.000015 || 0.6931396 | 0.000008
128 || 0.6931510 | —0.000004 || 0.6931453 | 0.000002

The trapezoid errors are negative because f(x) = 1/z is concave up, and thus, the trapezoids overestimate. The
midpoint errors are positive. Doubling n approximately quarters the error.

Table 7.3  Errors for Simpson’s rule

for [ L dx = 0.6931471806 ...

n SIMP(n) error
2 || 0.69325396825 | —0.000106788
4 | 0.69315453065 | —0.000007350
8 || 0.69314765282 | —0.000000472
16 || 0.69314721029 | —0.000000030
32 || 0.69314718242 | —0.000000002

The error is multiplied by approximately 1/16 when n is doubled.
2

2 4
/ (2 + 32°) dx = <% + x3> =12.
0
SIMP(2) = 12. ’
SIMP(4) = 12.
SIMP(100) = 12.
SIMP(n) = 12 for all n. Simpson’s rule always gives the exact answer if the integrand is a polynomial of degree

less than 4.

4
/ e dr =e”
0

Computing the sums directly, since Az = 2, we have
LEFT(2)=2- e 42 e? ~ 2(1) + 2(7.389) = 16.778; error = 36.820.
RIGHT(2)= 2 - e + 2 - e* ~ 2(7.389) 4 2(54.598) = 123.974; error = —70.376.

TRAP(2)= w =70.376; error = 16.778.

MID(2)= 2 - e' 4 2 - € ~ 2(2.718) 4 2(20.086) = 45.608; error = 7.990.

SIMP(2)= 2(45'608)3+ 70.376 = 53.864; error = —0.266.
Similarly, since Az = 1, we have LEFT(4)= 31.193; error = 22.405
RIGHT(4)= 84.791; error = —31.193

TRAP(4)= 57.992; error = —4.394

MID(4)= 51.428; error = 2.170

SIMP(4)= 53.616; error = —0.018

4
=t — "~ 53.598. ...
0

For LEFT and RIGHT, we expect the error to go down by 1/2, and this is very roughly what we see. For MID and
TRAP, we expect the error to go down by 1/4, and this is approximately what we see. For SIMP, we expect the error
to go down by 1/2* = 1/16, and this is approximately what we see.

6. Here, the error in the approximation using n = 10 is 4 — 2.346 = 1.654.

(a)

Since the error in the LEFT approximation is proportional to 1/n, when we triple n from 10 to 30 the error is divided
by 3, so the error here is 1.654/3 = 0.551333, giving LEFT(30) = 4 — 0.551333 ~ 3.449.
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(b) The procedure here is identical to part (a), except that the TRAP error is proportional to 1/ n?, so the error in
TRAP(30) will be 1.654/3% = 0.183778, giving TRAP(30) = 4 — 0.183778 ~ 3.816.
(c) For SIMP, the error will be 1.654/3* = 0.0204198, giving STIMP(30) = 4 — 0.0204198 = 3.980.

7. (a) For the left-hand rule, error is approximately proportional to % If we let n, be the number of subdivisions needed
for accuracy to p places, then there is a constant &k such that

5x107°
5x 1077
5x 107"

5x 1072

Thus the ratios n4 : ns : ni2 : Moo &~ 1: 10% : 108 :
to np, the computer times are approximately

4 places: 2 seconds

8 places: 2 x 10* seconds
12 places: 2 x 10® seconds
20 places: 2 x 10" seconds

(b) For the trapezoidal rule, error is approximately proportional to n—12

1

k

T L

2
x 1078 ~

k
ni2

k

n20

x 10712 ~

N~ N~ N

x 10720 ~

0'6, and assuming the computer time necessary is proportional

= 6 hours
=~ 6 years

~ 600 million years

If we let N, be the number of subdivisions needed

for accuracy to p places, then there is a constant C' such that

5x107°
5x107°
5x 1073

5x 1072

Thus the ratios N42 : Ng? : Ni22 : Noo? =~ 1:10%:

10" : 10®. So the computer times are approximately

4 places: 2 seconds

8 places: 2 x 10% seconds
12 places: 2 x 10 seconds
20 places: 2 x 10® seconds

8. (a) If f(x) =1, then

1 4 C

- x107" ~ —
2~ N2
1 _8 C

_ 1 ~ —
5 x 10 N2
1 —12 C
- x 10 ~

2 Ni2?
L1070 ~ 02
2 Nag

108 : 10'%, and the ratios N4 : Ng : Nia : Nog =~ 1 : 10? :

=~ 3 minutes
= 6 hours
= 6 years

/abf(ac)dac—(b—a).

Also,

f(a) f(b

5 +2f(m) +

dl

So the equation holds for f(z) = 1.

)
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If f(z) = z, then

b 2 |b 2 2
af(x)dx:%a:b 2a'
Also,
h( f(a) f(b) b—a(a a+b b)
A A EAGZA 219 2
3(2+f()+ 3 27 T2
—b_a(9+a+b+9)
3 \2 2
—bia(§b+§a)
3 \27 2
_(b—a)(b+a)
B 2
b —a?
)
So the equation holds for f(z) = x.
b 2" P-dd
Iff(x):xQ,then/ f(x)dx:? = —5— Also,

h ( f(a) 7(b) b—a (a® a+b\? b
§(T+2f(m>+7)— 3 (7”( >) +3>

b—a (a® a®42ab+b> b
-3 (7*#*5
_b—a 2a% + 2ab + 2b2
3 2
:b_a(a2+ab+b2)

3

b —a?

-3

So the equation holds for f(z) = 22

(b) For any quadratic function, f(z) = A2z? + Bz + C, the “Facts about Sums and Constant Multiples of Integrands”

give us:
b b b b b
/f(:v)dx:/(A:v2+B:v+C)dm:A/ m2dm+B/ mderC/ ldz.

Now we use the results of part (a) to get:

b 2 2
/ f(x)dm:Ag (‘l—+2mZ+b—>+BE (9+2m+9)+cg (1+2-1+1>

2 2 3\2 2 2 2
2 2
:E<Aa +Ba+C | oam? 4 By o)+ 2 +Bb+C)
3 2 2
_ () S
3< o T 2f(m) + =

9. (a) Suppose g;(z) is the quadratic function approximating f(z) on the subinterval [z;, z;+1], and m; is the midpoint
of the interval, m; = (x; + i+1)/2. Then, using the equation in Problem 8, with @ = z; and b = x;41 and
h=Ax=2xiy1 — xi:

/mi+1 flx)dz ~ ‘/zi+1 gi(x)dx = % (—ql(;l) + 2qi(m;) + 7qi(x2i+1)> .

(b) Summing over all subintervals gives

b n—1 Ti4q n—1 . . . ‘
[ o=y [ ame= 35 (%”') +2:(m) + —q*f”;l)) |
@ i=0 /i 0
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Splitting the sum into two parts:

n—1 n—1
2N gi(ms 1N ail@) + gi(@isn)

% MID(n) + % TRAP(n)
= SIMP(n).

Solutions for Section 7.7

Exercises

1. (a) See Figure 7.27. The area extends out infinitely far along the positive x-axis.

x T

Figure 7.27 Figure 7.28

(b) See Figure 7.28. The area extends up infinitely far along the positive y-axis.
2. We have

oo b
/ e "% dg = lim / e Oy = blim (=2.5¢7°*)|g = blim (—2.5¢7 %% 4+ 2.5).
O 0 — OO — 00

b—oo

As b — 00, we know e~%** — 0 and so we see that the integral converges to 2.5. See Figure 7.29. The area continues
indefinitely out to the right.

Figure 7.29

3. (a) We use a calculator or computer to evaluate the integrals.
When b = 5, we have [ ze™"dz = 0.9596.

When b = 10, we have folo re  *dxr = 0.9995.
When b = 20, we have [ ze™*da = 0.99999996.
(b) It appears from the answers to part (a) that f Ooo ze *dxr = 1.0.
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(a) See Figure 7.30. The total area under the curve is shaded.
1

| |
-4 -3 -2 -1 1 2 3

Figure 7.30

4

(b) When a = 1, we use a calculator or computer to see that fj1 e~ de = 1.49365.

Similarly, we have:

When a = 2, the value of the integral is 1.76416.
When a = 3, the value of the integral is 1.77241.
When a = 4, the value of the integral is 1.77245.
When a = 5, the value of the integral is 1.77245.

(c) It appears that the integral f fooo e dz converges to approximately 1.77245.

We have

— dr =i 21 2
/1 5x+2dm im (5 n (5r + ))

b—oo

b
——dr = i
/1 sr+27 T i

b

1

As b — oo, we know that In (5b + 2) — oo, and so this integral diverges.

This integral converges to 1/2.

r

b —24 |

—2 . —2 . (&
e ““dxr = lim e ““dr = lim —
b—oo 1 b—oo 2

1
= lim (—e™*/2+e7%/2) =0+e2/2=¢"%/2,

where the first limit is 0 because lim; ., e~* = 0.

. Using integration by parts with u = z and v’ = ¢~ 7, we find that

= lim

b—oo

We have
oS} b _ b _ _
%dx: lim %dm: lim ( 1 ) lim (—1——1) =0—|—1
1 (+2) b—oo f; (x4 2) b—oo \Z+2/|1 booco \b+2 3 3
This integral converges to 1/3.
. We have
oo b _ b _ _
/ ze " dz = lim / ze " dz = lLim (—lefzz) = lim (—16be — 1) =0+ 1
0 b—oo 0 b—oo 2 0 b—oo 2 2 2

/xe_z dx = —xe " — / —e “dr=—(1+z)e” "

SO

<z b x
—dzx lim
o er b—oo er

blim —1(14=z)e™ ™

b

0

= lim [1 -1+ b)efb]

b— o0

=1.

T ey [
1 4+1‘2in00 1 4+ZL‘2

As b — 00, In |4 4 b%| — o0, so the limit diverges.

dr = lim 1ln|4—|—x2|
b—oo 2

b

1

.1 2 1
71;12205111‘4_‘_1) |—§ln5.

(éln(5b—|—2) — %ln(7)> .
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11.

0 Em 0 62
dr = lim dx
oo l—l—ez b——o0 b ].-‘y—t?z

0

= blim In|l+€"|

b
= blim |1+ e°| —In|1 + "]

=In(14+1)—-In(1+0)=1In2.

12. First, we note that 1/(z? 4 25) is an even function. Therefore,

*de 0 dz n * dz —9 * dz
o 2+2s [ 22+25 0 f 22425 T 22425

We’ll now evaluate this improper integral by using a limit:

/ = _ lim (l arctan(b/5) — larctan(())) _ 1
; 5 5 5

ol

22 + 25 b— o0

So the original integral is twice that, namely 7 /5.
13. This is an improper integral because /16 — 2 = 0 at x = 4. So

4 b
/ dx ~ lim / dx
o V16—1x2 b4 J) /16 — 22

b

lim (arcsinz/4)
b—4— 0
= lim [arcsin(b/4) — arcsin(0)] = 7/2 — 0 = 7/2.

b—4—

14.

/2 . b .
/ sinx d li s x d
xr = 1m X

/4 4/ COS T b—m /27 /4 4/COS T

b
= lim f/ (cosz)V*(—sinz) da

b—m /27

/4
b
= lim —2(cosz)?
b—m /27 x/4
= lim [~2(cosb)'/? + 2(cos7/4)"/?
b—m /27

o

o\

15. This integral is improper because 1/v is undefined at v = 0. To evaluate it, we must split the region of integration up into
two pieces, from 0 to 1 and from —1 to 0. But notice,
1
= —1Inb.
b

1 1 1 1
/ —dv = lim —dv= lim |Ilnv
o Y b—0t J, VU b—0t
As b — 07, this goes to infinity and the integral diverges, so our original integral also diverges.

16. )
1 4
lim [ 1 = lim [1/4 - (a"/4+Ina)],
a—0

a—0t+ a xT a—0

which diverges as a — 0, since Ina — —oo.
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17.
oo b
1
;. r?+1 b—oo [; @+ 1
b
= blirn arctan(z)
— 00 1
= blim [arctan(b) — arctan(1)]
=7n/2—7w/4d=7/4.
18.

o 1
By hm
/1 VoEah / Var il

x2—|—1

= lim In
b— oo

= lim In(b+ /b2 + 1n1+f).

As b — o0, this limit does not exist, so the integral diverges.
19. We use V-26 witha =4 and b = —4:

4 b
1 1
——du~= i R —
/0u2—16u bff—/o w—16"

’ 1
i Jy (w—a)(u+4a)
b
~ lim (In|u—4] —In|u+4|)
b—d— 8

0

= lim %(ln\b—4|+ln4—ln|b+4|—

b—4—

Asb — 47,1In|b — 4] — —o0, so the limit does not exist and the integral diverges.

[ y 1 b 2y
dy = lim = | —2Y 4
/1 i1 b—»ooQ/l w22 +1

b

20.

1
lim éarctan(yz)

b—oo

1

1
= lim =[arctan(b?) — arctan 1]
b—oo 2

(1/2)[r/2 — 7/4] = 7 /8.

21. With the substitution w = Inz, dw = %l,dx,

/ de :/ldw:1n|w|+c:1n|1nx|+c
w

zlnzx

> dz . b dx
= lim
s T Inx bpooco 5 T Inx

b

SO

= blim In|Inz|

2
= blim [In|Inbd| —In|In2|].

As b — o0, the limit goes to co and hence the integral diverges.

Ind).
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22. With the substitution w = Inz, dw = %dac,

ln—xdx:/wdw:%wz—FC:

2
o (lnz)"+C

1
2
so

"Ing "Ing 1
/ —dz = lim —dz = lim §[ln(x)}2
0

x a—0t J, T a—0t
Asa — 0% Ina — —o0, so the integral diverges.
23. This is a proper integral; use V-26 in the integral table with a = 4 and b = —4.
20 20 1
/16 A / OEEIEER
_Inly—4| —1Inly + 4| 20
8 16
~ In16 —In24 — (In12 — In 20)
8

_ w _ éln(lO/Q) =0.01317.

24. As in Problem 21, / dz
rzlnzx

=In|lnz|+ C,so

? da . ® dx
= lim
. T Inz -1+ y T Inx

2

= lim In|lnz|
b1+

b
= lim In(ln2) — In(Inb).

b—1t

Asb — 17, In(Inb) — —oo0, so the integral diverges.

. o 1 _1
25. Using the substitution w = —x2, —2dw =z~ 2 dx,

—7)% —l w —'I}%
e r 2dr=-2 [ e’dw=-2e + C.

So
1 . 1o
/ — e V%dz = lim — e Vdz
0 VT b—0t Jy VT
= lim —2e V"
b—0t
b
=22V

26. Lettingw = Inz, dw = %dw,

Y (R |
/x(ln:r)Q_/w dw=—w—+0C= 1nﬂc+C7

< dx — lim " dx
s z(nz)? b [, z(lnz)?

S
b— o0 Inb  In3

SO

I
5

475
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27.

2
1

/71‘2111“11/

AV e e R A

b

. .
lim arcsin —
b—2— 2 0

. ) . T
= lim arcsin - = arcsinl = —.
b—2— 2 2

b

= dx " dw 1 1
28. Ty T fim - — -
8 /4 @12 o), @12 om (@-1)|, 3
dz dx 1 1 |l — 1]
29, - = “(njz—1] -1 1 - - (1
9 /x2—1 /(a:—l)(:zc+1) 2(n|ac |—Injz+1|)+C (n|x+1)+6’ SO

< dx — lim " dw
4 132—1_wa 4 II‘2—1

:blggo[_b—l_'_g

30.

/ dy = lim
e y—5 b— oo 7 y—5

b
lim 24/y — 5

b—oo

7

Jim (25 =5 — 2V/2).

As b — o0, this limit goes to co, so the integral diverges.
31. The integrand is undefined at y = —3 and y = 3. To consider the limits one at a time, divide the integral at y = 0O;
b

3
yay o (o g
= [ = (o=

s _ (0 _ p2\1/2\ _
= lim (3—(9-09)"%) =3.

A similar argument shows that

0 d 0
Y _ im / T dy = lim (7(9 fy2)1/2)
b——3+ b 9

39— 12 — 2 b——3+

= lim (=3+(9-b")"?) =-3.

b——3+
Thus the original integral converges to a value of O:

0 3
ydy  _ ydy ydy  _ 5. 5_

3
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32. The integrand is undefined at § = 4, so we must split the integral there.

6 6
do do 48 1 1
—— = li —— = lim (4 -6 =1 _— = .
| am =t [ = im0 = i (5 )
Since 1/(4 — a) — —oo as a — 4 from the right, the integral does not converge. It is not necessary to check the

4 . 4 . 6 .
convergence of f 3 ﬁ. However, we could have started with f 3 ﬁ, instead of f 4 ﬁ, and arrived at the same
conclusion.

Problems

33. Since the graph is above the x-axis for z > 0, we have
(o) b
Area :/ ze “dxr = lim ze “dx
0 b—oo 0
b b

lim | —ze™® +/ e “dx
b— oo 0 0

= lim <beb —e ”
b—oo

= lim (=be " —e P 4+e%) =1.

b
0
b—oo

34. The curve has an asymptote at ¢ = 7, and so the area integral is improper there.

™ b
2 dt . dt .
Area :/ — = lim / > = lim tant
o CcOs t b—% J, cos t b—Z

which diverges. Therefore the area is infinite.

35. The factor In = grows slowly enough not to change the convergence or divergence of the integral, although it will change

what it converges or diverges to.
Integrating by parts or using the table of integrals, we get

%) b
/ 2P lnxdr = lim 2P lnxdx

— 00
e

b

b oo [p—i—l (p+ 1)296
1 1
= 1 _P+11 _ & ppHl
binolo|:(p+1b nb (p+1)2b

L ot L ph
— | ——=€"" - ——e .
(p+ 1 (p+1)2

If p > —1, then (p -+ 1) is positive and the limit does not exist since b*** and In b both approach oo as b does.
If p < —1, then (p + 1) is negative and both b* and b”** In b approach 0 as b — oo. (This follows by looking
at graphs of P! In z (for different values of p), or by noting that In z grows more slowly than 27" tends to 0.) So the
2
/ ln_zdx_ lim / ln:r (lnx)
e b— oo — 00 2

value of the integral is —peP ™ /(p 4 1)%.
’ o ((nb)? -1
= lim ( ——— ).
b— oo 2
e
As b — o0, this limit does not exist, so the integral diverges if p = —1.

The case p = —1 has to be handled separately. For p = —1,
To summarize, f:o 2P In 2 dz converges for p < —1 to the value —peP*! /(p + 1)2.

1
l?p+1 Ing — —— p+1
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36. The factor In x grows slowly enough (as  — 0™) not to chan
it will change what it converges or diverges to.

ge the convergence or divergence of the integral, although

The integral is always improper, because In x is not defined for x = 0. Integrating by parts (or, alternatively, the

integral table) yields

e
/ 2’ Inzdr = lim
0 a—0t
1
p+1

lim
a—0t+

lim

2P nx —

/ 2P Inx dz

e

1

1)2

(p+
1

a

a—0t

<
(i

_<_

p+1

Qa

If p < —1, then (p + 1) is negative, so as a — 0%,
exist.

p+1

1
aPt

ep+1>
C(pt1)2

)
)]

ng — ——
na (p+1

— oo and Ina — —o0, and therefore the limit does not

If p > —1, then (p + 1) is positive and it’s easy to see that a?*' — 0 as a — 0. Looking at graphs of 7" In z (for
different values of p) shows that a?™ Ina — 0 as a — 0. This is not so easy to see analytically. It’s true because if we

lett = % then
1

t

. 1 .
lim ¢*™'lna = lim
a—01 t— o0

(

)" ()

Int
T

t—oo

This last limit is zero because In t grows very slowly, much more slowly than t? ™!, So if p > —1, the integral converges

and equals e [1/(p + 1) — 1/(p + 1)) = pe?* T/ (p + 1),
What happens if p = —1? Then we get

/ ln—xdx— lim / ln—xdﬂc
a—0t+ a T
2 €
lim —(lnx)
a—0+ 2 "
_ 2
= lim <1 (na) )
a—0t 2

Since Ina — —oo as a — 07, this limit does not exist.

To summarize, f Oe 2P In  converges for p > —1 to the value pe?* /(p + 1)

37. (a) We have

b

®© L —y/a

/ = dy = lim —e ¥/®| = lim (1 —e %/*) =1.

0 b—o0 0 b—oo

(b) Using integration by parts with u = y and v’ = (1/a)e ¥/ sou =1,v=—e ¥/ we have
g g Y P Y

oo —y/a y/&

/ ye dy = lim ye
0 b—oo

= lim

b—oo

= lim

b—oo

[
[+
[+

= lim (
b—»oo

Since limp_ oo —be "% = limy_ 00 €~ %/* = 0, we have
/ ye*y/a

«

g
)

+a)

b

be b/ _ qe ¥/

0
—b/a

dy = a.
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(¢) Using integration by parts, this time with u = y2, v’ = (1/a)e ™ ¥/%, so v’ = 2y, v = —e~¥/*, we have

oo 2 —y/a b 2 —y/a
/ ver L~ hm/ ver
0 [0} b—oo 0 (6%

b
= lim (—y2ey/°‘
b—oo

b
—|—2/ ye Y% dy
0 0

= lim szefb/a+2/ ye Y/ dy
0

b—oo

Now limp_, o0 —b%e%* = 0 and in part (b) we found

o —y/a
/ = dy = a,
0 e
/ ye V% dy = o’
0

© 2 —y/a [es}
/ Ldy:2/ ye ¥ dy = 20°.
0 @ 0

38. Welett = (z — a)/+/b. This means that dt = dz/+/b, and that t = +00 when x = F-00. We have

/ e*(ﬂ”*“>2/bdm:/ et (\/Bdt):\/E/ e % dt = Vby/7 = Vor.

oo

SO

Thus,

39. We calculate
—=*/2 dx.

1 oo
m; = — Te
! V2T /_oo

Since the integrand is odd, for any b, the integral
b 2
/ ze ™ ?dx = 0.
—b

my = L/oo 3?6712/2(1%* L lim /b xeizz/Qdm*O
YT Ver ) Vom - |, '

Thus,

40. We calculate
267962/ 2 dz.

1 oo
me = — x
V2T [w

. . 2 _ .2
We integrate by parts with u = &, v = ze™® /%, sou’ =1,v =—e"* /2,50

b
2 —z22/2 —22/2
/azez/dx:—xez/

b

b

b b
—|—/ e 24y = —9pe="/2 —|—/ e~ 24y,
—b —b —b

Now Zbe_bz/2 — 0as b — oo, s0

479
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41. We calculate

Thus,

oo b
1 3 —z2/2 1 . / 3 —z?/2
ms = —— z°e dr = —— lim x°e dr = 0.
: V2T /,OO V2w b—oo |y
42. We calculate

my = 1 /°° x4efz2/2 dx.
Vo J_ o

. . 2 2
We integrate by parts with w = 2%, v = ze ™ /%, so v/ = 32%, v = —e % /2

b
4 —z2/2 3 —x2/2
/xex/dxz—xegc/
b

, SO

b

b b
+/ 302e™" 2 dp = —2p3e /2 +/ 302e™" 2z,
—b —b —b

2 2
Integrating by parts again, this time with « = 3z and v’ = ze™ /2, s0u’ = 3, v = —e~® /2 gives

b b R
+/ 3¢ " 2 da
b —b

b
— —op3e b2 _ ppeb?/2 + 3/ e~ 12 dg,

—b

b
2 2 2
/ vie ™ P dr = —2b%e /% — 3y /2
—b

Now b3efb2/2 — 0 and beib2/2 — 0asb— o0, so

1 <y —z2/2 3 /oo —z2/2 3
my = —— Te de = — e dr = — - V27 = 3.
! V2T /_oo Vam )

43. (a)
ra) = / e tdt
0
b
= lim e tdt
b—oo 0
b
= lim —e*
b— o0
0
= lim [1 — efb] =1.
b—oo
Using Problem 9,

'(2) :/ te”"dt = 1.
0

(b) We integrate by parts. Let u = t",v' = e *. Thenu' = nt" ' andv = —e™ ", s0

/t"e_t dt = —t"e ' + n/tn_le_t dt.

F(n—i—l):/ t"e " dt
0

So
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I
5
~

3
[
|
-

QU

IS

b—oo — 00
=0+ n/ " et dt
0
= nI'(n)

(c) We already have I'(1) = 1 and I'(2) = 1. Using I'(n 4+ 1) = nI'(n) we can get

[(3) = 2I'(2) = 2
I'(4) = 30(3) =3-2
[(5)=4(4) =4-3-2

So it appears that I'(n) is just the first n — 1 numbers multiplied together, so
I'(n) = (n—1)L

44. (a) Using a calculator or a computer, the graph is:

r

2000 |

r = 1000te—9-5¢

(b) People are getting sick fastest when the rate of infection is highest, i.e. when r is at its maximum. Since

= 1000e~°"" —1000(0.5)te %"
= 500e" %" (2 — ¢)

this must occur at t = 2. -
(c) The total number of sick people = / 1000te™ % dt.
0

Using integration by parts, with u = ¢, v’ = e~ %-5%:

b b

. —t _o.5¢
Total = lim 1 —t
otal = lim 1000 <0.5e

0 0

= blim 1000 (f2be*°‘5b - i6*0'51’)

0.5 .
= lim 1000 (—2be7"% — 467" 4 4)
= 4000 people.

45. The energy required is

“k 1
E:/ %dr:kqlqg lim —=
1 T b—oo T

= (9 x 10°)(1)(1)(1) = 9 x 10° joules

481
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Solutions for Section 7.8
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Exercises

1. For large x, the integrand behaves like 1 /22 because

x2 z? 1

t4+1 "zt z?
oo
. dx . . . 4 4
Since —, converges, we expect our integral to converge. More precisely, since z° + 1 > z°, we have
T
1

x> z? 1

[ < R R—
z44+1 "zt 22
2

. < dx | . <z
Since — is convergent, the comparison test tells us that ey dx converges also.
T x
1 1
For large x, the integrand behaves like 1/x because

x> x> 1

zt—1 2t oz
oo
. 1 . . . 4 4
Since — dx does not converge, we expect our integral not to converge. More precisely, since z° — 1 < z*, we have
x
2

x> z3 1

x4 —17 z¢ gz

3

oo oo
. 1 . .
Since / — dz does not converge, the comparison test tells us that / 1 dx does not converge either.
T
2 2

P
The integrand is continuous for all z > 1, so whether the integral converges or diverges depends only on the behavior of
the function as x — oo. As x — 0o, polynomials behave like the highest powered term. Thus, as x — oo, the integrand
2 2 oo
1 . 1 .. 1 . . L o

b behaves like - or ~. Since — dz diverges, we predict that the given integral will diverge.

x34+3x 42 3 x . T

The integrand is continuous for all x > 1, so whether the integral converges or diverges depends only on the behavior of
the function as x — co. As * — c0o, polynomials behave like the highest powered term. Thus, as x — co, the integrand

1

2245z +1

The integrand is continuous for all z > 1, so whether the integral converges or diverges depends only on the behavior of
the function as x — oco. As x — 00, polynomials behave like the highest powered term. Thus, as * — oo, the integrand

1 * . o .
behaves like — . Since / — dz converges, we predict that the given integral will converge.
x T
1

, 1 . I . — I
%2 behaves like — or —. Since — dz diverges, we predict that the given integral will diverge.

2+ 2x+4 2z . T

The integrand is continuous for all z > 1, so whether the integral converges or diverges depends only on the behavior of
the function as x — oo. As x — 0o, polynomials behave like the highest powered term. Thus, as x — oo, the integrand

z? —6x+1 . ox? . Oo . . L o
i behaves like — or 1. Since 1 dz diverges, we predict that the given integral will diverge.
x x

1
The integrand is continuous for all z > 1, so whether the integral converges or diverges depends only on the behavior of
the function as x — oo. As x — 00, polynomials behave like the highest powered term. Thus, as * — oo, the integrand

5x + 2

oYy behaves like i—f or % Since /1 poc dx converges, we predict that the given integral will converge.

For large t, the 2 is negligible in comparison to e®’, so the integrand behaves like e ~>*. Thus
1 R

~
~

e5t +2 edt

More precisely, since e + 2 > €5, we have

1 1 —5¢
R

. o _ . o1
Since f L€ 5t dt converges, by the Comparison Theorem / P dt converges also.
5t
1
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The integrand is continuous for all > 1, so whether the integral converges or diverges depends only on the behavior of
the function as x — oo. As x — 00, polynomials behave like the highest powered term. Thus, as x — oo, the integrand
x4+ 4
x* 4+ 3x2 4+ 11

It converges:

I 1 . o . . . .
behaves like — or —. Since / — dx converges, we predict that the given integral will converge.
x x z
1

/"0%7 lim /b@ lim (lz2b > _1 lim (Lfl)*—l
50 23 b—oo 50 23 b—oo 2 0 2 b—oo \ 502 b2 5000

1 1 1, . < ode
> —and - — dx diverges, we have that —— diverges.
o T ;. 1tz

Since

1+2x = 2z 2

If x > 1, we know that

oo oo
1 . dx . . dx
< —, and since —- converges, the improper integral ———— converges.
3 4+1 — 23 , @3 , w341

The integrand is unbounded as ¢ — 5. We substitute w = t — 5, so dw = dt. When ¢ = 5, w = 0 and when ¢t = §,
w=3. s 5
6 6
—dt = — dw.
/5 Vt—5 /o Vw

36 31 /
—dw= lim 6 | —dw=6 lim 2w'/?
[ Fatn=tmo [ gaw=o i 2

our integral converges.

Since
3
=12 lim (V3 —va) = 12V/3,

a a—0+

The integral converges.

1
= lim 20 (1 - a'/*") = 20.

—

Yo |
1 T 1/20
A W dr = (111»1}) i W dr = ilIT(l) 20x

a

This integral diverges. To see this, substitute t + 1 = w, dt = dw. So,
/t=5 dt B /w=6 d_w
t=—1 (t + 1)2 w=0 U)2 7

. . 1 .
Since we know the antiderivative of ﬁ’ we can use the Fundamental Theorem of Calculus to evaluate the integral.
u

which diverges.

Since the integrand is even, we write

oS} oo b
du 9 du — 9 lim du
7001+u2 o 14+ u? b—oo Jo 14+ u?

= 2 lim arctanb = 2 (E> =.
b—o00 2

Thus, the integral converges to 7.

, 1 1 . < du >~
Since —— < —; foru > 1, and since —; converges, converges.
U+ u U L u 1

u + u?

1 oo
This improper integral diverges. We expect this because, for large 6, = —and / d?? diverges. More
1

1
VPl 0

1 > 1 1 1

VET1 VELTE Ve V2

and / % diverges. (The factor % does not affect the divergence.)
1

precisely, for 6 > 1

V)

1 1 1 > de < do
For 0 > 2, we have —— < —— = —, and —— converges (check by integration), so ——— con-
= VBT VB 63 L 6372 ges ( Y integration) /2 N

verges.
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This integral is improper at § = 0. For 0 < 6 < 1, we have

1
1 1 1
————— < —, and since —— df converges,
VOE+0 ~ Vo /0 Vo £

/ 1 _db converges
L, V10 ge
1 1 oo oo
Since < — =¢€ Yand e~ Y dy converges, the integral
1+ ev ey o o

This integral is convergent because, for ¢ > 1,

dy
1+ ev

converges.

2 3
At

and / %dq& =3 / #d(b converges.
1 1

4 1 1 = =
Since < — =¢e “forz > 0,and / e “dz converges, /
0 0

z
converges.
e? + 2z

2 —sing "2 _sing
®? ®?

2 2 3 +sina
> — for a > 4, and since / —da diverges, then / ——  da diverges.
@ e 4 @

e* + 27 e*

1 "1
Since @ < for 0 < ¢ < 7, and since / Edqﬁ diverges, / d¢ must diverge.
0 0

Since 73 tsma

T

If we integrate e~ * from 1 to 10, we get 0.139. This answer does not change noticeably if you extend the region of

. . . . . T2
integration to from 1 to 11, say, or even up to 1000. There’s a reason for this; and the reason is that the tail, f 120 e % dux,

is very small indeed. In fact
oo 2 oo
/ e " dmg/ e Tdr=e'°,
10 10

which is very small. (In fact, the tail integral is less than ¢ ~'°/10. Can you prove that? [Hint: e < e 107 for
x > 10.])

T

Approximating the integral by f 010 e~ cos? z d yields 0.606 to two decimal places. This is a good approximation to
the improper integral because the “tail” is small:

oo 2 oo
- 2 - —10
/ e " cos :rd:rg/ e dr=e"",
10 10

which is very small.

Problems

28.

29.

(a) The area is infinite. The area under 1/x is infinite and the area under 1/x2 is 1. So the area between the two has to
be infinite also.

(b) Since f(z) is bounded between 0 and 1/x2, and the area under 1/2? is finite, f(x) will have finite area by the
comparison test. Similarly, h(z) lies above 1/x, whose area is infinite, so h(x) must have infinite area as well. We
can tell nothing about the area of g(x), because the comparison test tells us nothing about a function larger than a
function with finite area but smaller than one with infinite area. Finally, k(z) will certainly have infinite area, because
it has a lower bound m, for some m > 0. Thus, foa k(z) dz > ma, and since the latter does not converge as a — oo,
neither can the former.

The convergence or divergence of an improper integral depends on the long-term behavior of the integrand, not on its
short-term behavior. Figure 7.31 suggests that g(z) < f(x) for all values of = beyond x = k. Since f koo f(x)dz

oo
converges, we expect f . 9(x) dz converges also.
However we are interested in f:o g(x) dz. Breaking the integral into two parts enables us to use the fact that

[ g(w) da is finite:
/:O g(z)de = /ak g(x) dz + /:Og(x) dr.

The first integral is also finite because the interval from a to k is finite. Therefore, we expect f:o g(z) dz converges.
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7.8 SOLUTIONS
xX
Figure 7.31
. s . L. dx dx
30. First let’s calculate the indefinite integral [ —————. Let Inxz = w, then — = dw. So
z(lnx)P x
de dw
z(lnz)p ~ | wr
B In |w| + C, ifp=1
- Tlpwl_p—}—c, ifp#1
[ In|lnz[+C, ifp=1
- ﬁ(lnm)l_p—FC, ifp#1.
Notice that lim Inx = 4oc0.
@ p=1:
/ _dz lim (ln|lnb|—ln|ln2):+oo.
, Tlnz -0
(b) p<1:
< dz 1 . 1— 1—
=—11 Ind) "7 - (In2 p) = .
/2 z(lnz)»  1-—p (bi»H;o( nb) (In2) oo
© p>1:
e dx 1 . 1— 1—
=—11 Inb)" P — (In2 p)
/2 :v(lnx)P 17p(llgo(n) (Il)
1 . 1 1—
=—— | lim —~— —(In2)""?
1-p (birgo (Ind)p—1 (In2) >
1 1—
= — In2) 7P,
— p( )
Thus b dix is convergent for p > 1, divergent for p < 1
*J, z(nz)p g b2 & P2
. o dx . . dx . .
31. The indefinite integral m is computed in Problem 30. Let In x = w, then — = dw. Notice that hm1 Inz =0,
X X X T—
and lim Inzx = —o0.
x—0
For this integral notice that In 1 = 0, so the integrand blows up at z = 1.
@ p=1

> de
/ = lim (In|ln2| —1In|lnal)
1

zlnz o1+

Sincelna — O0asa — 1,In|lna] — —oo as b — 1. So the integral is divergent.
(b) p<1:

Inz)p  1—pa—1+

/ :c(L -1 lim ((an)lﬂ7 - (lna)lfp)
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(c) p>1:
> dw 1
=—1 n2)""? — (Ina)'~?
/1 oz 1—pas ((In2) (Ina)'~7)
As lim (Ina)'™” = lim 1 +o00, the integral diverges
a—1+ a—1+ (Ina)p—1 ’ & ges.

2
d . .
Thus, _@ is convergent for p < 1, divergent for p > 1.
1 z(lnz)P

12 p 0o w2
32. To find a, we first calculate f 010 e~ "2 dz. Since % > x for x > 10, this will differ from f o € 7 dx by at most

oo 2 o0
-z - —10
/ e 2 dmﬁ/ e fdr=¢€" ",
10 10

22
which is very small. Using Simpson’s rule with 100 intervals (well more than necessary), we find fol e” 2 dr ~

M)

z

1.253314137. Thus, since e™ = is even, fj(l)o e 2 dx ~ 2.506628274, and this is extremely close to fioo e 2 dx.

22
To find a, we need ffooo ae” 2 dx=1.

1

a=—-7F
oo —z
f e~ 7 dr
— 00

~ 0.399 to three decimal places.

33. (a) If we substitute w = x — k and dw = dx, we find

< _@om? < w2
ae 2 dr = ae” 2 dw.
— 00 — 00

This integral is the same as the integral in Problem 32, so the value of a will be the same, namely 0.399.
(b) The answer is the same because g(x) is the same as f(x) in Problem 32 except that it is shifted by & to the right.
Since we are integrating from —oo to co, however, this shift does not mean anything for the integral.

34. (a) Since e’ <e 3% forx > 3,
/ 671'2 dx < / e 3 dx
3 3

Now
0o b b
/ e " dr = lim / e dr = lim —Ze "
. b—oo |, —00
3 3 3
i e o3t e 9
= lim — — =
b—oo 3 3 3
Thus

(b) By reasoning similar to part (a),

and

SO
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35. (a) The tangent line to e’ has slope (e*)’ = e. Thus at t = 0, the slope is e” = 1. The line passes through (0,e°) =
(0,1). Thus the equation of the tangent line is y = 1 + t. Since e is everywhere concave up, its graph is always
above the graph of any of its tangent lines; in particular, e’ is always above the line 4 = 1 4 ¢. This is tantamount to
saying

14+¢<eét,

with equality holding only at the point of tangency, ¢ = 0.
(b) Ift = —, then the above inequality becomes
x

1
1+=<e" ore/* —1>
i

8=

Since t = —, t is never zero. Therefore, the inequality is strict, and we write
T

1
T 1> =,
x
1
(c) Sincee'/® —1> =,
x
1 1

o0 o0
Si dx dx
ince — converges ———————— converges.
L wt TJ, at (et —1)

Solutions for Chapter 7 Review.

Exercises

1. Since % cost = —sint, we have
/sin tdt = —cost + C, where C' is a constant.
2. Let 2t = w, then 2dt = dw, so dt = +dw, so

1 1 1
/cothclt:/§COS1UduJZ§sinw—i—C’:isin%—&—()7

where C' is a constant.

3. Let 5z = w, then 5dz = dw, which means dz = %dw, SO
1 1 1
/eSZdz:/ew~gdw: g/ewdw: %ew-i-C: geEZ-}-C’

4. Using the power rule gives gwg + 7w+ C.

where C' is a constant.

1
5. Since / sinw df = — cosw + C, the substitution w = 20, dw = 2 df gives /sin 20 d0 = —5 cos20 + C.

6. Letw = z° — 1, then dw = 3z2dx so that

/(ﬁ —1)*2%dz =

a, 1 3 _ 13 s
/w dw—15w +C—15(a: 1)°+C.

W=
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The power rule gives %xS/Q + gx‘r’/g’ +C

From the rule for antidifferentiation of exponentials, we get

x T _ 1 T
/(e +3%)dx=e +ln3 3"+ C.

Either expand (r + 1) or use the substitution w = r + 1. If w = r + 1, then dw = dr and

/(r+1)3dr:/w3dw: %w4+C:
Rewrite the integrand as

(i — i) de=4 [ 27%dz -3 [ 2 %der = —4z7' + §m_2 +C.
2 3 2

(r+1)*+C.

> =

Dividing by z? gives

3
Ll"f'l dr = (m+l+i>dx:1x2+ln|x‘,l+c.
2 x  x? 2 T

Letw = 1 + Inz, then dw = dz/x so that

2
/Mdﬂc:/dew:%w3+C:%(1+lnx)3+C.

T

Substitute w = t2, so dw = 2¢ dt.

1 1 1 1
/tet2dt=i/etQQtdtzi/ewdwz§ew+C:§et2+C.

d 1 +2 _ 1 t2)_ +2
U (26 +C>—2t(2e =te .

Integration by parts with u = x, v’ = cos x gives

Check:

/mcosxdx:xsinxf/sinxdaz+0:xsinx+cosx+0,

Or use II-16 with p(z) = x and a = 1 in the integral table.

Integration by parts twice gives

2 2¢ 2
1
/m2621 de =2 ; - /23662z dx = %621 _ T + -4 C

Or use the integral table, III-14 with p(z) = 2% and a = 1.

Using substitution with w = 1 — x and dw = —dx, we get

/x\/l—xdx:—/(l—w)\/adwz§w5/2—2w3/2—|—02%(1—30)5/2—%(1—

3

Integration by parts with u = Inz, v" = x gives

2
_l' 1 _1 2 71 2
/xlnmdxf 5 Inx /Qxdzf 5% Inx 1" +C.

Or use the integral table, III-13, with n = 1.
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We integrate by parts, with u = y, v = siny. We have u’ = 1, v = — cos y, and
/ysinydy = —ycosy — /(—cosy) dy = —ycosy + siny + C.

Check: d
d—y(—ycosy—i—siny—i—C’) = —cosy + ysiny 4+ cosy = ysiny.

We integrate by parts, using u = (Inz)® and v’ = 1. Then v’ = 2'2£ and v = z, so
/(1n z)? dr = z(Inz)® — Q/Inxdm.
But, integrating by parts or using the integral table, f Inzdx = xlnx — x + C. Therefore,

/(lnx)2 dr = z(Inz)® — 2zInz + 2z + C.

Check:

d 2 2 2Inx
a[m(lnm) —2a:1nac+2x+0] =(nz)" +z -

Oz -2t 42— (Inz)?.
xT

Remember that In(2?) = 21n . Therefore,

/ln(x2) dz = 2/lnxdﬂc =2zlnz —2z+C.
Check:

i(23171r1557296+C) =2lnz+ 2 —2=2Inz = In(z?).
dx x

Using the exponent rules and the chain rule, we have

0.5—0.3t

£0:5-0:3t g _ 05 [ —0.3t g _ 7&670.& + 0= e +C
- 03 N 0.3 '

Let sin @ = w, then cos 0 df = dw, so
/sinQGCOSGdez/Mde: %w3+C: %sin39+0,

where C' is a constant.

Substitute w = 4 — z2, dw = —2z da:
2 — 1 _ 13/2 _ 1 2\3/2
/4 —=x dm—fi \/wdw—fgw +C—f§(47m) +C.

Check

1 1
% [—5(4 — 2?2 4 C} =—3 [3(4 - ﬁ)l/z(—zx)] ey
Expanding the numerator and dividing, we have

3 3 2
/7@—'_21) du:/(u +3u j3u+1)du:/(u+3+§+%) du
U u u U

2
1

= u—+3u+31n|u|——+C.
2 U

Check:

2 3
% <%+3u+3lnu|%+0> :u+3+3/u+1/u2:(uu+721).

489
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25. Substitute w = /y, dw = 1/(2,/y) dy. Then

Mdy:Q/coswdwZQSin'f‘C:QSin\/g_'_C'

VY
Check: 5
iQsin\/@—&— C= cos vy = cos\/g.
dy 2\/y VY
26. Since 4 (tanz) = we have
) dz "~ cos?z’
/ 12 dz =tanz + C.
cos? z
Check:
i(tanz +0) = d sinz _ (cos z)(cos z) — (sinz)(—sin z) _ 1 '
dz dz cos z cos? z cos? z

27. Denote /cos2 0dOby A. Letu = cosf, v’ = cosf. Then, v = sinf and u’ = — sin 0. Integrating by parts, we get:

A:cos@sian/(fsinﬁ)siHGdG.

Employing the identity sin® § = 1 — cos? 6, the equation above becomes:

Azcos@sin@—l—/d@—/coszﬁdﬁ

=cosfsinfd+6— A+ C.

Solving this equation for A, and using the identity sin 20 = 2 cos 0 sin 6 we get:
2 1 . 1
A= [ cos 9d92151n29+§9+0.

[Note: An alternate solution would have been to use the identity cos? 6 = % cos 26 + %.]

28. Multiplying out and integrating term by term:

/t“’(t —10)dt = /(t“ —10t'%) dt = /t“dt - 10/t10 dt = 1—12t12 - %t“ +C.

29. Substitute w = 2z — 6. Then dw = 2 dx and

1 1 S
/tan(2x—6)dw=—/tanwdw:—/bmw dw
2 | cosw

1
=-3 In | cos w| 4+ C by substitution or by I-7 of the integral table.

[\

—%ln\cos(Qaz —-6)|+C.

30. Let Inx = w, then % dx = dw, so

1 2 1 1
/ ( n;) dr = /w2 dw = gws +C = g(ln x)® + C, where C is a constant.

31. Multiplying out, dividing, and then integrating yields

2 2
/(ttf) dt = /t““+4 / dt+/—dt+/—dt—l |t|————+C’

where C' is a constant.
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33.

34.

35.

36.

37.

38.

39.
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Integrating term by term:

/(x2+2:c+1) dx:%x3+x2+ln|x\+0,
x

where C'is a constant.
Dividing and then integrating, we obtain

/t;Lzld :/ dt"‘/—dt 1H|t\—%+C, where C' is a constant.

Let t* 4+ 1 = w, then 2t dt = dw, tdt = % dw, so

/tet2+1dt:/ew~%dw:

where C' is a constant.

/ewdw = lew +C = let(zJrl +C,

N =

2 2

Let cos @ = w, then — sin 0 df = dw, so

/tan@dGz/Sma /—dw

=—In|w|+C=—1In|cosb| + C,

where C' is a constant.
If u = sin(560), du = cos(50) - 5 d6, so

CﬂlH

/sm(59) cos(50)d /sm 50) - 5 cos(50)do = %/udu
C

< >+Cllosm (50) +

cm»—A

or
/Sin(59) COS(59)d0 = %/28111(59) COS(59)d9 = %/Sin(loe)dg (using sin(2z) = 2 sin z cos x)

-1
=20 cos(100) + C.

Using substitution,

T 1/2 2 o _ 1
/x2+1d:v—/wdw (z +1—w,2xdx—dw,xdx—2dw)

1 1

_ _ 1 1l
—2/wdw—2ln|w\+C—2ln|x +1|+C,

where C' is a constant.

. d 1
Since E(arctan z) = T3 ve have
dz_ _ arctan z + C, where C is a constant
1422 ’ ’
. d 1
Let w = 2z, so dw = 2dz. Then, since — arctanw = ———, we have
dw 14+ w?

dz %dw 1 1
/1+422 _/1+w2 = iarctanw—&—C’_ §arctan2z+0.
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40. Let w = cos 26. Then dw = —2sin 20 df, hence

4 4
/00532esin20d9:f%/wgdw:f%+0:fcos820 + C.

Check:

d cos®20\  (4cos®20)(—sin20)(2) 5. .
0 (— g ) = - 3 = cos” 20sin 26.

41. Let cos 50 = w, then —5sin 50 df = dw, sin 50 df = — ;dw. So

. 3 _ 3 1 _ 1 3, 1 4
/sm50cos 59d0—/w ( 5)dw— 5/w dw = —20w +C
_ 1 a
= —gg cos 50 + C,

where C'is a constant.
42.
.3 3
/sm zcos” zdz =

. 3 . 5
:/smzcos zdz—/smzcos zdz

w® (—dw) — /w5 (—dw) (let cosz = w, so —sinzdz = dw)

sin z(1 — cos® 2) cos® z dz

I
|
|
)
o
w0
w
+
|
Q
o
w0

where C' is a constant.
43. If u =t —10,¢t = u + 10 and dt = 1 du, so substituting we get

/(u + 10)u'du = /(u11 +10u') du = %uw + %ull +C

_ 1 12 10 11
= =102+ S -10)" +C.

44, Let sin # = w, then cos 0 df = dw, so

/cosé?\/l—ksinﬁd@:/\/l—l—wdw

3/2
G ) o

2 L \3/2
372 —3(1+sm0) +C,

where C' is a constant.
45.

where C' is a constant.
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47.

48.

49.

50.

51.

52.

53.
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/tSet dt = t’e" — /Stzet dt (let t® = u, e’ = ', 3t> = ', e’ = v)
=t’e’ — 3/t2et dt (let t* = u,e' = v')
=" — 3(t%e" — /Ztet dt)
=t —3t%" +6 /tet dt (lett = u,e" =)
=t%e' — 3t%e’ 4 6(te’ — /et dt)

=3¢’ — 3t%e’ + 6te’ — 6e' + C,

where C' is a constant.

Letz? = w, then 2zdz = dw,z =1=w= 1,2 =3 = w = 9. Thus,

3 9 1
/ x(z® +1)de = / (w+ 1)705 dw
1 1

- i(w + 1)71 o
2 71 1

1 71 71
—(1 —2'7).
142( 0 )

Let w = 3z + 5 and dw = 3dz. Then

/(3z+5)3dz:%/w3dw:%w4+021—12(3z+5)4+0,

Rewrite 9 4 u? as 9[1 + (u/3)?] and let w = u/3, then dw = du/3 so that

du_ _ 1 dw _ _ 1aurctaunw—o—C’— 1alrctan (E) +C
94u2 3 1+w2 3 3 3 ’

Let u = sinw, then du = cos w dw so that

cos w du _
/ T emtw 0 / T = arctanu + O = arctan(sinw) + C.

Let w = Inz, then dw = (1/x)dx which gives

/ltan(lnx) dx = /tanwdw = / SN g = —In(] cosw|) + C = —In(|cos(Inz)|) + C.
x cosw
Let w = Inz, then dw = (1/x)dx so that

/lsin(lnx)dx:/sinwdw:fcostrC:fcos(lnx)JrC.
x

Let u = 2x, then du = 2 dx so that

1 1
= —arcsinu+ C = 5 arcsin(2z) + C.

/ dx _1/ du
V1—4z2 2 ) 1—wu?2 2
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54. Letu = 16 — w?, then du = —2w dw so that

/%:_g W Viro= Vi w e

55. Dividing and then integrating term by term, we get

e 4+ 1 e 1 _ 1 _
/ = dy:/ eTy+eTy dy:/(1+e 2y)dy:/dy+(—§)/e (=2)dy

1
=y— 5672y +C.

56. Letu = 1 — cos w, then du = sin w dw which gives

sin w dw du
—_— = — =2Vu+C =2v1—cosw+ C.
V1 —cosw N v
57. Let w = Inz. Then dw = (1/x)dx which gives
/ dz = d—w:ln|w|+C:ln|lnm\+C.
zlnx w

58. Let w = 3u + 8, then dw = 3du and

du dw 1
/3u+8 gw 3 mButs+
rdx
59. Letw = Va2 + 1, then dw = ———— so that
Va?+1

/\/xQL——&—l cos x2+1dx:/coswdw:sinw—i—C:sin\/;t?—i—1—|—C.

60. Integrating by parts using u = ¢* and dv = \/% gives du = 2t dt and v = /1 + 2. Now

t3 2 /

dt = t°\/1+ 2 — [ 2t3/1 4+ 12 dt
[ =t

:t2x/1+t2—§(1+t2)3/2+0

2
:\/1+t2(t2—§(1+t2))+0

2
——(t* =2
= 1+t2%+0.

61. Using integration by parts, let 7 = u and dt = e*“du, so dr = du and t = (1/k)e*". Thus
/uek“ du = %ek“ - % /ek“ du = %ek“ — %eku +C.

62. Letu = w + 5, then du = dw and noting that w = u — 5 we obtain

/(w +5)*w dw = /u4(u— 5) du

_ / (u — 5u') du

zéuﬁ—u5+c
%(w+5)6—(w+5)5+6’.
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63. /eﬁ$+3d1’ = % / eﬁz+3\/§da:. If u = v2x + 3, du = V2dz, so

1 u 1 u 1 \/§z+3
— [ e'du= —e"+(C = —e¢ + C.
ﬁ/ NG V2

64. Integrate by parts letting u = (Inr)? and dv = rdr, then du = (2/7) Inrdr and v = r2 /2. We get

/r(lnr)2 dr = %7‘2(1n7‘)2 - /rlnrdr.

Then using integration by parts again with v = Inr and dv = rdr, so du = dr/r and v = 12 /2, we get

/rlnzrdr = %TQ(IHT)Q — {%rz Inr — %/rdr} = %7‘2(1117’)2 — %TQIHT—F irz + C.

65. /(ez +z)de = /(621 + 2xe” 4 2°)dy. Separating into three integrals, we have

1 1
/ehdm =3 /e%? dr = 5629” + C1,

/2xezd:v = 2/azezdaz = 2ze” —2e” + Cy
from Formula II-13 of the integral table or integration by parts, and
3
/ 22 dr = r + Cs.
3
Combining the results and writing C' = C; + C2 + C3, we get

3
%ezz + 2ze” — 2e” + % + C.

66. Integrate by parts, 7 = Inw and dt = u? du, so dr = (1/u) du and t = (1/3)u®. We have
/u2 Inudu = %u?’ Inu — %/uZdu = %u?’ Inu — $u3 +C.

67. The integral table yields

5x+6 5 5 6 T
= —_1 4 — —
/x2+4dm ) nlz” + |+2arctan2+C
5 2 x
:51n|1: —|—4|+3arctan§—|—C.
Check:
d (5 2 6 T 5 1 1 1
2 (2 4 + 2 arctan < S ——— -
da (2 nle” + |+2arcan2+C) 2<J;2+4(x)+31+(m/2)22>
_ e 6 _5u46
T ox24+4 0 x24+4 0 x24+47

68. Using Table IV-19, let m = 3, w = 2z, and dw = 2dx. Then

1 1 1
——dr = - d
/ sin®(2z) T3 / sicPw

_1 -1 cosw +1 1 duw
T2 (B-1)sin®w 4 ) sinw '
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and using Table I'V-20, we have
cosw — 1

1 1
dw==-In|—— C.
/sinw v 2ncosw—|—1‘Jr
Thus,
1 cos 2x 1 cos2x — 1
——dr=———5—+ -1 7‘ C.
/sin3(2x) * 4sin22x+8 M cos2z + 1 *

69. We can factor r*> — 100 = (r — 10)(r + 10) so we can use Table V-26 (with a = 10 and b = —10) to get

dr 1
—— =1 -1 1 1 .
/r2—100 20[n|r 0|+ In|r+10]+C

70. Integration by parts will be used twice here. First let v = y? and dv = sin(cy) dy, then du = 2ydy and v =
—(1/¢) cos(cy). Thus

2
/y2 sin(cy) dy = _y? cos(cy) + % /ycos(cy) dy.

Now use integration by parts to evaluate the integral in the right hand expression. Here let v = y and dv = cos(cy)dy
which gives du = dy and v = (1/c¢) sin(cy). Then we have

2 v 2 (y 1
/y sin(cy) dy = —= cos(cy) + = | =sin(cy) — = /sin(cy) dy
c c\c c

2
oy 2y . 2
=-= cos(cy) + = sin(cy) + = cos(cy) + C.

71. Integration by parts will be used twice. First let u = e~ and dv = sin(kt)dt, then du = —ce”“"dt and v =
(—=1/k) cos kt. Then

k

_ 1 —ct c 1 —ct . c —ct .
= ke cos kt " (ke sin kt + k/e sin kt dt

1 _ _ 2 _
=z ° coskt — —e Ctsin/ct—c—/e “ sin kt dt

/efct sinktdt = f%eﬂt cos kt — E/efct cos kt dt

k2 k?

Solving for [ e~ sin kt dt gives

2, 2 —ct
k ]:;c /e_Ctsink‘tolt:—ek—2(k:coskt—&—csinkt)7

SO

—ct
/e_Ct sin kt dt = —];;_’_02 (kcoskt + csinkt) + C.

72. Using II-9 from the integral table, with @ = 5 and b = 3, we have

5x o 1 5x .
/e cos(3z) dz = %1 9° [5cos(3x) + 3sin(3z)] + C

= 3%653: [6 cos(3z) + 3sin(3z)] + C.
73. Since /(ac‘/E + (VE)")dx = /x‘/Eda: + /(\/E)x dz, for the first integral, use Formula I-1 with n = +/k. For the

second integral, use Formula I-3 with @ = +/k. The result is

4 (VR = ST W
/( VB = S Y
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74. Factor v/3 out of the integrand and use VI-30 of the integral table with v = 2z and du = 2dz to get

75.

76.

/ 3+12x2d1’:/\/§\/1+4x2d95

:?/\/H—Wdu

_ V3 > !
—T u 1+u+ \/ﬁdu

Then from VI-29, simplify the integral on the right to get

/\/3+12$2d$: ? (ux/1+u2+ln|u+ \/1+u2|) +C
- ? (23:\/1—1— (22)2 +1In |22 + /1 + (23:)2[) el

By completing the square, we get

2 2 3.2 9 3.2 1
x°—3r+2= (2" —3x+( 2))—|—2 47(17 2) T
Then
1 1
/7/2dm:/7/31dx.
x2 —3xr+ 2 (35_5)2_Z
Letw = (z — (3/2)), then dw = dx and a® = 1/4. Then we have
1 1
Y———dr = | ————=dw
/\/x2—3m+2 /\/wQ—a2
and from VI-29 of the integral table we have
;dw—ln w4+ Vw2 —a?|+C
/w2 — a2
3 21

=1In (w—g>+\/x2—3x+2‘+a

First divide 2% + 3z + 2 into 2° to obtain

x> Tx+6

22+ 3z +2 :x_3+x2+3x—|—2'

497

Since 2% 4 3z + 2 = (z + 1)(z + 2), we can use V-27 of the integral table (withc = 7,d = 6,a = —1,and b = —2) to

get

/%dzz—ln|x+l|+81n|x+2|+0.

Including the terms & — 3 from the long division and integrating them gives

3
/mdx:/(x73+%> dx:%xQ73m71n|x+1|+81n|x+2|+C.
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77. First divide 22 4 1 by z° — 3 + 2 to obtain

2
1 3z —1

2:E+ —14 227 .

2 —3x+2 2 —3x + 2

Factoring 22 — 3z + 2 = (x — 2)(x — 1) we can use V-27 (withc = 3,d = —1, @ = 2 and b = 1) to write
3z —1
——————dxr =51 —2|—21 -1 .
/m2—3m+2dx 5In |z — 2| njz—1/+C

Remembering to include the extra term of +1 we got when dividing, we get
2
z°+1 3z —1
————dzx = (1 7>d = 51 —2|—21 -1+ C.
/:r2—3:c+2 v / +:c2—3:v+2 z=z+5hnjz | nle |+
78. We can factor the denominator into az(z + 2), so
dx _1 1
ar2 +br a x(:c—&—%)
Now we can use V-26 (with A = 0 and B = —g to give

l/é_l a
a) z(z+2) a b

79. Letw = az® + 2bx + ¢, then dw = (2az + 2b)dz so that

/N

ln|x|—ln‘x+g’)+C:

ar+b 1 dw 1 1 5
— = "  drxr== — =21 C==1 2b C.
/ax2+2bm+c T=3 " 2n|w|+ 2n|cwz: + 2bz + | +

80. Multiplying out and integrating term by term,
x  3\2 x? 9 1 (a? z! z3 9
—4+—-)de= | |=4+24+5 |dr==|% | +224+9(— |+ C==%+2c——-+C.
/(3+x) v /(9++x2>’” 9(3 R N T A i
81. Ifu=2"+1, du = 2"(In2) dt, so

t t
/2 dt:i/zmdt L[l 11n\u|+czli1n\zt+1\+c.

2t 11 m2 /[ 2+1" "2/ u 2 n2

82. fu=1—2x,du=—1dx,so0

_ _ 10% 1 _
100" %de = -1 [ 107 %(-1dz) = -1 [ 10%du= —1 =——10'"" i
/ 0 x / 0 %( x) / 0" du ln10+C 10 0" +C

83. Multiplying out and integrating term by term gives
3

) ) 1 5
/(ac2 +5)3da = /(acb + 152" + 750" + 125)de = —a + 15‘% + 75% +1252 + C

= %f +32° + 252° + 125z + C.

84. Integrate by parts letting 7 = v and dt = arcsin v dv then dr = dv and to find ¢ we integrate arcsin v dv by parts letting
x = arcsinv and dy = dwv. This gives

t:varcsinv—/(l/\/l—v2)vdv:varcsinv—|— 1— 02
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86.

87.

88.

89.
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Now, back to the original integration by parts, and we have

/Uarcsinvdv:UQarcsinU—FU\/l—1)2—/[varcsinv-i- 1—1)2} dv.

Adding f v arcsin v dv to both sides of the above line we obtain

Q/Uarcsinvdv=v2arcsinv+vx/1—v2—/\/1—v2dv
1 1
:vzarcsianrv\/lfv?fiv\/lfUinarcsianrC.

1dz
5

dr, v = tanz, we

Dividing by 2 gives
21
/varcsinvdv = <% 1 arcsinv + iv\/l -2+ K,
where K = C/2.
By VI-30 in the table of integrals, we have
V4 — x? 1
/ 4—22dy = u+2/7dac.
2 VA — 22
The same table informs us in formula VI-28 that
1 T
——— dx = arcsin = 4+ C.
/ VA4 — x? 2
Thus
N )
/\/47m2d:p: M%+2arcsing+0.
By long division 2 =22 4+52425+ SO
ylong Tz—5 z—5
3 3 2
7 dr= <z2+5z+25+£>dz: 25 95a 4125
z—5 z—5 3 2 —
ZS 5 2
= §+§Z +25z+125In|z — 5|+ C.
Ifu =1+ cos® w, du = 2(cosw)* (— sinw) dw, so
sin w cos w 1 —2sinw cosw 1 1 1
o P dw = —= | 2P =2 | Zdu=—=1
/1+cos2w v 2/ 1+ cos?w v 2/u v 2n|u\+C
1
= —§1n|1+coszw\ +C.
1 1 cos(30) .
—df= | ——df = do. Ifu = 30), du = 30) - 3d0,
/tan(30) / (sin<36)> / sin(30) u = sin(36), du = cos(30) 50
cos(30)
cos(36) 1 [ 3cos(30) 1 /1 1 1 .
dd==- | ———=di == [ —du= =1 C==-1 30 C.
/sm(39) 3/ sin(30) 3 | wde=ghnlul+C=3nfsin(36)] +
x dr = ! dx. Using integration by parts with v = x, du = dx and dv = !
o= | T ing integrati y parts with u = z, du = dzx V= o
have

1
/x( 5 dac) :xtanx—/tanxdl’.
cos?

Formula I-7 gives the final result of x tanx — (—In|cosz|) + C = ztanz + In|cosz| + C.
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Dividing and integrating term by term gives
rz+1 x 1 1/2 —1/2 a2 2 32

Ifu=+z+1,u?=x+1withz =u? — 1 and dz = 2u du. Substituting, we get

/ ;Jrldw:/w:/(u271)2du:2/(u2f1)du
2u®

3
:T—2u+c:2(7“”;1)—2\/z+1+c.

VvE+1 12 1 . 1
- = 1 —dx;ifu = 1 = — h
/ NG (VT +1) ﬁdm,lu Vz+1,du 2ﬁda:,sowe ave

3/2
2/(\/5+1)1/2%dm:2/u1/2du:2 (%) 10 = §u3/2+cz %(\/5+1)3/2+C’.
2

If u = e2¥ + 1, then du = e2¥2dy, so
2y 2y
e 1 2e 1
dy = = dy = =
/e2y+1 Y 2/e2y+1 Y73

If u =22 — 5, du = 2z dz, then

z _ 2 p\-3 _1 2 -3 _1 a1 fu?
/(2275)3dz—/(z 5) zdz—Z/(z 5) QZdz—Q/u du—2(2)+0

1
TS

1 1 1
—du==Inlu|+C==In|e* +1]|+C.
U 2 2

. Lettingu = z — 5, 2z = u + 5, dz = du, and substituting, we have

Y T e
/(Z75)3dz—/ =3 du—/(u +5u”")du = — +5<2 +C

~1 -5
G-y T T ¢

1
. If u = 1 + tan x then du = —de, and so
cos? ¢

1 3 4 . .
/%dw:/(1+tanx)3coslgxdm:/u3du:%+C:M+C.

4

ZEZ
/ Mdm = /61'2*”6(23: —1)dz. Ifu = 2° — z, du = (2z — 1)da, so

ez
/612_99(295_ 1)dz = /e“du

:eu_i_c
2

=" T4 C.
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98. We use the substitution w = 2> + z, dw = (2x + 1) dx.

/(23: + l)ez2ez dz = /(2:r + 1)612+z dz = /ew dw

="+ C=e"T" 4
Check: di(ez2+z +0) = e 2z +1)=(2z + 1)61261
x

99. Letw = 2+ 3cosxz, so dw = —3sinx dz, giving f% dw = sinx dx. Then

3
2

/smx(m dx—/\/a( dw:—%/\/@dw

1 2 3
:(f—)T+C’: (2+3cosx)g+C.
3/ 3 9
100. Using Table I1I-14, with a = —4 we have
2 —4z 1 —4z
/(x —3z+2)e Fdr=— i(ac —3z+2)e
1 —4x 1 —4x
— 2z -3 — — C.
—1¢ (2 —3)e G1Pe T+
1
= 55¢ e (=11 4 20z — 827%) + C.
101. Let z = 20, then dz = 2df. Thus
/sin2 (20) cos®(20) df = % /sin2 x cos® x da.

We let w = sin x and dw = cos x dx. Then

1
§/sin2x0053xdw =

sin”® z cos® z cos z dz

G:I!—‘ N = N= N= N

w =

/sm z(1 — sin® &) cos « dx

1

2

1 1
(%— )—&—C’zasingx—msinf’x—i—C

102. If u = 2sin x, then du = 2 cos x dx, so

/cos(2sinm) coszdr = %/cos(Qsinx)Qcosxdx: %/cosudu
1

1
= isinu—&—C: §sin(251nm)+0.

103. Letw = z + sinz, then dw = (1 + cos z) dz which gives

(x4 sinz)* 4 C.

1=

/(x+sinx)3(1+cosx)dx: /wgdw: iw4+C’:

501
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Using Table III-16,
1
/ (22° + 3z + 4) cos(2z) dx = 5(2953 + 3x + 4) sin(2z)

1o 2

+Z(6x + 3) cos(2z)
1 . 3

f§(12m) sin(2z) — 1 cos(2z) + C.

2
= 2sin(2z) + z° sin(2z) + 3% cos(2z) + C.

Use the substitution w = sinh x and dw = cosh zdx so
2 2 w? 1 3
sinh“zcoshxdr = [ w dw:——kC:gsinh z+ C.

1
Check this answer by taking the derivative: j—m [§ sinh® z + C] = sinh® z cosh z.

We use the substitution w = 2 + 2z and dw = (2z + 2) dz so

/(a: + 1) sinh(z® + 2z) dz = % /sinhw dw = %coshw +C= % cosh(z® + 2z) + C.

1
Check this answer by taking the derivative: 4 b cosh(z? + 2z) + C} = Z(2z+2) sinh(z*+2z) = (z+1) sinh(z°+

1
dx 2
2x).

Substitute w = 1 + 22, dw = 2z dx. Then z dx = % dw, and

x=1 1 w=2 w21 2
/ (1 +2%)*0de = —/ w?® dw = T
x

=0 w=1

299593

1
=49932~.
6

[\

Substitute w = 2 + 4, dw = 2x dx. Then,

=1
/ /22 +4dr =
=4

We substitute w = cos @ + 5, dw = — sin # df. Then

O=m w=4 w=6 wg
/ sin @ df(cosf +5)" = —/ wdw = / wdw = —
6=0 w=6 w=4 8

d
Letw = 1 + 522. We have dw = 10wdm,so% =xdx.Whenz =0,w =1. Whenxz =1, w = 6.

6

= 201,760.
4

cde _ (Cfyde 1 fdw 1y
1+5z2 1 w 10 LW 10
1 In6
= —(In6—-1Inl) = —
o6 —In1) =3
2 9 2 2 2
/ z +1dx:/ (a:Jrl)dx: $—+ln|x\ =_—+1In2.
1 T 1 x 2 L 2




112.

113.

114.

115.

116.

SOLUTIONS to Review Problems for Chapter Seven

Using integration by parts, we have

3 3 3
/ ln(:vs)dm:?)/ Inzdr=3(zlnz—z)] =9In3 — 6~ 3.8875.
1 1 1
This matches the approximation given by Simpson’s rule with 10 intervals.

In Problem 19, we found that
/(lnx)2 dz = z(Inz)® — 2zlnz + 2z + C.

Thus

e

=e—2~0.71828.

/ (Inz)? dz = [z(Inz)® — 2z Inx + 2z
1 1

This matches the approximation given by Simpson’s rule with 10 intervals.

1

5 Cos 21, SO

Integrating by parts, we take v = €>®, v’ = 2¢?*, v’ = sin 2z, and v = —

2z
/ezz sin2z dx = — % cos 2z + /ezz cos 2z dzx.

2z 1

Ju = 2e%® v = cos2x, and v = 3

Integrating by parts again, with u = e sin 2x, we get

2z
/ezz cos 2z dr = % sin 2z — /621 sin 2z dz.
Substituting into the previous equation, we obtain
eQac 6230
/6236 sin 2z dx = ——5cos 2x + 5 sin 2z — /eh sin 2z dz.
Solving for f €% sin 2 da gives
2z . _ 1 2z -
e” sin 2z dx = 1€ (sin 2z — cos2z) 4 C.

This result can also be obtained using II-8 in the integral table. Thus

™ 1 ™
/ e sin 2z = [Ze%(sin 2z — cos 2x)]

™

(e72™ — ™) ~ —133.8724.

-7

503

We get —133.37 using Simpson’s rule with 10 intervals. With 100 intervals, we get —133.8724. Thus our answer matches

the approximation of Simpson’s rule.

10
/ ze” dz = [—ze 7]
0

10 10
_ - ;-
—/ —e “dz (let z =u,e”* =0v',—e * =)
0
0

11e % +1
Let sin§ = w, cos 0 df = dw. So, if 0 = fg, then w = 773, and if 0 = %,thenw = g So we have
/4 s V2/2 5 1 . V2/2 1 \/5 4 _\/3 4 5
sin” @ cos 6 df = w”dw = —w =115 5 =~&1
—7/3 —V3/2 —V3/2 6
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17. Let /7 = w, Lo~ 2 de = duw, 9 =2dw.Ifz = 1thenw = 1, and if v = 4 50 w = 2. So we have

4 Ve 2
dr = / e - 2dw = 2e"
J e

! dxr 1
5 =tan "z
0 XT*H+ 1

119. We put the integral in a convenient form for a substitution by using the fact that sin® § = 1—cos? 6. Thus: / cos® Osin® 0 df =

2
=2(e® —e) ~ 9.34.

1

118.
1

=tan '1—tan 0= Gl
0 4

—0=

il
T

LB

ESE]

™

1
/ cos® 0(1 — cos” ) sin 0 db.

4

Now, we can make a substitution which helps. We let w = cos 6, so dw = — sin 0 df.
Note that w = g when 0 = —% and when 6 = Z Thus after our substitution, we get

w=7
—/ w?(1 — w?)? dw.

=

w3

Since the upper and lower limits of integration are the same, this definite integral must equal 0. Notice that we could have
deduced this fact immediately, since cos? @ is even and sin® 6 is odd, so cos® @ sin® 6 is odd.

0 4
Thus / cos? Osin® 0df = — / cos® 0sin® 0 df, and the given integral must evaluate to 0.

,% 0

120. We substitute w = x2 + 4z + 5, so dw = (2z + 4) dx. Notice that when ¢ = —2,w = 1, and when = 0, w = 5.
z=0 w=5 w=>5
2 4 1
/ QLdm:/ — dw = In |w| =1Inb5.
oo T2+ 4T +5 we1 W wel
121. Splitting the integrand into partial fractions with denominators (x — 2) and (z + 2), we have

1 A B

(z —2)(z +2) x72+x+2'

Multiplying by (z — 2)(x + 2) gives the identity
1=A(x+2)+ Bz — 2)

SO
1=(A+B)z+24—2B.

Since this equation holds for all x, the constant terms on both sides must be equal. Similarly, the coefficient of = on both
sides must be equal. So

2A-2B=1
A+B=0.

Solving these equations gives A = 1/4, B = —1/4 and the integral becomes

1 1 1 1 1 1
_1 B L R S I 2 .
/(w—Z)(az—i—Z)dm 4/m—2d$ 4/m+2d$ 4(n|ac |—Injz+2|)+C

122. Let z = 5sint. Then dz = 5 cost dt, so substitution gives

t = dt:t+C:arcsin(%)+C.

/ 1 _/ 5cost d
V25 — z? \/25 — 25sin? ¢
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Splitting the integrand into partial fractions with denominators = and (z + 5), we have

1 A B

z(z +5) x+x+5'

Multiplying by z(z + 5) gives the identity
1=A(z+5)+ Bz

SO
1= (A+ B)z +5A.

Since this equation holds for all x, the constant terms on both sides must be equal. Similarly, the coefficient of « on both
sides must be equal. So

5A=1
A+ B=0.

Solving these equations gives A = 1/5, B = —1/5 and the integral becomes

/mdm—g/;dm—g/m+5dr—g(ln|x|—1n|x+5|)+c_

1
3

We use the trigonometric substitution 3z = sin 6. Then dz = 3 cos 6 df and substitution gives

1 1 1 1 cos 6
——dx = ———— - —cosfdf = = df
/\/1—9$2 / 1—sin26 3 3 Vcos? 0

1 1 1 .
= g/ldﬁf §0+C'f garcsm(Sx)—FC.

Splitting the integrand into partial fractions with denominators z, (z + 2) and (x — 1), we have

2z + 3 7é+ B n C
zz+2(xz—-1) " =z x+2 -1

Multiplying by z(z + 2)(x — 1) gives the identity
2e+3=A(zx+2)(x — 1)+ Bx(z — 1) + Cz(z + 2)

SO
2¢+3=(A+ B+ 0)z” + (A — B+ 20)x — 2A.

Since this equation holds for all x, the constant terms on both sides must be equal. Similarly, the coefficient of « on both
sides must be equal. So

—2A =3
A-—B+2C0=2
A+B+C=0.

Solving these equations gives A = —3/2, B = —1/6 and C = 5/3. The integral becomes

2z +3 31, 1 [ 1 5[ 1
/m(m+2)(:c71)dx_ 2/:cdx 6/:c+2+3/:r71dx

1
:—gln|m|—gln|x+2|—|—gln|m—l\+0.
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The denominator can be factored to give z(z — 1)(x 4 1). Splitting the integrand into partial fractions with denominators

z,x — 1,and x + 1, we have
3x+1 A B C
= + =,
zx—1)(z+1) =xz—-1 z+1 =z

Multiplying by z(z — 1)(z + 1) gives the identity

3x+1=Az(z+1)+Bz(z—1)+C(z —1)(z+ 1)
$0
3t4+1=(A+B+C)2> +(A—B)z - C.

Since this equation holds for all x, the constant terms on both sides must be equal. Similarly, the coefficient of = and x>
on both sides must be equal. So

—-C=1
A-B=3
A+B+C=0.

Solving these equations gives A = 2, B = —1 and C' = —1. The integral becomes

3+ 1 2 1 1
Pt = | 2 de— | ——de— [ 2d
/m(az—i—l)(ac—l)x z 1 /x—&—lx /a:x
=2lnjz—1—In|z+ 1] —In|z|+ C.

Splitting the integrand into partial fractions with denominators (1 4 z), (1 + 2)? and , we have

1+a? A B C
= + +=.
z(l+z)?2 1+z2 (1+4+z)?2 =z

Multiplying by 2(1 + x)? gives the identity
142> =Az(1+x)+ Bz +C(1+)°

SO
14+2°=(A+C)2° + (A+ B+20)z + C.

Since this equation holds for all z, the constant terms on both sides must be equal. Similarly, the coefficient of = and x>
on both sides must be equal. So

C=1
A+B+2C =0
A+C=1.

Solving these equations gives A = 0, B = —2 and C' = 1. The integral becomes

14 2° 1 1 2
Tt gp=—2 | ———d Sdr = —— +1 C.
/(1+x)2xdx /(1+:;1:)2 m+/x “ 1+m+ nlel+

Completing the square, we get
P42 +2=(x+1)°+1.

We use the substitution z + 1 = tant, so do = (1/ cos® t)dt. Since tan®t + 1 = 1/ cos® t, the integral becomes

1 1 1
TN 1 = — ———dt = = — 1 i
/ (x+1)2+ ldx / tan?t+1 cos? tdt /dt t+C =arctan(z +1) +C



SOLUTIONS to Review Problems for Chapter Seven

129. Completing the square in the denominator gives

dx _ dx
2244z +5 | (z+2)2+1°

dé.

We make the substitution tan § = x + 2. Then dz = —2

/ dx _ / dé
(x+2)2+1 cos? 0(tan? 0 + 1)
_ / do
- cos? 0(% +1)

_ do
B sin® 0 + cos2 6

:/d9:9+6’

But since tan § = = + 2, § = arctan(z + 2), and so § + C = arctan(z + 2) + C.

130. We use the trigonometric substitution bx = asin 6. Then dz = 7 cos ) df, and we have

1

/;d:vZ/—‘ECOSOdQZ/;'gCOSQde
v/ a? — (bx)? a? — (asinf)2 b ay/1—sin?9 b

1 cos 0 1 1 1 bx
= - dd=~ [ 1d0 = =0 == in ([ — .
b cos2 0 b/ b +C barcsm(a>+0

131. Using the substitution w = sin x, we get dw = cos xdx, so we have

Ccos T dw
3. dx = 3 .
sin” x + sinx w® +w

1 1 1 w

But

w3 +w  wwr+l) w w41’

cosx 1 w
. 3 N dw: (_ - ) _> du)
sin® x + sinx w  w?+1

:ln|w|—%ln‘w2+1|+0

N¢J

1
= lIn|sinz| — 51n|sin2x+1| +C.

132. Using the substitution w = e®, we get dw = e”dx, so we have
e’ dw
dx = .
/ 2w — 1" / w? —1

I 1 71( 11 )
w2—1 (w—Dw+1) 2\w—-1 w+1/’

e’ 1 1 1
/621—1dm_/§(w—1_w+1) dw

(Injw—-1 —-Injw+1))+C

But

SO

(In|e® = 1] —Inle” + 1]) + C.

N = N =

507
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133. / tgf? should converge, since / j—j converges forn > 1.
1

We calculate its value.

[eS) b b
/ & - lim/ EY2 = im —2t7? = him (1- =) = 1.
4 t / b—oo 4 b—oo 4 b— oo \/E

134. / 9 ||+ C. (Substitute w = Inz, dw — L dz).

zlnz
oo b
/ dv_ _ lim/ dv_ _ lim In|Inz|
1o Tz  b—c [l xlnT b0

Thus
As b — 00, In(Inb) — oo, so this diverges.

b
= blim In(lnb) — In(In 10).

10

—w

135. To find / we” ¥ dw, integrate by parts, with u = w and v’ = e~™. Thenv’ = 1 and v = —e
Then
/we_w dw = —we™ " + / e dw=—-we " —e " +C.
Thus
b
=1.

oo b
/ we” ¥ dw = lim we Y dw = lim (—we™ " —e™ ")
0 0

b— o0 b— o0

0

136. The trouble spot is at z = 0, so we write

1 0 1
/ %dx:/ %der/ %dm.
T T o T

However, both these integrals diverge. For example,
. ( 1 1)
= lm (-—-—<).
. a—0f 3a3 3

1 1 -3
1 1
/ — dr = lim — dr = lim T
z
0
Since this limit does not exist, —; dx diverges and so the original integral diverges.
T

a—0t J, T4 a—0+ 3

137. Since the value of tan 6 is between —1 and 1 on the interval —7w/4 < 6 < x/4, our integral is not improper and so
converges. Moreover, since tan 6 is an odd function, we have

I 0 I
/ tan 6 df = / tan0d0+/ tan 6 do
- - 0

jus
4

INE

™

0 Y
7/ tan(—0) d0+/ tan 6 do
- 0

st
4
jus jus
4

4
tan9d9+/ tan 6 df = 0.
0

138. Itis easy to see that this integral converges:

1 1 <1 <1 1
— d —d —dz= =.
4_~_,22<'227 and so /2 112 z</2 o) z 2

We can also find its exact value.

0o 1 b

/2 mdz:hff;/ i
t ——1 t 1)
rcan2 28.1‘03,11

lim | = arctan —
— OO
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s 1
Note that § < 3.

139. We find the exact value:

| > 1
—dz= | ——— 4
/w 247 /m t+2)(z—2)"

b 1
= 1l R
oo o G+2)(z—2)
b

= lim i(ln|z72| “n|z42))

10
- iblim [(In]b—2/—ln|b+2|) — (In8 — In12)]
1 .. b—2 3
= 3 [(mgg) )
1 In3/2
= Z(lnl+ln3/2) =—

15 b
S . .. d . . d
140. Substituting w = t + 5, we see that our integral is just / \/—11 This will converge, since / —1;) converges for
0 w o W

0 < p < 1. We find its exact value:

15

=2v15.

15 15
/ d_w = lim d_w = lim Qw%
0

w a—0t a w a—0T+

141. Since sin ¢ < ¢ for ¢ > 0,

T 1
/Osin¢d¢>/0 gdcfh

The integral on the right diverges, so the integral on the left must also. Alternatively, we use IV-20 in the integral table to

get
31 3
do = i d
/0 sin ¢ ¢ bir&/b sin ¢ ¢

s
2

.1 cosp — 1

= lim —In|———
b0+ 2 cosp+ 1 ,
1 . cosb—1
=—— lim In|———|.
b—0+ cosb+ 1

Asb— 0%, cosb—1— 0andcosb+ 1 — 2,50 In |2 ZI_H — —o0. Thus the integral diverges.
142. Let ¢ = 20. Then d¢ = 2 df, and

/4 /2 /2 .
_ 1 _ lsmqb
/O tan 20 df = /0 3 tan ¢ dp = 2 p do

0 cos
b b
= lim / lsing dp = lim 1 In|cos || .
b—(x/2)= Jo 2cC080 bo(n/2)m 2 0

Asb — /2, cos¢ — 0, s0 In|cos §| — —oo. Thus the integral diverges.
One could also see this by noting that cosz ~ 7/2 — x and sinz ~ 1 for z close to 7/2: therefore, tanx ~
1/(% — =), the integral of which diverges.

143. The integrand L i lasz— 00, so there’s no way L dzcan converge.
z+1 , z+1
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144. This function is difficult to integrate, so instead we try to compare it with some other function. Since 33 +f
in? . .
that [°° 8222 g9 > 0. Also, since sin? 6 < 1,

0 6241
” sin®f do < dea— lim arctan b T
o 024+1 7~ J 2+17 e . 2

sin2 . .
Thus f OOC e +f df converges, and its value is between 0 and 7.

145. / tan® 0d0 = tan @ — 6 + C, by formula IV-23. The integrand blows up at 6§ = 5,80
0

™

s 5 T
/ tan® 0df = / tan® 0d6 + / tan® 0d0 = blirr}r [tan® — 6]) + lim [tan6 — 0]7
0 0 z -z

a— X

2 2

which is undefined.
146. Since 0 < sinx < 1for 0 < x < 1, we have

3
2

(sinz)? < (sinz)
SO L > !
(sin x)% (sinz)
or (sin x)_% > (sinz) ™!

1

1

sinx tanx
a

1
Thus/ (sinz)”'de = lim In , which is infinite.
0

a—0

Hence, fol (sinz)™ 3 da is infinite.

Problems

> 0, we see

147. Since the definition of f is differenton 0 < ¢ < 1 thanitison 1 < ¢ < 2, break the definite integral at t = 1.

/f(t)dt:/ fydt+ [ f(t)adt

:/O t2dt+/1 (2—t)dt

3|1 2\ |?
e +(2t_g)
30 1

1/3+1/2=5/6~ 0.833

148. (a) (i) Multiplying out gives

3
/(w2+10x+25)dx— %+5x2+25x+0.

(i1) Substituting w = x + 5, so dw = dx, gives

3 3
/(m+5)2dx:/w2dw:%+02@+0.

(b) The results of the two calculations are not the same since

(z+5)3 _2® 152°  Thx 125
5 O3ttt

+C.

However they differ only by a constant, 125/3, as guaranteed by the Fundamental Theorem of Calculus.
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149. (a) Since h(z) is even, we know that fol h(z)dz = fi)l h(z) dz. Since fjl h(z)dz = ffl h(z)dz + fol h(z)dz, we

see that fj1 h(z)dz =2 fol h(z)dz = 7. Thus fol h(z)dz = 3.5
(b) If w = z + 3, then dw = dz. When z = —4, w = —1; when z = —2, w = 1. Thus,

/25h(z+3)dt_5/1 h(w) (dw) = 5-7 = 35.

4 -1

150.

&[5
-
w
3

sl

As is evident from the accompanying figure of the graphs of y = sinz and y = cosx, the crossings occur at

x =7, %’T, %’r, ..., and the regions bounded by any two consecutive crossings have the same area. So picking two

consecutive crossings, we get an area of

57
4
Area = / (sinz — cosz) dx
ﬂ
1

= 2v/2.

(Note that we integrated sin z — cos z here because for 7 < x < %", sinx > cosx.)

151. The point of intersection of the two curves y = =2 and y = 6 — x is at (2,4). The average height of the shaded area is the
average value of the difference between the functions:

2 o
ﬁ/o((fi_m)_ﬁ)dx:(%_f_f) :%.

152. The average width of the shaded area in the figure below is the average value of the horizontal distance between the two
functions. If we call this horizontal distance h(y), then the average width is

We could compute this integral if we wanted to, but we don’t need to. We can simply note that the integral (without
the é term) is just the area of the shaded region; similarly, the integral in Problem 151 is also just the area of the shaded
region. So they are the same. Now we know that our average width is just % as much as the average height, since we
divide by 6 instead of 2. So the answer is %

153. (a) i. O i. 2 iii. 3
(b) Average value of f(t) < Average value of k() < Average value of g(¢)
We can look at the three functions in the range —5 < z < 3™ since they all have periods of 27 (| cost|
and (cos t)? also have a period of , but that does not hurt our calculation). It is clear from the graphs of the three
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functions below that the average value for cost is 0 (since the area above the x-axis is equal to the area below it),
while the average values for the other two are positive (since they are everywhere positive, except where they are 0).

|
wla 7]
[NIE]
<
k,\,|
~
‘ —
[SIE]
SRR
:‘ -
0o
N
~

It is also fairly clear from the graphs that the average value of g(¢) is greater than the average value of k(t); it is
also possible to see this algebraically, since

(cost)® = |cost|* < |cost]
because | cost| < 1 (and both of these <’s are <’s at all the points where the functions are not 0 or 1).

154. This calculation cannot be correct because the integrand is positive everywhere, yet the value given for the integral is
negative.

The calculation is incorrect because the integral is improper but has not been treated as such. The integral is improper
because the integrand 1/2? is undefined at 2 = 0. To determine whether the integral converges we split the integral into

two improper integrals:
! ’1 1
—2 T 2 Z o ¥

To decide whether the second integral converges, we compute

2 2
%d;c = lim %dx = lim (,1 + 1) .
a

0 xT a—0T a T a—0t 2

The limit does not exist, and | 02 (1/2%) da diverges, so the original the integral | _22 1/x? d diverges.
155. (a) We have
e’ e " e’ +e’”

(b) We have
e’ e * et —e " z a
e -Fe) = [ e [ Smas [ S el 1o,
by using the substitution w = e¢” + e~ * in the final integral.
(c) We have
E(z)+ F(z) =z+C,
E(x) — F(z) =In ‘ex + e_m’ + Cs.
Adding and subtracting we find

1 _
E(x) :§+§ln|ez+e J”| +C,
where the arbitrary constant C' = (C1 + C2)/2, and
x 1 T —x
F(x):§f§In|e +e |+C,

where C' = (C1 — C3)/2.

156. Since f(x) is decreasing on [a, b], the left-hand Riemann sums are all overestimates and the right-hand sums are all
underestimates. Because increasing the number of subintervals generally brings an approximation closer to the actual
value, LEFT(10) is closer to the actual value (i.e., smaller, since the left sums are overestimates) than LEFT(5), and
analogously for RIGHT(10) and RIGHT(5). Since the graph of f(x) is concave down, a secant line lies below the curve
and a tangent line lies above the curve. Therefore, TRAP is an underestimate and MID is an overestimate. Putting these
observations together, we have

RIGHT(5) < RIGHT(10) < TRAP(10) < Exact value < MID(10) < LEFT(10) < LEFT(5).
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157. Use integration by parts, with u = z and dv = ze~™" . Then v = —(1/2)6_’”2, and

So
b [eS)
1‘2€7z2d$:0+l eizzdle»ﬁ:ﬁ.
. 2 /| 2 2 T4

158. We complete the square in the exponent so that we can make a substitution:
1 * te —x2/2
m(t) = — e’e dx

W-0=/

_ 1 /oo (@2 —2t2)/2 g
Vo J_ o

_ 1 /Oo o (@2 =2tare?)—t2)/2 5

V2 J_ o

1 C @2 422
= — e e dx
ous /_oo

2
= e/ e_(m_t)z/z dx
Vo J_ o
Substitute w = x — t, then dw = dx and w = oo when z = oo, and w = —oo when x = —o0. Thus
et2/2 t2/2

—w?/2 e
= e dw = - V2
Vo J_ o V2T

m(t) = e/,

m(t)

159. (a) We calculate the integral using partial fractions with denominators P and L — P:
k. _A, B
P(L-P) P L-P
k= A(L - P)+ BP
k=(B—- AP+ AL.

Thus,
B—-—A=0
AL =k,

so A = B = k/L, and the time is given by

Lz pap
T:/ _kdP__
L PL—P)

L/2

L/2 1 1 k
/L (F*m) dP = 7(In|P| ~In|L - P]) L

(o (5) - (§) - (5) - ()

513
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(b) A similar calculation gives the following expression for the time:

Py
7= X mp|—mL- p)) K
L Py

= E(ln|P2‘ —ln\L—P2| —ln|P1\ +ln\L—P1|).

If P, > L,then L — P, — 0,s0ln P» — In L, and In(L — P») — —oc. Thus the time tends to infinity.

160. If I(t) is average per capita income ¢ years after 1987, then I'(t) = r(t).
(a) Since t = 8 in 1995, by the Fundamental Theorem,

I(8) — I(0) = /Sr(t) dt = /8 480(1.024)" dt

= 4228
0

480(1.024)"
In(1.024)

so I(8) = 26,000 + 4228 = 30,228.
(b)

](t)—I(O)—/tr(t)dt—/t480(1.024)tdt

t

~480(1.024)°

© In(1.024)
480 ¢

~ In(1.024) ((1024)" ~1)

= 20,239 ((1.024)" — 1)

0

Thus, since I(0) = 26,000,

I(t) = 26,000 + 20,239(1.024° — 1) = 20,239(1.024) + 5761.

161. (a) Since the rate is given by (¢) = 2te™ ' ml/sec, by the Fundamental Theorem of Calculus, the total quantity is given
by the definite integral:

e} b
Total quantity ~ / 2te™ ' dt = 2 lim / te” %" dt.

0 b=o0 Jo
Integration by parts with u = ¢, v’ = e~ 2" gives

. . t _ 1 b
Total quantity ~ 2 lim <f—e R Qt)
b—oo

2 1 o
- 1 b 1 7217)7 1
_21,15‘30(4 (2+4>6 =2-7=05ml

(b) At the end of 5 seconds,

5
Quantity received = / 2te 2" dt ~ 0.49975 ml.
0

Since 0.49975/0.5 = 0.9995 = 99.95%, the patient has received 99.95% of the dose in the first 5 seconds.
162. The rate at which petroleum is being used ¢ years after 1990 is given by

r(t)y=14- 1020(1.02)tj0u1es/year.

Between 1990 and M years later

(1.02)t |

In(1.02) |,

M
Total quantity of petroleum used = / 1.4-10*°(1.02)" dt = 1.4-10*
0

1.4-10% .
= Tnroz (102" — 1) joutes.
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Setting the total quantity used equal to 10?2 gives

1.4-10% M 22
— ((1.02)" —1) =1
n(Tog) (102" ~1) =10
(1.02)M — M +1=241
1.4
In(2.41)
M=-—"—""""x~14 S.
Im(Loz) 4o years
So we will run out of petroleum in 2035.
We have

163. (a)

(b)

©

18 18
S = / (30 — 10)dt = 20/ dt = 20(18 — 0) = 360.
0 0

The units of S are degree-days, because the integrand f(¢) — 10 has units of °C, and dt has units of days.

In Figure 7.32, f(t) and Hp, are represented by the horizontal lines at H = 30 and H = 10, and T is represented
by a vertical line at ¢ = 18. The value of S, given by the definite integral, is represented by the area of the rectangle
bounded by the vertical lines ¢ = 0 (the H-axis) and ¢ = 18, and the horizontal lines H = 10 and H = 30.

The temperature cycles from a high of 30°C to a low of 10°C once every 6 days. During the 18-day period the
temperature completes 3 complete cycles. The area between this curve and the horizontal line H = H;, = 10 gives
the value of the definite integral. See Figure 7.33. In order to get the same area as before, (namely S = 360), we see
that T must be larger than 7" = 18. Thus we want 75 to satisfy:

T2 T2 27t
s :/ (g(t) — 10)dt :/ (10cos (7) + 10) dt = 360.
0 0

Notice that, by symmetry, the area on the interval 0 < ¢ < 18 is half the area shown in Figure 7.32. Thus, we expect
that T = 2T = 36. We can check this by calculation, using a substitution to evaluate the integral:

36
S :/ (10(:05 (ﬁ) + 10) dt = (10- 5 in (@> IOt)
o 6 2 6

Thus, if 7> = 36, the integral evaluates to S = 360, as required. Thus, 36 days are required for development for with
these temperatures.

T>
= 360.

0

H,°C t=T=18 y H=g(t) t="T,
30 H=f(t)=30 30
S = Area = 360 20 A/S\AA
10 H = Hpin = 10 10 H =
) ¢, days . T
18 18 36
Figure 7.32 Figure 7.33
CAS Challenge Problems
164. (a) A CAS gives
2
/ Inz de — (Inz)
T 2
(Inx)? d (Inx)?
. T 3

Hmin
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(b) Looking at the answers to part (a),

(Inz)®  (Inz)"*!
/ . dx = o +C.

(¢) Letw = Inz. Then dw = (1/x)dz, and

n n+1 nt1
/—(lnx) dx:/w"dw:: +C:(lnx) +C.

T

165. (a) A CAS gives
/lnxdx =—z+zlnz

/ (Inz)?dz = 2¢ — 2zInz 4+ z(Inz)?

/ (Inz)®dz = —6z + 6zInz — 3z(Inz)® + z(Inz)’

/ (Inz)*der = 24z — 24z Inz + 12z(In z)* — 4z(Inz)® + z(Inz)*

(b) In each of the cases in part (a), the expression for the integral f (Inz)™ dz has two parts. The first part is simply a

multiple of the expression for [ (Inz)" ™" da. For example, [(Inz)? dx starts out with 2z —2zInz = —2 [ Inz dz.
Similarly, [(Inz)? dx starts out with —6z + 6z Inz — 3(Inz)* = =3 [(Inz)® dz, and [(Inz)* dz starts out with

—4 [(In x)® dz. The remaining part of each antiderivative is a single term: it’s z(Inx)? in the case n = 2, it’s
z(Inx)? forn = 3, and it’s 2(In )* for n = 4. The general pattern is

/(ln )" dx = —n /(m )" de + z(Inz)"™.

To check this formula, we use integration by parts. Let uw = (Inz)™ so v’ = n(lnz)" /z and v’ = 1sov = z.
Then
1 n—1
/(lnx)" dz = z(lnz)" — /n% ~xdx
x

/(m )" dz = z(lnz)" — n/(lnm)"*1 dz.

This is the result we obtained before.
Alternatively, we can check our result by differentiation:

c(lix (n/(ln )" ' dz + z(In x)") = —n(lnz)"" ' + j—x(x(ln x)")

1

= —n(lnz)""" + (Inz)" + 2 n(nz)""

8=

= —n(lnz)""" + (Inz)" +n(nz)""" = (Inz)".
Therefore,

/(ln )" dx = —n /(m )" de + z(Inz)"™.

166. (a) A possible answer from the CAS is

/Sin3 edp = =2 cos(x)lg— cos(3 x)

(b) Differentiating

d (=9 cos(z) +cos(3z)\ _ 9sin(z) —3sin(3z)  3sinz —sin(3x)
dx 12 - 12 B 4 ’
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(c) Using the identities, we get

sin(3x) = sin(z 4 2z) = sin cos 2z + cos z sin 2z
= sinz(1 — 2sin® ) + cos z(2sin z cos )
= sinz — 2sin® z + 2sinz(1 — sin” )

= 3sinz — 4sin® z.

Thus,
3sinz — sin(3z) = 3sinz — (3sinz — 4sin’ z) = 4sin® ,
s0 ) )
3sinz — sin(3z) — sin® s
4
167. (a) A possible answer is
4
/ sin z cos x cos(2z) dx = — 0051(6 z)

Different systems may give the answer in a different form.

(b)
d cos(4x) \  sin(4x)
dx (_ 16 ) T4

(¢) Using the double angle formula sin 2A = 2sin A cos A twice, we get

sin(4z) _ 2sin(2z)cos(2z) 2 - 2sinz cosx cos(2x)
4 4 B 4

= sinz cos x cos(2x).

168. (a) A possible answer from the CAS is

zt o T 3
m dfl;' =x + m — 5 arctan(z).

Different systems may give the answer in different form.
(b) Differentiating gives

4 erLféarctan(:r) =1- 2’ -
dx 2(1+a2%) 2 T (1422 142

(c) Putting the result of part (b) over a common denominator, we get

- 22 1 _(1+x2)2—x2—(1+1:2)
(1+22)> 1+a? (14 22)?
1+22% +a* — 22 — 1 — 22 zt
- 1+ 22)? T (a2

CHECK YOUR UNDERSTANDING

1. False. The subdivision size Az = (1/10)(6 — 2) = 4/10.
2. True, since Az = (6 —2)/n =4/n.

3. False. If f is decreasing, then on each subinterval the value of f(x) at the left endpoint is larger than the value at the right
endpoint, which means that LEFT(n) >RIGHT(n) for any n.

4. False. As n approaches infinity, LEFT(n) approaches the value of the integral f 26 f(z)dz, which is generally not 0.
5. True. We have

LEFT(n) — RIGHT(n) = (f (o) + f(x1) + - + f(zn-1))Ax — (f(21) + f(22) + -+ + f(2n)) Az
On the right side of the equation, all terms cancel except the first and last, so:
LEFT(n) — RIGHT(n) = (f(z0) — f(zn))Az = (f(2) — f(6))Az.

This is also discussed in Section 5.1.
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True. This follows from the fact that Az = (6 — 2)/n = 4/n.

7. False. Since LEFT(n) — RIGHT(n) = (f(2) — f(6))Az, we have LEFT(n) = RIGHT(n) for any function such that

10.

11.

12.
13.

14.

15.

16.

17.

18.

f(2) = £(6). Such a function, for example f(z) = (z — 4)?, need not be a constant function.

False. Although TRAP(n) is usually a better estimate, it is not always better. If f(2) = f(6), then LEFT(n) = RIGHT(n)
and hence TRAP(n) = LEFT(n) = RIGHT(n), so in this case TRAP(n) is no better.

False. This is true if f is an increasing function or if f is a decreasing function, but it is not true in general. For example,
suppose that f(2) = f(6). Then LEFT(n) = RIGHT(n) for all n, which means that if | 26 f(x)dx lies between LEFT(n)
and RIGHT(n), then it must equal LEFT(n), which is not always the case.

For example, if f(x) = (x — 4)% and n = 1, then f(2) = £(6) = 4, so

LEFT(1) = RIGHT(1) = 4 - (6 — 2) = 16.

6 316 3 3
gy E=AT 2 27) 16
/2(11 4)%dx = 2*3 ( 3)3.

3
In this example, since LEFT(n) = RIGHT(n), we have TRAP(n) = LEFT(n). However trapezoids overestimate the
area, since the graph of f is concave up. This is also discussed in Section 7.5.

True. Let w = f(x), so dw = f'(x) dx, then

However

/f’(x)cos(f(a:))dx:/Coswdw:sinw—i—C:sin(f(x))+C’.

False. Differentiating gives
d 1 /
2 - .
@)= 505 1 @),

s0, in general

1

True. Let w = 5 — ¢2, then dw = —2t dt.

True. Rewrite sin” § = sin@sin® 0 = sin (1 — cos® #)*. Expanding, substituting w = cosf,dw = — sin 6 df, and
integrating gives a polynomial in w, which is a polynomial in cos 6.

False. Completing the square gives

dz dx
/m —/m —arctan(ﬂ:-i—Q)-i—C.

False. Factoring gives

dx dx 1 1 1 1
_ 1 - dr = ~(In|z — 1] -1 :
/x2—|—4az—5 /(a:+5)(ac—1) 6/(az—1 x+5) v =glnle—1l—Infe+5)+C

True. Let w = Inz, dw = =~ ' dx. Then

3 4

-/xfl((lna:)2 + (1nx)3) dx = /(w2 —|—w3) dw = % + wT +C = (lngx) + (lnf) + C.

True. Let u = ¢,v" = sin(5 — t), so v’ = 1,v = cos(5 — ¢). Then the integral fl - cos(5 — t) dt can be done by
guess-and-check or by substituting w = 5 — ¢.

True. Since

b a b
lim / flx)dx = / f(x)dx + lim / f(z)dz,
b—oo 0 0 b—oo a

the limit on the left side of the equation is finite exactly when the limit on the right side is finite. Thus, if f Ooo f(z)dx
converges, then so does f:o f(z)dz.



19.

20.

21.

22,

23.

24,

25.

26.

27.
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diverges.
True. Suppose that f has period p. Then fopf(av)dm, f]:p f(x)dz, f;p f(z)dz,...are all equal. If we let k =
fop f(x)dzx, then fonp f(x)dx = nk, for any positive integer n. Since f(x) is positive, so is k. Thus as n approaches

00, the value of fonp f(z)dx = nk approaches co. That means that limp_. o | Ob f(z)dz is not finite; that is, the integral
diverges.

False. Let f(x) = 1/(z + 1). Then

/0 ac-l—ldx: blin;oln|x+l|‘o :blingoln(b+1),

but limp—, o In(b + 1) does not exist.
False. Let f(x) = z + 1. Then

/0 I_'_lda::blililoln|m+1|‘0_bgrgoln(b+l),

but limp—. o In(b + 1) does not exist.
True. By properties of integrals and limits,
b

b b
i [ (@) +aanie = jim [ f@ao s jim [ gt

b— oo 0

Since the two limits on the right side of the equation are finite, the limit on the left side is also finite, that is, f Ooo (f(z) + g(x))dx

converges.
False. For example, let f(z) = z and g(z) = —=z. Then f(z) + g(z) = 0, so fooo(f(a:) + g(z)) dz converges, even
though fooo f(z)dz and fooo g(x) dz diverge.

True. By properties of integrals and limits,

b b
lim / af(z)dxr =a lim f(x)dx.
b—oo o b—oo 0

Thus, the limit on the left of the equation is finite exactly when the limit on the right side of the equation is finite. Thus
fooc af(z) dx converges if fooo f(x) dx converges.

True. Make the substitution w = ax. Then dw = a dx, so

/0 " faydo = L / " fw) du,

where ¢ = ab. As b approaches infinity, so does c, since a is constant. Thus the limit of the left side of the equation as b
approaches infinity is finite exactly when the limit of the right side of the equation as ¢ approaches infinity is finite. That
is, f OOO f(az) dx converges exactly when f Ooo f(z) dx converges.

True. Make the substitution w = a + x, so dw = dz. Then w = a when x = 0, and w = a + b when x = b, so

/Obf(a+w)dar=/amf(w)dw:/:f(w)dw

where ¢ = b+ a. As b approaches infinity, so does ¢, since a is constant. Thus the limit of the left side of the equation as b
approaches infinity is finite exactly when the limit of the right side of the equation as ¢ approaches infinity is finite. Since
fooc f(x) dx converges, we know that lim.—, o foc f(w) dw is finite, s0 lime—.o0 f: f(w) dw is finite for any positive a.

Thus, fooo f(a + z) dx converges.
b b b
/ (a+f(:c))dx:/ ad$+/ f(x)dx.
0 0 0

False. We have

Since f Ooo f(z) dx converges, the second integral on the right side of the equation has a finite limit as b approaches infinity.
But the first integral on the right side has an infinite limit as b approaches infinity, since a # 0. Thus the right side all
together has an infinite limit, which means that [ OOO (a + f(x)) dx diverges.
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PROJECTS FOR CHAPTER SEVEN

1. (a) Ife! > 1+t¢, then

1+/ et dt

1
1+ dt—1+x+2x

(=)

[}

We can keep going with this idea. Since e? > 1+t + t2

$:1+/ et dt
0

§ 1 1 1
21+/ (1+t+—t2)dt:1+x+§x2+6x3.
0

‘We notice that each term in our summation is of the form . Furthermore, we see that if we have a sum
1+z+ % 5 + -4 2 or " such that

2 "

6$21+x+%+~-+—,

n!
e“”:l—i—/ et dt
0

T t2 Tk
21+/ (1+t+—+--~+—'>dt
0 2 n.

.’L’Q LU3 J}n-‘rl
-1 o o4 )
Tyt T T

then

Thus we can continue this process as far as we want, so

1
e$21+x+§x2++—xn: 'foranyn

=
<.

(In fact, it turns out that if you let n get larger and larger and keep adding up terms, your values approach
exactly e*.)

T T
(b) We note that sinx = / costdtand cosx =1 — / sint dt. Thus, since cost < 1, we have
0 0

T
sinmg/ 1dt = x.
0

Now using sint < t, we have
xT
1
cosxﬁl—/ tdt=1— =22
0 2

* 1 1
sinacg/ (1——152) dt = x — =25,
0 2 6

<1 /m t 1t3 dt =1 L +
Ccos T — - = =1--2° —x
= 0 6 2 24

Then we just keep going:

Therefore



2. (a) ()

(i) Si(x) neither always decreases nor always increases, since its derivative, 2~
and negative values for > 0. For positive x, Si(z) is the area under the curve

(iii)

(b)

PROJECTS FOR CHAPTER SEVEN 521

1
sin(t)
t
_/r/\\/ \//\1\ t
=37 —27 =T ™ 2T 3
14+

! sin x, has both positive

sint and above the

t-axis from ¢t = 0 to £ = x, minus the area above the curve and below the ¢-axis. Looking at the graph
above, one can see that this difference of areas is going to always be positive.
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It seems that the limit exists: the curve drawn in the slope field,
¥ sint
y = Si(z) = / — dt,
o t

seems to approach some limiting height as x — oo. (In fact, the limiting height is 7 /2.)

(i) ool

30 =~

20 -

(i

50

40

30

20

10

B F(x):/ = dt
0
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(© @

(i)

The most obvious feature of the graph of y = sin(z?) is its symmetry about the y-axis. This means
the function g(x) = sin(z?) is an even function, i.e. for all z, we have g(z) = g(—=z). Since
sin(x?) is even, its antiderivative F' must be odd, that is F'(—x) = —F(—x). To see this, set F'(t) =
[ sin(a?) da, then

—t 0 t
F(-t)= / sin(z?) dx = —/ sin(z?) dx = —/ sin(z?) dz = —F(t),
0 —t 0
since the area from —¢ to 0 is the same as the area from 0 to ¢. Thus F'(t) = —F'(—t) and F'is odd.
The second obvious feature of the graph of y = sin(z?) is that it oscillates between —1 and 1 with
a “period” which goes to zero as |z| increases. This implies that F’(z) alternates between intervals
where it is positive or negative, and increasing or decreasing, with frequency growing arbitrarily
large as |z| increases. Thus F'(x) itself similarly alternates between intervals where it is increasing or
decreasing, and concave up or concave down.
Finally, since y = sin(z?) = F’(z) passes through (0,0), and F(0) = 0, F is tangent to the
x-axis at the origin.

Figure 7.34

F never crosses the x-axis in the region z > 0, and lim F'(x) exists. One way to see these facts

r— 00

is to note that by the Construction Theorem,

So F(z) is just the area between the curve y = sin(¢?) and the t-axis for 0 < ¢ < x (with area
above the t-axis counting positively, and area below the ¢-axis counting negatively). Now looking at
the graph of curve, we see that this area will include alternating pieces above and below the ¢-axis.
We can also see that the area of these pieces is approaching 0 as we go further out. So we add a piece,
take a piece away, add another piece, take another piece away, and so on.

It turns out that this means that the sums of the pieces converge. To see this, think of walking
from point A to point B. If you walk almost to B, then go a smaller distance toward A, then a yet
smaller distance back toward B, and so on, you will eventually approach some point between A and
B. So we can see that len;O F(z) exists. Also, since we always subtract a smaller piece than we just

added, and the first piece is added instead of subtracted, we see that we never get a negative sum; thus
F'(z) is never negative in the region x > 0, so F'(x) never crosses the z-axis there.



