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CHAPTER EIGHT

Solutions for Section 8.1

Exercises

1. Each strip is a rectangle of length 3 and width ∆x, so

Area of strip = 3∆x, so

Area of region =

∫ 5

0

3 dx = 3x

∣∣∣∣
5

0

= 15.

Check: This area can also be computed using Length × Width = 5 · 3 = 15.

2. Using similar triangles, the height, y, of the strip is given by

y

3
=
x

6
so y =

x

2
.

Thus,
Area of strip ≈ y∆x =

x

2
∆x,

so

Area of region =

∫ 6

0

x

2
dx =

x2

4

∣∣∣∣
6

0

= 9.

Check: This area can also be computed using the formula 1
2

Base · Height = 1
2
· 6 · 3 = 9.

3. By similar triangles, if w is the length of the strip at height h, we have

w

3
=

5− h
5

so w = 3
(

1− h

5

)
.

Thus,

Area of strip ≈ w∆h = 3
(

1− h

5

)
∆h.

Area of region =

∫ 5

0

3
(

1− h

5

)
dh =

(
3h− 3h2

10

)∣∣∣∣
5

0

=
15

2
.

Check: This area can also be computed using the formula 1
2

Base · Height = 1
2
· 3 · 5 = 15

2
.

4. Suppose the length of the strip shown is w. Then the Pythagorean theorem gives

h2 +
(
w

2

)2

= 32 so w = 2
√

32 − h2.

Thus

Area of strip ≈ w∆h = 2
√

32 − h2∆h,

Area of region =

∫ 3

−3

2
√

32 − h2 dh.

Using VI-30 in the Table of Integrals, we have

Area =
(
h
√

32 − h2 + 32 arcsin
(
h

3

))∣∣∣
3

−3
= 9(arcsin 1− arcsin(−1)) = 9π.

Check: This area can also be computed using the formula πr2 = 9π.
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5. The strip has width ∆y, so the variable of integration is y. The length of the strip is x. Since x2 + y2 = 10 and the region
is in the first quadrant, solving for x gives x =

√
10− y2. Thus

Area of strip ≈ x∆y =
√

10− y2 dy.

The region stretches from y = 0 to y =
√

10, so

Area of region =

∫ √10

0

√
10− y2 dy.

Evaluating using VI-30 from the Table of Integrals, we have

Area =
1

2

(
y
√

10− y2 + 10 arcsin

(
y√
10

))∣∣∣∣

√
10

0

= 5(arcsin 1− arcsin 0) =
5

2
π.

Check: This area can also be computed using the formula 1
4
πr2 = 1

4
π(
√

10)2 = 5
2
π.

6. The strip has width ∆y, so the variable of integration is y. The length of the strip is 2x for x ≥ 0. For positive x, we have
x = y. Thus,

Area of strip ≈ 2x∆y = 2y∆y.

Since the region extends from y = 0 to y = 4,

Area of region =

∫ 4

0

2y dy = y2

∣∣∣∣
4

0

= 16.

Check: The area of the region can be computed by 1
2

Base · Height = 1
2
· 8 · 4 = 16.

7. The width of the strip is ∆y, so the variable of integration is y. Since the graphs are x = y and x = y2, the length of the
strip is y − y2, and

Area of strip ≈ (y − y2)∆y.

The curves cross at the points (0, 0) and (1, 1), so

Area of region =

∫ 1

0

(y − y2) dy =
y2

2
− y3

3

∣∣∣∣
1

0

=
1

6
.

8. The width of the strip is ∆x, so the variable of integration is x. The line has equation y = 6− 3x. The length of the strip
is 6− 3x− (x2 − 4) = 10− 3x− x2. (Since x2 − 4 is negative where the graph is below the x-axis, subtracting x2 − 4
there adds the length below the x-axis.) Thus

Area of strip ≈ (10− 3x− x2)∆x.

Both graphs cross the x-axis where x = 2, so

Area of region =

∫ 2

0

(10− 3x− x2) dx = 10x− 3

2
x2 − x3

3

∣∣∣∣
2

0

=
34

3
.

9. Each slice is a circular disk with radius r = 2 cm.

Volume of disk = πr2∆x = 4π∆x cm3.

Summing over all disks, we have
Total volume ≈

∑
4π∆x cm3.

Taking a limit as ∆x→ 0, we get

Total volume = lim
∆x→0

∑
4π∆x =

∫ 9

0

4π dx cm3.

Evaluating gives

Total volume = 4πx

∣∣∣∣
9

0

= 36π cm3.

Check: The volume of the cylinder can also be calculated using the formula V = πr2h = π22 · 9 = 36π cm3.
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10. Each slice is a circular disk. Since the radius of the cone is 2 cm and the length is 6 cm, the radius is one-third of the
distance from the vertex. Thus, the radius at x is r = x/3 cm. See Figure 8.1.

Volume of slice ≈ πr2∆x =
πx2

9
∆x cm3.

Summing over all disks, we have

Total volume ≈
∑

π
x2

9
∆x cm3.

Taking a limit as ∆x→ 0, we get

Total volume = lim
∆x→0

∑
π
x2

9
∆x =

∫ 6

0

π
x2

9
dx cm3.

Evaluating, we get

Total volume =
π

9

x3

3

∣∣∣∣
6

0

=
π

9
· 63

3
= 8π cm3.

Check: The volume of the cone can also be calculated using the formula V = 1
3
πr2h = 1

3
π22 · 6 = 8π cm3.

0

6
?
x/3

6

?

2 cm

-� 6 cm

-� x
x

Figure 8.1

11. Each slice is a circular disk. From Figure 8.2, we see that the radius at height y is r = 2
5
y cm. Thus

Volume of disk ≈ πr2∆y = π
(

2

5
y
)2

∆y =
4

25
πy2∆y cm3.

Summing over all disks, we have

Total volume ≈
∑ 4π

25
y2∆y cm3.

Taking the limit as ∆y → 0, we get

Total volume = lim
∆y→0

∑ 4π

25
y2∆y =

∫ 5

0

4π

25
y2dy cm3.

Evaluating gives

Total volume =
4π

25

y3

3

∣∣∣∣
5

0

=
20

3
π cm3.

Check: The volume of the cone can also be calculated using the formula V = 1
3
πr2h = π

3
22 · 5 = 20

3
π cm3.

6

?

5 cm
-�
2
5
y

6

?

y

-� 2

Figure 8.2
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12. Each slice is a rectangular slab of length 10 m and width that decreases with height. See Figure 8.3. At height y, the length
x is given by the Pythagorean Theorem

y2 + x2 = 72.

Solving gives x =
√

72 − y2 m. Thus the width of the slab is 2x = 2
√

72 − y2 and

Volume of slab = Length · Width · Height = 10 · 2
√

72 − y2 ·∆y = 20
√

72 − y2∆y m3.

Summing over all slabs, we have
Total volume ≈

∑
20
√

72 − y2∆y m3.

Taking a limit as ∆y → 0, we get

Total volume = lim
∆y→0

∑
20
√

72 − y2∆y =

∫ 7

0

20
√

72 − y2 dy m3.

To evaluate, we use the table of integrals or the fact that
∫ 7

0

√
72 − y2 dy represents the area of a quarter circle of radius

7, so

Total volume =

∫ 7

0

20
√

72 − y2 dy = 20 · 1

4
π72 = 245π m3.

Check: the volume of a half cylinder can also be calculated using the formula V = 1
2
πr2h = 1

2
π72 · 10 = 245π m3.

y
7

x

Figure 8.3

13. Each slice is a circular disk. See Figure 8.4. The radius of the sphere is 5 mm, and the radius r at height y is given by the
Pythagorean Theorem

y2 + r2 = 52.

Solving gives r =
√

52 − y2 mm. Thus,

Volume of disk ≈ πr2∆y = π(52 − y2)∆y mm3.

Summing over all disks, we have
Total volume ≈

∑
π(52 − y2)∆y mm3.

Taking the limit as ∆y → 0, we get

Total volume = lim
∆y→0

∑
π(52 − y2)∆y =

∫ 5

0

π(52 − y2) dy mm3.

Evaluating gives

Total volume = π

(
25y − y3

3

)∣∣∣∣
5

0

=
250

3
π mm3.

Check: The volume of a hemisphere can be calculated using the formula V = 2
3
πr3 = 2

3
π53 = 250

3
π mm3.

y
5

r

Figure 8.4
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14. Each slice is a square; the side length decreases as we go up the pyramid. See Figure 8.5. Since the base of the pyramid is
equal to its vertical height, the slice at distance y from the base, or (2− y) from the top, has side (2− y). Thus

Volume of slice ≈ (2− y)2∆y m3.

Summing over all slices, we get
Total volume ≈

∑
(2− y)2∆y m3.

Total volume = lim
∆y→0

∑
(2− y)2∆y =

∫ 2

0

(2− y)2dy m3.

Evaluating, we find

Total volume =

∫ 2

0

(4− 4y + y2) dy =

(
4y − 2y2 +

y3

3

)∣∣∣∣
2

0

=
8

3
m3.

Check: The volume of the pyramid can also be calculated using the formula V = 1
3
b2h = 1

3
22 · 2 = 8

3
m3.

6

?

(2− y)

6

?

y

-� 2 m

6

?

2 m-� (2− y)

Figure 8.5

Problems

15. Triangle of base and height 1 and 3. See Figure 8.6. (Either 1 or 3 can be the base. A non-right triangle is also possible.)

6

?

3

-� 1

- �
∆x

-� x

Figure 8.6

-� 9

-�
∆x

-�x

Figure 8.7

16. Semicircle of radius r = 9. See Figure 8.7.
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17. Quarter circle of radius r =
√

15. See Figure 8.8.

√
15− h2

- �
∆h

-� h
h

y

Figure 8.8

6

?

5

-� 7

- �
∆h

-� h

Figure 8.9

18. Triangle of base and height 7 and 5. See Figure 8.9. (Either 7 or 5 can be the base. A non-right triangle is also possible.)

19. Hemisphere with radius 12. See Figure 8.10.

6
?
h

12

12

	

√
144− h2

h

Figure 8.10

12

4

x
3

x-� x

Figure 8.11

20. Cone with height 12 and radius 12/3 = 4. See Figure 8.11.

21. Cone with height 6 and radius 3. See Figure 8.12.

3

6

?

y

6

	

3− y/2

y

Figure 8.12

6

?

y

6

?

(2− y)

2

2

I
√

22 − (2− y)2

y

Figure 8.13

22. Hemisphere with radius 2. See Figure 8.13.
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23.

x

y

R

Radius = 1− y
3

Figure 8.14

Slice parallel to the base of the cone, or, equivalently, rotate
the line x = (3− y)/3 about the y–axis. (One can also slice
the other way.) See Figure 8.14. The volume V is given by

V =

∫ y=3

y=0

πx2 dy =

∫ 3

0

π
(

3− y
3

)2

dy

= π

∫ 3

0

(
1− 2y

3
+
y2

9

)
dy

= π

(
y − y2

3
+
y3

27

)∣∣∣∣
3

0

= π.

24.

x

y

R

Radius =
√
r2 − x2

We slice up the sphere in planes perpen-
dicular to the x-axis. Each slice is a cir-
cle, with radius y =

√
r2 − x2; that’s

the radius because x2 + y2 = r2 when
z = 0. Then the volume is

V ≈
∑

π(y2) ∆x =
∑

π(r2−x2) ∆x.

Therefore, as ∆x tends to zero, we get

V =

∫ x=r

x=−r
π(r2 − x2) dx

= 2

∫ x=r

x=0

π(r2 − x2) dx

= 2

(
πr2x− πx3

3

)∣∣∣∣
r

0

=
4πr3

3
.

25.

x

y

R

Radius = r(h−y)
h

This cone is what you get when you rotate the line x = r(h−
y)/h about the y–axis. So slicing perpendicular to the y–axis
yields

V =

∫ y=h

y=0

πx2 dy = π

∫ h

0

(
(h− y)r

h

)2

dy

= π
r2

h2

∫ h

0

(h2 − 2hy + y2) dy

=
πr2

h2

[
h2y − hy2 +

y3

3

] ∣∣∣∣
h

0

=
πr2h

3
.

26. (a) A vertical slice has a triangular shape and thickness ∆x. See Figure 8.15.

Volume of slice = Area of triangle ·∆x =
1

2
Base · Height ·∆x =

1

2
· 2 · 3∆x = 3∆x cm3.

Thus,

Total volume = lim
∆x→0

∑
3∆x =

∫ 4

0

3 dx = 3x

∣∣∣∣
4

0

= 12 cm3.
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6

?

3 cm

�

�x ��

∆ x
�

�

2 cm 6

?

3 cm

�

�∆ x �

�

2 cm

Figure 8.15

(b) A horizontal slice has a rectangular shape and thickness ∆h. See Figure 8.16. Using similar triangles, we see that

w

2
=

3− h
3

,

so
w =

2

3
(3− h) = 2− 2

3
h.

Thus
Volume of slice ≈ 4w∆h = 4

(
2− 2

3
h
)

∆h =
(

8− 8

3
h
)

∆h.

So,

Total volume = lim
∆h→0

∑(
8− 8

3
h
)

∆h =

∫ 3

0

(
8− 8

3
h
)
dh =

(
8h− 4h2

3

)∣∣∣∣
3

0

= 12 cm3.

6

?

3 cm

6
?

h

6?∆ h

�

�

4 cm
�

�

2 cm

6

?
∆ h �

�w

�

�

4 cm
�

�

2 cm

w

2

6

?

h

6

?

3

Figure 8.16

27. We slice the water into horizontal slices, each of which is a rectangle. See Figure 8.17.

Volume of slice ≈ 150w∆h km3.

To find w in terms of h, we use the similar triangles in Figure 8.18:

w

3
=

h

0.2
so w = 15h.

So
Volume of slice ≈ 150 · 15h∆h = 2250h∆h km3.

Summing over all slices and letting ∆h→ 0 gives

Total volume = lim
∆h→0

∑
2250h∆h =

∫ 0.2

0

2250h dh km3.
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Evaluating the integral gives

Total volume = 2250
h2

2

∣∣∣∣
0.2

0

= 45 km3.

-� 3 km

�

�

150 km

w

Figure 8.17

-� 3 km

6

?

0.2 km
w

6

?

h

6?∆h

Figure 8.18

28. To calculate the volume of material, we slice the dam horizontally. See Figure 8.19. The slices are rectangular, so

Volume of slice ≈ 1400w∆h m3.

Since w is a linear function of h, and w = 160 when h = 0, and w = 10 when h = 150, this function has slope =
(10− 160)/150 = −1. Thus

w = 160− h meters,

so
Volume of slice ≈ 1400(160− h)∆h m3.

Summing over all slices and taking the limit as ∆h→ 0 gives

Total volume = lim
∆h→0

∑
1400(160− h)∆h =

∫ 150

0

1400(160− h) dh m3.

Evaluating the integral gives

Total volume = 1400

(
160h− h2

2

)∣∣∣∣
150

0

= 1.785 · 107 m3.

-� 160 m �

�

1400 m

-�10 m

w

Figure 8.19

-� 160 m

6

?

150 m

-�10 m

6

?
∆h

6

?

h

w

Figure 8.20

Solutions for Section 8.2

Exercises

1. The volume is given by

V =

∫ 1

0

πy2dx =

∫ 1

0

πx4dx = π
x5

5

∣∣∣∣
1

0

=
π

5
.



532 Chapter Eight /SOLUTIONS

2. The volume is given by

V =

∫ 2

1

πy2 dx =

∫ 2

1

π(x+ 1)4 dx =
π(x+ 1)5

5

∣∣∣∣
2

1

=
211π

5
.

3. The volume is given by

V =

∫ 0

−2

π(4− x2)2 dx = π

∫ 0

−2

(16− 8x2 + x4) dx = π

(
16x− 8x3

3
+
x5

5

)∣∣∣∣
0

−2

=
256π

15
.

4. The volume is given by

V =

∫ 1

−1

π(
√
x+ 1)2 dx = π

∫ 1

−1

(x+ 1) dx = π

(
x2

2
+ x

)∣∣∣∣
1

−1

= 2π.

5. The volume is given by

V =

∫ 1

−1

πy2 dx =

∫ 1

−1

π(ex)2 dx =

∫ 1

−1

πe2x dx =
π

2
e2x

∣∣∣∣
1

−1

=
π

2
(e2 − e−2).

6. The volume is given by

V =

∫ π/2

0

πy2 dx =

∫ π/2

0

π cos2 x dx.

Integration by parts gives

V =
π

2
(cosx sinx+ x)

∣∣∣∣
π/2

0

=
π2

4
.

7. The volume is given by

V =

∫ 1

0

π
(

1

x+ 1

)2

dx = π

∫ 1

0

dx

(x+ 1)2
= −π(x+ 1)−1

∣∣∣∣
1

0

= π
(

1− 1

2

)
=
π

2
.

8. The volume is given by

V = π

∫ 1

0

(
√

cosh 2x)2 dx = π

∫ 1

0

cosh 2x dx =
π

2
sinh 2x

∣∣∣∣
1

0

=
π

2
sinh 2.

9. Since the graph of y = x2 is below the graph of y = x for 0 ≤ x ≤ 1, the volume is given by

V =

∫ 1

0

πx2 dx−
∫ 1

0

π(x2)2 dx = π

∫ 1

0

(x2 − x4) dx = π

(
x3

3
− x5

5

)∣∣∣∣
1

0

=
2π

15
.

10. Since the graph of y = e3x is above the graph of y = ex for 0 ≤ x ≤ 1, the volume is given by

V =

∫ 1

0

π(e3x)2 dx−
∫ 1

0

π(ex)2 dx =

∫ 1

0

π(e6x − e2x) dx = π

(
e6x

6
− e2x

2

)∣∣∣∣
1

0

= π

(
e6

6
− e2

2
+

1

3

)
.

11. Note that this function is actually x3/2 in disguise. So

L =

∫ 2

0

√
1 +

[
3

2
x

1
2

]2

dx =

∫ x=2

x=0

√
1 +

9

4
x dx

=
4

9

∫ w= 11
2

w=1

w
1
2 dw

=
8

27
w

3
2

∣∣∣∣
11
2

1

=
8

27

((
11

2

) 3
2 − 1

)
≈ 3.526,

where we set w = 1 + 9
4
x, so dx = 4

9
dw.

12. This is a one-quarter of the circumference of a circle of radius 2. That circumference is 2 · 2π = 4π, so the length is
4π
4

= π.
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13. Since f ′(x) = sinhx, the arc length is given by

L =

∫ 2

0

√
1 + sinh2 x dx =

∫ 2

0

√
cosh2 x dx =

∫ 2

0

coshx dx = sinhx

∣∣∣∣
2

0

= sinh 2.

14. The length is ∫ 2

1

√
(x′(t))2 + (y′(t))2 + (z′(t))2 dt =

∫ 2

1

√
52 + 42 + (−1)2 dt =

√
42.

This is the length of a straight line from the point (8, 5, 2) to (13, 9, 1).

15. We have

D =

∫ 1

0

√
(−et sin(et))2 + (et cos(et))2 dt

=

∫ 1

0

√
e2t dt =

∫ 1

0

et dt

= e− 1.

This is the length of the arc of a unit circle from the point (cos 1, sin 1) to (cos e, sin e)—in other words between the
angles θ = 1 and θ = e. The length of this arc is (e− 1).

16. We have

D =

∫ 2π

0

√
(−3 sin 3t)2 + (5 cos 5t)2 dt.

We cannot find this integral symbolically, but numerical methods show D ≈ 24.6.

Problems

17. (a) Slicing the region perpendicular to the x-axis gives disks of radius y. See Figure 8.21.

Volume of slice ≈ πy2∆x = π(x2 − 1)∆x.

Thus,

Total volume = lim
∆x→0

∑
π(x2 − 1)∆x =

∫ 3

2

π(x2 − 1) dx = π

(
x3

3
− x
)∣∣∣∣∣

3

2

= π
(

9− 3−
(

8

3
− 2
))

=
16π

3
.

1 2 3

6

?
y

6
∆x

x2 − y2 = 1

x

y

y

-�
∆x

Figure 8.21

(b) The arc length, L, of the curve y = f(x) is given by L =
∫ b
a

√
1 + (f ′(x))2 dx. In this problem y is an implicit

function of x. Solving for y gives y =
√
x2 − 1 as the equation of the top half of the hyperbola. Differentiating gives

dy

dx
=

1

2
(x2 − 1)−1/2(2x) =

x√
x2 − 1

.
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Thus

Arc length =

∫ 3

2

√
1 +

(
x√

x2 − 1

)2

dx =

∫ 3

2

√
1 +

x2

x2 − 1
dx =

∫ 3

2

√
2x2 − 1

x2 − 1
dx = 1.48.

18.
z

x

y

R

Radius =
b
√
a2−x2

a

y2 = b2
(

1− x2

a2

)
.

V =

∫ a

−a
πy2dx = π

∫ a

−a
b2
(

1− x2

a2

)
dx

= 2πb2
∫ a

0

(
1− x2

a2

)
dx = 2πb2

[
x− x3

3a2

]a

0

= 2πb2
(
a− a3

3a2

)
= 2πb2

(
a− 1

3
a
)

=
4

3
πab2.

19.

x

y

(y = −1)

R

Radius = 1 + x3
We slice the region perpendicular to the x–axis. The Rie-
mann sum we get is

∑
π(x3 + 1)2∆x. So the volume V is

the integral

V =

∫ 1

−1

π(x3 + 1)2 dx

= π

∫ 1

−1

(x6 + 2x3 + 1) dx

= π

(
x7

7
+
x4

2
+ x

)∣∣∣∣
1

−1

= (16/7)π ≈ 7.18.

20.

x

y

z

(x = 1)R

Radius = 1− x

We slice the region perpendicular to the y–axis. The Rie-
mann sum we get is

∑
π(1− x)2∆y =

∑
π(1− y2)2∆y.

So the volume V is the integral

V =

∫ 1

0

π(1− y2)2 dy

= π

∫ 1

0

(1− 2y2 + y4) dy

= π

(
y − 2y3

3
+
y5

5

)∣∣∣∣
1

0

= (8/15)π ≈ 1.68.

21.

x

y

z

j

Radius = sinx

We take slices perpendicular to the x–axis. The Riemann
sum for approximating the volume is

∑
π sin2 x∆x. The

volume is the integral corresponding to that sum, namely

V =

∫ π

0

π sin2 x dx

= π
[
−1

2
sinx cosx+

1

2
x
] ∣∣∣∣
π

0

=
π2

2
≈ 4.935.
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22. Slice the object into disks horizontally, as in Figure 8.22. A typical disk has thickness ∆y and radius x =
√
y. Thus

Volume of slice ≈ πx2∆y = πy∆y.

Volume of solid = lim
∆y→0

∑
πy∆y =

∫ 1

0

πy dy = π
y2

2

∣∣∣∣
1

0

=
π

2
.

x

6?∆y

y

1 y = x2

Figure 8.22

1

−1

1

-�
∆x

Inner radius

6

Outer radius

6

y = x2

x

y

Figure 8.23: Cross-section of solid

23. Slice the object into rings vertically, as is Figure 8.23. A typical ring has thickness ∆x and outer radius y = 1 and inner
radius y = x2.

Volume of slice ≈ π12∆x− πy2∆x = π(1− x4) ∆x.

Volume of solid = lim
∆x→0

∑
π(1− x4) ∆x =

∫ 1

0

π(1− x4) dx = π

(
x− x5

5

)∣∣∣∣∣

1

0

=
4

5
π.

24. The region is cylindrical with a hole around the axis of rotation, y = −2. Slice it into rings vertically, as in Figure 8.24.
A typical ring has thickness ∆x and outer radius 1 + 2 = 3 and inner radius y + 2 = x2 + 2. Thus

Volume of slice ≈ π32∆x− π(x2 + 2)2∆x = π(5− x4 − 4x2) ∆x.

Volume of solid =

∫ 1

0

π(5− x4 − 4x2) ∆x = π

(
5x− x5

5
− 4

3
x3

)∣∣∣∣∣

1

0

=
52π

15
.

1

−5

−4

−2

1

-�
∆x

Inner radius
?

Outer radius?

y = x2

Axis of rotation: y = −2

x

y

Figure 8.24: Cross-section of solid

1

1

-�∆x

� Base of square (standing on paper)

6

?

1− y

y = x2

x

y

Figure 8.25: Base of solid
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25. Slicing perpendicularly to the x-axis gives squares whose thickness is ∆x and whose side is 1 − y = 1 − x2. See
Figure 8.25. Thus

Volume of square slice ≈ (1− x2)2∆x = (1− 2x2 + x4) ∆x.

Volume of solid =

∫ 1

0

(1− 2x2 + x4) dx = x− 2

3
x3 +

x5

5

∣∣∣∣∣

1

0

=
8

15
.

26. Slicing perpendicularly to the x-axis gives semicircles whose thickness is ∆x and whose diameter is 1− y = 1−x2. See
Figure 8.26. Thus

Volume of semicircular slice ≈ π
(

1− x2

2

)2

∆x =
π

4
(1− 2x2 + x4) ∆x.

Volume of solid =

∫ 1

0

π

4
(1− 2x2 + x4) dx =

π

4

(
x− 2

3
x3 +

x5

5

)∣∣∣∣∣

1

0

=
π

4
· 8

15
=

2π

15
.

1

1

-�∆x

� Diameter of semicircle (standing on paper)

6

?

1− y

y = x2

x

y

Figure 8.26: Base of solid

1

1

6?∆y � Base of triangle (standing on paper)

-� x

y = x2

x

y

Figure 8.27: Base of solid

27. An equilateral triangle of side s has height
√

3s/2 and

Area =
1

2
· s ·
√

3s

2
=

√
3

4
s2.

Slicing perpendicularly to the y-axis gives equilateral triangles whose thickness is ∆y and whose side is x =
√
y.

See Figure 8.27. Thus

Volume of triangular slice ≈
√

3

4
(
√
y)2∆y =

√
3

4
y∆y.

Volume of solid =

∫ 1

0

√
3

4
y dy =

√
3

4

y2

2

∣∣∣∣∣

1

0

=

√
3

8
.

28.

x

y

z

R

r = ex

This is the volume of revolution gotten from the rotating the
curve y = ex. Take slices perpendicular to the x-axis. They
will be circles with radius ex, so

V =

∫ x=1

x=0

πy2 dx = π

∫ 1

0

e2x dx

=
πe2x

2

∣∣∣∣
1

0

=
π(e2 − 1)

2
≈ 10.036.
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29.

x

y

-rout = ex

-rin = 3 (y = −3)

We slice the volume with planes perpendicular to the line y =
−3. This divides the curve into thin washers, as in Example 3 on
page 376 of the text, whose volumes are

πr2
outdx− πr2

indx = π(3 + y)2dx− π32dx.

So the integral we get from adding all these washers up is

V =

∫ x=1

x=0

[π(3 + y)2 − π32] dx

= π

∫ 1

0

[(3 + ex)2 − 9] dx

= π

∫ 1

0

[e2x + 6ex] dx = π[
e2x

2
+ 6ex]

∣∣∣∣
1

0

= π[(e2/2 + 6e)− (1/2 + 6)] ≈ 42.42.

30.

x

y

z

-rout = 7

-rin = 7− ex

(y = 7)

This problem can be done by slicing the volume into washers
with planes perpendicular to the axis of rotation, y = 7, just like
in Example 3. This time the outside radius of a washer is 7, and
the inside radius is 7− ex. Therefore, the volume V is

V =

∫ x=1

x=0

[π72 − π(7− ex)2] dx = π

∫ 1

0

(14ex − e2x) dx

= π
[
14ex − 1

2
e2x
] ∣∣∣∣

1

0

= π
[
14e− 1

2
e2 −

(
14− 1

2

)]

≈ 65.54.

31.

x
y

z

�

�

ex

�

� ex

We now slice perpendicular to the x-axis. As stated in the prob-
lem, the cross-sections obtained thereby will be squares, with
base length ex. The volume of one square slice is (ex)2 dx.
(Look at the picture.) Adding up the volumes of the slices yields

Volume =

∫ x=1

x=0

y2 dx =

∫ 1

0

e2x dx

=
e2x

2

∣∣∣∣
1

0

=
e2 − 1

2
≈ 3.195.

32.

x

y

z

-r = ex

2

We slice perpendicular to the x-axis. As stated in the problem,
the cross-sections obtained thereby will be semicircles, with ra-
dius ex

2
. The volume of one semicircular slice is 1

2
π
(
ex

2

)2
dx.

(Look at the picture.) Adding up the volumes of the slices yields

Volume =

∫ x=1

x=0

π
y2

2
dx =

π

8

∫ 1

0

e2x dx

=
πe2x

16

∣∣∣∣
1

0

=
π(e2 − 1)

16
≈ 1.25.
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33. (a) We can begin by slicing the pie into horizontal slabs of thickness ∆h located at height h. To find the radius of each
slice, we note that radius increases linearly with height. Since r = 4.5 when h = 3 and r = 3.5 when h = 0, we
should have r = 3.5 + h/3. Then the volume of each slab will be πr2 ∆h = π(3.5 + h/3)2 ∆h. To find the total
volume of the pie, we integrate this from h = 0 to h = 3:

V = π

∫ 3

0

(
3.5 +

h

3

)2

dh

= π

[
h3

27
+

7h2

6
+

49h

4

] ∣∣∣∣
3

0

= π

[
33

27
+

7(32)

6
+

49(3)

4

]
≈ 152 in3.

(b) We use 1.5 in as a rough estimate of the radius of an apple. This gives us a volume of (4/3)π(1.5)3 ≈ 10 in3. Since
152/10 ≈ 15, we would need about 15 apples to make a pie.

34. (a) The volume can be computed by several methods, not all of them requiring integration. We will slice horizontally,
forming rectangular slabs of length 100 cm, height ∆y, width w and integrate. See Figure 8.28.

�

�w

�

�

100 cm

6
?∆y

Figure 8.28

-� d

60◦

60◦6

?
∆y

y

5 cm
x

y

Figure 8.29

From the right triangle, we see
y

d
= tan 60◦ =

√
3

so
d =

y√
3
.

Thus
w = 5 + 2d = 5 +

2y√
3
.

The volume of the slab is

∆V ≈ 100w∆y = 100

(
5 +

2y√
3

)
∆y,

so the total volume is given by

Volume = lim
∆y→0

∑
∆V = lim

∆y→0

∑
100

(
5 +

2y√
3

)
∆y

=

∫ h

0

100

(
5 +

2y√
3

)
dy = 100

(
5y +

y2

√
3

)∣∣∣∣∣

h

0

= 100

(
5h+

h2

√
3

)
cm3.

(b) The maximum value of h is h = 5 sin 60◦ = 5
√

3/2 cm ≈ 4.33 cm.
(c) The maximum volume of water that the gutter can hold is given by substituting h = 5

√
3/2 into the volume:

Maximum volume = 100

(
5 · 5
√

3

2
+

(
5
√

3

2

)2
/
√

3

)
=

2500

4
(2
√

3 +
√

3) = 1875
√

3 ≈ 3247.6 cm3.

(d) Because the gutter is narrower at the bottom than the top, if it is filled with half the maximum possible volume of
water, the gutter will be filled to a depth of more than half of 4.33 cm.
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(e) We want to solve for the value of h such that

Volume = 100

(
5h+

h2

√
3

)
=

1

2
· 1875

√
3 =

1

2
Vmax

5h+
h2

√
3

= 16.238.

Solving gives h = 2.52 and h = −11.18. Since only positive values of h are meaningful, h = 2.52 cm.

35.

x

H y = ax2

x

y

6?∆y

We divide the interior of the boat into flat slabs of thickness ∆y and width 2x = 2
√
y/a. (See above.) We have

Volume of slab ≈ 2xL∆y = 2L

√
y

a
∆y.

We are interested in the total volume of the region 0 ≤ y ≤ H , so

Total volume = lim
∆y→0

∑
2L
(
y

a

)(1/2)

∆y =

∫ H

0

2L
(
y

a

)(1/2)

dy

=
2L√
a

∫ H

0

y(1/2)dy =
4LH(3/2)

3
√
a

.

If L and H are in meters,

Buoyancy force =
40, 000LH(3/2)

3
√
a

newtons.

36. We can find the volume of the tree by slicing it into a series of thin horizontal cylinders of height dh and circumference
C. The volume of each cylindrical disk will then be

V = πr2 dh = π
(
C

2π

)2

dh =
C2 dh

4π
.

Summing all such cylinders, we have the total volume of the tree as

Total volume =
1

4π

∫ 120

0

C2 dh.

We can estimate this volume using a trapezoidal approximation to the integral with ∆h = 20:

LEFT estimate =
1

4π
[20(312 + 282 + 212 + 172 + 122 + 82)] =

1

4π
(53660).

RIGHT estimate =
1

4π
[20(282 + 212 + 172 + 122 + 82 + 22)] =

1

4π
(34520).

TRAP =
1

4π
(44090) ≈ 3509 cubic inches.
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37. (a) The volume, V , contained in the bowl when the surface has height h is

V =

∫ h

0

πx2 dy.

However, since y = x4, we have x2 =
√
y so that

V =

∫ h

0

π
√
y dy =

2

3
πh3/2.

Differentiating gives dV/dh = πh1/2 = π
√
h. We are given that dV/dt = −6

√
h, where the negative sign reflects

the fact that V is decreasing. Using the chain rule we have

dh

dt
=
dh

dV
· dV
dt

=
1

dV/dh
· dV
dt

=
1

π
√
h
· (−6

√
h) = − 6

π
.

Thus, dh/dt = −6/π, a constant.
(b) Since dh/dt = −6/π we know that h = −6t/π + C. However, when t = 0, h = 1, therefore h = 1 − 6t/π. The

bowl is empty when h = 0, that is when t = π/6 units.

38. The problem appears complicated, because we are now working in three dimensions. However, if we take one dimension
at a time, we will see that the solution is not too difficult. For example, let’s just work at a constant depth, say 0. We
apply the trapezoid rule to find the approximate area along the length of the boat. For example, by the trapezoid rule the
approximate area at depth 0 from the front of the boat to 10 feet toward the back is (2+8)·10

2
= 50. Overall, at depth 0 we

have that the area for each length span is as follows:

Table 8.1
length span: 0–10 10–20 20–30 30–40 40–50 50–60
depth 0 50 105 145 165 165 130

We can fill in the whole chart the same way:

Table 8.2
length span: 0–10 10–20 20–30 30–40 40–50 50–60

0 50 105 145 165 165 130
2 25 60 90 105 105 90

depth 4 15 35 50 65 65 50
6 5 15 25 35 35 25
8 0 5 10 10 10 10

Now, to find the volume, we just apply the trapezoid rule to the depths and areas. For example, according to the
trapezoid rule the approximate volume as the depth goes from 0 to 2 and the length goes from 0 to 10 is (50+25)·2

2
= 75.

Again, we fill in a chart:

Table 8.3
length span: 0–10 10–20 20–30 30–40 40–50 50–60

0–2 75 165 235 270 270 220
depth 2–4 40 95 140 170 170 140
span 4–6 20 50 75 100 100 75

6–8 5 20 35 45 45 35

Adding all this up, we find the volume is approximately 2595 cubic feet.
You might wonder what would have happened if we had done our trapezoids along the depth axis first instead of

along the length axis. If you try this, you’d find that you come up with the same answers in the volume chart! For the
trapezoid rule, it does not matter which axis you choose first.
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39. (a) The equation of a circle of radius r around the origin is x2+y2 = r2. This means that y2 = r2−x2, so 2y(dy/dx) =
−2x, and dy/dx = −x/y. Since the circle is symmetric about both axes, its arc length is 4 times the arc length in
the first quadrant, namely

4

∫ r

0

√
1 +

(
dy

dx

)2

dx = 4

∫ r

0

√
1 +

(
−x
y

)2

dx.

(b) Evaluating this integral yields

4

∫ r

0

√
1 +

(
−x
y

)2

dx = 4

∫ r

0

√
1 +

x2

r2 − x2
dx = 4

∫ r

0

√
r2

r2 − x2
dx

= 4r

∫ r

0

√
1

r2 − x2
dx = 4r(arcsin(x/r))

∣∣∣∣
r

0

= 2πr.

This is the expected answer.

40. As can be seen in Figure 8.30, the region has three straight sides and one curved one. The lengths of the straight sides are
1, 1, and e. The curved side is given by the equation y = f(x) = ex. We can find its length by the formula

∫ 1

0

√
1 + f ′(x)2 dx =

∫ 1

0

√
1 + (ex)2 dx =

∫ 1

0

√
1 + e2x dx.

Evaluating the integral numerically gives 2.0035. The total length, therefore, is about 1 + 1 + e+ 2.0035 ≈ 6.722.

1

1

f(x) = ex

x

y

Figure 8.30

41. Since y = (ex + e−x)/2, y′ = (ex − e−x)/2. The length of the catenary is

∫ 1

−1

√
1 + (y′)2 dx =

∫ 1

−1

√
1 +

[
ex − e−x

2

]2

dx =

∫ 1

−1

√
1 +

e2x

4
− 1

2
+
e−2x

4
dx

=

∫ 1

−1

√[
ex + e−x

2

]2

dx =

∫ 1

−1

ex + e−x

2
dx

=

[
ex − e−x

2

] ∣∣∣∣
1

−1

= e− e−1.

42. Since the ellipse is symmetric about its axes, we can just find its arc length in the first quadrant and multiply that by 4.
To determine the arc length of this section, we first solve for y in terms of x: since x2/4 + y2 = 1 is the equation for
the ellipse, we have y2 = 1 − x2/4, so y =

√
1− x2/4. We also need to find dy/dx; we can do this by differentiating

y2 = 1− x2/4 implicitly, obtaining 2ydy/dx = −x/2, whence dy/dx = −x/(4y). We now set up the integral:

Circumference of ellipse
in first quadrant =

∫ 2

0

√
1 +

(
− x

4y

)2

dx =

∫ 2

0

√
1 +

x2

16y2
dx

=

∫ 2

0

√
1 +

x2

16− 4x2
dx =

∫ 2

0

√
16− 3x2

16− 4x2
dx.
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This is an improper integral, since 16 − 4x2 = 0 for x = 2. Hence, integrating it numerically is somewhat tricky.
However, we can integrate numerically from 0 to 1.999, and then use a vertical line to approximate the last section. The
upper point of the line is (1.999, 0.016); the lower point is (2, 0). The length of the line connecting these two points is√

(2− 1.999)2 + (0− 0.016)2 ≈ 0.016. Approximating the integral from 0 to 1.999 gives 2.391; hence the total arc
length of the first quadrant is approximately 2.391 + 0.016 = 2.407. So the arc length of the whole ellipse is about
4 · 2.407 ≈ 9.63.

43. Here are many functions which “work.”

• Any linear function y = mx+ b “works.” This follows because dy
dx

= m is constant for such functions. So

∫ b

a

√
1 +

(
dy

dx

)2

dx =

∫ b

a

√
1 +m2 dx = (b− a)

√
1 +m2.

• The function y = x4

8
+ 1

4x2 “works”: dy
dx

= 1
2
(x3 − 1/x3), and

∫ √
1 +

(
dy

dx

)2

dx =

∫ √

1 +

(
x3 − 1

x3

)

4

2

dx =

∫ √
1 +

x6

4
− 1

2
+

1

4x6
dx

=

∫ √
1

4

(
x3 +

1

x3

)2

dx =

∫
1

2

(
x3 +

1

x3

)
dx

=

[
x4

8
− 1

4x2

]
+ C.

• One more function that “works” is y = ln(cosx); we have dy
dx

= − sinx/ cosx. Hence

∫ √
1 +

(
dy

dx

)2

dx. =

∫ √
1 +

(− sinx

cosx

)2

dx =

∫ √
1 +

sin2 x

cos2 x
dx

=

∫ √
sin2 x+ cos2 x

cos2 x
dx =

∫ √
1

cos2 x
dx

=

∫
1

cosx
dx =

1

2
ln
∣∣∣ sinx+ 1

sinx− 1

∣∣∣+ C,

where the last integral comes from IV-22 of the integral tables.

44. (a) If f(x) =
∫ x

0

√
g′(t)2 − 1 dt, then, by the Fundamental Theorem of Calculus, f ′(x) =

√
g′(x)2 − 1. So the arc

length of f from 0 to x is
∫ x

0

√
1 + (f ′(t))2 dt =

∫ x

0

√
1 + (

√
g′(t)2 − 1)2 dt

=

∫ x

0

√
1 + g′(t)2 − 1 dt

=

∫ x

0

g′(t) dt = g(x)− g(0) = g(x).

(b) If g is the arc length of any function f , then by the Fundamental Theorem of Calculus, g ′(x) =
√

1 + f ′(x)2 ≥ 1.
So if g′(x) < 1, g cannot be the arc length of a function.

(c) We find a function f whose arc length from 0 to x is g(x) = 2x. Using part (a), we see that

f(x) =

∫ x

0

√
(g′(t))2 − 1 dt =

∫ x

0

√
22 − 1 dt =

√
3x.

This is the equation of a line. Does it make sense to you that the arc length of a line segment depends linearly on its
right endpoint?
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Solutions for Section 8.3

Exercises

1. With r = 1 and θ = 2π/3, we find x = r cos θ = 1 · cos(2π/3) = −1/2 and y = r sin θ = 1 · sin(2π/3) =
√

3/2.
The rectangular coordinates are (−1/2,

√
3/2).

2. With r =
√

3 and θ = −3π/4, we find x = r cos θ =
√

3 cos(−3π/4) =
√

3(−
√

2/2) = −
√

6/2 and y = r sin θ =√
3 sin(−3π/4) =

√
3(−
√

2/2) = −
√

6/2.
The rectangular coordinates are (−

√
6/2,−

√
6/2).

3. With r = 2
√

3 and θ = −π/6, we find x = r cos θ = 2
√

3 cos(−π/6) = 2
√

3 ·
√

3/2 = 3 and y = r sin θ =
2
√

3 sin(−π/6) = 2
√

3(−1/2) = −
√

3.
The rectangular coordinates are (3,−

√
3).

4. With r = 2 and θ = 5π/6, we find x = r cos θ = 2 cos(5π/6) = 2(−
√

3/2) = −
√

3 and y = r sin θ = 2 sin(5π/6) =
2(1/2) = 1.

The rectangular coordinates are (−
√

3, 1).

5. With x = 1 and y = 1, find r from r =
√
x2 + y2 =

√
12 + 12 =

√
2. Find θ from tan θ = y/x = 1/1 = 1. Thus,

θ = tan−1(1) = π/4. Since (1, 1) is in the first quadrant this is a correct θ. The polar coordinates are (
√

2, π/4).

6. With x = −1 and y = 0, find r =
√
x2 + y2 =

√
(−1)2 + 02 = 1. Find θ from tan θ = y/x = 0/(−1) = 0. Thus,

θ = tan−1(0) = 0. Since (−1, 0) is on the x-axis between the second and third quadrant, θ = π. The polar coordinates
are (1, π).

7. With x =
√

6 and y = −
√

2, find r =
√

(
√

6)2 + (−
√

2)2 =
√

8 = 2
√

2. Find θ from tan θ = y/x = −
√

2/
√

6 =
−1/
√

3. Thus, θ = tan−1(−1/
√

3) = −π/6. Since (
√

6,−
√

2) is in the fourth quadrant, this is the correct θ. The polar
coordinates are (2

√
2,−π/6).

8. With x = −
√

3 and y = 1, find r =
√

(−
√

3)2 + 12 =
√

4 = 2. Find θ from tan θ = y/x = 1/(−
√

3). Thus,
θ = tan−1(−1/

√
3) = −π/6. Since (−

√
3, 1) is in the second quadrant, θ = −π/6+π = 5π/6. The polar coordinates

are (2, 5π/6).

9. (a) Table 8.4 contains values of r = 1− sin θ, both exact and rounded to one decimal.

Table 8.4

θ 0 π/3 π/2 2π/3 π 4π/3 3π/2 5π/3 2π 7π/3 5π/2 8π/3

r 1 1−
√

3/2 0 1−
√

3/2 1 1 +
√

3/2 2 1 +
√

3/2 1 1−
√

3/2 0 1−
√

3/2

r 1 0.134 0 0.134 1 1.866 2 1.866 1 0.134 0 0.134

(b) See Figure 8.31.

−2 −1 1 2

−2

−1

1

2

x

y

Figure 8.31

−2 −1 1 2

−2

−1

1

2

x

y

Figure 8.32

(c) The circle has equation r = 1/2. The cardioid is r = 1− sin θ. Solving these two simultaneously gives

1/2 = 1− sin θ,
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or
sin θ = 1/2.

Thus, θ = π/6 or 5π/6. This gives the points (x, y) = ((1/2) cosπ/6, (1/2) sinπ/6) = (
√

3/4, 1/4) and (x, y) =
((1/2) cos 5π/6, (1/2) sin 5π/6) = (−

√
3/4, 1/4) as the location of intersection.

(d) The curve r = 1− sin 2θ, pictured in Figure 8.32, has two regions instead of the one region that r = 1− sin θ has.
This is because 1 − sin 2θ will be 0 twice for every 2π cycle in θ, as opposed to once for every 2π cycle in θ for
1− sin θ.

10. There will be n loops. See Figures 8.33-8.36.

Figure 8.33: n = 1 Figure 8.34: n = 2 Figure 8.35: n = 3 Figure 8.36: n = 4

11. The graph will begin to draw over itself for any θ ≥ 2π so the graph will look the same in all three cases. See Figure 8.37.

Figure 8.37

12. The curve will be a smaller loop inside a larger loop with an intersection point at the origin. Larger n values increase the
size of the loops. See Figures 8.38-8.40.

−1 1

−3

−2

−1

Figure 8.38: n = 2

−1 1

−4

−3

−2

−1

Figure 8.39: n = 3

−1 1

−5

−4

−3

−2

−1

Figure 8.40: n = 4

13. See Figures 8.41 and 8.42. The first curve will be similar to the second curve, except the cardioid (heart) will be rotated
clockwise by 90◦ (π/2 radians). This makes sense because of the identity sin θ = cos(θ − π/2).
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Figure 8.41: r = 1− cos θ Figure 8.42: r = 1− sin θ

14. Let 0 ≤ θ ≤ 2π and 3/16 ≤ r ≤ 1/2.

15. A loop starts and ends at the origin, that is, when r = 0. This happens first when θ = π/4 and next when θ = 5π/4. This
can also be seen by using a trace mode on a calculator. Thus restricting θ so that π/4 ≤ θ ≤ 5π/4 will graph the upper
loop only. See Figure 8.43. To show only the other loop use 0 ≤ θ ≤ π/4 and 5π/4 ≤ θ ≤ 2π. See Figure 8.44.

Figure 8.43: π/4 ≤ θ ≤ 5π/4
Figure 8.44: 0 ≤ θ ≤ π/4 and

5π/4 ≤ θ ≤ 2π

16. (a) Let 0 ≤ θ ≤ π/4 and 0 ≤ r ≤ 1.
(b) Break the region into two pieces: one with 0 ≤ x ≤

√
2/2 and 0 ≤ y ≤ x, the other with

√
2/2 ≤ x ≤ 1 and

0 ≤ y ≤
√

1− x2.

17. The region is given by
√

8 ≤ r ≤
√

18 and π/4 ≤ θ ≤ π/2.

18. The region is given by 0 ≤ r ≤ 2 and −π/6 ≤ θ ≤ π/6.

19. The circular arc has equation r = 1, for 0 ≤ θ ≤ π/2. the vertical line x = 2 has polar equation r cos θ = 2, or
r = 2/ cos θ. So the region is described by 0 ≤ θ ≤ π/2 and 1 ≤ r ≤ 2/ cos θ.

Problems

20. The formula for area is

A =
1

2

∫ β

α

r2 dθ

Therefore, since

A =
1

2

∫ π/3

0

sin2(3θ) dθ =
1

2

∫ π/3

0

(sin 3θ)2 dθ,

we have r = sin 3θ. The integral represents the shaded area inside one petal of the three-petaled rose curve, r = sin 3θ,
in Figure 8.45.
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−1 1

−1

1

x

y

Figure 8.45: Graph of r = sin 3θ

−π 2π

π/2

x

y

Figure 8.46: Spiral r = θ

21. The spiral is shown in Figure 8.46.

Area =
1

2

∫ 2π

0

θ2 dθ =
1

6
θ3
∣∣∣
2π

0
=

8π3

6
.

22. The region between the spirals is shaded in Figure 8.47.

Area =
1

2

∫ 2π

0

((2θ)2 − θ2) dθ =
1

2

∫ 2π

0

3θ2 dθ =
1

2
θ3
∣∣∣
2π

0
= 4π3.

2π 4π
x

y

Figure 8.47: Region between the
inner spiral, r = θ, and the outer

spiral, r = 2θ

x

y

Figure 8.48: Cardioid
r = 1 + cos θ

23. The cardioid is shown in Figure 8.48. The following integral can be evaluated using a calculator or by parts or using the
table of integrals.

Area =
1

2

∫ 2π

0

(1 + cos θ)2 dθ =
1

2

∫ 2π

0

(
1 + 2 cos θ + cos2 θ

)
dθ

=
1

2

(
θ + 2 sin θ +

1

2
cos θ sin θ +

1

2
θ
)∣∣∣

2π

0
=

1

2
(2π + 0 + 0 + π) =

3π

2
.

24. (a) See Figure 8.49. In polar coordinates, the line x = 1 is r cos θ = 1, so its equation is

r =
1

cos θ
.

The circle of radius 2 centered at the origin has equation

r = 2.
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(b) The line and circle intersect where

1

cos θ
= 2

cos θ =
1

2

θ = −π
3
,
π

3
.

Thus,

Area =
1

2

∫ π/3

−π/3

(
22 −

(
1

cos θ

)2
)
dθ.

(c) Evaluating gives

Area =
1

2

∫ π/3

−π/3

(
4− 1

cos2 θ

)
dθ =

1

2
(4θ − tan θ)

∣∣∣
π/3

−π/3
=

4π

3
−
√

3.

1 2

x = 1

θ = π/3

θ = −π/3

x

y

Figure 8.49

1−1

r = 1

r = 1 + sin θ

x

y

Figure 8.50

25. See Figure 8.50. Notice that the curves intersect at (1, 0), where θ = 0, 2π, and at (−1, 0), where θ = π, so

Area =
1

2

∫ 2π

π

(12 − (1 + sin θ)2) dθ =
1

2

∫ 2π

π

(−2 sin θ − sin2 θ) dθ.

Using a calculator, integration by parts, or formula IV-17 in the integral table, we have

Area =
1

2

(
2 cos θ +

1

2
sin θ cos θ − 1

2
θ
)∣∣∣

2π

π
=

1

2

(
2 · 2 + 0− 1

2
π
)

= 2− π

4
.

26. The two curves intersect where

1− sin θ =
1

2

sin θ =
1

2

θ =
π

6
,

5π

6
.

See Figure 8.51. We find the area of the right half and multiply that answer by 2 to get the entire area. The integrals can be
computed numerically with a calculator or, as we show, using integration by parts or formula IV-17 in the integral tables.

Area of right half =
1

2

∫ π/6

−π/2

(
(1− sin θ)2 −

(
1

2

)2
)
dθ

=
1

2

∫ π/6

−π/2

(
1− 2 sin θ + sin2 θ − 1

4

)
dθ
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=
1

2

∫ π/6

−π/2

(
3

4
− 2 sin θ + sin2 θ

)
dθ

=
1

2

(
3

4
θ + 2 cos θ − 1

2
sin θ cos θ +

1

2
θ
)∣∣∣
π/6

−π/2

=
1

2

(
5π

6
+

7
√

3

8

)
.

Thus,

Total area =
5π

6
+

7
√

3

8
.

1
2

1
2 r = 1− sin θ

r = 1/2 π/6

x

y

Figure 8.51

r = 1 + cos θ

r = 2 cos θ

x

y

Figure 8.52

27. Figure 8.52 shows the curves which touch at (2, 0) and the origin. However, the circle lies entirely inside the cardioid, so
we find the area by subtracting the area of the circle from that of the cardioid. To find the areas, we take the integrals.

The cardioid, r = 1 + cos θ, starts at (2, 0) when θ = 0 and traces the top half, reaching the origin when θ = π.
Thus

Area of cardioid = 2 · 1

2

∫ π

0

(1 + cos θ)2 dθ.

The circle starts at (2, 0) when θ = 0 and traces the top half, reaching the origin when θ = π/2. Thus

Area of circle = 2 · 1

2

∫ π/2

0

(2 cos θ)2 dθ.

The area, A, we want is therefore

Area = 2 · 1

2

∫ π

0

(1 + cos θ)2 dθ − 2 · 1

2

∫ π/2

0

(2 cos θ)2 dθ

=

∫ π

0

(1 + 2 cos θ + cos2 θ) dθ −
∫ π/2

0

4 cos2 θ dθ

=
(
θ + 2 sin θ +

1

2
(sin θ cos θ + θ)

)∣∣∣
π

0
− 4

2
(sin θ cos θ + θ)

∣∣∣
π/2

0

=
3

2
π − 2 · π

2
=
π

2
.

Alternatively, we could compute the area of the cardioid and subtract the area of the circle of radius 1 from it.
The integrals can be computed numerically using a calculator, or, as we show, using integration by parts or for-

mula IV-18 from the integral tables.
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28. (a) The graph of r = 2 cos θ is a circle of radius 1 centered at (1, 0); the graph of r = 2 sin θ is a circle of radius 1
centered at (0, 1). See Figure 8.53.

(b) The Cartesian coordinates of the points of intersection are at (0, 0) and (1, 1).
The origin corresponds to θ = π/2 on r = 2 cos θ and to θ = 0 on r = 2 sin θ. The point (1, 1) has polar

coordinates r =
√

2, θ = π/4.
We find the area below the line θ = π/4 and above r = 2 sin θ and double it:

Area = 2 · 1

2

∫ π/4

0

(2 sin θ)2 dθ = 4

∫ π/4

0

sin2 θ dθ.

Using a calculator, integration by parts or formula IV-17 from the integral tables,

Area = 4
(
−1

2
sin θ cos θ +

θ

2

)∣∣∣
π/4

0
= −2 · 1

2
+ 2

π

4
=
π

2
− 1.

1 2

1

2
r = 2 sin θ

r = 2 cos θ

θ = π/4

x

y

Figure 8.53

29. The area is

A =
1

2

∫ a

0

r2 dθ =
1

2

∫ a

0

θ2 dθ = 1

1

2

(
θ3

3

)∣∣∣∣
a

0

= 1

a3

6
= 1

a3 = 6

a =
3
√

6.

30. (a) See Figure 8.54.
(b) The curves intersect when r2 = 2

4 cos 2θ = 2

cos 2θ =
1

2
.

In the first quadrant:
2θ =

π

3
so θ =

π

6
.

Using symmetry, the area in the first quadrant can be multiplied by 4 to find the area of the total bounded region.

Area = 4
(

1

2

)∫ π/6

0

(4 cos 2θ − 2) dθ

= 2
(

4 sin 2θ

2
− 2θ

)∣∣∣
π/6

0

= 4 sin
π

3
− 2

3
π



550 Chapter Eight /SOLUTIONS

= 4

√
3

2
− 2

3
π

= 2
√

3− 2

3
π = 1.370.

−2 2

−1.5

1.5

r =
√

2

r2 = 4 cos 2θ

x

y

Figure 8.54

31. The slope of the tangent line at θ = π/3 is dy/dx =
√

3/5. Since x = 3 sin(2θ) cos θ and y = 3 sin(2θ) sin θ, when
θ = π/3, we have x = 3

√
3/4 and y = 9/4. Thus, the equation of the tangent line is

y − 9

4
=

√
3

5

(
x− 3

√
3

4

)

y =

√
3

5
x− 9

20
+

9

4

y =

√
3

5
x+

9

5
.

32. We first find the points with horizontal and vertical tangents in the first quadrant and then use symmetry to obtain the
points in other quadrants.

The slope of the tangent line is

dy

dx
=

6 cos(2θ) sin θ + 3 sin(2θ) cos θ

6 cos(2θ) cos θ − 3 sin(2θ) sin θ
.

The curve has a horizontal tangent where

6 cos(2θ) sin θ + 3 sin(2θ) cos θ = 0.

Solving this equation numerically for 0 < θ < π/2, we have θ = 0.9553; in addition θ = 0 is a solution. Thus, there
are horizontal tangents where x = 1.633 and y = 2.309 and where x = 0, y = 0. Thus, the five points with horizontal
tangents are

(1.633, 2.309); (−1.633, 2.309); (−1.633,−2.309); (1.633,−2.309); (0, 0).

The curve has vertical tangents where

6 cos(2θ) cos θ − 3 sin(2θ) sin θ = 0.

Solving this equation numerically for 0 < θ < π/2, we have θ = 0.6155; in addition θ = π/2 is a solution. Thus, there
are vertical tangents where x = 2.309, y = 1.633, and where x = 0, y = 0. Thus, there are five points with vertical
tangents:

(2.309, 1.633); (−2.309, 1.633); (−2.309,−1.633); (2.309,−1.633); (0, 0).
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33. We can express x and y in terms of θ as a parameter. Since r = θ, we have

x = r cos θ = θ cos θ and y = r sin θ = θ sin θ.

Calculating the slope using the parametric formula,

dy

dx
=
dy/dθ

dx/dθ
,

we have
dy

dx
=

sin θ + θ cos θ

cos θ − θ sin θ
.

Horizontal tangents occur where dy/dx = 0, so

sin θ + θ cos θ = 0

θ = − tan θ.

Solving this equation numerically gives
θ = 0, 2.029, 4.913.

Vertical tangents occur where dy/dx is undefined, so

cos θ − θ sin θ = 0

θ =
1

tan θ
= cot θ.

Solving this equation numerically gives
θ = 0.860, 3.426.

34. (a) Expressing x and y parametrically in terms of θ, we have

x = r cos θ =
cos θ

θ
and y = r sin θ =

sin θ

θ
.

The slope of the tangent line is given by

dy

dx
=
dy/dθ

dx/dθ
=
(
θ cos θ − sin θ

θ2

)/(−θ sin θ − cos θ

θ2

)
=

sin θ − θ cos θ

cos θ + θ sin θ
.

At θ = π/2, we have
dy

dx

∣∣∣
θ=π/2

=
1− (π/2)0

0 + (π/2)1
=

2

π
.

At θ = π/2, we have x = 0, y = 2/π, so the equation of the tangent line is

y =
2

π
x+

2

π
.

(b) As θ → 0,

x =
cos θ

θ
→∞ and y =

sin θ

θ
→ 1.

Thus, y = 1 is a horizontal asymptote. See Figure 8.55.

y = 1

r = 1/θ

x

y

Figure 8.55
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35. The limaçon is given by r = 1+2 cos θ; see Figure 8.56. At θ = 0, the graph is at (3, 0); as θ increases, the graph sweeps
out the top arc (on which the maximum value of y occurs), reaching the origin when

1 + 2 cos θ = 0

cos θ = −1

2

θ =
2π

3
.

Thus, we want to find the maximum value of y on the interval 0 ≤ θ ≤ 2π/3. Since y = r sin θ, we want to find the
maximum value of

y = (1 + 2 cos θ) sin θ = sin θ + 2 cos θ sin θ.

At a critical point

dy

dθ
= cos θ − 2 sin2 θ + 2 cos2 θ = 0

cos θ − 2(1− cos2 θ) + 2 cos2 θ = 0

4 cos2 θ + cos θ − 2 = 0

cos θ =
−1±

√
33

8
= 0.593,−0.843.

Thus, θ = cos−1(0.593) = 0.936 and θ = cos−1(−0.843) = 2.574 are the critical values. Since 2.574 is outside the
interval 0 ≤ θ ≤ 2π/3, there is one critical point θ = 0.963.

At the endpoints of the interval, y = 0. At θ = 0.936, we have y = 1.760, which is the maximum value.

r = 1 + 2 cos θ

x

y

Figure 8.56: The inner loop has r < 0

36. Since x = θ cos θ and y = θ sin θ, we have

Arc length =

∫ 2π

0

√
(cos θ − θ sin θ)2 + (sin θ + θ cos θ)2 dθ =

∫ 2π

0

√
1 + θ2 dθ = 21.256.

37. Since x = cos θ/θ and y = sin θ/θ, we have

Arc length =

∫ 2π

π

√(−θ sin θ − cos θ

θ2

)2

+
(
θ cos θ − sin θ

θ2

)2

dθ

=

∫ 2π

π

√
θ2 + 1

θ4
dθ = 0.712.

38. Parameterized by θ, the curve r = f(θ) is given by x = f(θ) cos θ and y = f(θ) sin θ. Then

Arc length =

∫ β

α

√(
dx

dθ

)2

+
(
dy

dθ

)2

dθ

=

∫ β

α

√
(f ′(θ) cos θ − f(θ) sin θ)2 + (f ′(θ) sin θ + f(θ) cos θ)2 dθ
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=

∫ β

α

√
(f ′(θ))2 cos2 θ − 2f ′(θ)f(θ) cos θ sin θ + (f(θ))2 sin2 θ

+(f ′(θ))2 sin2 θ + 2f ′(θ)f(θ) sin θ cos θ + (f(θ))2 cos2 θ dθ

=

∫ β

α

√
(f ′(θ))2(cos2 θ + sin2 θ) + (f(θ))2(sin2 θ + cos2 θ) dθ

=

∫ β

α

√
(f ′(θ))2 + (f(θ))2 dθ.

Solutions for Section 8.4

Exercises

1. Since density is e−x gm/cm,

Mass =

∫ 10

0

e−x dx = −e−x
∣∣∣∣
10

0

= 1− e−10 gm.

2. Strips perpendicular to the x-axis have length 3, area 3∆x, and mass 5 · 3∆x gm. Thus

Mass =

∫ 2

0

5 · 3 dx =

∫ 2

0

15 dx.

Strips perpendicular to the y-axis have length 2, area 2∆y, and mass 5 · 2∆y gm. Thus

Mass =

∫ 3

0

5 · 2 dy =

∫ 3

0

10 dy.

3. (a) Suppose we choose an x, 0 ≤ x ≤ 2. If ∆x is a small fraction of a meter, then the density of the rod is approximately
δ(x) anywhere from x to x + ∆x meters from the left end of the rod (see below). The mass of the rod from x to
x+∆xmeters is therefore approximately δ(x)∆x = (2+6x)∆x. If we slice the rod intoN pieces, then a Riemann

sum is
N∑

i=1

(2 + 6xi)∆x.

� ���

x ∆x 2

(b) The definite integral is

M =

∫ 2

0

δ(x) dx =

∫ 2

0

(2 + 6x) dx = (2x+ 3x2)

∣∣∣∣
2

0

= 16 grams.

4. We have

Moment =

∫ 2

0

xδ(x) dx =

∫ 2

0

x(2 + 6x) dx

=

∫ 2

0

(6x2 + 2x) dx = (2x3 + x2)

∣∣∣∣
2

0

= 20 gram-meters.

Now, using this and Problem 3 (b), we have

Center of mass =
Moment

Mass
=

20 gram-meters
16 grams

=
5

4
meters (from its left end).
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5. (a) Figure 8.57 shows a graph of the density function.

20

300

900

x

Figure 8.57

(b) Suppose we choose an x, 0 ≤ x ≤ 20. We approximate the density of the number of the cars between x and x+ ∆x
miles as δ(x) cars per mile. Therefore, the number of cars between x and x + ∆x is approximately δ(x)∆x. If we
slice the 20 mile strip into N slices, we get that the total number of cars is

C ≈
N∑

i=1

δ(xi)∆x =

N∑

i=1

[
600 + 300 sin(4

√
xi + 0.15)

]
∆x,

where ∆x = 20/N . (This is a right-hand approximation; the corresponding left-hand approximation is
N−1∑

i=0

δ(xi)∆x.)

(c) As N →∞, the Riemann sum above approaches the integral

C =

∫ 20

0

(600 + 300 sin 4
√
x+ 0.15) dx.

If we calculate the integral numerically, we find C ≈ 11513. We can also find the integral exactly as follows:

C =

∫ 20

0

(600 + 300 sin 4
√
x+ 0.15) dx

=

∫ 20

0

600 dx+

∫ 20

0

300 sin 4
√
x+ 0.15 dx

= 12000 + 300

∫ 20

0

sin 4
√
x+ 0.15 dx.

Let w =
√
x+ 0.15, so x = w2 − 0.15 and dx = 2w dw. Then

∫ x=20

x=0

sin 4
√
x+ 0.15 dx = 2

∫ w=
√

20.15

w=
√

0.15

w sin 4w dw, (using integral table III-15)

= 2
[
−1

4
w cos 4w +

1

16
sin 4w

] ∣∣∣∣

√
20.15

√
0.15

≈ −1.624.

Using this, we have C ≈ 12000 + 300(−1.624) ≈ 11513, which matches our numerical approximation.

6. (a) Orient the rectangle in the coordinate plane in such a way that the side referred to in the problem—call it S—lies on
the y-axis from y = 0 to y = 5, as shown in Figure 8.58. We may subdivide the rectangle into strips of width ∆x
and length 5. If the left side of a given strip is a distance x away from S (i.e., the y-axis), its density 2 is 1/(1 + x4).
If ∆x is small enough, the density of the strip is approximately constant—i.e., the density of the whole strip is about
1/(1 + x4). The mass of the strip is just its density times its area, or 5∆x/(1 + x4). Thus the mass of the whole
rectangle is approximated by the Riemann sum

∑ 5∆x

1 + x4
,



8.4 SOLUTIONS 555

5

3

y

x

∆x

S

Figure 8.58

(b) The exact mass of the rectangle is obtained by letting ∆x→ 0 in the Riemann sums above, giving us the integral
∫ 3

0

5 dx

1 + x4
.

Since it is not easy to find an antiderivative of 5/(1 + x4), we evaluate this integral numerically, getting 5.5.

7. The total mass is 7 grams. The center of mass is given by

x =
2(−3) + 5(4)

7
= 2 cm to right of origin.

8. The total mass is 9 gm, and so the center of mass is located at x = 1
9
(−10 · 5 + 1 · 3 + 2 · 1) = −5.

Problems

9. Since the density varies with x, the region must be sliced perpendicular to the x-axis. This has the effect of making the
density approximately constant on each strip. See Figure 8.59. Since a strip is of height y, its area is approximately y∆x.
The density on the strip is δ(x) = 1 + x gm/cm2. Thus

Mass of strip ≈ Density · Area ≈ (1 + x)y∆x gm.

Because the tops of the strips end on two different lines, one for x ≥ 0 and the other for x < 0, the mass is calculated as
the sum of two integrals. See Figure 8.59. For the left part of the region, y = x+ 1, so

Mass of left part = lim
∆x→0

∑
(1 + x)y∆x =

∫ 0

−1

(1 + x)(x+ 1) dx

=

∫ 0

−1

(1 + x)2 dx =
(x+ 1)3

3

∣∣∣∣∣

0

−1

=
1

3
gm.

From Figure 8.59, we see that for the right part of the region, y = −x+ 1, so

Mass of right part = lim
∆x→0

∑
(1 + x)y∆x =

∫ 1

0

(1 + x)(−x+ 1) dx

=

∫ 1

0

(1− x2) dx = x− x3

3

∣∣∣∣∣

1

0

=
2

3
gm.

Total mass =
1

3
+

2

3
= 1 gm.
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Figure 8.59

10. (a) Partition [0, 10,000] intoN subintervals of width ∆r. The area in the ith subinterval is ≈ 2πri∆r. So the total mass
in the slick = M ≈

∑N

i=1
2πri

(
50

1+ri

)
∆r.

(b) M =

∫ 10,000

0

100π
r

1 + r
dr. We may rewrite

r

1 + r
as 1+r

1+r
− 1

1+r
= 1− 1

1+r
, so that

M =

∫ 10,000

0

100π(1− 1

1 + r
) dr = 100π

(
r − ln |1 + r|

∣∣∣∣
10,000

0

)

= 100π(10,000− ln(10,001)) ≈ 3.14× 106 kg.

(c) We wish to find an R such that
∫ R

0

100π
r

1 + r
dr =

1

2

∫ 10,000

0

100π
r

1 + r
dr ≈ 1.57× 106.

So 100π(R− ln |R+ 1|) ≈ 1.57× 106; R− ln |R+ 1| ≈ 5000. By trial and error, we find R ≈ 5009 meters.

11. (a) We form a Riemann sum by slicing the region into concentric rings of radius r and width ∆r. Then the volume
deposited on one ring will be the heightH(r) multiplied by the area of the ring. A ring of width ∆r will have an area
given by

Area = π(r + ∆r)2 − π(r2)

= π(r2 + 2r∆r + (∆r)2 − r2)

= π(2r∆r + (∆r)2).

Since ∆r is approaching zero, we can approximate

Area of ring ≈ π(2r∆r + 0) = 2πr∆r.

From this, we have
∆V ≈ H(r) · 2πr∆r.

Thus, summing the contributions from all rings we have

V ≈
∑

H(r) · 2πr∆r.

Taking the limit as ∆r → 0, we get

V =

∫ 5

0

2πr
(
0.115e−2r

)
dr.

(b) We use integration by parts:

V = 0.23π

∫ 5

0

(
re−2r

)
dr

= 0.23π

(
re−2r

−2
− e−2r

4

)∣∣∣∣
5

0

≈ 0.181(millimeters) · (kilometers)2 = 0.181 · 10−3 · 106 meters3 = 181 cubic meters.
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12. Partition a ≤ x ≤ b into N subintervals of width ∆x =
(b− a)

N
; a = x0 < x1 < · · · < xN = b. The mass of the

strip on the ith subinterval is approximately mi = δ(xi)[f(xi)− g(xi)]∆x. If we use a right-hand Riemann sum, the
approximation for the total mass is
N∑

i=1

δ(xi)[f(xi)− g(xi)]∆x, and the exact mass is M =

∫ b

a

δ(x)[f(x)− g(x)]dx.

13. (a) Use the formula for the volume of a cylinder:

Volume = πr2l.

Since it is only a half cylinder

Volume of shed =
1

2
πr2l.

(b) Set up the axes as shown in Figure 8.60. The density can be defined as

Density = ky.

Now slice the sawdust horizontally into slabs of thickness ∆y as shown in Figure 8.61, and calculate

Volume of slab ≈ 2xl∆y = 2l(
√
r2 − y2)∆y.

Mass of slab = Density · Volume ≈ 2kly
√
r2 − y2∆y.

Finally, we compute the total mass of sawdust:

Total mass of sawdust =

∫ r

0

2kly
√
r2 − y2 dy = −2

3
kl(r2 − y2)3/2

∣∣∣∣
r

0

=
2klr3

3
.

−r x r

r

x

y

Figure 8.60
�

�

l�

�2x

∆y

Figure 8.61

14. First we rewrite the chart, listing the density with the corresponding distance from the center of the earth (x km below the
surface is equivalent to 6370− x km from the center):

This gives us spherical shells whose volumes are 4
3
π(r3

i − r3
i+1) for any two consecutive distances from the origin.

We will assume that the density of the earth is increasing with depth. Therefore, the average density of the ith shell is
between Di and Di+1, the densities at top and bottom of shell i. So 4

3
πDi+1(r3

i − r3
i+1) and 4

3
πDi(r

3
i − r3

i+1) are upper
and lower bounds for the mass of the shell.

Table 8.5
i xi ri = 6370− xi Di

0 0 6370 3.3
1 1000 5370 4.5
2 2000 4370 5.1
3 2900 3470 5.6
4 3000 3370 10.1
5 4000 2370 11.4
6 5000 1370 12.6
7 6000 370 13.0
8 6370 0 13.0
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To get a rough approximation of the mass of the earth, we don’t need to use all the data. Let’s just use the densities
at x = 0, 2900, 5000 and 6370 km. Calculating an upper bound on the mass,

MU =
4

3
π[13.0(13703 − 03) + 12.6(34703 − 13703) + 5.6(63703 − 34703)] · 1015 ≈ 7.29× 1027 g.

The factor of 1015 may appear unusual. Remember the radius is given in kilometers and the density is given in g/cm3, so
we must convert kilometers to centimeters: 1 km = 105 cm , so 1 km3 = 1015 cm3.

The lower bound is

ML =
4

3
π[12.6(13703 − 03) + 5.6(34703 − 13703) + 3.3(63703 − 34703)] · 1015 ≈ 4.05× 1027 g.

Here, our upper bound is just under 2 times our lower bound.
Using all our data, we can find a more accurate estimate. The upper and lower bounds are

MU =
4

3
π

7∑

i=0

Di+1(r3
i − r3

i+1) · 1015 g

and

ML =
4

3
π

7∑

i=0

Di(r
3
i − r3

i+1) · 1015 g.

We have

MU =
4

3
π[4.5(63703 − 53703) + 5.1(53703 − 43703) + 5.6(43703 − 34703)

+ 10.1(34703 − 33703) + 11.4(33703 − 23703) + 12.6(23703 − 13703)

+ 13.0(13703 − 3703) + 13.0(3703 − 03)] · 1015 g

≈ 6.50× 1027 g

and

ML =
4

3
π[3.3(63703 − 53703) + 4.5(53703 − 43703) + 5.1(43703 − 34703)

+ 5.6(34703 − 33703) + 10.1(33703 − 23703) + 11.4(23703 − 13703)

+ 12.6(13703 − 3703) + 13.0(3703 − 03)] · 1015 g

≈ 5.46× 1027 g.

15. We slice time into small intervals. Since t is given in seconds, we convert the minute to 60 seconds. We consider water
loss over the time interval 0 ≤ t ≤ 60. We also need to convert inches into feet since the velocity is given in ft/sec. Since
1 inch = 1/12 foot, the square hole has area 1/144 square feet. For water flowing through a hole with constant velocity v,
the amount of water which has passed through in some time, ∆t, can be pictured as the rectangular solid in Figure 8.62,
which has volume

Area · Height = Area · Velocity · Time.

???

Area = 1
144

ft2

?
Height = g(t)∆t -

Figure 8.62: Volume of water passing
through hole
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Over a small time interval of length ∆t, starting at time t, water flows with a nearly constant velocity v = g(t)
through a hole 1/144 square feet in area. In ∆t seconds, we know that

Water lost ≈
(

1

144
ft2
)

(g(t) ft/sec)(∆t sec) =
(

1

144

)
g(t) ∆t ft3.

Adding the water from all subintervals gives

Total water lost ≈
∑ 1

144
g(t) ∆t ft3.

As ∆t→ 0, the sum tends to the definite integral:

Total water lost =

∫ 60

0

1

144
g(t) dt ft3.

16. (a) Divide the atmosphere into spherical shells of thickness ∆h. See Figure 8.63. The density on a typical shell, ρ(h), is
approximately constant. The volume of the shell is approximately the surface area of a sphere of radius re+hmeters
times ∆h, where re = 6.4 · 106 meters is the radius of the earth,

Volume of Shell ≈ 4π(re + hi)
2∆h.

A Riemann sum for the total mass is

Mass ≈
∑

4π(re + h)2 × 1.28e−0.000124hi∆h kg.

ith spherical shell

re + h

∆h

Earth

Figure 8.63

(b) This Riemann sum becomes the integral

Mass = 4π

∫ 100

0

(re + h)2 · 1.28e−0.000124h dh

= 4π

∫ 100

0

(6.4 · 106 + h)2 · 1.28e−0.000124h dh.

Evaluating the integral using numerical methods gives M = 6.5 · 1016 kg.

17. We need the numerator of x, to be zero, i.e.
∑

ximi = 0. Since all of the masses are the same, we can factor them out
and write 4

∑
xi = 0. Thus the fourth mass needs to be placed so that all of the positions sum to zero. The first three

positions sum to (−6 + 1 + 3) = −2, so the fourth mass needs to be placed at x = 2.

18. We have

Total mass of the rod =

∫ 3

0

(1 + x2) dx =

[
x+

x3

3

] ∣∣∣∣
3

0

= 12 grams.

In addition,

Moment =

∫ 3

0

x(1 + x2) dx =

[
x2

2
+
x4

4

] ∣∣∣∣
3

0

=
99

4
gram-meters.

Thus, the center of mass is at the position x̄ = 99/4
12

= 2.06 meters.
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19. The center of mass is

x̄ =

∫ π
0
x(2 + sinx) dx∫ π

0
(2 + sinx) dx

.

The numerator is
∫ π

0
(2x+ x sinx) dx = (x2 − x cosx+ sinx)

∣∣∣∣
π

0

= π2 + π.

The denominator is
∫ π

0
(2 + sinx) dx = (2x− cosx)

∣∣∣∣
π

0

= 2π + 2. So the center of mass is at

x =
π2 + π

2π + 2
=
π(π + 1)

2(π + 1)
=
π

2
.

20. (a) We find that

Moment =

∫ 1

0

x(1 + kx2) dx =

(
x2

2
+
kx4

4

)∣∣∣∣
1

0

=
1

2
+
k

4
gram-meters,

and that

Total mass =

∫ 1

0

(1 + kx2) dx =

(
x+

kx3

3

)∣∣∣∣
1

0

= 1 +
k

3
grams.

Thus, the center of mass is

x̄ =
1
2

+ k
4

1 + k
3

=
3

4

(
2 + k

3 + k

)
meters.

(b) Let f(k) = 3
4

(
2+k
3+k

)
. Then f ′(k) = 3

4

(
1

(3+k)2

)
, which is always positive, so f is an increasing function of k.

Since f(0) = 0.5, this is the smallest value of f . As k → ∞, f(k) → 3/4 = 0.75. So f(k) is always between 0.5
and 0.75.

21. (a) The density is minimum at x = −1 and increases as x increases, so more of the mass of the rod is in the right half of
the rod. We thus expect the balancing point to be to the right of the origin.

(b) We need to compute
∫ 1

−1

x(3− e−x) dx =
(

3

2
x2 + xe−x + e−x

) ∣∣∣∣
1

−1

(using integration by parts)

=
3

2
+ e−1 + e−1 −

(
3

2
− e1 + e1

)
=

2

e
.

We must divide this result by the total mass, which is given by
∫ 1

−1

(3− e−x) dx = (3x+ e−x)

∣∣∣∣
1

−1

= 6− e+
1

e
.

We therefore have

x̄ =
2/e

6− e+ (1/e)
=

2

1 + 6e− e2
≈ 0.2.

22. Since the region is symmetric about the x-axis, ȳ = 0.
To find x̄, we first find the density. The area of the disk is π/2 m2, so it has density 3/(π/2) = 6/π kg/m2. We find

the mass of the small strip of width ∆x in Figure 8.64. The height of the strip is
√

1− x2, so

Area of the small strip ≈ Ax(x)∆x = 2 ·
√

1− x2∆x m2.

When multiplied by the density 6/π, we get

Mass of the strip ≈ 12

π
·
√

1− x2∆x kg.

We then sum the product of these masses with x, and take the limit as ∆x→ 0 to get

Moment =

∫ 1

0

12

π
x
√

1− x2 dx = − 4

π
(1− x2)3/2

∣∣∣∣
1

0

=
4

π
meter.
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Finally, we divide by the total mass 3 kg to get the result x̄ = 4/(3π) meters.

6

?

-√
1− x2

	
∆x

1

−1

1

x

y

Figure 8.64: Area of a small strip

- �
∆x

1

x2

x

y

Figure 8.65

23. (a) Since the density is constant, the mass is the product of the area of the plate and its density.

Area of the plate =

∫ 1

0

x2 dx =
1

3
x3
∣∣∣
1

0
=

1

3
cm2.

Thus the mass of the plate is 2 · 1/3 = 2/3 gm.
(b) See Figure 8.65. Since the region is “fatter” closer to x = 1, x̄ is greater than 1/2.
(c) To find the center of mass along the x-axis, we slice the region into vertical strips of width ∆x. See Figure 8.65. Then

Area of strip = Ax(x)∆x ≈ x2∆x

Then, since the density is 2 gm/cm2, we have

x =

∫ 1

0
2x3 dx

2/3
=

3

2
· 2x4

4

∣∣∣∣
1

0

= 3
(

1

4

)
=

3

4
cm.

This is greater than 1/2, as predicted in part (b).

24. (a) Since the density is constant, the mass is the product of the area of the plate and its density.

Area of the plate =

∫ 1

0

√
x dx =

2

3
x3/2

∣∣∣
1

0
=

2

3
cm2.

Thus the mass of the plate is 5 · 2/3 = 10/3 gm.
(b) To find x̄, we slice the region into vertical strips of width ∆x. See Figure 8.66. Then

Area of strip = Ax(x)∆x ≈ √x∆x cm2.

Then, since the density is 5 gm/cm2, we have

x =

∫
xδAx(x) dx

Mass
=

∫ 1

0
5x3/2 dx

10/3
=

3

10
2x5/2

∣∣1
0

=
3

5
cm.

To find ȳ, we slice the region into horizontal strips of width ∆y

Area of horizontal strip = Ay(y)∆y ≈ (1− x)∆y = (1− y2)∆y cm2.

Then, since the density is 5 gm/cm2, we have

y =

∫
yδAy(y) dy

Mass
=

∫ 1

0
5(y − y3) dy

10/3
=

3

10
5

(
y2

2
− y4

4

)∣∣∣∣
1

0

=
3

10
· 5

4
=

3

8
cm.
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- �
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1
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Figure 8.66
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I
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Figure 8.67

25. The triangle is symmetric about the x axis, so ȳ = 0.
To find x̄, we first calculate the density. The area of the triangle is ab/2, so it has density 2m/(ab) where m is the

total mass of the triangle. We need to find the mass of a small strip of width ∆x located at xi (see Figure 8.67).

Area of the small strip ≈ Ax(x)∆x = 2 · b(a− x)

2a
∆x.

Multiplying by the density 2m/(ab) gives

Mass of the strip ≈ 2m
(a− x)

a2
∆x.

We then sum the product of these masses with xi, and take the limit as ∆x→ 0 to get

Moment =

∫ a

0

2mx(a− x)

a2
dx =

2m

a2

(
ax2

2
− x3

3

)∣∣∣∣
a

0

=
2m

a2

(
a3

2
− a3

3

)
=
ma

3
.

Finally, we divide by the total mass m to get the desired result x̄ = a/3, which is independent of the length of the base b.

26. Stand the cone with the base horizontal, with center at the origin. Symmetry gives us that x̄ = ȳ = 0. Since the cone is
fatter near its base we expect the center of mass to be nearer to the base.

Slice the cone into disks parallel to the xy-plane.
As we saw in Example 2 on page 369, a disk of thickness ∆z at height z above the base has

Volume of disk = Az(z)∆z ≈ π(5− z)2∆z cm3.

Thus, since the density is δ,

z =

∫
zδAz(z) dz

Mass
=

∫ 5

0
z · δπ(5− z)2 dz

Mass
cm.

To evaluate the integral in the numerator, we factor out the constant density δ and π to get

∫ 5

0

z · δπ(5− z)2 dz = δπ

∫ 5

0

z(25− 10z + z2) dz = δπ

(
25z2

2
− 10z3

3
+
z4

4

)∣∣∣∣
5

0

=
625

12
δπ.

We divide this result by the total mass of the cone, which is
(

1
3
π52 · 5

)
δ:

z =
625
12
δπ

1
3
π53δ

=
5

4
= 1.25 cm.

As predicted, the center of mass is closer to the base of the cone than its top.

27. Since the density is constant, the total mass of the solid is the product of the volume of the solid and its density: δπ(1 −
e−2)/2. By symmetry, ȳ = 0. To find x̄, we slice the solid into disks of width ∆x, perpendicular to the x-axis. See
Figure 8.68. A disk at x has radius y = e−x, so

Volume of disk = Ax(x)∆x = πy2∆x = πe−2x∆x.
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Since the density is δ, we have

x =

∫ 1

0
x · δπe−2xdx

Total mass
=
δπ
∫ 1

0
xe−2xdx

δπ(1− e−2)/2
=

2

1− e−2

∫ 1

0

xe−2x dx.

The integral
∫
xe−2x dx can be done by parts: let u = x and v′ = e−2x. Then u′ = 1 and v = e−2x/(−2). So

∫
xe−2x dx =

xe−2x

−2
−
∫

e−2x

−2
dx =

xe−2x

−2
− e−2x

4
.

and then ∫ 1

0

xe−2x dx =

(
xe−2x

−2
− e−2x

4

)∣∣∣∣
1

0

=

(
e−2

−2
− e−2

4

)
−
(

0− 1

4

)
=

1− 3e−2

4
.

The final result is:

x =
2

1− e−2
· 1− 3e−2

4
=

1− 3e−2

2− 2e−2
≈ 0.343.

Notice that x̄ is less that 1/2, as we would expect from the fact that the solid is wider near the origin.

x

y

y = e−x

- �
∆x

	

Radius = y

Figure 8.68

28. (a) Position the pyramid so that the center of its base lies at the origin on the xy-plane. Slice the pyramid into square
slabs parallel to its base. We compute the mass of the pyramid by adding the masses of the slabs.

The mass of a slab is its volume multiplied by the density δ. To compute the volume of a slab, we need to get an
expression for the side s of the slab in terms of its height z. Using the similar triangles in Figure 8.69, we see that

s

40
=

(10− z)
10

.

Thus s = 4(10− z). Since the area of the square slab’s face is s2,

Volume of the slab ≈ Az(z)∆z = s2∆z = 16(10− z)2∆z.

Mass of slab = 16δ(10− z)2∆z.

The mass of the pyramid can be found by summing all of the masses of the slabs, and letting the thickness ∆z
approach zero:

Total mass = lim
∆z→0

∑
16δ(10− z)2∆z =

∫ 10

0

16δ(10− z)2 dz =
−16δ(10− z)3

3

∣∣∣∣
10

0

=
16000δ

3
gm.
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Figure 8.69

(b) From symmetry, we have x̄ = ȳ = 0. Since the pyramid is fatter near its base we expect the center of mass to be
nearer to the base. Since

Volume of slab = Az(z)∆z = 16(10− z)2∆z,

z =

∫ 10

0
z · 16δ(10− z)2 dz

Total mass
.

To evaluate the integral in the numerator, we factor out the constant 16δ and expand the integrand to get

16δ

∫ 10

0

(100z − 20z2 + z3) dz = 16δ

(
50z2 +

−20z3

3
+
z4

4

)∣∣∣∣
10

0

=
40000δ

3
.

We divide this result by the total mass 16000δ/3 of the pyramid

z =
40000δ/3

16000δ/3
=

40000

16000
= 2.5 cm.

As predicted, the center of mass is closer to the base of the pyramid than its top.

Solutions for Section 8.5

Exercises

1. The work done is given by

W =

∫ 2

1

3x dx =
3

2
x2

∣∣∣∣
2

1

=
9

2
joules.

2. The work done is given by

W =

∫ 3

0

3x dx =
3

2
x2

∣∣∣∣
3

0

=
27

2
joules.

3. (a) For compression from x = 0 to x = 1,

Work =

∫ 1

0

3x dx =
3

2
x2

∣∣∣∣
1

0

=
3

2
= 1.5 joules.

For compression from x = 4 to x = 5,

Work =

∫ 5

4

3x dx =
3

2
x2

∣∣∣∣
5

4

=
3

2
(25− 16) =

27

2
= 13.5 joules.

(b) The second answer is larger. Since the force increases with x, for a given displacement, the work done is larger for
larger x values. Thus, we expect more work to be done in moving from x = 4 to x = 5 than from x = 0 to x = 1.
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4. Since the gravitational force is

F =
4 · 1014

r2
newtons

and r varies between 6.4 · 106 and 7.4 · 106 meters,

Work done =

∫ 7.4·106

6.4·106

4 · 1014

r2
dr = −4.1014 1

r

∣∣∣∣
7.4·106

6.4·106

= 4 · 1014
(

1

6.4 · 106
− 1

7.4 · 106

)
= 8.4 · 106 joules.

5. The force exerted on the satellite by the earth (and vice versa!) is GMm/r2, where r is the distance from the center of
the earth to the center of the satellite, m is the mass of the satellite, M is the mass of the earth, and G is the gravitational
constant. So the total work done is

∫ 8.4·106

6.4·106

F dr =

∫ 8.4·106

6.4·106

GMm

r2
dr =

(−GMm

r

) ∣∣∣∣
8.4·106

6.4·106

≈ 1.489 · 1010 joules.

Problems

6. Let x be the distance from ground to the bucket of cement.
At height x, if the bucket is lifted by ∆x, the work done is
500∆x+0.5(75−x)∆x. See Figure 8.70. The 500∆x term
is due to the bucket of cement; the 0.5(75 − x)∆x term is
due to the remaining cable. So the total work, W , required
to lift the bucket is

W =

∫ 30

0

500dx+

∫ 30

0

0.5(75− x)dx

= 500 · 30 + 0.5(75 · 30− 1

2
302)

= 15,900 ft-lb. 0

x

30

75

500

height

Figure 8.70
7. When the anchor has been lifted through h feet, the length of chain in the water is 25− h feet, so the total weight of the

anchor and chain in the water is 50 + 3(25− h) lb. Then

Work to lift the anchor and chain ∆h higher = Weight · Distance lifted

= (100 + 3(25− h))∆h.

To find the total work, we integrate from h = 0 to h = 25:

W =

∫ 25

0

(100 + 3(25− h))dh =

∫ 25

0

(175− 3h)dh =

(
175h− 3h2

2

)∣∣∣∣
25

0

= 3437.5ft-lbs.

8. To lift the weight an additional height ∆h off the ground from a height of h, we must do work on the weight and the amount
of rope not yet pulled onto the roof. Since the roof is 30 ft off the ground, there will be 30− h feet remaining of rope, for
a weight of 4(30−h). So the work required to raise the weight and the rope a height ∆h will be ∆h(1000 + 4(30−h)).
To find the total work, we integrate this quantity from h = 0 to h = 10:

Work =

∫ 10

0

(1000 + 4(30− h)) dh

=

∫ 10

0

(1120− 4h) dh
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= (1120h− 2h2)

∣∣∣∣
10

0

= 11,200− 200

= 11,000 ft-lbs.

9. The bucket moves upward at 40/10 = 4 meters/minute. If time is in minutes, at time t the bucket is at a height of x = 4t
meters above the ground. See Figure 8.71.

The water drips out at a rate of 5/10 = 0.5 kg/minute. Initially there is 20 kg of water in the bucket, so at time t
minutes, the mass of water remaining is

m = 20− 0.5t kg.
Consider the time interval between t and t + ∆t. During this time the bucket moves a distance ∆x = 4∆t meters. So,
during this interval,

Work done ≈ mg∆x = (20− 0.5t)g4∆t joules.

Total work done = lim
∆t→0

∑
(20− 0.5t)g4∆t = 4g

∫ 10

0

(20− 0.5t) dt

= 4g(20t− 0.25t2)
∣∣∣
10

0
= 700g = 700(9.8) = 6860 joules.

x

6

?

40 m

Platform

Ground

Figure 8.71

10. Consider lifting a rectangular slab of water h feet from the top up to the top. See Figure 8.72. The area of such a slab is
(10)(20) = 200 square feet; if the thickness is dh, then the volume of such a slab is 200 dh cubic feet. This much water
weighs 62.4 pounds per ft3, so the weight of such a slab is (200 dh)(62.4) = 12480 dh pounds. To lift that much water h
feet requires 12480h dh foot-pounds of work. To lift the whole tank, we lift one plate at a time; integrating over the slabs
yields ∫ 15

0

12480h dh =
12480h2

2

∣∣∣∣
15

0

=
12480 · 152

2
= 1,404,000 foot-pounds.

10

20

15

h

dh

Figure 8.72
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11. We slice the water horizontally and find the work required to pump each horizontal slice of water over the top. See
Figure 8.73. At a distance h ft above the bottom, a slice of thickness ∆h has

Volume ≈ 50 · 20∆h ft3.

Since the density of water is ρ lb/ft3,

Weight of the slice ≈ ρ(50 · 20 ·∆h) lbs.

The distance to lift the slice of water at height h ft is 10− h ft, so

Work to move one slice = ρ · Volume · Distance lifted

≈ ρ(50 · 20 ·∆h)(10− h)

= 100ρ(10− h)∆h ft-lb.

The work done, W , to pump all the water is the sum of the work done on the pieces:

W ≈
∑

100ρ(10− h)∆h.

As ∆h→ 0, we obtain a definite integral. Since h varies from h = 0 to h = 9 and ρ = 62.4 lb/ft3, the total work is:

W =

∫ 9

0

100ρ(10− h)dh = 62400

(
10h− h2

2

)∣∣∣∣
9

0

= 62400(49.5) = 3,088,800.

The work to pump all the water out is 3,088,800 ft-lbs.

6

?

10 ft

6?h ft6

?
∆h

�

�

20 ft

�
�

50 ft

Figure 8.73

12. Let x be the distance measured from the bottom
the tank. See Figure 8.74. To pump a layer of wa-
ter of thickness ∆x at x feet from the bottom, the
work needed is

(62.4)π62(20− x)∆x.

Therefore, the total work is

W =

∫ 10

0

36 · (62.4)π(20− x)dx

= 36 · (62.4)π(20x− 1

2
x2)

∣∣∣∣
10

0

= 36 · (62.4)π(200− 50)

≈ 1,058,591.1 ft-lb.

?

6

?

6

-

?

6

?

6

6
x

20− x

Volume of Slice = π(62)∆x

∆x10′
20′

6′

Figure 8.74
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13. Let x be the distance from the bottom of the
tank. See Figure 8.75. To pump a layer of
water of thickness ∆x at x feet from the
bottom to 10 feet above the tank, the work
done is (62.4)π62(30− x)∆x. Thus the to-
tal work is

∫ 20

0

36 · (62.4)π(30− x)dx

= 36 · (62.4)π
(

30x− 1

2
x2
) ∣∣∣∣

20

0

= 36 · (62.4)π(30(20)− 1

2
202)

≈ 2,822,909.50 ft-lb.

10′

?

6

?

6

?

6

-

?

6

6

30− x

x

Volume of Slice = π62∆x

∆x

20′

6′

Figure 8.75

14. (a) We slice the water horizontally. Each slice is a cylindrical slab of radius 4 and thickness ∆h, so

Volume of each slab ≈ π42∆h ft3.

See Figure 8.76. The density of water is δ lb/ft3, so

Weight of slab ≈ δπ42∆h lb.

Water at a height of h ft must be lifted a distance of 10− h ft.

Work to move one slice = δ · Volume · Distance lifted

≈ δ(π(4)2∆h)(10− h) ft-lb.

Since the density of water is δ = 62.4 lb/ft3 and since h varies from h = 0 to h = 10, the total work, W , is:

W =

∫ 10

0

δ(π42)(10− h)dh = 16δπ

∫ 10

0

(10− h)dh = 998.4π

(
10h− h2

2

)∣∣∣∣∣

10

0

= 156,828 ft-lb.

The total work required is 156,828 ft-lbs.
(b) This is the same as part (a) except the water must be lifted a distance of 15− h ft. The total work is:

W =

∫ 10

0

δ(π42)(15− h)dh = 16δπ

∫ 10

0

(15− h)dh = 998.4π

(
15h− h2

2

)∣∣∣∣∣

10

0

= 313,656 ft-lb.

The total work required is 313,656 ft-lbs.
(c) This is the same as part (a) except that h varies from h = 0 to h = 8. The total work is:

W =

∫ 8

0

δ(π42)(10− h)dh = 16δπ

∫ 8

0

(10− h)dh = 998.4π

(
10h− h2

2

)∣∣∣∣∣

8

0

= 150,555.

The total work required is 150,555 ft-lbs.
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6

?

10 ft
6

?

h

6?∆h

6

?

10− h

Figure 8.76

15. We begin by slicing the oil into slabs at a distance h below the surface with thickness ∆h. We can then calculate the
volume of the slab and the work needed to raise this slab to the surface, a distance of h.

Volume of ∆h disk = πr2∆h = 25π∆h

Weight of ∆h disk = (25π)(50)∆h

Distance to raise = h

Work to raise = (25π)(50)(h)∆h.

Integrating the work over all such slabs, we have

Work =

∫ 25

19

(50)(25π)(h) dh

= 625πh2

∣∣∣∣
25

19

= 390,625π − 225,625π

≈ 518,363 ft-lbs.

A diagram of this tank is shown in Figure 8.77.

6

?

15′

∆h
6
?
6′

6

?

10′

6

?

h
-� 5′

Figure 8.77

16. We slice the water horizontally as in Figure 8.78. We use similar triangles to find the radius r of the slice at height h in
terms of h:

r

h
=

4

12
so r =

1

3
h.
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At height h,

Volume of slice ≈ πr2∆h = π
(

1

3
h
)2

∆h ft3.

The density of water is δ lb/ft3, so

Weight of slice ≈ δπ
(

1

3
h
)3

∆h lb.

The water at height h must be lifted a distance of 12− h ft, so

Work to move slice = δ · Volume · Distance lifted

≈ δ

(
π
(

1

3
h
)2

∆h

)
(12− h) ft-lb.

The work done, W , to lift all the water is the sum of the work done on the pieces:

W ≈
∑

δπ(
1

3
h)2∆h(12− h) ft-lb.

As ∆h→ 0, we obtain a definite integral. Since h varies from h = 0 to h = 9, and δ = 62.4, we have:

W =

∫ 9

0

δπ(
1

3
h)2(12− h)dh =

62.4π

9

∫ 9

0

(12h2 − h3)dh =
62.4π

9

(
4h3 − h4

4

)∣∣∣∣∣

9

0

= 27,788 ft-lb.

The work to pump all the water out is 27,788 ft-lbs.

6

?

12 ft

6

?

h

6?∆h

6

?

12− h

-� r

-� 4 ft

Figure 8.78

17. Let h represent distance below the surface in feet. We slice the tank up into horizontal slabs of thickness ∆h. From
looking at Figure 8.79, we can see that the slabs will be rectangular. The length of any slab is 12 feet. The width w of a
slab h units below the ground will equal 2x, where (14 − h)2 + x2 = 16, so w = 2

√
42 − (14− h)2. The volume of

such a slab is therefore 12w∆h = 24
√

16− (14− h)2 ∆h cubic feet; the slab weighs 42 · 24
√

16− (14− h)2 ∆h =

1008
√

16− (14− h)2 ∆h pounds. So the total work done in pumping out all the gasoline is
∫ 18

10

1008h
√

16− (14− h)2 dh = 1008

∫ 18

10

h
√

16− (14− h)2 dh.

Substitute s = 14− h, ds = −dh. We get

1008

∫ 18

10

h
√

16− (14− h)2 dh = −1008

∫ −4

4

(14− s)
√

16− s2 ds

= 1008 · 14

∫ 4

−4

√
16− s2 ds− 1008

∫ 4

−4

s
√

16− s2 ds.
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The first integral represents the area of a semicircle of radius 4, which is 8π. The second is the integral of an odd function,
over the interval −4 ≤ s ≤ 4, and is therefore 0. Hence, the total work is 1008 · 14 · 8π ≈ 354,673 foot-pounds.

-�

6

?

6

?

6
?

12

14

14− h ∆h

10

4

x

surface
h

Figure 8.79

18. Divide the muddy water into horizontal slabs of thickness ∆h. See Figure 8.80. Then for a typical slab

Volume of slab = π(0.5)2∆h m3

Mass of slab ≈ δ(h)π(0.5)2∆h = 0.25π(1 + kh)∆h kg

The water in this slab is moved a distance of h+ 0.3 meters to the rim of the barrel. Now

Work done = Mass · g · Distance moved,

and work is measured in newtons if mass is in kilograms and distance is in meters, so

Work done in moving slab ≈ 0.25π(1 + kh)g(h+ 0.3)∆h joules.

Since the slices run from h = 0 to h = 1.5, we have

Total work done =

∫ 1.5

0

0.25π(1 + kh)g(h+ 0.3) dh

= 0.366(k + 1.077)gπ joules

6
?

0.3 m

6

?

1.5 m

6

?
h

6?∆h

6

?

1.8 m

-� 1 m

	

Top of water

Figure 8.80

19. (a) We divide the triangular end into horizontal strips of thickness ∆h. The length of a strip, s, depends on its height h
from the bottom. See Figure 8.81. We use similar triangles to see that

s

h
=

2

3
so s =

2

3
h.
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Since each strip is approximately a rectangle, at height h,

Area of strip ≈ 2

3
h∆h ft2.

Since the depth at height h is 3− h, writing δ for the density of water, we have:

Force on one strip = δ · Depth · Area

≈ δ(3− h)
(

2

3
h∆h

)
lb.

To find the total force, F , we integrate the force on a strip from h = 0 to h = 3, using δ = 62.4 lb/ft3:

F =

∫ 3

0

δ(3− h)
2

3
hdh =

2

3
δ

∫ 3

0

(3h− h2)dh =
2

3
62.4

(
3h2

2
− h3

3

)∣∣∣∣
3

0

= 187.2 lbs.

(b) To find the work, we slice the water horizontally. Each slice is a rectangular slab with thickness ∆h, length 15 ft, and
width s as in Figure 8.82. As we saw in part (a), at a height of h we have s = 2

3
h. At height h,

Volume of slab ≈ 15
(

2

3
h
)

∆h ft3.

The distance to lift the slice at height h is 3− h, so if δ is the density of water, we have:

Work to lift one slice = δ · Volume · Distance lifted

≈ δ(15(
2

3
h)∆h)(3− h) ft-lb.

To find the total work, W , we integrate the work to lift a slice from h = 0 to h = 3, using δ = 62.4 lb/ft3.

W =

∫ 3

0

δ15
(

2

3
h
)

(3− h) dh = 10δ

∫ 3

0

(3h− h2)dh = 10 · 62.4

(
3h2

2
− h3

3

)∣∣∣∣
3

0

= 10δ(4.5) = 2808 ft-lbs.

6

?

3 ft

-� 2 ft

-� s

6?∆h

6

?

h ft

Figure 8.81

6

?

h

6

?
∆h

6

?

3− h

�

�s

�

�

15 ft

Figure 8.82

20. (a) Divide the wall into N horizontal strips, each
of which is of height ∆h. See Figure 8.83. The
area of each strip is 1000∆h, and the pressure at
depth hi is 62.4hi, so we approximate the force
on the strip as 1000(62.4hi)∆h. ∆h

50

1000

Figure 8.83
Therefore,

Force on the Dam ≈
N−1∑

i=0

1000(62.4hi)∆h.
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(b) As N →∞, the Riemann sum becomes the integral, so the force on the dam is
∫ 50

0

(1000)(62.4h) dh = 62400
h2

2

∣∣∣∣
50

0

= 78,000,000 pounds.

21. See Figure 8.84.
For the bottom: The bottom of the tank is at constant depth 15 feet, and therefore is under constant pressure, 15 ·

62.4 = 936 lb/ft2. The area of the base is 200 ft2, so

Total force on bottom = 200 ft2 · 936 lb/ft2 = 187200 lb.

For the 15 × 10 side: The area of a horizontal strip of width dh is 10 dh square feet, and the pressure at height h is
62.4h pounds per square foot. Therefore, the force on such a strip is 62.4h(10 dh) pounds. Hence,

Total force on the 15× 10 side =

∫ 15

0

(62.4h)(10) dh = 624
h2

2

∣∣∣∣
15

0

= 70200 lbs.

For the 15× 20 side: Similarly,

Total force on the 15× 20 side =

∫ 15

0

(62.4h)(20) dh = 1248
h2

2

∣∣∣∣
15

0

= 140400 lbs.

6

?

h
6

?

15

-� 20

�

�

10

-dh

Figure 8.84

22. We divide the water against the dam into horizontal strips, each of thickness ∆h and length 100.

Area of each strip ≈ 100∆h ft2.

See Figure 8.85. The strip at height h ft from the bottom is at a water depth of 40−h, so, if δ lb/ft3 is the density of water,
we have:

Force of one strip = δ · Depth · Area

≈ δ(40− h)(100∆h) lb.

To find the total force, F , we integrate the force on a strip from h = 0 to h = 40, using δ = 62.4 lb/ft3:

F =

∫ 40

0

δ(40− h)100dh = 100 · 62.4

(
40h− h2

2

)∣∣∣∣
40

0

= 6240(800) = 4,992,000ft-lbs.

6

?
∆h

6

?
h

6

?

50 ft

-� 100 ft

Figure 8.85
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23. Bottom:
Water force = 62.4(2)(12) = 1497.6 lbs.

Front and back:

Water force = (62.4)(4)

∫ 2

0

(2− x) dx = (62.4)(4)(2x− 1

2
x2)

∣∣∣∣
2

0

= (62.4)(4)(2) = 499.2 lbs.

Both sides:

Water force = (62.4)(3)

∫ 2

0

(2− x) dx = (62.4)(3)(2) = 374.4 lbs.

24. (a) Since the density of water is δ = 1000 kg/m3, at the base of the dam, water pressure δgh = 1000 · 9.8 · 180 =
1.76 · 106 nt/m2.

(b) To set up a definite integral giving the force, we divide the dam into horizontal strips. We use horizontal strips
because the pressure along each strip is approximately constant, since each part is at approximately the same depth.
See Figure 8.86.

Area of strip = 2000∆h m2.

Pressure at depth of h meters = δgh = 9800h nt/m2. Thus,

Force on strip ≈ Pressure × Area = 9800h · 2000∆h = 1.96 · 107h∆h nt.

Summing over all strips and letting ∆h→ 0 gives:

Total force = lim
∆h→0

∑
1.96 · 107h∆h = 1.96 · 107

∫ 180

0

h dh newtons.

Evaluating gives

Total force = 1.96 · 107 h
2

2

∣∣∣∣
180

0

= 3.2 · 1011 newtons.

6

?

180 m

-� 2000 m

6
?
h

6
?

∆h

Figure 8.86

25. (a) At a depth of 350 feet,
Pressure = 62.4 · 350 = 21,840 lb/ft2.

To imagine this pressure, we convert to pounds per square inch, giving a pressure of 21,840/144 = 151.7 lb/in2.
(b) (i) When the square is held horizontally, the pressure is constant at 21,840 lbs/ft2, so

Force = Pressure · Area = 21,840 · 52 = 546,000 pounds.

(ii) When the square is held vertically, only the bottom is at 350 feet. Dividing into horizontal strips, as in Fig-
ure 8.87, we have

Area of strip = 5∆h ft2.

Since the pressure on a strip at a depth of h feet is 62.4h lb/ft2,

Force on strip ≈ 62.4h · 5∆h = 312h∆h pounds.

Summing over all strips and taking the limit as ∆h → 0 gives a definite integral. The strips vary between a
depth of 350 feet and 345 feet, so

Total force = lim
∆h→0

∑
312h∆h =

∫ 350

345

312h dh pounds.
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Evaluating gives

Total force = 312
h2

2

∣∣∣∣
350

345

= 156(3502 − 3452) = 542,100 pounds.

R

Depth = 350 ft

-Depth = 345 ft
-� 5 ft

6

?
∆h

6

?

5 ft

Bottom of sea

Figure 8.87

26. (a) Since water has density 62.4 lb/ft3, at a depth of 12,500 feet,

Pressure = Density × Depth = 62.4 · 12,500 = 780,000 lb/square foot.

To imagine this pressure, observe that it is equivalent to 780,000/144 ≈ 5400 pounds per square inch.
(b) To calculate the pressure on the porthole (window), we slice it into horizontal strips, as the pressure remains approx-

imately constant along each one. See Figure 8.88. Since each strip is approximately rectangular

Area of strip ≈ 2r∆h ft2.

To calculate r in terms of h, we use the Pythagorean Theorem:

r2 + h2 = 9

r =
√

9− h2,

so
Area of strip ≈ 2

√
9− h2∆h ft2.

The center of the porthole is at a depth of 12,500 feet below the surface, so the strip shown in Figure 8.88 is at a
depth of (12,500− h) feet. Thus, pressure on the strip is 62.4(12,500− h) lb/ft2, so

Force on strip = Pressure × Area ≈ 62.4(12,500− h)2
√

9− h2∆h lb

= 124.8(12,500− h)
√

9− h2∆h lb.

To get the total force, we sum over all strips and take the limit as ∆h→ 0. Since h ranges from −3 to 3, we get the
integral

Total force = lim
∆h→0

∑
124.8(12,500− h)

√
9− h2∆h

= 124.8

∫ 3

−3

(12,500− h)
√

9− h2 dh lb.

Evaluating the integral numerically, we obtain a total force of 2.2 · 107 pounds.
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3 ft

-� r

6
?

∆h

6
?
h

6

?

6 ft

Figure 8.88: Center of circle is 12,500 ft below
the surface of ocean

27. We divide the dam into horizontal strips since the pressure is then approximately constant on each one. See Figure 8.89.

Area of strip ≈ w∆h m2.

Since w is a linear function of h, and w = 3600 when h = 0, and w = 3000 when h = 100, the function has slope
(3000− 3600)/100 = −6. Thus,

w = 3600− 6h,

so
Area of strip ≈ (3600− 6h)∆h m2.

The density of water is δ = 1000 kg/m3, so the pressure at depth h meters = δgh = 1000 · 9.8h = 9800h nt/m2. Thus,

Total force = lim
∆h→0

∑
9800h(3600− 6h)∆h = 9800

∫ 100

0

h(3600− 6h) dh newtons.

Evaluating the integral gives

Total force = 9800(1800h2 − 2h3)

∣∣∣∣
100

0

= 1.6 · 1011 newtons.

6

?

100 m

-� 3000 m

-� 3600 m

6

?
∆h

6

?
h

w

Figure 8.89

28. We need to divide the disk up into circular rings of charge and integrate their contributions to the potential (at P ) from 0
to a. These rings, however, are not uniformly distant from the point P . A ring of radius z is

√
R2 + z2 away from point

P (see Figure 8.90).

The ring has area 2πz∆z, and charge 2πzσ∆z. The potential of the ring is then
2πzσ∆z√
R2 + z2

and the total potential

at point P is ∫ a

0

2πzσ dz√
R2 + z2

= πσ

∫ a

0

2z dz√
R2 + z2

.
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We make the substitution u = z2. Then du = 2z dz. We obtain

πσ

∫ a

0

2z dz√
R2 + z2

= πσ

∫ a2

0

du√
R2 + u

= πσ(2
√
R2 + u)

∣∣∣∣
a2

0

= πσ(2
√
R2 + z2)

∣∣∣∣
a

0

= 2πσ(
√
R2 + a2 −R).

(The substitution u = R2 + z2 or
√
R2 + z2 works also.)

z
P

R

√
R2 + z2

Figure 8.90

29. The density of the rod is 10 kg/6 m = 5
3

kg
m

. A lit-
tle piece, dxm, of the rod thus has mass 5/3 dx kg.
If this piece has an angular velocity of 2 rad/sec,
then its actual velocity is 2|x| m/sec. This is be-
cause a radian angle sweeps out an arc length equal
to the radius of the circle, and in this case the lit-
tle piece moves in circles about the origin of ra-
dius |x|. See Figure 8.91. The kinetic energy of
the little piece is mv2/2 = (5/3 dx)(2|x|)2/2 =
10
3
x2 dx.

�
�

x

dx

3

Figure 8.91
Therefore,

Total Kinetic Energy =

∫ 3

−3

10x2

3
dx =

20

3

[
x3

3

] ∣∣∣∣
3

0

= 60 kg ·m2/sec2 = 60 joules.

30. We slice the record into rings in such a way that every point
has approximately the same speed: use concentric circles
around the hole. See Figure 8.92. We assume the record is
a flat disk of uniform density: since its mass is 50 grams and
its area is π(10cm)2 = 100π cm2, the record has density

50
100π

= 1
2π

gram
cm2 . So a ring of width dr, having area about

2πr dr cm2, has mass approximately (2πr dr)(1/2π) =
r dr gm. At radius r, the velocity of the ring is

33 1
3

rev

min
· 1 min

60 sec
· 2πr cm

1 rev
=

10πr

9

cm

sec
.

r

dr

10 cm

Figure 8.92
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The kinetic energy of the ring is

1

2
mv2 =

1

2
(r dr grams)

(
10πr

9

cm

sec

)2

=
50π2r3 dr

81

gram · cm2

sec2
.

So the kinetic energy of the record, summing the energies of all these rings, is
∫ 10

0

50π2r3 dr

81
=

25π2r4

162

∣∣∣∣
10

0

≈ 15231
gram · cm2

sec2
= 15231 ergs.

31. The density of the rod, in mass per unit length, is M/l (see Figure 8.93). So a slice of size dr has mass M dr
l

. It pulls the
small mass m with force GmM dr

l
/r2 = GmM dr

lr2
. So the total gravitational attraction between the rod and point is

∫ a+l

a

GmM dr

lr2
=
GmM

l

(
−1

r

) ∣∣∣∣
a+l

a

=
GmM

l

(
1

a
− 1

a+ l

)

=
GmM

l

l

a(a+ l)
=

GmM

a(a+ l)
.

-� a -� l

-� r drY

Figure 8.93

32. This time, let’s split the second rod into small slices of length dr. See Figure 8.94. Each slice is of mass M2
l2
dr, since the

density of the second rod is M2
l2

. Since the slice is small, we can treat it as a particle at distance r away from the end of
the first rod, as in Problem 31. By that problem, the force of attraction between the first rod and particle is

GM1
M2
l2
dr

(r)(r + l1)
.

So the total force of attraction between the rods is
∫ a+l2

a

GM1
M2
l2
dr

(r)(r + l1)
=
GM1M2

l2

∫ a+l2

a

dr

(r)(r + l1)

=
GM1M2

l2

∫ a+l2

a

1

l1

(
1

r
− 1

r + l1

)
dr.

=
GM1M2

l1l2
(ln |r| − ln |r + l1|)

∣∣∣∣
a+l2

a

=
GM1M2

l1l2
[ln |a+ l2| − ln |a+ l1 + l2| − ln |a|+ ln |a+ l1|]

=
GM1M2

l1l2
ln

[
(a+ l1)(a+ l2)

a(a+ l1 + l2)

]
.

This result is symmetric: if you switch l1 and l2 or M1 and M2, you get the same answer. That means it’s not important
which rod is “first,” and which is “second.”

l2l1 a

drr

Figure 8.94
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33. In Figure 8.95, consider a small piece of the ring of length ∆l and mass

∆M =
∆lM

2πa
.

The gravitational force exerted by the small piece of the ring is along the line QP. As we sum over all pieces of the
ring, the components perpendicular to the line OP cancel. The components of the force toward the point O are all in the
same direction, so the net force is in this direction. The small piece of length ∆l and mass ∆lM/2πa is at a distance of√
a2 + y2 from P, so

Gravitational force from small piece = ∆F =
G∆lM

2πa
m

(
√
a2 + y2)2

=
GMm∆l

2πa(a2 + y2)
.

Thus the force toward O exerted by the small piece is given by

∆F cos θ = ∆F
y√

a2 + y2
=

GMm∆l

2πa(a2 + y2)

y√
a2 + y2

=
GMmy∆l

2πa(a2 + y2)3/2
.

The total force toward O is given by F ≈
∑

∆F cos θ, so

F =
GMmy · Total length

2πa(a2 + y2)3/2
=

GMmy2πa

2πa(a2 + y2)3/2
=

GMmy

(a2 + y2)3/2
.

O

a

Q

∆F
P

my
θ

	

6
i

∆l

Figure 8.95

34. Divide the disk into rings of radius r, width ∆r, as shown in Figure 8.96.
Then

Area of ring ≈ 2πr∆r.

Since total area of disk is πa2,

Mass of ring ≈ 2πr∆r

πa2
M =

2rM

a2
∆r.

Thus, calculating the gravitational force due to the ring, we have

Gravitational force
on m due to ring

= G
(

2rM

a2
∆r
)

my

(r2 + y2)3/2
=

2GMmyr

a2(r2 + y2)3/2
∆r.

Summing over all rings, we get

Total gravitational force
on m due to disk

≈
∑ 2GMmyr

a2(r2 + y2)3/2
∆r.

As ∆r → 0, we get

Gravitational force
on m due to disk

=

∫ a

0

2GMmyr

a2(r2 + y2)3/2
dr =

2GMmy

a2
· −1

(r2 + y2)1/2

∣∣∣∣
a

0

=
2GMmy

a2

(
1

y
− 1

(a2 + y2)1/2

)
.

-

6

r
I

O

y
P

a

∆r

Figure 8.96
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Solutions for Section 8.6

Exercises

1. At any time t, in a time interval ∆t, an amount of 1000∆t is deposited into the account. This amount earns interest for
(10− t) years giving a future value of 1000e(0.08)(10−t). Summing all such deposits, we have

Future value =

∫ 10

0

1000e0.08(10−t) dt = $15,319.30.

2.

Future Value =

∫ 15

0

3000e0.06(15−t)dt = 3000e0.9

∫ 15

0

e−0.06tdt

= 3000e0.9
(

1

−0.06
e−0.06t

) ∣∣∣∣
15

0

= 3000e0.9
(

1

−0.06
e−0.9 +

1

0.06
e0
)

≈ $72,980.16

Present Value =

∫ 15

0

3000e−0.06tdt = 3000
(
− 1

0.06

)
e−0.06t

∣∣∣∣
15

0

≈ $29,671.52.

There’s a quicker way to calculate the present value of the income stream, since the future value of the income stream is
(as we’ve shown) $72,980.16, the present value of the income stream must be the present value of $72,980.16. Thus,

Present Value = $72,980.16(e−.06·15)

≈ $29,671.52,

which is what we got before.

3. We compute the future value first: we have

Future value =

∫ 5

0

2000e0.08(5−t)dt = $12, 295.62.

We can compute the present value using an integral and the income stream or using the future value. We compute the
present value, P , from the future value:

12295.62 = Pe0.08(5) so P = 8242.00.

The future value of this income stream is $12, 295.62 and the present value of this income stream is $8, 242.00.

4. (a) We compute the future value of this income stream:

Future value =

∫ 20

0

1000e0.07(20−t)dt = $43, 645.71.

After 20 years, the account will contain $43, 645.71.
(b) The person has deposited $1000 every year for 20 years, for a total of $20, 000.
(c) The total interest earned is $43, 645.71− $20, 000 = $23, 645.71.

Problems

5.

1 2
t (years from present)

$/year

The graph reaches a peak each summer, and a trough each winter. The graph shows sunscreen sales increasing from
cycle to cycle. This gradual increase may be due in part to inflation and to population growth.



8.6 SOLUTIONS 581

6. (a) The lump sum payment has a present value of 104 million dollars . We compute the present value of the other option
in each case. An award of $197 million paid out continuously over 26 years works out to an income stream of
7.576923 million dollars per year.

If the interest rate is 6%, compounded continuously, we have

Present value at 6% =

∫ 26

0

7.576923e−0.06tdt = 99.75.

The present value of this option is about 99.75 million dollars. Since this is less than the lump sum payment of 104
million dollars, the lump sum payment is preferable if the interest rate is 6%.
If the interest rate is 5%, we have

Present value at 5% =

∫ 26

0

7.576923e−0.05tdt = 110.24.

The present value of this option is about 110.24 million dollars. Since this is greater than the lump sum payment of
104 million dollars, taking payments continuously over 26 years is the better option if the interest rate is 5%.

(b) Since the winner chose the lump sum option, she was assuming that interest rates would be high (above about 5.5%).

7. (a) Solve for P (t) = P .

100000 =

∫ 10

0

Pe0.10(10−t)dt = Pe

∫ 10

0

e−0.10tdt

=
Pe

−0.10
e−0.10t

∣∣∣∣
10

0

= Pe(−3.678 + 10)

= P · 17.183.

So, P ≈ $5820 per year.
(b) To answer this, we’ll calculate the present value of $100,000:

100000 = Pe0.10(10)

P ≈ $36,787.94.

8. (a) Let L be the number of years for the balance to reach $10,000. Since our income stream is $1000 per year, the future
value of this income stream should equal (in L years) $10,000. Thus

10000 =

∫ L

0

1000e0.05(L−t)dt = 1000e0.05L

∫ L

0

e−0.05tdt

= 1000e0.05L
(
− 1

0.05

)
e−0.05t

∣∣∣∣
L

0

= 20000e0.05L
(
1− e−0.05L

)

= 20000e0.05L − 20000

so e0.05L =
3

2

L = 20 ln
(

3

2

)
≈ 8.11 years.

(b) We want

10000 = 2000e0.05L +

∫ L

0

1000e0.05(L−t)dt.

The first term on the right hand side is the future value of our initial balance. The second term is the future value of
our income stream. We want this sum to equal $10,000 in L years. We solve for L:

10000 = 2000e0.05L + 1000e0.05L

∫ L

0

e−0.05tdt

= 2000e0.05L + 1000e0.05L
(

1

−0.05

)
e−0.05t

∣∣∣∣
L

0

= 2000e0.05L + 20000e0.05L
(
1− e−0.05L

)

= 2000e0.05L + 20000e0.05L − 20000.
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So,

22000e0.05L = 30000

e0.05L =
30000

22000

L = 20 ln
15

11
≈ 6.203 years.

9. You should choose the payment which gives you the highest present value. The immediate lump-sum payment of $2800
obviously has a present value of exactly $2800, since you are getting it now. We can calculate the present value of the
installment plan as:

PV = 1000e−0.06(0) + 1000e−0.06(1) + 1000e−0.06(2)

≈ $2828.68.

Since the installment payments offer a (slightly) higher present value, you should accept this option.

10. (a) We calculate the future values of the two options:

FV1 = 6e0.1(3) + 2e0.1(2) + 2e0.1(1) + 2e0.1(0)

≈ 8.099 + 2.443 + 2.210 + 2

= $14.752 million.

FV2 = e0.1(3) + 2e0.1(2) + 4e0.1(1) + 6e0.1(0)

≈ 1.350 + 2.443 + 4.421 + 6

= $14.214 million.

As we can see, the first option gives a higher future value, so he should choose Option 1.
(b) From the future value we can easily derive the present value using the formula PV = FVe−rt. So the present value is

Option 1: PV = 14.752e0.1(−3) ≈ $10.929 million.

Option 2: PV = 14.214e0.1(−3) ≈ $10.530 million.

11. At any time t, the company receives income of s(t) per year. It will then invest this money for a length of 2 − t years
at 6% interest, giving it future value of s(t)e(0.06)(2−t) from this income. If we sum all such incomes over the two-year
period, we can find the total value of the sales:

Value =

∫ 2

0

s(t)e(0.06)(2−t) dt =

∫ 2

0

[
50e−te(0.06)(2−t)] dt

=

∫ 2

0

[
50e0.12−1.06t

]
dt =

(−53.1838

e1.06t

) ∣∣∣∣
2

0

= $46,800.

12. Price in future = P (1 + 20
√
t).

The present value V of price satisfies V = P (1 + 20
√
t)e−0.05t.

We want to maximize V . To do so, we find the critical points of V (t) for t ≥ 0. (Recall that
√
t is nondifferentiable at

t = 0.)

dV

dt
= P

[
20

2
√
t
e−0.05t + (1 + 20

√
t)(−0.05e−0.05t)

]

= Pe−0.05t

[
10√
t
− 0.05−

√
t

]
.

Setting
dV

dt
= 0 gives

10√
t
− 0.05−

√
t = 0. Using a calculator, we find t ≈ 10 years. Since V ′(t) > 0 for 0 < t < 10

and V ′(t) < 0 for t > 10, we confirm that this is a maximum. Thus, the best time to sell the wine is in 10 years.
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13. (a) Suppose the oil extracted over the time period [0,M ] is S. (See Figure 8.97.) Since q(t) is the rate of oil extraction,
we have:

S =

∫ M

0

q(t)dt =

∫ M

0

(a− bt)dt =

∫ M

0

(10− 0.1t) dt.

To calculate the time at which the oil is exhausted, set S = 100 and try different values of M . We find M = 10.6
gives ∫ 10.6

0

(10− 0.1t) dt = 100,

so the oil is exhausted in 10.6 years.

0 M
t

q(t)

	
Extraction Curve

Area below
the extraction curve

is the total oil extracted
-

Figure 8.97

(b) Suppose p is the oil price, C is the extraction cost per barrel, and r is the interest rate. We have the present value of
the profit as

Present value of profit =

∫ M

0

(p− C)q(t)e−rtdt

=

∫ 10.6

0

(20− 10)(10− 0.1t)e−0.1t dt

= 624.9 million dollars.

14. One good way to approach the problem is in terms of present values. In 1980, the present value of Germany’s loan was
20 billion DM. Now let’s figure out the rate that the Soviet Union would have to give money to Germany to pay off 10%
interest on the loan by using the formula for the present value of a continuous stream. Since the Soviet Union sends gas
at a constant rate, the rate of deposit, P (t), is a constant c. Since they don’t start sending the gas until after 5 years have
passed, the present value of the loan is given by:

Present Value =

∫ ∞

5

P (t)e−rt dt.

We want to find c so that

20,000,000,000 =

∫ ∞

5

ce−rt dt = c

∫ ∞

5

e−rt dt

= c lim
b→∞

(−10e−0.10t)

∣∣∣∣
b

5

= ce−0.10(5)

≈ 6.065c.

Dividing, we see that c should be about 3.3 billion DM per year. At 0.10 DM per m3 of natural gas, the Soviet Union
must deliver gas at the constant, continuous rate of about 33 billion m3 per year.

15. Measuring money in thousands of dollars, the equation of the line representing the demand curve passes through (50,
980) and (350, 560). Its slope is (560− 980)/(350− 50) = −420/300. See Figure 8.98. So the equation is y − 560 =
− 420

300
(x− 350), i.e. y − 560 = − 7

5
x+ 490. Thus

Consumer surplus =

∫ 350

0

(
−7

5
x+ 1050

)
dx− 350 · 560 = − 7

10
x2 + 1050x

∣∣∣∣
350

0

− 196000

= 85,750.
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(Note that 85,750 = 1
2
· 490 · 350, the area of the triangle in Figure 8.98. We could have used this instead of the integral

to find the consumer surplus.)
Recalling that our unit measure for the price axis is $1000/car, the consumer surplus is $85,750,000.

1050 (50, 980)

(350, 560)

Demand

price
(1000s of dollars/car)

quantity
(number of cars)

Figure 8.98

q∗

P1

P2

S(q)

∆q ∆q ∆q
Quantity

Price

Figure 8.99

16. The supply curve, S(q), represents the minimum price p per unit that the suppliers will be willing to supply some quantity
q of the good for. See Figure 8.99. If the suppliers have q∗ of the good and q∗ is divided into subintervals of size ∆q,
then if the consumers could offer the suppliers for each ∆q a price increase just sufficient to induce the suppliers to sell
an additional ∆q of the good, the consumers’ total expenditure on q∗ goods would be

p1∆q + p2∆q + · · · =
∑

pi∆q.

As ∆q → 0 the Riemann sum becomes the integral
∫ q∗

0

S(q) dq. Thus
∫ q∗

0

S(q) dq is the amount the consumers would

pay if suppliers could be forced to sell at the lowest price they would be willing to accept.

17.
∫ q∗

0

(p∗ − S(q)) dq =

∫ q∗

0

p∗ dq −
∫ q∗

0

S(q) dq

= p∗q∗ −
∫ q∗

0

S(q) dq.

Using Problem 16, this integral is the extra amount consumers pay (i.e., suppliers earn over and above the minimum they
would be willing to accept for supplying the good). It results from charging the equilibrium price.

18. (a) p∗q∗ = the total amount paid for q∗ of the good at equilibrium. See Figure 8.100.
(b)
∫ q∗

0
D(q) dq = the maximum consumers would be willing to pay if they had to pay the highest price acceptable to

them for each additional unit of the good. See Figure 8.101.

q∗

p∗

quantity

price

Supply : S(q)

Demand : D(q)

Figure 8.100

q∗

p∗

quantity

price

Supply : S(q)

Demand : D(q)

Figure 8.101
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(c)
∫ q∗

0
S(q) dq = the minimum suppliers would be willing to accept if they were paid the minimum price acceptable to

them for each additional unit of the good. See Figure 8.102.
(d)
∫ q∗

0
D(q) dq − p∗q∗ = consumer surplus. See Figure 8.103.

q∗

p∗

quantity

price

Supply : S(q)

Demand : D(q)

Figure 8.102

q∗

p∗

quantity

price

Supply : S(q)

Demand : D(q)

Figure 8.103

(e) p∗q∗ −
∫ q∗

0
S(q) dq = producer surplus. See Figure 8.104.

(f)
∫ q∗

0
(D(q)− S(q)) dq = producer surplus and consumer surplus. See Figure 8.105.

q∗

p∗

quantity

price

Supply : S(q)

Demand : D(q)

Figure 8.104

q∗

p∗

quantity

price

Supply : S(q)

Demand : D(q)

Figure 8.105

19.

q∗

p∗

p+

q (quantity)

p (price/unit)

Figure 8.106: What effect does the artificially high price, p+, have?

(a) A graph of possible demand and supply curves for the milk industry is given in Figure 8.106, with the equilibrium
price and quantity labeled p∗ and q∗ respectively. Suppose that the price is fixed at the artificially high price labeled
p+ in Figure 8.106. Recall that the consumer surplus is the difference between the amount the consumers did pay
(p+) and the amount they would have been willing to pay (given on the demand curve). This is the area shaded in
Figure 8.107(i). Notice that this consumer surplus is clearly less than the consumer surplus at the equilibrium price,
shown in Figure 8.107(ii).
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Artificial price

q∗

p∗
p+

q+

� consumer
surplus

q (quantity)

p (price/unit)
(i)

q∗q+

Equilibrium price

p∗
p+
� consumer

surplus

q (quantity)

p (price/unit)
(ii)

Figure 8.107: Consumer surplus for the milk industry

(b) At a price of p+, the quantity sold, q+, is less than it would have been at the equilibrium price. The producer surplus
is the area between p+ and the supply curve at this reduced demand. This area is shaded in Figure 8.108(i). Compare
this producer surplus (at the artificially high price) to the producer surplus in Figure 8.108(ii) (at the equilibrium
price). It appears that in this case, producer surplus is greater at the artificial price than at the equilibrium price.
(Different supply and demand curves might have led to a different answer.)

Artificial price

q∗

p∗
p+

q+

	

producer
surplus

q (quantity)

p (price/unit)
(i) Equilibrium price

q∗q+

p∗
p+

	

producer
surplus

q (quantity)

p (price/unit)
(ii)

Figure 8.108: Producer surplus for the milk industry

(c) The total gains from trade (Consumer surplus + Producer surplus) at the artificially high price of p+ is the area shaded
in Figure 8.109(i). The total gains from trade at the equilibrium price of p∗ is the area shaded in Figure 8.109(ii). It is
clear that, under artificial price conditions, total gains from trade go down. The total financial effect of the artificially
high price on all producers and consumers combined is a negative one.

q∗

p∗
p+

q+
q (quantity)

p (price/unit)
Artificial price(i)

q∗

p∗
p+

q+
q (quantity)

p (price/unit)
Equilibrium price(ii)

Figure 8.109: Total gains from trade

20.

q− q∗

p−
p∗

quantity

price

-Producer surplus

-Consumer surplus

(a) The producer surplus is the area on the graph between p− and the supply function. Lowering the price also lowers
the producer surplus.
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(b) Note that the consumer surplus—the area between the line p− and the supply curve—increases or decreases depend-
ing on the functions describing the supply and demand and on the lowered price. (For example, the consumer surplus
seems to be increased in the graph above, but if the price were brought down to $0 then the consumer surplus would
be zero, and hence clearly less than the consumer surplus at equilibrium.)

(c) The graph above shows that the total gains from the trade are decreased.

Solutions for Section 8.7

Exercises

1.

income

% of population
per dollar of income

Figure 8.110: Density function

income

% of population having
at least this income

Figure 8.111: Cumulative distribution function

2.

income

% of population
per dollar of income

Figure 8.112: Density function

income

% of population having
at least this income

Figure 8.113: Cumulative distribution function

3.

income

% of population
per dollar of income

Figure 8.114: Density function

income

% of population having
at least this income

Figure 8.115: Cumulative distribution function

4. Since the function takes on the value of 4, it cannot be a cdf (whose maximum value is 1). In addition, the function
decreases for x > c, which means that it is not a cdf. Thus, this function is a pdf. The area under a pdf is 1, so 4c = 1
giving c = 1

4
. The pdf is p(x) = 4 for 0 ≤ x ≤ 1

4
, so the cdf is given in Figure 8.116 by

P (x) =





0 for x < 0

4x for 0 ≤ x ≤ 1

4

1 for x >
1

4

1
4

1

x

P (x)

Figure 8.116

4

1

x

P (x)

Figure 8.117
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5. Since the function is decreasing, it cannot be a cdf (whose values never decrease). Thus, the function is a pdf.
The area under a pdf is 1, so, using the formula for the area of a triangle, we have

1

2
4c = 1, giving c =

1

2
.

The pdf is

p(x) =
1

2
− 1

8
x for 0 ≤ x ≤ 4,

so the cdf is given in Figure 8.117 by

P (x) =





0 for x < 0

x

2
− x2

16
for 0 ≤ x ≤ 4

1 for x > 4.

6. Since the function levels off at the value of c, the area under the graph is not finite, so it is not 1. Thus, this function cannot
be a pdf.

It is a cdf and c = 1. The cdf is given by

P (x) =





0 for x < 0
x

5
for 0 ≤ x ≤ 5

1 for x > 5.

The pdf in Figure 8.118 is given by

p(x) =





0 for x < 0

1/5 for 0 ≤ x ≤ 5

0 for x > 5.

5

1/5

x

P (x)

Figure 8.118

0.5 1

2
3

1

x

P (x)

Figure 8.119

7. This function decreases, so it cannot be a cdf. Since the graph must represent a pdf, the area under it is 1. The region
consists of two rectangles, each of base 0.5, and one of height 2c and one of height c, so

Area = 2c(0.5) + c(0.5) = 1

c =
1

1.5
=

2

3

The pdf is therefore

p(x) =





0 for x < 0

4/3 for 0 ≤ x ≤ 0.5

2/3 for 0.5 < x ≤ 1

0 for x > 1.

The cdf P (x) is the antiderivative of this function with P (0) = 0. See Figure 8.119. The formula for P (x) is

P (x) =





0 for x < 0

4x/3 for 0 ≤ x ≤ 0.5

2/3 + (2/3)(x− 0.5) for 0.5 < x ≤ 1

1 for x > 1.



8.7 SOLUTIONS 589

8. This function increases and levels off to c. The area under the curve is not finite, so it is not 1. Thus, the function must be
a cdf, not a pdf, and 3c = 1, so c = 1/3.

The pdf, p(x) is the derivative, or slope, of the function shown, so, using c = 1/3,

p(x) =





0 for x < 0

(1/3− 0)/(2− 0) = 1/6 for 0 ≤ x ≤ 2

(1− 1/3)/(4− 2) = 1/3 for 2 < x ≤ 4

0 for x > 4.

See Figure 8.120.

2 4

1
3

1
6

x

p(x)

Figure 8.120

0.5 1

0.5

1

x

P (x)

Figure 8.121

9. This function does not level off to 1, and it is not always increasing. Thus, the function is a pdf. Since the area under the
curve must be 1, using the formula for the area of a triangle,

1

2
· c · 1 = 1 so c = 2.

Thus, the pdf is given by

p(x) =





0 for x < 0

4x for 0 ≤ x ≤ 0.5

2− 4(x− 0.5) = 4− 4x for 0.5 < x ≤ 1

0 for x > 0.

To find the cdf, we integrate each part of the function separately, making sure that the constants of integration are arranged
so that the cdf is continuous.

Since
∫

4xdx = 2x2 + C and P (0) = 0, we have 2(0)2 + C = 0 so C = 0. Thus P (x) = 2x2 on 0 ≤ x ≤ 0.5.
At x = 0.5, the cdf has value P (0.5) = 2(0.5)2 = 0.5. Thus, we arrange that the integral of 4 − 4x goes through the
point (0.5, 0.5). Since

∫
(4− 4x) dx = 4x− 2x2 + C, we have

4(0.5)− 2(0.5)2 + C = 0.5 giving C = −1.

Thus

P (x) =





0 for x < 0

2x2 for 0 ≤ x ≤ 0.5

4x− 2x2 − 1 for 0.5 < x ≤ 1

1 for x > 1.

See Figure 8.121.

Problems

10. No. Though the density function has its maximum value at 50, this does not mean that a large fraction of the population
receives scores near 50. The value p(50) can not be interpreted as a probability. Probability corresponds to area under the
graph of a density function. Most of the area in this case is in the broad hump covering the range 0 ≤ x ≤ 40, very little
in the peak around x = 50. Most people score in the range 0 ≤ x ≤ 40.
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11. (a) Let P (x) be the cumulative distribution function of the heights of the unfertilized plants. As do all cumulative
distribution functions, P (x) rises from 0 to 1 as x increases. The greatest number of plants will have heights in the
range where P (x) rises the most. The steepest rise appears to occur at about x = 1 m. Reading from the graph we
see that P (0.9) ≈ 0.2 and P (1.1) ≈ 0.8, so that approximately P (1.1)− P (0.9) = 0.8− 0.2 = 0.6 = 60% of the
unfertilized plants grow to heights between 0.9 m and 1.1 m. Most of the plants grow to heights in the range 0.9 m to
1.1 m.

(b) Let PA(x) be the cumulative distribution function of the plants that were fertilized with A. Since PA(x) rises the
most in the range 0.7 m ≤ x ≤ 0.9 m, many of the plants fertilized with A will have heights in the range 0.7 m to
0.9 m. Reading from the graph of PA, we find that PA(0.7) ≈ 0.2 and PA(0.9) ≈ 0.8, so PA(0.9) − PA(0.7) ≈
0.8 − 0.2 = 0.6 = 60% of the plants fertilized with A have heights between 0.7 m and 0.9 m. Fertilizer A had the
effect of stunting the growth of the plants.

On the other hand, the cumulative distribution function PB(x) of the heights of the plants fertilized with B rises
the most in the range 1.1 m ≤ x ≤ 1.3 m, so most of these plants have heights in the range 1.1 m to 1.3 m. Fertilizer
B caused the plants to grow about 0.2 m taller than they would have with no fertilizer.

12. (a) F (7) = 0.6 tells us that 60% of the trees in the forest have height 7 meters or less.
(b) F (7) > F (6). There are more trees of height less than 7 meters than trees of height less than 6 meters because every

tree of height ≤ 6 meters also has height ≤ 7 meters.

13. For a small interval ∆x around 68, the fraction of the population of American men with heights in this interval is about
(0.2)∆x. For example, taking ∆x = 0.1, we can say that approximately (0.2)(0.1) = 0.02 = 2% of American men
have heights between 68 and 68.1 inches.

14. We want to find the cumulative distribution function for the age density function. We see that P (10) is equal to 0.15 since
the table shows that 15% of the population is between 0 and 10 years of age. Also,

P (20) =
Fraction of the population
between 0 and 20 years old

= 0.15 + 0.14 = 0.29

and
P (30) = 0.15 + 0.14 + 0.14 = 0.43.

Continuing in this way, we obtain the values for P (t) shown in Table 8.6.

Table 8.6 Cumulative distribution function of ages in the US

t 0 10 20 30 40 50 60 70 80 90 100
P (t) 0 0.15 0.29 0.43 0.60 0.74 0.84 0.92 0.97 0.99 1.00

15. (a) The two functions are shown below. The choice is based on the fact that the cumulative distribution does not decrease.
(b) The cumulative distribution levels off to 1, so the top mark on the vertical scale must be 1.

2 4 6 8 10

0.2

0.4

0.6

0.8

1 � Cumulative

	

Density

The total area under the density function must be 1. Since the area under the density function is about 2.5 boxes,
each box must have area 1/2.5 = 0.4. Since each box has a height of 0.2, the base must be 2.

16. (a) The area under the graph of the height density function p(x) is concentrated in two humps centered at 0.5 m and 1.1 m.
The plants can therefore be separated into two groups, those with heights in the range 0.3 m to 0.7 m, corresponding
to the first hump, and those with heights in the range 0.9 m to 1.3 m, corresponding to the second hump. This grouping
of the grasses according to height is probably close to the species grouping. Since the second hump contains more
area than the first, there are more plants of the tall grass species in the meadow.

(b) As do all cumulative distribution functions, the cumulative distribution function P (x) of grass heights rises from 0
to 1 as x increases. Most of this rise is achieved in two spurts, the first as x goes from 0.3 m to 0.7 m, and the second
as x goes from 0.9 m to 1.3 m. The plants can therefore be separated into two groups, those with heights in the range
0.3 m to 0.7 m, corresponding to the first spurt, and those with heights in the range 0.9 m to 1.3 m, corresponding to
the second spurt. This grouping of the grasses according to height is the same as the grouping we made in part (a),
and is probably close to the species grouping.

(c) The fraction of grasses with height less than 0.7 m equals P (0.7) = 0.25 = 25%. The remaining 75% are the tall
grasses.
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17. (a) The percentage of calls lasting from 1 to 2 minutes is given by the integral
∫ 2

1

p(x) dx

∫ 2

1

0.4e−0.4x dx = e−0.4 − e−0.8 ≈ 22.1%.

(b) A similar calculation (changing the limits of integration) gives the percentage of calls lasting 1 minute or less as
∫ 1

0

p(x) dx =

∫ 1

0

0.4e−0.4x dx = 1− e−0.4 ≈ 33.0%.

(c) The percentage of calls lasting 3 minutes or more is given by the improper integral
∫ ∞

3

p(x) dx = lim
b→∞

∫ b

3

0.4e−0.4x dx = lim
b→∞

(e−1.2 − e−0.4b) = e−1.2 ≈ 30.1%.

(d) The cumulative distribution function is the integral of the probability density; thus,

C(h) =

∫ h

0

p(x) dx =

∫ h

0

0.4e−0.4x dx = 1− e−0.4h.

18. (a) The fraction of students passing is given by the area under the curve from 2 to 4 divided by the total area under the
curve. This appears to be about 2

3
.

(b) The fraction with honor grades corresponds to the area under the curve from 3 to 4 divided by the total area. This is
about 1

3
.

(c) The peak around 2 probably exists because many students work to get just a passing grade.
(d)

1 2 3 4

1

GPA

fraction of students

19. (a) Most of the earth’s surface is below sea level. Much of the earth’s surface is either around 3 miles below sea level or
exactly at sea level. It appears that essentially all of the surface is between 4 miles below sea level and 2 miles above
sea level. Very little of the surface is around 1 mile below sea level.

(b) The fraction below sea level corresponds to the area under the curve from −4 to 0 divided by the total area under the
curve. This appears to be about 3

4
.

20. (a) We must have
∫ ∞

0

f(t)dt = 1, for even though it is possible that any given person survives the disease, everyone

eventually dies. Therefore, ∫ ∞

0

cte−ktdt = 1.

Integrating by parts gives

∫ b

0

cte−ktdt = − c
k
te−kt

∣∣∣∣
b

0

+

∫ b

0

c

k
e−ktdt

=
(
− c
k
te−kt − c

k2
e−kt

) ∣∣∣∣
b

0

=
c

k2
− c

k
be−kb − c

k2
e−kb.

As b→∞, we see ∫ ∞

0

cte−ktdt =
c

k2
= 1 so c = k2.
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(b) We are told that
∫ 5

0

f(t)dt = 0.4, so using the fact that c = k2 and the antiderivatives from part (a), we have

∫ 5

0

k2te−ktdt =

(
−k

2

k
te−kt − k2

k2
e−kt

)∣∣∣∣
5

0

= 1− 5ke−5k − e−5k = 0.4

so
5ke−5k + e−5k = 0.6.

Since this equation cannot be solved exactly, we use a calculator or computer to find k = 0.275. Since c = k2, we
have c = (0.275)2 = 0.076.

(c) The cumulative death distribution function, C(t), represents the fraction of the population that have died up to time
t. Thus,

C(t) =

∫ t

0

k2xe−kxdx =
(
−kxe−kx − e−kx

) ∣∣t
0

= 1− kte−kt − e−kt.

Solutions for Section 8.8

Exercises

1.

0.24

0

0.08
0.12

p(x)

A1

A2
A4

A3

2 6 8

x (tons of fish)

Splitting the figure into four pieces, we see that

Area under the curve = A1 +A2 +A3 +A4

=
1

2
(0.16)4 + 4(0.08) +

1

2
(0.12)2 + 2(0.12)

= 1.

We expect the area to be 1, since
∫ ∞

−∞
p(x) dx = 1 for any probability density function, and p(x) is 0 except when

2 ≤ x ≤ 8.

2. Recall that the mean is
∫ ∞

−∞
xp(x) dx. In the fishing example, p(x) = 0 except when 2 ≤ x ≤ 8, so the mean is

∫ 8

2

xp(x) dx.
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Using the equation for p(x) from the graph,
∫ 8

2

xp(x) dx =

∫ 6

2

xp(x) dx+

∫ 8

6

xp(x) dx

=

∫ 6

2

x(0.04x) dx+

∫ 8

6

x(−0.06x+ 0.6) dx

=
0.04x3

3

∣∣∣∣
6

2

+
(
−0.02x3 + 0.3x2

) ∣∣∣∣
8

6

≈ 5.253 tons.

3. (a)

5

1

3
√

2π

1

2
√

2π

1√
2π

σ = 1

σ = 2

σ = 3

x

p(x)(i)

4 5 6

1√
2π

� µ = 4
� µ = 5
� µ = 6

x

p(x)(ii)

(b) Recall that the mean is the “balancing point.” In other words, if the area under the curve was made of cardboard, we’d
expect it to balance at the mean. All of the graphs are symmetric across the line x = µ, so µ is the “balancing point”
and hence the mean.
As the graphs also show, increasing σ flattens out the graph, in effect lessening the concentration of the data near the
mean. Thus, the smaller the σ value, the more data is clustered around the mean.

Problems

4. (a) Since d(e−ct)/dt = ce−ct, we have

c

∫ 6

0

e−ctdt = −e−ct
∣∣6
0

= 1− e−6c = 0.1,

so
c = −1

6
ln 0.9 ≈ 0.0176.

(b) Similarly, with c = 0.0176, we have

c

∫ 12

6

e−ctdt = −e−ct
∣∣12

6

= e−6c − e−12c = 0.9− 0.81 = 0.09,

so the probability is 9%.

5. (a) We can find the proportion of students by integrating the density p(x) between x = 1.5 and x = 2:

P (2)− P (1.5) =

∫ 2

1.5

x3

4
dx

=
x4

16

∣∣∣∣
2

1.5

=
(2)4

16
− (1.5)4

16
= 0.684,

so that the proportion is 0.684 : 1 or 68.4%.
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(b) We find the mean by integrating x times the density over the relevant range:

Mean =

∫ 2

0

x

(
x3

4

)
dx

=

∫ 2

0

x4

4
dx

=
x5

20

∣∣∣∣
2

0

=
25

20
= 1.6 hours.

(c) The median will be the time T such that exactly half of the students are finished by time T , or in other words

1

2
=

∫ T

0

x3

4
dx

1

2
=
x4

16

∣∣∣∣
T

0

1

2
=
T 4

16

T =
4
√

8 = 1.682 hours.

6. (a) Since
∫ ∞

0

p(x) dx = 1, we have

1 =

∫ ∞

0

ae−0.122x dx

=
a

−0.122
e−0.122x

∣∣∣
∞

0
=

a

0.122
.

So a = 0.122.
(b)

P (x) =

∫ x

0

p(t) dt

=

∫ x

0

0.122e−0.122t dt

= −e0.122t
∣∣x
0

= 1− e−0.122x.

(c) Median is the x such that
P (x) = 1− e−0.122x = 0.5.

So e−0.122x = 0.5. Thus,

x = − ln 0.5

0.122
≈ 5.68 seconds

and

Mean =

∫ ∞

0

x(0.122)e−0.122x dx = −
∫ ∞

0

x
(
−0.122e−0.122x

)
dx.

We now use integration by parts. Let u = −x and v′ = −0.122e−0.122x. Then u′ = −1, and v = e−0.122x.
Therefore,

Mean = −xe−0.122x

∣∣∣∣
∞

0

+

∫ ∞

0

e−0.122x dx =
1

0.122
≈ 8.20 seconds.



8.8 SOLUTIONS 595

(d)

0.122
p(x)

x

1
P (x)

x

7. (a) The cumulative distribution function

P (t) =

∫ t

0

p(x)dx = Area under graph of density function p(x) for 0 ≤ x ≤ t

= Fraction of population who survive t years or less after treatment

= Fraction of population who survive up to t years after treatment.

(b) The probability that a randomly selected person survives for at least t years is the probability that he lives t years or
longer, so

S(t) =

∫ ∞

t

p(x) dx = lim
b→∞

∫ b

t

Ce−Ct dx

= lim
b→∞

−e−Ct
∣∣∣∣
b

t

= lim
b→∞

−e−Cb − (−e−Ct) = e−Ct,

or equivalently,

S(t) = 1−
∫ t

0

p(x) dx = 1−
∫ t

0

Ce−Ct dx = 1 + e−Ct
∣∣∣∣
t

0

= 1 + (e−Ct − 1) = e−Ct.

(c) The probability of surviving at least two years is

S(2) = e−C(2) = 0.70

so

ln e−C(2) = ln 0.70

−2C = ln 0.7

C = −1

2
ln 0.7 ≈ 0.178.

8. (a) The probability you dropped the glove within a kilometer of home is given by
∫ 1

0

2e−2xdx = −e−2x

∣∣∣∣
1

0

= −e−2 + 1 ≈ 0.865.

(b) Since the probability that the glove was dropped within y km =
∫ y

0
p(x)dx = 1− e−2y , we solve

1− e−2y = 0.95

e−2y = 0.05

y =
ln 0.05

−2
≈ 1.5 km.

9. (a) Since µ = 100 and σ = 15:

p(x) =
1

15
√

2π
e−

1
2 ( x−100

15 )
2

.

(b) The fraction of the population with IQ scores between 115 and 120 is (integrating numerically)
∫ 120

115

p(x) dx =

∫ 120

115

1

15
√

2π
e−

(x−100)2

450 dx

=
1

15
√

2π

∫ 120

115

e−
(x−100)2

450 dx

≈ 0.067 = 6.7% of the population.
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10. (a) The normal distribution of car speeds with µ = 58 and σ = 4 is shown in Figure 8.122.

52

µ = 58

60 65
x

Figure 8.122

The probability that a randomly selected car is going between 60 and 65 is equal to the area under the curve
from x = 60 to x = 65,

Probability =
1

4
√

2π

∫ 65

60

e−(x−58)2/(2·42) dx ≈ 0.2685.

We obtain the value 0.2685 using a calculator or computer.
(b) To find the fraction of cars going under 52 km/hr, we evaluate the integral

Fraction =
1

4
√

2π

∫ 52

0

e−(x−58)2/32dx ≈ 0.067.

Thus, approximately 6.7% of the cars are going less than 52 km/hr.

11. (a) First, we find the critical points of p(x):

d

dx
p(x) =

1

σ
√

2π

[
−2(x− µ)

2σ2

]
e
− (x−µ)2

2σ2

= − (x− µ)

σ3
√

2π
e
− (x−µ)2

2σ2 .

This implies x = µ is the only critical point of p(x).

To confirm that p(x) is maximized at x = µ, we rely on the first derivative test. As − 1

σ3
√

2π
e
− (x−µ)2

2σ2 is

always negative, the sign of p′(x) is the opposite of the sign of (x− µ); thus p′(x) > 0 when x < µ, and p′(x) < 0
when x > µ.

(b) To find the inflection points, we need to find where p′′(x) changes sign; that will happen only when p′′(x) = 0. As

d2

dx2
p(x) = − 1

σ3
√

2π
e
− (x−µ)2

2σ2

[
− (x− µ)2

σ2
+ 1

]
,

p′′(x) changes sign when

[
− (x− µ)2

σ2
+ 1

]
does, since the sign of the other factor is always negative. This occurs

when

− (x− µ)2

σ2
+ 1 = 0,

−(x− µ)2 = −σ2,

x− µ = ±σ.

Thus, x = µ+σ or x = µ−σ. Since p′′(x) > 0 for x < µ−σ and x > µ+σ and p′′(x) < 0 for µ−σ ≤ x ≤ µ+σ,
these are in fact points of inflection.

(c) µ represents the mean of the distribution, while σ is the standard deviation. In other words, σ gives a measure of the
“spread” of the distribution, i.e., how tightly the observations are clustered about the mean. A small σ tells us that
most of the data are close to the mean; a large σ tells us that the data is spread out.
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12. The fraction of the population within one standard deviation of the mean is given by

Fraction within σ of mean =

∫ σ

−σ

1√
2πσ

e−x
2/(2σ2)dx.

Let us substitute w =
x

σ
so that dw =

1

σ
dx, and when x = ±σ, w = ±1. Then we have

Fraction =

∫ σ

−σ

1√
2πσ

e−x
2/(2σ2)dx =

∫ 1

−1

1√
2πσ

e−w
2/2 · σdw =

∫ 1

−1

1√
2π
e−w

2/2dw.

This integral is independent of σ. Evaluating the integral numerically gives 0.68, showing that about 68% of the population
lies within one standard deviation of the mean.

13. It is not (a) since a probability density must be a non-negative function; not (c) since the total integral of a probability
density must be 1; (b) and (d) are probability density functions, but (d) is not a good model. According to (d), the
probability that the next customer comes after 4 minutes is 0. In real life there should be a positive probability of not
having a customer in the next 4 minutes. So (b) is the best answer.

14. (a) P is the cumulative distribution function, so the percentage of the population that made between $20,000 and $50,000
is

P (50)− P (20) = 99%− 75% = 24%.

Therefore 6
25

of the population made between $20,000 and $50,000.
(b) The median income is the income such that half the people made less than this amount. Looking at the chart, we see

that P (12.6) = 50%, so the median must be $12,600.
(c) The cumulative distribution function looks something like Figure 8.123. The density function is the derivative of the

cumulative distribution. Qualitatively it looks like Figure 8.124.

10 20 30 40 50

0.1

0.25

0.5

0.75

1

Income x
(in 1000s of dollars)

P (x)

Figure 8.123: Cumulative distribution

10 20 30 40 50

Income x
(in 1000s of dollars)

p(x)

Figure 8.124: Density function

The density function has a maximum at about $8000. This means that more people have incomes around $8000
than around any other amount. On the density function, this is the highest point. On the cumulative distribution, this
is the point of steepest slope (because P ′ = p), which is also the point of inflection.

15. (a) Let the p(r) be the density function. Then P (r) =
∫ r

0
p(x) dx, and from the Fundamental Theorem of Calculus,

p(r) = d
dr
P (r) = d

dr
(1− (2r2 + 2r + 1)e−2r) = −(4r + 2)e−2r + 2(2r2 + 2r + 1)e−2r , or p(r) = 4r2e−2r .

We have that p′(r) = 8r(e−2r) − 8r2e−2r = e−2r · 8r(1 − r), which is zero when r = 0 or r = 1, negative
when r > 1, and positive when r < 1. Thus p(1) = 4e−2 ≈ 0.54 is a relative maximum.

Here are sketches of p(r) and the cumulative position P (r):

1 2 3

0.5

1

p(r)

r
1 2 3

0.5

1
P (r)

r
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(b) The median distance is the distance r such that P (r) = 1− (2r2 + 2r+ 1)e−2r = 0.5, or equivalently, (2r2 + 2r+
1)e−2r = 0.5.

By experimentation with a calculator, we find that r ≈ 1.33 Bohr radii is the median distance.
The mean distance is equal to the value of the integral

∫∞
0
rp(r) dr = lim

x→∞

∫ x
0
rp(r) dr. We have that

∫ x
0
rp(r) dr =

∫ x
0

4r3e−2r dr. Using the integral table, we get
∫ x

0

4r3e−2r dr =
[(
−1

2

)
4r3 − 1

4
(12r2)− 1

8
(24r)− 1

16
(24)

]
e−2x

∣∣∣∣
x

0

=
3

2
−
[
2x3 + 3x2 + 3x+

3

2

]
e−2x.

Taking the limit of this expression as x→∞, we see that all terms involving (powers of x or constants) · e−2x have
limit 0, and thus the mean distance is 1.5 Bohr radii.

The most likely distance is obtained by maximizing p(r) = 4r2e−2r; as we have already seen this corresponds
to r = 1 Bohr unit.

(c) Because it is the most likely distance of the electron from the nucleus.

Solutions for Chapter 8 Review

Exercises

1. Vertical slices are circular. Horizontal slices would be similar to ellipses in cross-section, or at least ovals (a word derived
from ovum, the Latin word for egg).

Figure 8.125

2. The limits of integration are 0 and b, and the rectangle represents the region under the curve f(x) = h between these
limits. Thus,

Area of rectangle =

∫ b

0

h dx = hx

∣∣∣∣
b

0

= hb.

3. The circle x2 + y2 = r2 cannot be expressed as a function y = f(x), since for every x with −r < x < r, there are two
corresponding y values on the circle. However, if we consider the top half of the circle only, as shown below, we have
x2 + y2 = r2, or y2 = r2 − x2, and taking the positive square root, we have that y =

√
r2 − x2 is the equation of the

top semicircle.

�

−r r

y =
√
r2 − x2
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Then

Area of Circle = 2(Area of semicircle) = 2

∫ r

−r

√
r2 − x2 dx

We evaluate this using integral table formula 30.

2

∫ x=r

x=−r

√
r2 − x2 dx = 2

[
1

2

(
x
√
r2 − x2 + r2 arcsin

x

r

)] ∣∣∣∣
r

−r

= r2(arcsin 1− arcsin(−1))

= r2
(
π

2
−
(
−π

2

))
= πr2.

4. Name the slanted line y = f(x). Then the triangle is the region under the line y = f(x) and between the lines y = 0 and
x = b. Thus,

Area of triangle =

∫ b

0

f(x) dx.

Since f(x) is a line of slope h/b which passes through the origin, its equation is f(x) = hx/b. Thus,

Area of triangle =

∫ b

0

hx

b
dx =

hx2

2b

∣∣∣∣
b

0

=
hb2

2b
=
hb

2
.

5. We slice the region vertically. Each rotated slice is approximately a cylinder with radius y = x2 + 1 and thickness ∆x.
See Figure 8.126. The volume of a typical slice is π(x2 + 1)2∆x. The volume, V , of the object is the sum of the volumes
of the slices:

V ≈
∑

π(x2 + 1)2∆x.

As ∆x→ 0 we obtain an integral.

V =

∫ 4

0

π(x2 + 1)2dx = π

∫ 4

0

(x4 + 2x2 + 1)dx = π

(
x5

5
+

2x3

3
+ x

)∣∣∣∣
4

0

=
3772π

15
= 790.006.

4

- �∆x

6

?
y

y = x2 + 1

x

y

Figure 8.126

1 2

- �∆x

6

?

y

y =
√
x

x

y

Figure 8.127
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6. We slice the region vertically. Each rotated slice is approximately a cylinder with radius y =
√
x and thickness ∆x. See

Figure 8.127. The volume of a typical slice is π(
√
x)2∆x. The volume, V , of the object is the sum of the volumes of the

slices:
V ≈

∑
π(
√
x)2∆x.

As ∆x→ 0 we obtain an integral.

V =

∫ 2

1

π(
√
x)2dx = π

∫ 2

1

xdx = π

(
x2

2

)∣∣∣∣
2

1

=
3π

2
= 4.712.

7. We slice the region vertically. Each rotated slice is approximately a cylinder with radius y = e−2x and thickness ∆x. See
Figure 8.128. The volume of a typical slice is π(e−2x)2∆x. The volume, V , of the object is the sum of the volumes of
the slices:

V ≈
∑

π(e−2x)2∆x.

As ∆x→ 0 we obtain an integral.

V =

∫ 1

0

π(e−2x)2dx = π

∫ 1

0

e−4xdx = π
(
−1

4

)
(e−4x)

∣∣∣∣
1

0

= −π
4

(e−4 − 1) = 0.771.

1

- �∆x

6

?

y y = e−2x

x

y

Figure 8.128

−2 2

-�∆x

6

?

y

y = 4− x2

x

y

Figure 8.129

8. We slice the region vertically. Each rotated slice is approximately a cylinder with radius y = 4 − x2 and thickness ∆x.
See Figure 8.129. The volume, V , of a typical slice is π(4−x2)2∆x. The volume of the object is the sum of the volumes
of the slices:

V ≈
∑

π(4− x2)2∆x.

As ∆x→ 0 we obtain an integral. Since the region lies between x = −2 and x = 2, we have:

V =

∫ 2

−2

π(4− x2)2dx = π

∫ 2

−2

(16− 8x2 + x4)dx = π

(
16x− 8x3

3
+
x5

5

)∣∣∣∣
2

−2

=
512π

15
= 107.233.

9. We divide the region into vertical strips of thickness ∆x. As a slice is rotated about the x-axis, it creates a disk of radius
rout from which has been removed a smaller circular disk of inside radius rin. We see in Figure 8.130 that rout = 2x and
rin = x. Thus,

Volume of a slice ≈ π(rout)
2∆x− π(rin)2∆x = π(2x)2∆x− π(x)2∆x.
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To find the total volume, V , we integrate this quantity between x = 0 and x = 3:

V =

∫ 3

0

(π(2x)2 − π(x)2)dx = π

∫ 3

0

(4x2 − x2) dx = π

∫ 3

0

3x2dx = πx3

∣∣∣∣
3

0

= 27π = 84.823.

3

y = x

y = 2x

6

?

rout = 2x

6

?

rin = x

x

y

Figure 8.130

10. Each slice is a circular disk. The radius, r, of the disk increases with h and is given in the problem by r =
√
h. Thus

Volume of slice ≈ πr2∆h = πh∆h.

Summing over all slices, we have
Total volume ≈

∑
πh∆h.

Taking a limit as ∆h→ 0, we get

Total volume = lim
∆h→0

∑
πh∆h =

∫ 12

0

πh dh.

Evaluating gives

Total volume = π
h2

2

∣∣∣∣
12

0

= 72π.

11. We slice the cone horizontally into cylindrical disks with radius r and thickness ∆h. See Figure 8.131. The volume of
each disk is πr2∆h. We use the similar triangles in Figure 8.132 to write r as a function of h:

r

h
=

3

12
so r =

1

4
h.

The volume of the disk at height h is π( 1
4
h)2∆h. To find the total volume, we integrate this quantity from h = 0 to

h = 12.

V =

∫ 12

0

π
(

1

4
h
)2

dh =
π

16

h3

3

∣∣∣∣
12

0

= 36π = 113.097 m3.

6

?

12 m

-� 6 m

6?∆ h

6

?

h

Figure 8.131

6

?

12 m
-�r

6

?

h

-� 3

Figure 8.132
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12. (a) We slice the pyramid horizontally. See Figure 8.133. Each slice is a square slab of thickness ∆h, so the volume of a
slice at height h is s2∆h, where s is the length of a side. We use the similar triangles in Figure 8.134 to write s as a
function of h:

s

10− h =
8

10
so s = 0.8(10− h).

The volume of the slice at height h is (0.8(10 − h))2∆h. To find the total volume, we integrate this quantity from
h = 0 to h = 10.

V =

∫ 10

0

(0.8(10− h))2dh = 0.64

∫ 10

0

(h− 10)2dh =
16

75
(h− 10)3

∣∣∣∣
10

0

=
640

3
= 213.333 m3.

(b) As in part (a),
Volume of a slice at height h ≈ s2∆h = (0.8(10− h))2∆h.

The height h ranges from h = 0 to h = 6. We have

V =

∫ 6

0

(0.8(10− h))2dh = 0.64

∫ 6

0

(h− 10)2 dh =
16

75
(h− 10)3

∣∣∣∣
6

0

=
4992

25
= 199.680 m3.

�
�

8 m

�

�

8 m

�

�

h

6
?

∆h

�

�

10 m

Figure 8.133

6

?

(10− h)

6

?

h

-� 8 m

6

?

10 m-� s

Figure 8.134

13. We slice the tank horizontally. There is an outside radius rout and an inside radius rin and, at height h,

Volume of a slice ≈ π(rout)
2∆h− π(rin)2∆h.

See Figure 8.135. We see that rout = 3 for every slice. We use similar triangles to find rin in terms of the height h:

rin

h
=

3

6
so rin =

1

2
h.

At height h,

Volume of slice ≈ π(3)2∆h− π
(

1

2
h
)2

∆h.

To find the total volume, we integrate this quantity from h = 0 to h = 6.

V =

∫ 6

0

(
π(3)2 − π

(
1

2
h
)2
)
dh = π

∫ 6

0

(
9− 1

4
h2
)
dh = π

(
9h− h3

12

)∣∣∣∣
6

0

= 36π = 113.097 m3.

6

?

6 m

-� 3 m -� rout

-�rin
6

?

h

Figure 8.135
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14. Since f(x) = sinx, f ′(x) = cos(x), so

Arc Length =

∫ π

0

√
1 + cos2 x dx.

15. We’ll find the arc length of the top half of the ellipse, and multiply that by 2. In the top half of the ellipse, the equation
(x2/a2) + (y2/b2) = 1 implies

y = +b

√
1− x2

a2
.

Differentiating (x2/a2) + (y2/b2) = 1 implicitly with respect to x gives us

2x

a2
+

2y

b2
dy

dx
= 0,

so
dy

dx
=
−2x
a2

2y
b2

= − b
2x

a2y
.

Substituting this into the arc length formula, we get

Arc Length =

∫ a

−a

√
1 +

(
− b

2x

a2y

)2

dx

=

∫ a

−a

√√√√1 +

(
b4x2

a4(b2)(1− x2

a2 )

)
dx

=

∫ a

−a

√
1 +

(
b2x2

a2(a2 − x2)

)
dx.

Hence the arc length of the entire ellipse is

2

∫ a

−a

√
1 +

(
b2x2

a2(a2 − x2)

)
dx.

16. Since f ′(x) = cosx, we have

L =

∫ 3

0

√
1 + (f ′(x))2 dx =

∫ 3

0

√
1 + cos2 x dx = 3.621.

We see in Figure 8.136 that the length of the curve is slightly longer than the length of the x-axis from x = 0 to x = 3,
so the answer of 3.621 makes sense.

3 π

f(x) = sinx

x

Figure 8.136

3

45
f(x) = 5x2

x

Figure 8.137
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17. Since f ′(x) = 10x, we have

L =

∫ 3

0

√
1 + (f ′(x))2 dx =

∫ 3

0

√
1 + (10x)2 dx =

∫ 3

0

√
1 + 100x2 dx = 45.230.

We see in Figure 8.137 that the length of the curve is definitely longer than 45 and slightly longer than
√

452 + 32 =
45.10, so the answer of 45.230 is reasonable.

Problems

18. (a) The points of intersection are x = 0 to x = 2, so we have

Area =

∫ 2

0

(2x− x2)dx = x2 − x3

3

∣∣∣∣
2

0

=
4

3
= 1.333.

(b) The outside radius is 2x and the inside radius is x2, so we have

Volume =

∫ 2

0

(π(2x)2 − π(x2)2)dx = π

∫ 2

0

(4x2 − x4)dx =
π

15
(20x3 − 3x5)

∣∣∣∣
2

0

=
64π

15
= 13.404.

(c) The length of the perimeter is equal to the length of the top plus the length of the bottom. Using the arclength formula,
and the fact that the derivative of 2x is 2 and the derivative of x2 is 2x, we have

L =

∫ 2

0

√
1 + 22dx+

∫ 2

0

√
1 + (2x)2dx = 4.4721 + 4.6468 = 9.119.

19. (a) See Figure 8.138

x

y

Figure 8.138: Rotated
Region

x

y

-r =
√
x

Figure 8.139: Cutaway View

(b) Divide [0,1] into N subintervals of width ∆x = 1
N

. The volume of the ith disc is π(
√
xi)

2∆x = πxi∆x. So,
V ≈

∑N

i=1
πxi∆x. See Figure 8.139

(c)

Volume =

∫ 1

0

πx dx =
π

2
x2
∣∣∣
1

0
=
π

2
≈ 1.57.
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20. (a) See Figure 8.140.

x

y

z

(y = 1)

rout = 1 -

rin = 1−√x -

Figure 8.140

x y

z

-rout = 1

-rin = y2

Figure 8.141

Slice the figure perpendicular to the x–axis. One gets washers of inner radius 1 − √x and outer radius 1.
Therefore,

V =

∫ 1

0

(
π12 − π(1−√x)2

)
dx

= π

∫ 1

0

(1− [1− 2
√
x+ x]) dx

= π
[

4

3
x

3
2 − 1

2
x2
]1

0
=

5π

6
≈ 2.62.

(b) See Figure 8.141. Note that x = y2. We now integrate over y instead of x, slicing perpendicular to the y–axis. This
gives us washers of inner radius x and outer radius 1. So

V =

∫ y=1

y=0

(π12 − πx2) dy

=

∫ 1

0

π(1− y4)dy

=
(
πy − π

5
y5
) ∣∣∣∣

1

0

= π − π

5
=

4π

5
≈ 2.51.

21. (a) Since y = ax2 is non-negative, we integrate to find the area:

Area =

∫ 2

0

(ax2)dx = a
x3

3

∣∣∣∣
2

0

=
8a

3
.

(b) Each slice of the object is approximately a cylinder with radius ax2 and thickness ∆x. We have

Volume =

∫ 2

0

π(ax2)2dx = πa2 x
5

5

∣∣∣∣
2

0

=
32

5
a2π.

22. (a) Since y = e−bx is non-negative, we integrate to find the area:

Area =

∫ 1

0

(e−bx)dx =
−1

b
e−bx

∣∣∣∣
1

0

=
1

b
(1− e−b).

(b) Each slice of the object is approximately a cylinder with radius e−bx and thickness ∆x. We have

Volume =

∫ 1

0

π(e−bx)2dx = π

∫ 1

0

e−2bxdx =
−π
2b
e−2bx

∣∣∣∣
1

0

=
π

2b
(1− e−2b).
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23. (a) We divide the region into vertical strips of thickness ∆x. As a slice is rotated about the x-axis, it creates a disk
of radius rout from which has been removed a smaller circular disk of radius rin. We see in Figure 8.142 that
rout = sinx and rin = 0.5x. Thus,

Volume of a slice ≈ π(rout)
2∆x− π(rin)2∆x = π(sinx)2∆x− π(0.5x)2∆x.

To find the total volume, we integrate this quantity between the points of intersection x = 0 and x = 1.9:

V =

∫ 1.9

0

(π(sinx)2 − π(0.5x)2)dx = π

(
− sinx cosx

2
− x3

12
+ x

)∣∣∣∣∣

1.9

0

= 1.669.

1.9

y = 0.5x

y = sinx

6

?

rout = sinx

6?rin = 0.5x
x

y

Figure 8.142

1.9

5

y = 0.5x

y = sinx

6

?

rmout = 5− 0.5x

6

?

rmin = 5− sinx

x

y

Figure 8.143

(b) We see in Figure 8.143 that rout = 5− 0.5x and rin = 5− sinx. Thus,

Volume of a slice ≈ π(rout)
2∆x− π(rin)2∆x = π(5− 0.5x)2∆x− π(5− sinx)2∆x.

To find the total volume, V , we integrate this quantity between the points of intersection x = 0 and x = 1.9:

V =

∫ 1.9

0

(π(5− 0.5x)2 − π(5− sinx)2) dx =
π

12
(6(sinx− 20) cosx+ x(x2 − 30x− 6))

∣∣∣∣
1.9

0

= 11.550.

24. We divide the region into vertical strips of thickness ∆x. As a slice is rotated about the x-axis, it creates a disk of radius
rout from which has been removed a disk of radius rin. We see in Figure 8.144 that rout = 5 + 2x and rin = 5. Thus,

Volume of a slice ≈ π(rout)
2∆x− π(rin)2∆x = π(5 + 2x)2∆x− π(5)2∆x.

To find the total volume, V , we integrate this quantity between x = 0 and x = 4:

V =

∫ 4

0

(π(5 + 2x)2 − π(5)2)dx = π

∫ 4

0

((5 + 2x)2 − 25) dx = π
(

4

3
x3 + 10x2

)∣∣∣
4

0
=

736π

3
= 770.737.
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4

−5

5 rout6

rin = 5
6

y = −5

y = 5 + 2x

x

y

Figure 8.144

25. (a) We divide the region into vertical strips of thickness ∆x. As a slice is rotated about the x-axis, it creates a disk of
radius rout from which has been removed a disk of radius rin. We see in Figure 8.145 that rout = 2+x2 and rin = 2.
Thus,

Volume of a slice ≈ π(rout)
2∆x− π(rin)2∆x = π(2 + x2)2∆x− π(2)2∆x.

To find the total volume, V , we integrate this quantity between x = 0 and x = 3:

V =

∫ 3

0

(π(2 + x2)2 − π(2)2)dx = π

∫ 3

0

((2 + x2)2 − 4) dx =
π

15
(3x5 + 20x3)

∣∣∣∣∣

3

0

=
423π

5
= 265.778.

(b) We see in Figure 8.146 that rout = 10 and rin = 10− x2. Thus,

Volume of a slice ≈ π(rout)
2∆x− π(rin)2∆x = π(10)2∆x− π(10− x2)2∆x.

To find the total volume, V , we integrate this quantity between x = 0 and x = 3:

V =

∫ 3

0

(π(10)2 − π(10− x2)2)dx = π

∫ 3

0

(100− (10− x2)2) dx =
π

15
(100x3−3x5)

∣∣∣∣∣

3

0

=
657π

5
= 412.805.

3

6
rout = 2 + x2

6rin = 2
y = −2

y = x2

x

y

Figure 8.145

3

10

rout = 10

6

rin = 10− x2

6
y = 10
y = x2

x

y

Figure 8.146

26. Slice the object into disks vertically, as in Figure 8.147. A typical disk has thickness ∆x and radius y =
√

1− x2. Thus

Volume of disk ≈ πy2∆x = π(1− x2) ∆x.

Volume of solid = lim
∆x→0

∑
π(1− x2) ∆x =

∫ 1

0

π(1− x2) dx = π

(
x− x3

3

)∣∣∣∣∣

1

0

=
2π

3
.

Note: As we expect, this is the volume of a half sphere.
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x
1

- �
∆x

y
1

Figure 8.147

27. Slice the object into rings horizontally, as in Figure 8.148. A typical ring has thickness ∆y, inner radius 2 and outer radius
2 + x = 2 +

√
1− y2. Thus,

Volume of ring ≈ π(2 +
√

1− y2)2∆y − π22∆y = π(4
√

1− y2 + 1− y2) ∆y.

Volume of solid =

∫ 1

0

π(4
√

1− y2 + 1− y2) dy

= 4π

∫ 1

0

√
1− y2 dy + π

∫ 1

0

1 dy − π
∫ 1

0

y2 dy

= 4π

(
1

2

(
y
√

1− y2

∣∣∣∣
1

0

+

∫ 1

0

1√
1− y2

dy

))
+ πy

∣∣∣∣
1

0

− πy3

3

∣∣∣∣
1

0

= 2πy
√

1− y2 + 2π arcsin y + πy − πy3

3

∣∣∣∣
1

0

= 0 + 2π arcsin 1 + π − π

3
− 0− 2π arcsin 0− 0 + 0

= π2 +
2π

3
= 11.964.

−2 1

1

6
?

∆y

Inner radius
-

Outer radius
-

Axis
x = −2

	

x2 + y2 = 1

x

y

Figure 8.148: Cross-section of solid

28. Slice the object into rings horizontally, as in Figure 8.149. A typical ring has thickness ∆y, outer radius 1, and inner radius
1− x = 1−

√
1− y2. Thus,

Volume of ring ≈ π12∆y − π(1−
√

1− y2)2∆y = π(2
√

1− y2 − (1− y2)) ∆y.
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Volume of solid =

∫ 1

0

π(2
√

1− y2 − 1 + y2) dy

= 2π

∫ 1

0

√
1− y2 dy − π

∫ 1

0

1 dy + π

∫ 1

0

y2 dy

= 2π · 1

2

(
y
√

1− y2

∣∣∣∣
1

0

+ 12

∫ 1

0

1√
1− y2

dy

)
− πy

∣∣∣∣
1

0

+
πy3

3

∣∣∣∣
1

0

= πy
√

1− y2 + π arcsin y − πy +
πy3

3

∣∣∣∣
1

0

= 0 +
π2

2
− π +

π

3
− 0− 0 + 0− 0

=
π2

2
− 2π

3
= 2.840.

21

1

6

?
∆y

?

Inner radius

�
�
?

Outer radius

Axis

x

y

Figure 8.149: Cross-section of solid

1

1

6

?

∆y

- �
Delta x

	

Base of square (standing on paper)
	

x2 + y2 = 1

x

y

Figure 8.150: Base of solid

29. Slicing perpendicularly to the x-axis gives squares whose thickness is ∆x and whose side is y =
√

1− x2. See Fig-
ure 8.150. Thus,

Volume of square slice ≈ (
√

1− x2)2∆x = (1− x2) ∆x.

Volume of solid =

∫ 1

0

(1− x2) dx = x− x3

3

∣∣∣∣∣

1

0

=
2

3
.

30. Slicing perpendicularly to the y-axis gives semicircles whose thickness is ∆y and whose diameter is x =
√

1− y2. See
Figure 8.151. Thus

Volume of semicircular slice ≈ π
(√

1− y2

2

)2

∆y =
π

4
(1− y2) ∆y.

Volume of solid =

∫ 1

0

π

4
(1− y2) dy =

π

4

(
y − y3

3

)∣∣∣∣∣

1

0

=
π

4
· 2

3
=
π

6
.

1

1

6

?
∆y

-� ∆x

	

Diameter of semicircle (standing on paper)

x

y

Figure 8.151: Base of Solid

1

1

6?∆y

-� ∆x

	

Leg of isosceles triangle (standing on paper)

x

y

Figure 8.152: Base of solid
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31. An isosceles triangle with legs of length s has

Area =
1

2
s2.

Slicing perpendicularly to the y-axis gives isosceles triangles whose thickness is ∆y and whose leg is x =
√

1− y2. See
Figure 8.152. Thus

Volume of triangular slice ≈ 1

2
(
√

1− y2) ∆y =
1

2
(1− y2) ∆y.

Volume of solid =

∫ 1

0

1

2
(1− y2) dy =

1

2

(
y − y3

3

)∣∣∣∣∣

1

0

=
1

3
.

32. (a) Slice the headlight into N disks of height ∆x by cutting perpendicular to the x–axis. The radius of each disk is y;
the height is ∆x. The volume of each disk is πy2∆x. Therefore, the Riemann sum approximating the volume of the
headlight is

N∑

i=1

πy2
i∆x =

N∑

i=1

π
9xi
4

∆x.

(b)

π

∫ 4

0

9x

4
dx = π

9

8
x2

∣∣∣∣
4

0

= 18π.

33. (a) The line y = ax must pass through (l, b). Hence b = al, so a = b/l.
(b) Cut the cone into N slices, slicing perpendicular to the x–axis. Each piece is almost a cylinder. The radius of the ith

cylinder is r(xi) =
bxi
l

, so the volume

V ≈
N∑

i=1

π
(
bxi
l

)2

∆x.

Therefore, as N →∞, we get

V =

∫ l

0

πb2l−2x2dx

= π
b2

l2

[
x3

3

]l

0

=

(
π
b2

l2

)(
l3

3

)
=

1

3
πb2l.

34. (a) If you slice the apple perpendicular to the core, you expect that the cross section will be approximately a circle.

1

1.5h

H

f(h)

If f(h) is the radius of the apple at height h above the bottom, and H is the height of the apple, then

Volume =

∫ H

0

πf(h)2 dh.
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Ignoring the stem, H ≈ 3.5. Although we do not have a formula for f(h), we can estimate it at various points.
(Remember, we measure here from the bottom of the apple, which is not quite the bottom of the graph.)

h 0 0.5 1 1.5 2 2.5 3 3.5
f(h) 1 1.5 2 2.1 2.3 2.2 1.8 1.2

Now let g(h) = πf(h)2, the area of the cross-section at height h. From our approximations above, we get the
following table.

h 0 0.5 1 1.5 2 2.5 3 3.5

g(h) 3.14 7.07 12.57 13.85 16.62 13.85 10.18 4.52

We can now take left- and right-hand sum approximations. Note that ∆h = 0.5 inches. Thus

LEFT(9) = (3.14 + 7.07 + 12.57 + 13.85 + 16.62 + 13.85 + 10.18)(0.5) = 38.64.

RIGHT(9) = (7.07 + 12.57 + 13.85 + 16.62 + 13.85 + 10.18 + 4.52)(0.5) = 39.33.

Thus the volume of the apple is ≈ 39 cu.in.
(b) The apple weighs 0.03× 39 ≈ 1.17 pounds, so it costs about 94c/.

35.

x

y

z

(y = 3)

Figure 8.153: The Torus

x

y

z

(y = 3)

rin = 3− y�

rout = 3 + y�

Figure 8.154: Slice of Torus

As shown in Figure 8.154, we slice the torus perpendicular to the line y = 3. We obtain washers with width dx, inner
radius rin = 3 − y, and outer radius rout = 3 + y. Therefore, the area of the washer is πr2

out − πr2
in = π[(3 + y)2 −

(3− y)2] = 12πy. Since y =
√

1− x2, the volume is gotten by summing up the volumes of the washers: we get
∫ 1

−1

12π
√

1− x2 dx = 12π

∫ 1

−1

√
1− x2 dx.

But
∫ 1

−1

√
1− x2 dx is the area of a semicircle of radius 1, which is π

2
. So we get 12π · π

2
= 6π2 ≈ 59.22. (Or, you

could use ∫ √
1− x2 dx =

[
x
√

1− x2 + arcsin(x)
]
,

by VI-30 and VI-28.)

36. Multiplying r = 2a cos θ by r, converting to Cartesian coordinates, and completing the square gives

r2 = 2ar cos θ

x2 + y2 = 2ax

x2 − 2ax+ a2 + y2 = a2

(x− a)2 + y2 = a2.

This is the standard form of the equation of a circle with radius a and center (x, y) = (a, 0).
To check the limits on θ note that the circle is in the right half plane, where −π/2 ≤ θ ≤ π/2. Rays from the origin

at all these angles meet the circle because the circle is tangent to the y-axis at the origin.
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37. The area is given by
∫ π/2

−π/2

1

2
r2 dθ =

∫ π/2

−π/2

1

2
(2a cos θ)2 dθ = 2a2

∫ π/2

−π/2
cos2 θ dθ = 2a2

(
1

2
cos θ sin θ +

θ

2

)∣∣∣
π/2

−π/2
= πa2.

(We have used formula IV-18 from the integral table. The integral can also be done using a calculator or integration by
parts.)

38. See Figure 8.155. The circles meet where

2a cos θ = a

cos θ =
1

2

θ = ±π
3
.

The area is obtained by subtraction:

Area =

∫ π/3

−π/3

(
1

2
(2a cos θ)2 − 1

2
a2
)
dθ

=

∫ π/3

−π/3

(
2a2 cos2 θ − 1

2
a2
)
dθ

=

(
2a2
(

1

2
cos θ sin θ +

θ

2

)
− a2

2
θ

)∣∣∣∣
π/3

−π/3

=

(
π

3
+

√
3

2

)
a2.

Since (
π/3 +

√
3/2
)
a2

πa2
= 61%

the shaded region covers 61% of circle C.

a

C

r = 2a cos θ

π/3

−π/3

r = a

x

y

Figure 8.155

39. (a) Writing C in parametric form gives

x = 2a cos2 θ and y = 2a cos θ sin θ,

so the slope is given by

dy

dx
=
dy/dθ

dx/dθ
=
−2a sin2 θ + 2a cos2 θ

−4a cos θ sin θ
=

sin2 θ − cos2 θ

2 cos θ sin θ
.

(b) The maximum y-value occurs where dy/dx = 0, so

sin2 θ − cos2 θ = 0

θ = ±π
4
.

The value θ = π/4 gives the maximum y-value; θ = −π/4 gives the minimum y-value.
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40. Writing C in parametric form gives

x = 2a cos2 θ and y = 2a cos θ sin θ,

so

Arc length =

∫ π/2

−π/2

√
(−4a cos θ sin θ)2 + (−2a sin2 θ + 2a cos2 θ)2 dθ

= 2a

∫ π/2

−π/2

√
4 cos2 θ sin2 θ + sin4 θ − 2 sin2 θ cos2 θ + cos4 θ dθ

= 2a

∫ π/2

−π/2

√
sin4 θ + 2 sin2 θ cos2 θ + cos4 θ dθ

= 2a

∫ π/2

−π/2

√
(sin2 θ + cos2 θ)2 dθ

= 2a

∫ π/2

−π/2
dθ = 2πa.

41. The total mass is 12 gm, so the center of mass is located at x = 1
12

(−5 · 3− 3 · 3 + 2 · 3 + 7 · 3) = 1
4
.

42. (a) Since the density is constant, the mass is the product of the area of the plate and its density.

Area of the plate =

∫ 1

0

(
√
x− x2) dx =

(
2

3
x3/2 − 1

3
x3
)∣∣∣

1

0
=

1

3
cm2.

Thus the mass of the plate is 2 · 1/3 = 2/3 gm.
(b) See Figure 8.156. Since the region is “fatter” closer to the origin, x̄ is less than 1/2.

- �
∆x

1

1

y =
√
x

y = x2

x

y

Figure 8.156

(c) To find x̄, we slice the region into vertical strips of width ∆x. See Figure 8.156.

Area of strip = Ax(x)∆x ≈ (
√
x− x2)∆x cm2.

Then we have

x =

∫
xδAx(x) dx

Mass
=

∫ 1

0
2x(
√
x− x2) dx

2/3
=

3

2

∫ 1

0

2(x3/2 − x3) dx =
3

2
· 2
(

2

5
x5/2 − 1

4
x4
)∣∣∣

1

0
=

9

20
cm.

This is less than 1/2, as predicted in part (b). So x̄ = ȳ = 9/20 cm.
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43. Let x be the height from ground to the weight. It follows that 0 ≤ x ≤ 20. At height x, to lift the weight ∆x more, the
work needed is 200∆x+ 2(20− x)∆x = (240− 2x)∆x. So the total work is

W =

∫ 20

0

(240− 2x)dx

= (240x− x2)

∣∣∣∣
20

0

= 240(20)− 202 = 4400 ft-lb.

44. Let x be the distance from the bucket to the surface of the water. It follows that 0 ≤ x ≤ 40. At x feet, the bucket weighs
(30− 1

4
x), where the 1

4
x term is due to the leak. When the bucket is x feet from the surface of the water, the work done

by raising it ∆x feet is (30− 1
4
x) ∆x. So the total work required to raise the bucket to the top is

W =

∫ 40

0

(30− 1

4
x)dx

=
(

30x− 1

8
x2
) ∣∣∣∣

40

0

= 30(40)− 1

8
402 = 1000 ft-lb.

45.
� 12′
6

?

18′
6

?

15′

-r

6

?

x

∆x

Figure 8.157
Let x be the depth of the water measured from the bottom of the tank. See Figure 8.157. It follows that 0 ≤ x ≤ 15. Let
r be the radius of the section of the cone with height x. By similar triangles, r

x
= 12

18
, so r = 2

3
x. Then the work required

to pump a layer of water with thickness of ∆x at depth x over the top of the tank is 62.4π
(

2
3
x
)2

∆x(18 − x). So the
total work done by pumping the water over the top of the tank is

W =

∫ 15

0

62.4π
(

2

3
x
)2

(18− x)dx

=
4

9
62.4π

∫ 15

0

x2(18− x)dx

=
4

9
62.4π

(
6x3 − 1

4
x4
) ∣∣∣∣

15

0

=
4

9
62.4π(7593.75) ≈ 661,619.41 ft-lb.

46. We slice the gasoline horizontally. At a distance h feet below the surface, the horizontal slab is a cylinder with radius r
and thickness ∆h, so

Volume of one slab ≈ πr2∆h.

To find the radius r at a depth h from the top as in Figure 8.158, we note that h2 + r2 = 52, so r =
√

25− h2. At depth
h

Volume of one slice ≈ π(
√

25− h2)2∆h = π(25− h2)∆h ft3.
The gasoline at depth h must be lifted a distance of h ft, so

Work to move one slice = ρ · Volume · Distance lifted

≈ ρ(π(25− h2)∆h)(h) ft-lb.
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The work done, W , to lift all the gasoline is the sum of the work done on the pieces:

W ≈
∑

ρ(π(25− h2)∆h)h ft-lb..

As ∆h→ 0, we obtain a definite integral. Since h varies from h = 0 to h = 5 and ρ = 42, we have:

W =

∫ 5

0

ρπ(25h− h3)dh = 42π

(
25
h2

2
− h4

4

)∣∣∣∣
5

0

=
13125π

2
= 20,617 ft-lb.

The work to pump all the gasoline out is 20,617 ft-lbs.

5

r

6
?
h

Figure 8.158

47. Let h be height above the bottom of the dam. Then

Water force =

∫ 25

0

(62.4)(25− h)(60) dh

= (62.4)(60)

(
25h− h2

2

)∣∣∣∣
25

0

= (62.4)(60)(625− 312.5)

= (62.4)(60)(312.5)

= 1,170,000 lbs.

48. If the weight of the chain were negligible, the work required would be 1000 · 20 = 20,000 ft-lbs. Because of the chain,
the total work is slightly more than 20,000 ft-lbs. When the object is h ft off the ground, the length of chain is 50− h so
the total weight being lifted is 1000 + 2(50− h) lb. See Figure 8.159. Thus

Work to lift the weight an addition ∆h higher = Weight · Distance lifted

≈ (1000 + 2(50− h))∆h ft-lb.

To find the total work, we integrate this quantity from h = 0 to h = 20:

W =

∫ 20

0

(1000 + 2(50− h))dh =

∫ 20

0

(1100− 2h)dh = (1100h− h2)

∣∣∣∣
20

0

= 21,600ft-lbs.

6

?

20 ft

6

?

50 ft

6

?
∆h 1000 lbs
6

?
h ft

Ground

Figure 8.159
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49. (a)

Future Value =

∫ 20

0

100e0.10(20−t)dt

= 100

∫ 20

0

e2e−0.10tdt

=
100e2

−0.10
e−0.10t

∣∣∣∣
20

0

=
100e2

0.10
(1− e−0.10(20)) ≈ $6389.06.

The present value of the income stream is
∫ 20

0

100e−0.10tdt = 100
(

1

−0.10

)
e−0.10t

∣∣∣∣
20

0

= 1000
(
1− e−2

)
= $864.66.

Note that this is also the present value of the sum $6389.06.
(b) Let T be the number of years for the balance to reach $5000. Then

5000 =

∫ T

0

100e0.10(T−t)dt

50 = e0.10T

∫ T

0

e−0.10tdt

=
e0.10T

−0.10
e−0.10t

∣∣∣∣
T

0

= 10e0.10T (1− e−0.10T ) = 10e0.10T − 10.

So, 60 = 10e0.10T , and T = 10 ln 6 ≈ 17.92 years.

50. (a) Let’s split the time interval into n parts, each of length ∆t. During the interval from ti to ti+1, profit is earned at
a rate of approximately (2 − 0.1ti) thousand dollars per year, or (2000 − 100ti) dollars per year. Thus during this
period, a total profit of (2000−100ti)∆t dollars is earned. Since this profit is earned ti years in the future, its present
value is (2000− 100ti)∆te

−0.1ti dollars. Thus

Total present value ≈
n−1∑

i=0

(2000− 100ti)e
−0.1ti∆t.

t0 t1 t2
. . .

ti ti+1
. . .

tn

� -
∆t0 M

(b) The Riemann sum corresponds to the integral:

Present value =

∫ M

0

e−0.10t(2000− 100t) dt.

(c) To find where the present value is maximized, we take the derivative of

P (M) =

∫ M

0

e−0.10t(2000− 100t) dt,
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with respect to M , and obtain
P ′(M) = e−0.10M (2000− 100M).

This is 0 when 2000 − 100M = 0, that is, when M = 20 years. The value M = 20 maximizes P (M), since
P ′(M) > 0 forM < 20, and P ′(M) < 0 forM > 20. To determine what the maximum is, we evaluate the integral
representation for P (20) by III-14 in the integral table:

P (20) =

∫ 20

0

e−0.10t(2000− 100t) dt

=

[
(2000− 100t)

−0.10
e−0.10t + 10000e−0.10t

] ∣∣∣∣
20

0

≈ $11353.35.

51. We divide up time between 1971 and 1992 into intervals of length ∆t, and calculate how much of the strontium-90
produced during that time interval is still around.

Strontium-90 decays exponentially, so if a quantity S0 was produced t years ago, and S is the quantity around today,
S = S0e

−kt. Since the half-life is 28 years, 1
2

= e−k(28), giving k = − ln(1/2)/28 ≈ 0.025.
We measure t in years from 1971, so that 1992 is t = 21.

- -�

1971 (t = 0) 1992 (t = 21)

(21− t)

∆t

t

Since strontium-90 is produced at a rate of 3 kg/year, during the interval ∆t, a quantity 3∆t kg was produced. Since
this was (21− t) years ago, the quantity remaining now is (3∆t)e−0.025(21−t). Summing over all such intervals gives

Strontium remaining
in 1992

≈
∫ 21

0

3e−0.025(21−t) dt =
3e−0.025(21−t)

0.025

∣∣∣∣
21

0

= 49 kg.

[Note: This is like a future value problem from economics, but with a negative interest rate.]

52. (a) Slice the mountain horizontally into N cylinders of height ∆h. The sum of the volumes of the cylinders will be

N∑

i=1

πr2∆h =

N∑

i=1

π

(
3.5 · 105

√
h+ 600

)2

∆h.

(b)

Volume =

∫ 14400

400

π

(
3.5 · 105

√
h+ 600

)2

dh

= 1.23 · 1011π

∫ 14400

400

1

(h+ 600)
dh

= 1.23 · 1011π ln(h+ 600)

∣∣∣∣
14400

400

dh

= 1.23 · 1011π [ln 15000− ln 1000]

= 1.23 · 1011π ln(15000/1000)

= 1.23 · 1011π ln 15 ≈ 1.05 · 1012 cubic feet.

53. Look at the disc-shaped slab of water at height y and of thickness ∆y. The rate at which water is flowing out when it is at
depth y is k

√
y (Torricelli’s Law, with k constant). Then, if x = g(y), we have

∆t =

(
Time for water to
drop by this amount

)
=

Volume
Rate

=
π(g(y))2∆y

k
√
y

.
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∆y

x = g(y)

(1, 1)(−1, 1)

y

x

If the rate at which the depth of the water is dropping is constant, then dy/dt is constant, so we want

π(g(y))2

k
√
y

= constant,

so g(y) = c 4
√
y, for some constant c. Since x = 1 when y = 1, we have c = 1 and so x = 4

√
y, or y = x4.

54. For a given energy E, Figure 8.160 shows that the area under the graph to the right of E is larger for graphB than it is for
graph A. Therefore graph B has more molecules at higher kinetic energies, so it is the hotter gas. So graph A corresponds
to 300 kelvins and graph B corresponds to 500 kelvins.

E

A

B

energy

Figure 8.160

55. Graph B is more spread out to the right, and so it represents a gas in which more of the molecules are moving at faster
velocities. Thus the average velocity in gas B is larger.

56. Every photon which falls a given distance from the center of the detector has the same probability of being detected. This
suggests that we divide the plate up into concentric rings of thickness ∆r. Consider one such ring having inner radius r
and outer radius r + ∆r. For this ring,

Number of photons hitting ring per unit time ≈ N · Area of ring ≈ N · 2πr∆r.

Then,

Number of photons detected on ring per unit time ≈ Number hitting · S(r) ≈ N · 2πr∆r · S(r).

Summing over all rings gives us

Total number of photons detected per unit time ≈
∑

2πNrS(r)∆r.

Taking the limit as ∆r → 0 gives

Total number of photons detected per unit time =

∫ R

0

2πNrS(r)dr.
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57. First we find the volume of the body up to the horizontal line through Q.

P

Q

T

S 0.2

0.1 6
?

0.15

6
?
y2

6

?

y1

We put the origin at P, the x-axis horizontal and the y-axis pointing upward, and compute the volume obtained by
rotating the curve y = 1− 4x2 around the y-axis up to Q. At Q, we have x = 0.1, so

y1 = 1− 4(0.12) = 0.96.

Slicing the body horizontally into disks of radius x, thickness ∆y, we have

Volume of disk in body ≈ πx2∆y =
π

4
(1− y)∆y.

Thus,

Volume of body up to Q =

∫ 0.96

0

π

4
(1− y)dy =

π

4

(
y − y2

2

)∣∣∣∣
0.96

0

= 0.3921.

To find the volume of the head, it is easiest to consider the origin at S, the x-axis horizontal, and the y-axis pointed upward.
Then think of the head as the volume obtained by rotating the circle x2 + y2 = (0.2)2 about the y-axis. We compute the
volume of the head down to the horizontal line through T, at which point x = 0.1. Thus

(0.1)2 + y2
2 = (0.2)2.

So
y2 = −

√
0.03 = −0.1732.

Slicing the head into circular disks, we have

Volume of disk in head ≈ πx2∆y = π(0.22 − y2)∆y.

Thus,

Volume of head down to T =

∫ 0.2

−0.1732

π(0.22 − y2)dy = π(0.22y − y3

3
)

∣∣∣∣
0.2

−0.1732

= 0.0331.

The neck is exactly cylindrical, with

Volume of neck = π(0.12)0.15 = 0.0047.

Thus,

Total volume = Vol body + Vol head + Vol neck

= 0.3921 + 0.0331 + 0.0047

= 0.4299 ≈ 0.43m3
.
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58. (a) Divide the cross-section of the blood into rings of radius r, width ∆r. See Figure 8.161.

6

?
R

6?
6?

-� l

r

� ∆r

v = PR2

4ηl
-

Figure 8.161

Then
Area of ring ≈ 2πr∆r.

The velocity of the blood is approximately constant throughout the ring, so

Rate blood flows through ring ≈ Velocity · Area

=
P

4ηl
(R2 − r2) · 2πr∆r.

Thus, summing over all rings, we find the total blood flow:

Rate blood flowing through blood vessel ≈
∑ P

4ηl
(R2 − r2)2πr∆r.

Taking the limit as ∆r → 0, we get

Rate blood flowing through blood vessel =

∫ R

0

πP

2ηl
(R2r − r3)dr

=
πP

2ηl

(
R2r2

2
− r4

4

)∣∣∣∣
R

0

=
πPR4

8ηl
.

(b) Since

Rate of blood flow =
πPR4

8ηl
,

if we take k = πP/(8ηl), then we have

Rate of blood flow = kR4,

that is, rate of blood flow is proportional to R4, in accordance with Poiseuille’s Law.

59. Pick a small interval of time ∆t which takes place at time t. Fuel is consumed at a rate of (25 + 0.1v)−1 gallons per
mile. In the time ∆t, the car moves v∆t miles, so it consumes v∆t/(25 + 0.1v) gallons during the instant ∆t. Since
v = 50 t

t+1
, the car consumes

v∆t

25 + 0.1v
=

50 t
t+1

∆t

25 + 0.1
(
50 t

t+1

) =
50t∆t

25(t+ 1) + 5t
=

10t∆t

6t+ 5

gallons of gas, in terms of the time t at which the instant occurs. To find the total gas consumed, sum up the instants in an
integral:

Gas consumed =

∫ 3

2

10t

6t+ 5
dt ≈ 1.25 gallons.
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60. (a) Slicing horizontally, as shown in Figure 8.162, we see that the volume of one disk-shaped slab is

∆V ≈ πx2∆y =
πy

a
∆y.

Thus, the volume of the water is given by

V =

∫ h

0

π

a
ydy =

π

a

y2

2

∣∣∣∣
h

0

=
πh2

2a
.

x

y

-� x

6
?
y

6

?

h 6?∆y

y = ax2

Figure 8.162

(b) The surface of the water is a circle of radius x. Since at the surface, y = h, we have h = ax2. Thus, at the surface,
x =

√
(h/a). Therefore the area of the surface of water is given by

A = πx2 =
πh

a
.

(c) If the rate at which water is evaporating is proportional to the surface area, we have

dV

dt
= −kA.

(The negative sign is included because the volume is decreasing.) By the chain rule, dV
dt

= dV
dh
· dh
dt

. We know
dV
dh

= πh
a

and A = πh
a

so
πh

a

dh

dt
= −kπh

a
giving

dh

dt
= −k.

(d) Integrating gives
h = −kt+ h0.

Solving for t when h = 0 gives

t =
h0

k
.

61. (a) The volume of water in the centrifuge is π(12) ·1 = π cubic meters. The centrifuge has total volume 2π cubic meters,
so the volume of the air in the centrifuge is π cubic meters. Now suppose the equation of the parabola is y = h+bx2.
We know that the volume of air in the centrifuge is the volume of the top part (a cylinder) plus the volume of the
middle part (shaped like a bowl). See Figure 8.163.

x

y

1

6

?

h+ b

6

?
2− (h+ b)

Figure 8.163: The Volume of Air
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To find the volume of the cylinder of air, we find the maximum water depth. If x = 1, then y = h+ b. Therefore
the height of the water at the edge of the bowl, 1 meter away from the center, is h+ b. The volume of the cylinder of
air is therefore [2− (h+ b)] · π · (1)2 = [2− h− b]π.

To find the volume of the bowl of air, we note that the bowl is a volume of rotation with radius x at height y,
where y = h+ bx2. Solving for x2 gives x2 = (y − h)/b. Hence, slicing horizontally as shown in the picture:

Bowl Volume =

∫ h+b

h

πx2 dy =

∫ h+b

h

π
y − h
b

dy =
π(y − h)2

2b

∣∣∣∣
h+b

h

=
bπ

2
.

So the volume of both pieces together is [2 − h − b]π + bπ/2 = (2 − h − b/2)π. But we know the volume of air
should be π, so (2− h− b/2)π = π, hence h+ b/2 = 1 and b = 2− 2h. Therefore, the equation of the parabolic
cross-section is y = h+ (2− 2h)x2.

(b) The water spills out the top when h+ b = h+ (2− 2h) = 2, or when h = 0. The bottom is exposed when h = 0.
Therefore, the two events happen simultaneously.

62. Any small piece of mass ∆M on either of the two spheres has kinetic energy 1
2
v2∆M . Since the angular velocity of the

two spheres is the same, the actual velocity of the piece ∆M will depend on how far away it is from the axis of revolution.
The further away a piece is from the axis, the faster it must be moving and the larger its velocity v. This is because if ∆M
is at a distance r from the axis, in one revolution it must trace out a circular path of length 2πr about the axis. Since every
piece in either sphere takes 1 minute to make 1 revolution, pieces farther from the axis must move faster, as they travel a
greater distance.

Thus, since the thin spherical shell has more of its mass concentrated farther from the axis of rotation than does the
solid sphere, the bulk of it is traveling faster than the bulk of the solid sphere. So, it has the higher kinetic energy.

63. Any small piece of mass ∆M on either of the two hoops has kinetic energy 1
2
v2∆M . Since the angular velocity of the

two hoops is the same, the actual velocity of the piece ∆M will depend on how far away it is from the axis of revolution.
The further away a piece is from the axis, the faster it must be moving and the larger its velocity v. This is because if ∆M
is at a distance r from the axis, in one revolution it must trace out a circular path of length 2πr about the axis. Since every
piece in either hoop takes 1 minute to make 1 revolution, pieces farther from the axis must move faster, as they travel a
greater distance.

The hoop rotating about the cylindrical axis has all of its mass at a distance R from the axis, whereas the other hoop
has a good bit of its mass close (or on) the axis of rotation. So, since the bulk of the hoop rotating about the cylindrical
axis is traveling faster than the bulk of the other hoop, it must have the higher kinetic energy.

CAS Challenge Problems

64. (a) We need to check that the point with the given coordinates is on the curve, i.e., that

x = a sin2 t, y =
a sin3 t

cos t

satisfies the equation

y =

√
x3

a− x .

This can be done by substituting into the computer algebra system and asking it to simplify the difference between
the two sides, or by hand calculation:

Right-hand side =

√
(a sin2 t)3

a− a sin2 t
=

√
a3 sin6 t

a(1− sin2 t)

=

√
a3 sin6 t

a cos2 t
=

√
a2 sin6 t

cos2 t

=
a sin3 t

cos t
= y = Left-hand side.

We chose the positive square root because both sin t and cos t are nonnegative for 0 ≤ t ≤ π/2. Thus the point always
lies on the curve. In addition, when t = 0, x = 0 and y = 0, so the point starts at x = 0. As t approaches π/2, the
value of x = a sin2 t approaches a and the value of y = a sin3 t/ cos t increases without bound (or approaches∞),
so the point on the curve approaches the vertical asymptote at x = a.
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(b) We calculate the volume using horizontal slices. See the graph of y =
√
x3/(a− x) in Figure 8.164.

a
6

?
x− a

∆y

x

y

Figure 8.164

The slice at y is a disk of thickness ∆y and radius x− a, hence it has volume π(x − a)2∆y. So the volume is
given by the improper integral

Volume =

∫ ∞

0

π(x− a)2 dy.

(c) We substitute

x = a sin2 t, y =
a sin3 t

cos t
and

dy =
d

dt

(
a sin3 t

cos t

)
dt = a

(
3 sin2 t+

sin4 t

cos2 t

)
dt.

Since t = 0 where y = 0 and t = π/2 at the asymptote where y →∞, we get

Volume =

∫ π/2

0

π(a sin2 t− a)2a

(
3 sin2 t+

sin4 t

cos2 t

)
dt

= πa3

∫ π/2

0

(3 sin2 t cos4 t+ sin4 t cos2 t) dt =
π2a3

8
.

You can use a CAS to calculate this integral; it can also be done using trigonometric identities.

65. (a) The expression for arc length in terms of a definite integral gives

A(t) =

∫ t

0

√
1 + 4x2 dx =

2 t
√

1 + 4 t2 + arcsinh (2 t)

4
.

The integral was evaluated using a computer algebra system; different systems may give the answer in different
forms. Here arcsinh is the inverse function of the hyperbolic sine function.

(b) Figure 8.165 shows that the graphs of A(t) and t2 look very similar. This suggests that A(t) ≈ t2.

10

100 t2

t

y

10

100 A(t)

t

y

Figure 8.165

10

100

x

y

y = x2

Figure 8.166
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(c) The graph in Figure 8.166 is approximately vertical and close to the y axis. Thus, if we measure the arc length up to a
certain y-value, the answer is approximately the same as if we had measured the length straight up the y-axis. Hence

A(t) ≈ y = f(t) = t2.

So
A(t) ≈ t2.

66. (a) The expression for arc length in terms of a definite integral gives

A(t) =

∫ t

0

√
1 +

(
1

2
√
x

)2

dx =
2
√
t
√

1 + 4t+ arcsinh (2
√
t)

4
.

The integral was evaluated using a computer algebra system; different systems may give the answer in different
forms. Some may involve ln instead of arcsinh, which is the inverse function of the hyperbolic sine function.

(b) Figure 8.168 shows that the graphs of A(t) and the graph of y = t look very similar. This suggests that A(t) ≈ t.

10

100

y = t

t

y

10

100

A(t)

t

y

Figure 8.167

100

100

x

y

y =
√
x

Figure 8.168

(c) The graph in Figure 8.168 is approximately horizontal and close to the x-axis. Thus, if we measure the arc length up
to a certain x-value, the answer is approximately the same as if we had measured the length straight along the x-axis.
Hence

A(t) ≈ x = t.

So
A(t) ≈ t.

67. (a) Slice the sphere at right angles to the axis of the cylinder. Consider a slice of thickness ∆x at distance x from
the center of the sphere. The cross-section is an annulus (ring) with internal radius ri = a and outer radius ro =√
r2 − x2. Thus

Area of annulus = πro
2 − πri2 = π

(√
r2 − x2

)2

− πa2 = π(r2 − x2 − a2).

Volume of slice ≈ π(r2 − x2 − a2)∆x.

The lower and upper limits of the integral are where the cylinder meets the sphere, i.e., where x2 + a2 = r2, or
x = ±

√
r2 − a2. Thus

Volume of bead =

∫ √r2−a2

−
√
r2−a2

π(r2 − x2 − a2) dx.

(b) Using a computer algebra system to evaluate the integral, we have

Volume of bead =
4π

3

(
r2 − a2

)3/2
.
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CHECK YOUR UNDERSTANDING

1. True. Since y = ±
√

9− x2 represent the top and bottom halves of the sphere, slicing disks perpendicular to the x-axis
gives

Volume of slice ≈ πy2∆x = π(9− x2)∆x

Volume =

∫ 3

−3

π(9− x2) dx.

2. False. Evaluating does not give the volume of a cone πr2h/3:

∫ h

0

π(r − y) dy = π

(
ry − y2

2

)∣∣∣∣
h

0

= π

(
rh− h2

2

)
.

Alternatively, you can show by slicing that the integral representing this volume is
∫ h

0
πr2(1− y/h)2 dy.

3. False. Using the table of integrals (VI-28 and VI-30) or a trigonometric substitution gives
∫ r

0

π
√
r2 − y2 dy =

π

2

(
y
√
r2 − y2 + r2 arcsin

(
y

r

)) ∣∣∣∣
r

0

=
πr2

2
(arcsin 1− arcsin 0) =

π2r2

4
.

The volume of a hemisphere is 2πr3/3.
Alternatively, you can show by slicing that the integral representing this volume is

∫ r
0
π(r2 − y2) dy.

4. True. Horizontal slicing gives rectangular slabs of length l, thickness ∆y, and width w = 2
√
r2 − y2. So the volume of

one slab is 2l
√
r2 − y2∆y, and the integral is

∫ r
−r 2l

√
r2 − y2 dy.

5. False. Volume is always positive, like area.

6. False. The population density needs to be approximately constant on each ring. This is only true if the population density
is a function of r, the distance from the center of the city.

7. False. Since the density varies with y, the region must be sliced perpendicular to the y-axis, along the lines of constant y.

8. False. Although the density is greater near the center, the area of the suburbs is much larger than the area of the inner city,
and population is determined by both area and density. In fact, the population of the inner city:

∫ 1

0

(10− 3r)2πrdr = 2π(5r2 − r3)

∣∣∣∣
1

0

= 8π

is less than the population of the suburbs:
∫ 2

1

(10− 3r)2πrdr = 2π(5r2 − r3)

∣∣∣∣
2

1

= 16π.

9. True. One way to look at it is that the center of mass should not change if you change the units by which you measure the
masses. If you double the masses, that is no different than using as a new unit of mass half the old unit. Alternatively, let
the masses be m1,m2, and m3 located at x1, x2, and x3. Then the center of mass is given by:

x̄ =
x1m1 + x2m2 + x3m3

m1 +m2 +m3
.

Doubling the masses does not change the center of mass, since it doubles both the numerator and the denominator.

10. False. The center of mass of a circular ring (for example, a coin with a hole in it) is at the center.

11. True. The density of particles hitting the target is approximately constant on concentric rings.

12. False. If the density were constant this would be true, but suppose that all the mass on the left half is concentrated at x = 0
and all the mass on the right side is concentrated at x = 3. In order for the rod to balance at x = 2, the weight on the left
side must be half the weight on the right side.

13. False. Work is the product of force and distance moved, so the work done in either case is 200 ft-lb.

14. True. Displacement in the same direction as the force gives positive work; displacement in the opposite direction as the
force gives negative work.
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15. False. Since the water pressure increases with depth, the force on the lower half of the new dam is greater than the force
on the upper half of the new dam, which is the same as the force on the old dam. Thus the force on the new dam is more
than double the force on the old dam.

16. True. Since pressure increases with depth and we want the pressure to be approximately constant on each strip, we use
horizontal strips.

17. False. The pressure is positive and when integrated gives a positive force.

18. True. Although work is expressed in an integral, the average value is also expressed in an integral. We have:

Average value of the force =
1

4− 1

∫ 4

1

F (x)dx.

Thus if we multiply the average force by 3, we get
∫ 4

1
F (x)dx, which is the work done.

19. True. For an income stream P (t) from t = 0 to t = M , we have:

Present value =

∫ M

0

P (t)e−rtdt,

and

Future value =

∫ M

0

P (t)er(M−t)dt.

Since M and r are constant, we can factor out erM from the integral for the future value to get:

Future value = erM (Present value).

Since r > 0 and M > 0, this means erM > 1 so the future value is greater than the present value.

20. False. Since p(x) < 0 for x < 0, it cannot be a probability density function.

21. False. It is true that p(x) ≥ 0 for all x, but we also need
∫∞
−∞ p(x)dx = 1. Since p(x) = 0 for x ≤ 0, we need only

check the integral from 0 to∞. We have

∫ ∞

0

xe−x
2

dx = lim
b→∞

(
−1

2
e−x

2
) ∣∣∣∣

b

0

=
1

2
.

22. False. The volume also depends on how far away the region is from the axis of revolution. For example, let R be the
rectangle 0 ≤ x ≤ 8, 0 ≤ y ≤ 1 and let S be the rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 2. Then rectangle R has area greater
than rectangle S. However, when you revolve R about the x-axis you get a cylinder, lying on its side, of radius 1 and
length 8, which has volume 8π. When you revolve S about the x-axis, you get a cylinder of radius 2 and length 3, which
has volume 12π. Thus the second volume is larger, even though the region revolved has smaller area.

23. False. Suppose that the graph of f starts at the point (0, 100) and then goes down to (1, 0) and from there on goes along
the x-axis. For example, if f(x) = 100(x − 1)2 on the interval [0, 1] and f(x) = 0 on the interval [1, 10], then f is
differentiable on the interval [0, 10]. The arc length of the graph of f on the interval [0, 1] is at least 100, while the arc
length on the interval [1, 10] is 9.

24. True. Since f is concave up, f ′ is an increasing function, so f ′(x) ≥ f ′(0) = 3/4 on the interval [0, 4]. Thus√
1 + (f ′(x))2 ≥

√
1 + 9/16 = 5/4. Then we have:

Arc length =

∫ 4

0

√
1 + (f ′(x))2dx ≥

∫ 4

0

5

4
dx = 5.

25. False. Since f is concave down, this means that f ′(x) is decreasing, so f ′(x) ≤ f ′(0) = 3/4 on the interval [0, 4].
However, it could be that f ′(x) becomes negative so that (f ′(x))2 becomes large, making the integral for the arc length
large also. For example, f(x) = (3/4)x− x2 is concave down and f ′(0) = 3/4, but f(0) = 0 and f(4) = −13, so the
graph of f on the interval [0, 4] has arc length at least 13.

26. False. Note that p is the density function for the population, not the cumulative density function. Thus p(10) = 1/2 means
that the probability of x lying in a small interval of length ∆x around x = 10 is about (1/2)∆x.

27. True. This follows directly from the definition of the cumulative density function.
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28. True. The interval from x = 9.98 to x = 10.04 has length 0.06. Assuming that the value of p(x) is near 1/2 for
9.98 < x < 10.04, the fraction of the population in that interval is

∫ 10.04

9.98
p(x)dx ≈ (1/2)(0.06) = 0.03.

29. False. Note that p is the density function for the population, not the cumulative density function. Thus p(10) = p(20)
means that x values near 10 are as likely as x values near 20.

30. True. By the definition of the cumulative distribution function, P (20) − P (10) = 0 is the fraction of the population
having x values between 10 and 20.

PROJECTS FOR CHAPTER EIGHT

1. Let us make coordinate axes with the origin at the center of the box. The x and y axes will lie along the central
axes of the cylinders, and the (height) axis will extend vertically to the top of the box. If one slices the cylinders
horizontally, one gets a cross. The cross is what you get if you cut out four corner squares from a square of side
length 2. If h is the height of the cross above (or below) the xy plane, the equation of a cylinder is h2 + y2 = 1
(or h2 + x2 = 1). Thus the “armpits” of the cross occur where y2 − 1 = −h2 = x2 − 1 for some fixed height
h—that is, out

√
1− h2 units from the center, or 1 −

√
1− h2 units away from the edge. Each corner square

has area (1 −
√

1− h2)2 = 2 − h2 − 2
√

1− h2. The whole big square has area 4. Therefore, the area of the
cross is

4− 4(2− h2 − 2
√

1− h2) = −4 + 4h2 + 8
√

1− h2.

� -� -

6

?

� -

√
1− h21−

√
1− h2

1−
√

1− h2

2

We integrate this from h = −1 to h = 1, and obtain the volume, V :

V =

∫ 1

−1

−4 + 4h2 + 8
√

1− h2 dh

=

[
− 4h+

4h3

3
+ 8 · 1

2

(
h
√

1− h2 + arcsinh
)]∣∣∣∣∣

1

−1

= −8 +
8

3
+ 4π = 4π − 16

3
≈ 7.23.

This is a reasonable answer, as the volume of the cube is 8, and the volume of one cylinder alone is 2π ≈ 6.28.
2. (a) Let y represent height, and let x represent horizontal distance from the lowest point of the cable. Then the

stretched cable is a parabola of the form y = kx2 passing through the point (1280/2, 143) = (640, 143).
Therefore, 143 = k(640)2 so k ≈ 3.491× 10−4. To find the arc length of the parabola, we take twice the
arc length of the part to the right of the lowest point. Since dy/dx = 2kx,

Arc Length = 2

∫ 640

0

√
1 + (2kx)2 dx = 2

∫ 640

0

√
1 + 4k2x2 dx.

The easiest way to find this integral is to substitute the value of k and find the integral’s value numer-
ically, giving

Arc Length ≈ 1321.4 meters.
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Alternatively, we can make the substitution w = 2kx:

Arc Length =
2

2k

∫ 1280k

0

√
1 + w2 dw

=
1

k

∫ 1280k

0

√
1 + w2 dw

=
1

2k

(
w
√

1 + w2

∣∣∣∣
1280k

0

)
+

1

2k

(∫ 1280k

0

1√
1 + w2

dw

)

[Using the integral table, Formula VI-29, or substitute w = tan θ]

=
1

2k

(
1280k

√
1 + (1280k)2

)
+

1

2k

(
ln
∣∣∣x+

√
1 + x2

∣∣∣
∣∣∣∣
1280k

0

)

=
1

2k

(
1280k

√
1 + (1280k)2

)
+

1

2k

(
ln
∣∣∣1280k +

√
1 + (1280k)2

∣∣∣
)

≈ 1321.4 meters.

(b) Adding 0.05% to the length of the cable gives a cable length of (1321.4)(1.0005) = 1322.1. We now want
to calculate the new shape of the parabola; that is, we want to find a new k so that the arc length is 1322.1.
Since

Arc Length = 2

∫ 640

0

√
1 + 4k2x2 dx

we can find k numerically by trial and error. Trying values close to our original value of k, we find
k ≈ 3.52 × 10−4. To find the sag for this new k, we find the height y = kx2 for which the cable hangs
from the towers. This is

y = k(640)2 ≈ 144.2.

Thus the cable sag is 144.2 meters, over a meter more than on a cold winter day. Notice, though, that
although the length increases by 0.05%, the sag increases by more:144.2/143 ≈ 1.0084, an increase of
0.84%.

3. (a) Revolving the semi-circle y =
√
r2 − x2 around the x-axis yields the sphere of radius r. See Figure 8.169.

Differentiating yields:
dy

dx
=

−1√
r2 − x2

· x = −x
y
.

Thus, substituting −x/y for f ′(x), we get

Surface area = 2π

∫ r

−r
y

√
1 +

x2

y2
dx = 2π

∫ r

−r

√
x2 + y2 dx

= 2πr

∫ r

−r
dx = 4πr2.

x

y

r−r

	

y =
√
r2 − x2

Figure 8.169

x

y

r

h

Figure 8.170
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(b) Revolving the line y = rx/h around the x-axis yields the cone. The base of the cone is a circle with area
πr2. See Figure 8.170. The area of the rest of the cone is

Surface area = 2π

∫ h

0

y

√
1 +

r2

h2
dx = 2π

√
1 +

r2

h2

(
r

h

∫ h

0

x dx

)

= 2π
r

h

h2

2

√
1 +

r2

h2
= πr

√
r2 + h2

Adding the area of the base, we get

Total surface area of cone = πr2 + πr
√
r2 + h2.

(c) We find the volume of y = 1/x revolved about the x-axis as x runs from 1 to∞. See Figure 8.171.

1

y = 1
x

?
x

y

Figure 8.171

Volume =

∫ ∞

1

πy2 dx = π

∫ ∞

1

1

x2
dx = π lim

b→∞

∫ b

1

dx

x2
= π lim

b→∞
−1

x

∣∣∣∣
b

1

= π

Thus, the volume of this solid is finite and equal to π.
(d) Now we show the surface area of this solid is unbounded. We have

Surface area = 2π

∫ ∞

1

y

√
1 +

(
dy

dx

)2

dx = 2π

∫ ∞

1

1

x

√
1 +

1

x4
dx

We cannot easily compute the antiderivative of
1

x

√
1 +

1

x4
, so we bound the integral from below by

noticing that √
1 +

1

x4
≥ 1.

Thus we see that

Surface area ≥ 2π

∫ ∞

1

1

x
dx = 2π lim

b→∞

∫ b

1

dx

x
= 2π lim

b→∞
lnx

∣∣∣∣
b

1

.

Since lnx goes to infinity as x goes to infinity, the surface area is unbounded.
Alternatively, we can try calculating

2π

∫ b

1

1

x

√
1 +

1

x4
dx

for larger and larger values of b. We would see that the integral seems to diverge.
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(e) For a solid generated by the revolution of a curve y = f(x) for a ≤ x ≤ b,

Volume =

∫ b

a

πy2 dx

and

Surface area =

∫ b

a

2πy
√

1 + (f ′(x))2 dx.

The volume and the surface area will be equal if

f(x) = 2
√

1 + (f ′(x))2.

We find a function y = f(x) which satisfies this relation:

y = 2

√
1 +

(
dy

dx

)2

y2

4
= 1 +

(
dy

dx

)2

dy

dx
=

√
y2

4
− 1

dy√
y2 − 4

=
1

2
dx

∫
dy√
y2 − 4

=

∫
1

2
dx

ln |y +
√
y2 − 4| = x

2
+ C

y +
√
y2 − 4 = Aex/2

Notice in the third line we have used the fact that dy/dx ≥ 0. Any function, y = f(x), which satisfies this
relationship has the required property.

4. (a) We want to find a such that
∫∞

0
p(v) dv = lim

r→∞
a
∫ r

0
v2e−mv

2/2kT dv = 1. Therefore,

1

a
= lim
r→∞

∫ r

0

v2e−mv
2/2kT dv.

To evaluate the integral, use integration by parts with the substitutions u = v and w′ = ve−mv
2/2kT :

∫ r

0

v︸︷︷︸
u

ve−mv
2/2kT

︸ ︷︷ ︸
w′

dv = v︸︷︷︸
u

e−mv
2/2kT

−m/kT︸ ︷︷ ︸
w

∣∣∣∣
r

0

−
∫ r

0

1︸︷︷︸
u′

e−mv
2/2kT

−m/kT︸ ︷︷ ︸
w

dv

= −kTr
m

e−mr
2/2kT +

kT

m

∫ r

0

e−mv
2/2kT dv.

From the normal distribution we know that
∫ ∞

0

1√
2π
e−x

2/2 dx =
1

2
, so

∫ ∞

0

e−x
2/2 dx =

√
2π

2
.

Therefore in the above integral, make the substitution x =
√

m
kT v, so that dx =

√
m
kT dv, or dv =√

kT
m dx. Then

kT

m

∫ r

0

e−mv
2/2kT dv =

(
kT

m

)3/2 ∫ √ m
kT r

0

e−x
2/2 dx.
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Substituting this into Equation 4a we get

1

a
= lim
r→∞

(
− kTr

m
e−mr

2/2kT +

(
kT

m

)3/2 ∫ √ m
kT r

0

e−x
2/2 dx

)
= 0 +

(
kT

m

)3/2

·
√

2π

2
.

Therefore, a = 2√
2π

( mkT )3/2. Substituting the values for k, T , and m gives a ≈ 3.4× 10−8.
(b) To find the median, we wish to find the speed x such that

∫ x

0

p(v) dv =

∫ x

0

av2e−
mv2

2kT dv =
1

2
,

where a = 2√
2π

( mkT )3/2. Using a calculator, by trial and error we get x ≈ 441 m/sec.
To find the mean, we find ∫ ∞

0

vp(v) dv =

∫ ∞

0

av3e−
mv2

2kT dv.

This integral can be done by substitution. Let u = v2, so du = 2vdv. Then
∫ ∞

0

av3e−
mv2

2kT dv =
a

2

∫ v=∞

v=0

v2e−
mv2

2kT 2v dv

=
a

2

∫ u=∞

u=0

ue−
mu
2kT du

= lim
r→∞

a

2

∫ r

0

ue−
mu
2kT du.

Now, using the integral table, we have

∫ ∞

0

av3e−
mv2

2kT dv = lim
r→∞

a

2

[
−2kT

m
ue−

mu
2kT −

(
−2kT

m

)2

e−
mu
2kT

] ∣∣∣∣
r

0

=
a

2

(
−2kT

m

)2

≈ 457.7 m/sec.

The maximum for p(v) will be at a point where p′(v) = 0.

p′(v) = a(2v)e−
mv2

2kT + av2

(
−2mv

2kT

)
e−

mv2

2kT

= ae−
mv2

2kT

(
2v − v3 m

kT

)
.

Thus p′(v) = 0 at v = 0 and at v =

√
2kT

m
≈ 405. It’s obvious that p(0) = 0, and that p→ 0 as v →∞.

So v = 405 gives us a maximum: p(405) ≈ 0.002.

(c) The mean, as we found in part (b), is
a

2

4k2T 2

m2
=

4√
2π

k1/2T 1/2

m1/2
. It is clear, then, that as T increases so

does the mean. We found in part (b) that p(v) reached its maximum at v =

√
2kT

m
. Thus

The maximum value of p(v) =
2√
2π

( m
kT

)3/2 2kT

m
e−1

=
4

e
√

2π

m1/2

kT 1/2
.

Thus as T increases, the maximum value decreases.


