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CHAPTER NINE
Solutions for Section 9.1

Exercises

1. The first term is 21 + 1 = 3. The second term is 22 + 1 = 5. The third term is 23 + 1 = 9, the fourth is 24 + 1 = 17, and
the fifth is 25 + 1 = 33. The first five terms are 3, 5, 9, 17, 33.

2. The first term is 1 + (−1)1 = 1− 1 = 0. The second term is 2 + (−1)2 = 2 + 1 = 3. The third term is 3− 1 = 2 and
the fourth is 4 + 1 = 5. The first five terms are 0, 3, 2, 5, 4.

3. The first term is 2 · 1/(2 · 1 + 1) = 2/3. The second term is 2 · 2/(2 · 2 + 1) = 4/5. The first five terms are

2/3, 4/5, 6/7, 8/9, 10/11.

4. The first term is (−1)1(1/2)1 = −1/2. The second term is (−1)2(1/2)2 = 1/4. The first five terms are

−1/2, 1/4,−1/8, 1/16,−1/32.

5. The first term is (−1)2(1/2)0 = 1. The second term is (−1)3(1/2)1 = −1/2. The first five terms are

1,−1/2, 1/4,−1/8, 1/16.

6. The first term is (1− 1/(1 + 1))(1+1) = (1/2)2. The second term is (1− 1/3)3 = (2/3)3. The first five terms are

(1/2)2, (2/3)3, (3/4)4, (4/5)5, (5/6)6.

7. The terms look like powers of 2 so we guess sn = 2n. This makes the first term 21 = 2 rather than 4. We try instead
sn = 2n+1. If we now check, we get the terms 4, 8, 16, 32, 64, . . ., which is right.

8. We compare with positive powers of 2, which are 2, 4, 8, 16, 32, . . .. Each term is one less, so we take sn = 2n − 1.

9. We observe that if we subtract 1 from each term of the sequence, we get 1, 4, 9, 16, 25, . . ., namely the squares 12, 22, 32, 42, 52, . . ..
Thus sn = n2 + 1.

10. First notice that sn = 2n− 1 is a formula for the general term of the sequence

1, 3, 5, 7, 9, . . . .

To obtain the alternating signs in the original sequence, we try multiplying by (−1)n. However, checking (−1)n(2n− 1)
for n = 1, 2, 3, . . . gives

−1, 3, −5, 7, −9, . . . .

To get the correct signs, we multiply by (−1)n+1 and take

sn = (−1)n+1(2n− 1).

11. The numerator is n. The denominator is then 2n+ 1, so sn = n/(2n+ 1).

12. The denominators are the even numbers, so we try sn = 1/(2n). To get the signs to alternate, we try multiplying by
(−1)n. That gives

−1/2, 1/4,−1/6, 1/8,−1/10, . . . ,

so we multiply by (−1)n+1 instead. Thus sn = (−1)n+1/(2n).

13. We have s2 = s1 + 2 = 3 and s3 = s2 + 3 = 6. Continuing, we get

1, 3, 6, 10, 15, 21.

14. We have s2 = 2s1 + 3 = 2 · 1 + 3 = 5 and s3 = 2s2 + 3 = 2 · 5 + 3 = 13. Continuing, we get

1, 5, 13, 29, 61, 125.
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15. We have s2 = s1 + 1/2 = 0 + (1/2)1 = 1/2 and s3 = s2 + (1/2)2 = 1/2 + 1/4 = 3/4. Continuing, we get

0,
1

2
,

3

4
,

7

8
,

15

16
,

31

32
.

16. We have s3 = s2 + 2s1 = 5 + 2 · 1 = 7 and s4 = s3 + 2s2 = 7 + 2 · 5 = 17. Continuing, we get

1, 5, 7, 17, 31, 65.

Problems

17. (a) matches (IV), since the sequence increases toward 1.
(b) matches (III), since the odd terms increase toward 1 and the even terms decrease toward 1.
(c) matches (II), since the sequence decreases toward 0.
(d) matches (I), since the sequence decreases toward 1.

18. (a) matches (II), since the sequence increases toward 2.
(b) matches (III), since the even terms decrease toward 2 and odd terms decrease toward −2.
(c) matches (IV), since the even terms decrease toward 2 and odd terms increase toward 2.
(d) matches (I), since the sequence decreases toward 2.
(e) matches (V), since the even terms decrease toward 2 and odd terms increase toward −2.

19. (a) matches (II), since limn→∞(n(n+ 1)− 1) =∞.
(b) matches (III), since limn→∞(1/(n+ 1)) = 0 and 1/(n+ 1) is always positive.
(c) matches (I), since limn→∞(1− n2) = −∞.
(d) matches (IV), since limn→∞ cos(1/n) = cos 0 = 1.
(e) matches (V), since sinn is bounded above and below by±1, so limn→∞((sinn)/n) = 0 and the sign of sinn varies

as n→∞.

20. Since lim
n→∞

xn = 0 if |x| < 1 and |0.2| < 1, we have lim
n→∞

(0.2)n = 0, so the sequence converges to 0

21. Since 2n increases without bound as n increases, the sequence diverges.

22. Since lim
n→∞

xn = 0 if |x| < 1 and | − 0.3| < 1, we have lim
n→∞

(−0.3)n = 0, so the sequence converges to 0.

23. Since lim
n→∞

xn = 0 if |x| < 1 and |e−2| < 1, we have lim
n→∞

(e−2n) = lim
n→∞

(e−2)n = 0, so lim
n→∞

(3+e−2n) = 3+0 = 3,

so the sequence converges to 3.

24. Since lim
n→∞

xn = 0 if |x| < 1 and
∣∣∣2
3

∣∣∣ < 1, we have lim
n→∞

(
2n

3n

)
= lim
n→∞

(
2

3

)n
= 0, so the sequence converges to 0.

25. We have:
lim
n→∞

(
n

10
+

10

n

)
= lim
n→∞

n

10
+ lim
n→∞

10n.

Since n/10 gets arbitrarily large and 10/n approaches 0 as n→∞, the sequence diverges.

26. We have:
lim
n→∞

(
1

n

)
= 0.

The terms of the sequence alternate in sign, but they approach 0, so the sequence converges to 0.

27. We have
lim
n→∞

2n+ 1

n
= lim
n→∞

(
2 +

1

n

)
= 2,

so the sequence converges to 2.

28. Since sn = cos(πn) = 1 if n is even and sn = cos(πn) = −1 if n is odd, the values of sn alternate between 1 and −1,
so the limit does not exist. Thus, the sequence diverges.

29. Since limn→∞ 1/n = 0 and −1 ≤ sinn ≤ 1, the terms approach zero and the sequence converges to 0.

30. As n increases, the term 2n is much larger in magnitude than (−1)n5 and the term 4n is much larger in magnitude than
(−1)n3. Thus dividing the numerator and denominator by n and using the fact that lim

n→∞
1/n = 0, we have

lim
n→∞

2n+ (−1)n5

4n− (−1)n3
= lim
n→∞

2 + (−1)n5/n

4− (−1)n3/n
=

1

2
.

Thus, the sequence converges to 1/2.
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31. Since the exponential function 2n dominates the power function n3 as n→∞, the series diverges.

32. The first 6 terms of the sequence for the sampling is

cos 0.5, cos 1.0, cos 1.5, cos 2.0, cos 2.5, cos 3.0

= 0.878, 0.540, 0.071, −0.416, −0.801, −0.990.

33. The first 6 terms of the sequence for the sampling is

(−0.5)2, (0.0)2, (0.5)2, (1.0)2, (1.5)2, (2.0)2,

= 0.25, 0.00, 0.25, 1.00, 2.25, 4.00.

34. The first 6 terms of the sequence for the sampling are

sin 1

1
,

sin 2

2
,

sin 3

3
,

sin 4

4
,

sin 5

5
,

sin 6

6

= 0.841, 0.455, 0.047, −0.189, −0.192, −0.047.

35. The first smoothing gives
0, 6, −6, 6, −6, 6, . . .

The second smoothing gives
3, 0, 2, −2, 2, . . .

The smoothing process diminishes the peaks and valleys of this alternating sequence.

36. The first smoothing gives
0, 0, 6, 6, 6, 0, 0 . . .

The second smoothing gives
0, 2, 4, 6, 4, 2 . . .

The smoothing process spreads out the spike at the fourth term to the neighboring terms.

37. The first smoothing gives
1.5, 2, 3, 4, 5, 6, 7 . . .

The second smoothing gives
1.75, 2.17, 3, 4, 5, 6 . . .

Terms which are already the same as their average with their neighbors are not changed.

38. (a) Since month 10 is October, V10 is the number of SUVs sold in the US in October 2004.
(b) The difference Vn − Vn−1 represents the increase in sales between month (n− 1) and month n.
(c) The sum

∑12

i=1
Vi represents the total sales of SUVs in the year 2004 (twelve months). The sum

∑n

i=1
Vi represents

the total sales in the n months starting from January 1, 2004.

39. (a) Since c1 = 75.747(1.003), c2 = 75.747(1.003)2, and so on, we have cn = 75.747(1.003)n.
(b) Since cn is consumption in year n and cn−1 is consumption in year n− 1, we have

cn − cn−1 = 75.747(1.003)n − 75.747(1.003)n−1 = 75.747(1.003)n−1(1.003− 1) = 0.227(1.003)n−1,

and cn − cn−1 represents the increase in consumption in million barrels per day between the year (n − 1) and the
year n.

(c) The sum represents the total oil consumed in years 1–18, that is, 2003–2020, inclusive.

40. (a) Since you have two parents and four grandparents, s1 = 2 and s2 = 4. In general, sn = 2n.
(b) Solving sn = 6 · 109 gives

2n = 6 · 109

n =
ln(6 · 109)

ln 2
= 32.482.

Thus, 33 or more generations ago, the number of ancestors is greater than the current population of the world. Since
the population of the world 33 generations ago was much smaller than it is now, there must have been overlap among
our ancestors.
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41. In year 1, the payment is
p1 = 10,000 + 0.05(100,000) = 15,000.

The balance in year 2 is 100,000− 10,000 = 90,000, so

p2 = 10,000 + 0.05(90,000) = 14,500.

The balance in year 3 is 80,000, so

p3 = 10,000 + 0.05(80,000) = 14,000.

Thus,

pn = 10,000 + 0.05(100,000− (n− 1) · 10,000)

= 15,500− 500n.

42. (a) (i) Since the number of bacteria doubles every half hour, the number quadruples every hour. Thus

R1 = B0 · 4
R2 = B0 · 42

...

Rn = B0 · 4n.

(ii) Each hour, the number of bacteria is multiplied by a factor a, so

Fn = B0a
n.

The bacteria doubles in number in 10 hours, so

F10 = 2B0.

Thus,

B0a
10 = 2B0

a = 21/10,

so
Fn = B0(21/10)n = B02n/10.

(iii) The ratio is

Yn =
Rn
Fn

=
B04n

B02n/10
=
(

4

21/10

)n
=
(
21.9
)n
.

(b) We want to solve for n making Yn = 1,000,000:
(
21.9
)n

= 1,000,000

n =
ln(1,000,000)

ln(21.9)
= 10.490.

Thus, in about ten and a half hours, there are a million times as many bacteria in the baby formula kept at room
temperature.

43. (a) In the first year, d1 = 20,000(0.12), so the car’s value at the end of the first year is $20,000(0.88). In the second
year, d2 = 20,000(0.88)(0.12), so the car’s value at the end of the second year is $20,000(0.88)2. Similarly,
d3 = 20,000(0.88)2(0.12). In general

dn = 20,000(0.88)n−1(0.12).

(b) The first year r1 = 400; the second year r2 = 400(1.18), the third year r3 = 400(1.18)2. In general, rn =
400(1.18)n−1.

(c) We have

Total cost = d1 + d2 + d3 + r1 + r2 + r3

= 20,000(0.12)(1 + 0.88 + (0.88)2) + 400(1 + 1.18 + (1.18)2)

= 7799.52 dollars.
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(d) A two-year old car has the same pattern of expenses except that the initial price is $20,000(0.88)2 instead of $20,000
and that the repair costs start at $400(1.18)2 instead of $400. Then

Total cost = 20,000(0.88)2(0.12)(1 + 0.88 + (0.88)2) + 400(1.18)2(1 + 1.18 + (1.18)2)

= 6923.05 dollars.

Thus, the two-year-old car costs you less and you should buy it.

44. We want to define lim
n→∞

sn = L so that sn is as close to L as we please for all sufficiently large n. Thus, the definition

says that for any positive ε, there is a value N such that

|sn − L| < ε whenever n ≥ N.

45. We use Theorem 9.1, so we must show that sn is bounded. Since tn converges, it is bounded so there is a number M ,
such that tn ≤ M for all n. Therefore sn ≤ tn ≤ M for all n. Since sn is increasing, s1 ≤ sn for all n. Thus if we let
K = s1, we have K ≤ sn ≤M for all n, so sn is bounded. Therefore, sn converges.

46. Each term is 2 more than the previous term, so a recursive definition is sn = sn−1 + 2 for n > 1 and s1 = 1.

47. Each term is 2 more than the previous term, so a recursive definition is sn = sn−1 + 2 for n > 1 and s1 = 2. Notice that
the even positive integers and odd positive integers have the same recursive definition except for the starting term.

48. Each term is twice the previous term minus one, so a recursive definition is sn = 2sn−1 − 1 for n > 1 and s1 = 3. We
also notice that the differences of consecutive terms are powers of 2, so s2 = s1 + 2, s3 = s2 + 22, and so on. Thus
another recursive definition is sn = sn−1 + 2n−1 for n > 1 and s1 = 3.

49. The differences between consecutive terms are 4, 9, 16, 25, so, for example, s2 = s1 +4 and s3 = s2 +9. Thus, a possible
recursive definition is sn = sn−1 + n2 for n > 1 and s1 = 1.

50. The differences are 2, 3, 4, 5, so, for example, s2 = s1 + 2, s3 = s2 + 3, and s4 = s3 + 4. Thus, a recursive definition is
sn = sn−1 + n for n > 1 and s1 = 1.

51. The numerator and denominator of each term are related to the numerator and denominator of the previous term. The
denominator is the previous numerator and the numerator is the sum of the previous numerator and previous denominator.
For example,

5

3
=

2 + 3

3
and

8

5
=

3 + 5

5
.

If we simplify, we get
5

3
=

2

3
+ 1, and

8

5
=

3

5
+ 1.

In words, we turn the previous term upside down and add 1. Thus, a recursive definition is sn =
1

sn−1
+ 1 for n > 1 and

s1 = 1.

52. For n > 1, if sn = 3n− 2, then sn−1 = 3(n− 1)− 2 = 3n− 5, so

sn − sn−1 = (3n− 2)− (3n− 5) = 3,

giving
sn = sn−1 + 3.

In addition, s1 = 3 · 1− 2 = 1.

53. For n > 1, if sn = n(n+ 1)/2, then sn−1 = (n− 1)(n− 1 + 1)/2 = n(n− 1)/2. Since

sn =
1

2
(n2 + n) =

n2

2
+
n

2
and sn−1 =

1

2
(n2 − n) =

n2

2
− n

2
,

we have
sn − sn−1 =

n

2
+
n

2
= n,

so
sn = sn−1 + n.

In addition, s1 = 1(2)/2 = 1.
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54. For n > 1, if sn = 2n2 − n, then sn−1 = 2(n− 1)2 − (n− 1) = 2n2 − 5n+ 3, so

sn − sn−1 = (2n2 − n)− (2n2 − 5n+ 3) = 4n− 3,

giving
sn = sn−1 + 4n− 3.

In addition, s1 = 2 · 12 − 1 = 1.

55. (a) The bottom row contains k cans, the next one contains (k − 1) cans, then (k − 2) and so on. Thus, there are k rows.
Since the top row contains 1 can, the second contains 2 cans, etc, we have an = n.

(b) Since the nth row contains n cans, an = n,
Tn = Tn−1 + an

gives
Tn = Tn−1 + n, for n > 1.

In addition, T1 = 1.
(c) If Tn = 1

2
n(n+ 1), then Tn−1 = 1

2
(n− 1)n, so

Tn − Tn−1 =
1

2
n(n+ 1)− 1

2
n(n− 1) =

n

2
(n+ 1− (n− 1)) = n.

In addition, T1 = 1
2
· 1(2) = 1.

56. (a) The first 12 terms are
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144.

(b) The sequence of ratios is

1, 2,
3

2
,

5

3
,

8

5
,

13

8
,

21

13
,

34

21
,

55

34
,

89

55
. . . .

To three decimal places, the first ten ratios are

1, 2, 1.500, 1.667, 1.600, 1.625, 1.615, 1.619, 1.618, 1.618.

It appears that the sequence of ratios is converging to r = 1.618. We find (1.618)2 = 2.618 = 1.618 + 1 so
r seems to satisfy r2 = r + 1. Alternatively, by the quadratic formula, the positive root of x2 − x − 1 = 0 is
(1 +

√
5)/2 = 1.618.

(c) If we multiply both sides of the equation r2 = r + 1 by Arn−2, we obtain

Arn = Arn−1 +Arn−2.

Thus, if sn = Arn, then sn−1 = Arn−1 and sn−2 = Arn−2, so the sequence satisfies sn = sn−1 + sn−2.

57. The sequence seems to converge. By the 25th term it stabilizes to four decimal places at L = 0.7391.

58. The sequence oscillates up and down, but by the 20th term it stabilizes to 4 decimal places at L = 0.5671.

Solutions for Section 9.2

Exercises

1. Yes, a = 2, ratio = 1/2.

2. Yes, a = 1, ratio = −1/2.

3. No. Ratio between successive terms is not constant:
1/3

1/2
= 0.66 . . ., while

1/4

1/3
= 0.75.

4. Yes, a = 5, ratio = −2.

5. No. Ratio between successive terms is not constant:
2x2

x
= 2x, while

3x3

2x2
=

3

2
x.

6. No. Ratio between successive terms is not constant:
6z2

3z
= 2z, while

9z3

6z2
=

3

2
z.

7. Yes, a = 1, ratio = 2z.
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8. Yes, a = y2, ratio = y.

9. Yes, a = 1, ratio = −x.

10. Yes, a = 1, ratio = −y2.

11. Sum =
1

1− 2z
, |z| < 1/2

12. Sum =
y2

1− y , |y| < 1

13. Sum =
1

1− (−x)
=

1

1 + x
, |x| < 1

14. Sum =
1

1− (−y2)
=

1

1 + y2
, |y| < 1.

15. The series has 26 terms. The first term is a = 2 and the constant ratio is x = 0.1, so

Sum =
a(1− x26)

(1− x)
=

2(1− (0.1)26)

0.9
= 2.222.

16. The series has 10 terms. The first term is a = 0.2 and the constant ratio is x = 0.1, so

Sum =
0.2(1− x10)

(1− x)
=

0.2(1− (0.1)10)

0.9
= 0.222.

17. The series has 9 terms. The first term is a = 0.00002 and the constant ratio is x = 0.1, so

Sum =
0.00002(1− x9)

(1− x)
=

0.00002(1− (0.1)9)

0.9
= 0.0000222.

18. −2 + 1− 1

2
+

1

4
− 1

8
+

1

16
− · · · =

∞∑

n=0

(−2)
(
−1

2

)n
, a geometric series.

Let a = −2 and x = − 1
2

. Then
∞∑

n=0

(−2)
(
−1

2

)n
=

a

1− x =
−2

1− (− 1
2
)

= −4

3
.

19. 3 +
3

2
+

3

4
+

3

8
· · ·+ 3

210
= 3

(
1 +

1

2
+ · · ·+ 1

210

)
=

3
(
1− 1

211

)

1− 1
2

=
3
(
211 − 1

)

210

20. Using the formula for the sum of an infinite geometric series,
∞∑

n=4

(
1

3

)n
=
(

1

3

)4

+
(

1

3

)5

+ · · · =
(

1

3

)4
(

1 +
1

3
+
(

1

3

)2

+ · · ·
)

=
( 1

3
)4

1− 1
3

=
1

54

21. Using the formula for the sum of a finite geometric series,

20∑

n=4

(
1

3

)n
=
(

1

3

)4

+
(

1

3

)5

+· · ·+
(

1

3

)20

=
(

1

3

)4
(

1 +
1

3
+
(

1

3

)2

+ · · ·
(

1

3

)16
)

=
(1/3)4(1− (1/3)17)

1− (1/3)
=

317 − 1

2 · 320
.

Problems

22. Yes. If the original series is finite, then

Original series = a+ ax+ ax2 + · · ·+ axn−1,

then the new series obtained by multiplying termwise by c is

New series = ca+ cax+ cax2 + · · ·+ caxn−1,

which is also a geometric series: its first term is ca and the constant ratio of successive terms is still x. The argument
works the same way for an infinite geometric series.
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23. Yes. If the original finite geometric series is

Original series = a+ ax+ ax2 + · · ·+ axn−1,

then the new series obtained by taking reciprocals termwise is

New series =
1

a
+

1

ax
+

1

ax2
+ · · ·+ 1

axn−1
,

which is also a geometric series: its first term is 1/a and the constant ratio of successive terms is 1/x. The argument works
the same way for an infinite geometric series.

24. Since the amount of ampicillin excreted during the time interval between tablets is 250 mg, we have

Amount of ampicillin excreted = Original quantity − Final quantity

250 = Q− (0.04)Q.

Solving for Q gives, as before,

Q =
250

1− 0.04
≈ 260.42.

25. (a) The amount of atenolol in the blood is given by Q(t) = Q0e
−kt, where Q0 = Q(0) and k is a constant. Since the

half-life is 6.3 hours,
1

2
= e−6.3k, k = − 1

6.3
ln

1

2
≈ 0.11.

After 24 hours
Q = Q0e

−k(24) ≈ Q0e
−0.11(24) ≈ Q0(0.07).

Thus, the percentage of the atenolol that remains after 24 hours ≈ 7%.
(b)

Q0 = 50

Q1 = 50 + 50(0.07)

Q2 = 50 + 50(0.07) + 50(0.07)2

Q3 = 50 + 50(0.07) + 50(0.07)2 + 50(0.07)3

...

Qn = 50 + 50(0.07) + 50(0.07)2 + · · ·+ 50(0.07)n =
50(1− (0.07)n+1)

1− 0.07

(c)
P1 = 50(0.07)

P2 = 50(0.07) + 50(0.07)2

P3 = 50(0.07) + 50(0.07)2 + 50(0.07)3

P4 = 50(0.07) + 50(0.07)2 + 50(0.07)3 + 50(0.07)4

...

Pn = 50(0.07) + 50(0.07)2 + 50(0.07)3 + · · ·+ 50(0.07)n

= 50(0.07)
(
1 + (0.07) + (0.07)2 + · · ·+ (0.07)n−1

)
=

0.07(50)(1− (0.07)n)

1− 0.07

26. (a)
P1 = 0

P2 = 250(0.04)

P3 = 250(0.04) + 250(0.04)2

P4 = 250(0.04) + 250(0.04)2 + 250(0.04)3

...

Pn = 250(0.04) + 250(0.04)2 + 250(0.04)3 + · · ·+ 250(0.04)n−1
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(b) Pn = 250(0.04)
(
1 + (0.04) + (0.04)2 + (0.04)3 + · · ·+ (0.04)n−2

)
= 250

0.04(1− (0.04)n−1)

1− 0.04
(c)

P = lim
n→∞

Pn

= lim
n→∞

250
0.04(1− (0.04)n−1)

1− 0.04

=
(250)(0.04)

0.96
= 0.04Q ≈ 10.42

Thus, lim
n→∞

Pn = 10.42 and lim
n→∞

Qn = 260.42. We would expect these limits to differ because one is right

before taking a tablet, one is right after. We would expect the difference between them to be 250 mg, the amount of
ampicillin in one tablet.

27.

125

Q0 =
250

1 2 3 4 5 6

t (time,
days)

q (quantity, mg)

Q1 Q2 Q3 Q4 Q5

P1 P2 P3 P4 P5

28. (a) Let hn be the height of the nth bounce after the ball hits the floor for the nth time. Then from Figure 9.1,

h0 = height before first bounce = 10 feet,

h1 = height after first bounce = 10
(

3

4

)
feet,

h2 = height after second bounce = 10
(

3

4

)2

feet.

Generalizing gives

hn = 10
(

3

4

)n
.

6

?

10

6

?

10( 3
4

)

6

?

10( 3
4

)2

6

?
hn· · · · · ·

Figure 9.1

(b) When the ball hits the floor for the first time, the total distance it has traveled is just D1 = 10 feet. (Notice that this

is the same as h0 = 10.) Then the ball bounces back to a height of h1 = 10
(

3

4

)
, comes down and hits the floor for

the second time. See Figure 9.1. The total distance it has traveled is

D2 = h0 + 2h1 = 10 + 2 · 10
(

3

4

)
= 25 feet.
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Then the ball bounces back to a height of h2 = 10
(

3

4

)2

, comes down and hits the floor for the third time. It has

traveled

D3 = h0 + 2h1 + 2h2 = 10 + 2 · 10
(

3

4

)
+ 2 · 10

(
3

4

)2

= 25 + 2 · 10
(

3

4

)2

= 36.25 feet.

Similarly,

D4 = h0 + 2h1 + 2h2 + 2h3

= 10 + 2 · 10
(

3

4

)
+ 2 · 10

(
3

4

)2

+ 2 · 10
(

3

4

)3

= 36.25 + 2 · 10
(

3

4

)3

≈ 44.69 feet.

(c) When the ball hits the floor for the nth time, its last bounce was of height hn−1. Thus, by the method used in part
(b), we get

Dn = h0 + 2h1 + 2h2 + 2h3 + · · ·+ 2hn−1

= 10 + 2 · 10
(

3

4

)
+ 2 · 10

(
3

4

)2

+ 2 · 10
(

3

4

)3

+ · · ·+ 2 · 10
(

3

4

)n−1

︸ ︷︷ ︸
finite geometric series

= 10 + 2 · 10 ·
(

3

4

)(
1 +

(
3

4

)
+
(

3

4

)2

+ · · ·+
(

3

4

)n−2
)

= 10 + 15

(
1−

(
3
4

)n−1

1−
(

3
4

)
)

= 10 + 60

(
1−

(
3

4

)n−1
)
.

29. (a) The acceleration of gravity is 32 ft/sec2 so acceleration = 32 and velocity v = 32t + C. Since the ball is dropped,
its initial velocity is 0 so v = 32t. Thus the position is s = 16t2 + C. Calling the initial position s = 0, we have
s = 6t. The distance traveled is h so h = 16t. Solving for t we get t = 1

4

√
h.

(b) The first drop from 10 feet takes 1
4

√
10 seconds. The first full bounce (to 10 · ( 3

4
) feet) takes 1

4

√
10 · ( 3

4
) seconds

to rise, therefore the same time to come down. Thus, the full bounce, up and down, takes 2( 1
4
)
√

10 · ( 3
4
) seconds.

The next full bounce takes 2( 1
4
)10 · ( 3

4
)
2

= 2( 1
4
)
√

10
(√

3
4

)2

seconds. The nth bounce takes 2( 1
4
)
√

10
(√

3
4

)n

seconds. Therefore the

Total amount of time

=
1

4

√
10 +

2

4

√
10

√
3

4
+

2

4

√
10

(√
3

4

)2

+
2

4

√
10

(√
3

4

)3

︸ ︷︷ ︸
Geometric series with a = 2

4

√
10
√

3
4

= 1
2

√
10
√

3
4

and x =
√

3
4

+ · · ·

=
1

4

√
10 +

1

2

√
10

√
3

4

(
1

1−
√

3/4

)
seconds.

30.

Total present value, in dollars = 1000 + 1000e−0.04 + 1000e−0.04(2) + 1000e−0.04(3) + · · ·
= 1000 + 1000(e−0.04) + 1000(e−0.04)2 + 1000(e−0.04)3 + · · ·

This is an infinite geometric series with a = 1000 and x = e(−0.04), and sum

Total present value, in dollars =
1000

1− e−0.04
= 25,503.
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31. The amount of additional income generated directly by people spending their extra money is $100(0.8) = $80 million.
This additional money in turn is spent, generating another ($100(0.8)) (0.8) = $100(0.8)2 million. This continues
indefinitely, resulting in

Total additional income = 100(0.8) + 100(0.8)2 + 100(0.8)3 + · · · = 100(0.8)

1− 0.8
= $400 million

32. The total of the spending and respending of the additional income is given by the series: Total additional income =
100(0.9) + 100(0.9)2 + 100(0.9)3 + · · · = 100(0.9)

1−0.9
= $900 million.

Notice the large effect of changing the assumption about the fraction of money spent has: the additional spending more
than doubles.

Solutions for Section 9.3

Exercises

1. We use the integral test with f(x) = 1/x3 to determine whether this series converges or diverges. We determine whether

the corresponding improper integral
∫ ∞

1

1

x3
dx converges or diverges:

∫ ∞

1

1

x3
dx = lim

b→∞

∫ b

1

1

x3
dx = lim

b→∞

−1

2x2

∣∣∣∣
b

1

= lim
b→∞

(−1

2b2
+

1

2

)
=

1

2
.

Since the integral
∫ ∞

1

1

x3
dx converges, we conclude from the integral test that the series

∞∑

n=1

1

n3
converges.

2. We use the integral test with f(x) = x/(x2 + 1) to determine whether this series converges or diverges. We determine

whether the corresponding improper integral
∫ ∞

1

x

x2 + 1
dx converges or diverges:

∫ ∞

1

x

x2 + 1
dx = lim

b→∞

∫ b

1

x

x2 + 1
dx = lim

b→∞

1

2
ln(x2 + 1)

∣∣∣∣
b

1

= lim
b→∞

(
1

2
ln(b2 + 1)− 1

2
ln 2
)

=∞.

Since the integral
∫ ∞

1

x

x2 + 1
dx diverges, we conclude from the integral test that the series

∞∑

n=1

n

n2 + 1
diverges.

3. We use the integral test with f(x) = 1/ex to determine whether this series converges or diverges. To do so we determine

whether the corresponding improper integral
∫ ∞

1

1

ex
dx converges or diverges:

∫ ∞

1

1

ex
dx = lim

b→∞

∫ b

1

e−xdx = lim
b→∞

−e−x
∣∣∣∣
b

1

= lim
b→∞

(
−e−b + e−1

)
= e−1.

Since the integral
∫ ∞

1

1

ex
dx converges, we conclude from the integral test that the series

∞∑

n=1

1

en
converges. We can also

observe that this is a geometric series with ratio x = 1/e < 1, and hence it converges.

4. We use the integral test with f(x) = 1/(x(lnx)2) to determine whether this series converges or diverges. We determine

whether the corresponding improper integral
∫ ∞

2

1

x(lnx)2
dx converges or diverges:

∫ ∞

2

1

x(lnx)2
dx = lim

b→∞

∫ b

2

1

x(lnx)2
dx = lim

b→∞

−1

lnx

∣∣∣∣
b

2

= lim
b→∞

(−1

ln b
+

1

ln 2

)
=

1

ln 2
.

Since the integral
∫ ∞

2

1

x(lnx)2
dx converges, we conclude from the integral test that the series

∞∑

n=2

1

n(lnn)2
converges.
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5. The improper integral
∫ ∞

1

x−3 dx converges to
1

2
, since

∫ b

1

x−3 dx =
x−2

−2

∣∣∣∣
b

1

=
b−2

−2
− 1−2

−2
=

1

−2b2
+

1

2

and
lim
b→∞

(
1

−2b2
+

1

2

)
=

1

2
.

The terms of the series
∞∑

n=2

n−3 form a right hand sum for the improper integral; each term represents the area of a

rectangle of width 1 fitting completely under the graph of the function x−3. (See Figure 9.2.) Thus the sequence of partial
sums is bounded above by 1/2. Since the partial sums are increasing (every new term added is positive) the series is
guaranteed to converge to some number less than or equal to 1/2 by Theorem 9.1.

1 2 3 4 5 6 7 8 9

1/8

1/27

1/64
x

y

y = 1/x3

Figure 9.2

1 2 3 4 5 6 7 8

1/10

1/5

1/2

1

x

y

y = 1/(x2 + 1)

Figure 9.3

6. The improper integral
∫ ∞

0

1

x2 + 1
dx converges to

π

2
, since

∫ b

0

1

x2 + 1
dx = arctanx|b0 = arctan b− arctan 0 = arctan b,

and lim
b→∞

arctan b =
π

2
. The terms of the series

∞∑

n=1

1

n2 + 1
form a right hand sum for the improper integral; each term

represents the area of a rectangle of width 1 fitting completely under the graph of the function
1

x2 + 1
. (See Figure 9.3.)

Thus the sequence of partial sums is bounded above by
π

2
. Since the partial sums are increasing (every new term added is

positive), the series is guaranteed to converge to some number less than or equal to π/2 by Theorem 9.1.

7. The integral test requires that f(x) = x2, which is not decreasing.

8. The integral test requires that f(x) = (−1)x/x. However (−1)x is not defined for all x.

9. The integral test requires that f(x) = e−x sinx, which is not positive, nor is it decreasing.

Problems

10. Using the integral test, we compare the series with

∫ ∞

0

3

x+ 2
dx = lim

b→∞

∫ b

0

3

x+ 2
dx = 3 ln |x+ 2|

∣∣∣∣
b

0

.

Since ln(b+ 2) is unbounded as b→∞, the integral diverges and therefore so does the series.
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11. We use the integral test and calculate the corresponding improper integral,
∫∞

1
3/(2x− 1)2dx:

∫ ∞

1

3 dx

(2x− 1)2
= lim
b→∞

∫ b

1

3 dx

(2x− 1)2
= lim

b→∞

−3/2

(2x− 1)

∣∣∣∣
b

1

= lim
b→∞

(
−3/2

(2b− 1)
+

3

2

)
=

3

2
.

Since the integral converges, the series
∞∑

n=1

3

(2n− 1)2
converges.

12. We use the integral test and calculate the corresponding improper integral,
∫∞

0
2/
√

2 + x dx:
∫ ∞

0

2√
2 + x

dx = lim
b→∞

∫ b

0

2 dx√
2 + x

= lim
b→∞

4(2 + x)1/2

∣∣∣∣
b

0

= lim
b→∞

4
(
(2 + b)1/2 − 21/2

)
.

Since the limit does not exist, the integral diverges, so the series
∞∑

n=1

2√
2 + n

diverges.

13. Writing an = n/(n+ 1), we have limn→∞ an = 1 so the series diverges by Property 3 of Theorem 9.2.

14. We use the integral test and calculate the corresponding improper integral,
∫∞

1
4/(2x + 1)3dx. Using the substitution

w = 2x+ 1, we have
∫ ∞

1

4 dx

(2x+ 1)3
= lim
b→∞

∫ b

1

4 dx

(2x+ 1)3
= lim

b→∞
− 1

(2x+ 1)2

∣∣∣∣
b

1

= lim
b→∞

(
− 1

(2b+ 1)2
+

1

9

)
=

1

9
.

Since the integral converges, the series
∞∑

n=1

4

(2n+ 1)3
converges.

15. Using the integral test, we compare the series with
∫ ∞

0

3

x2 + 4
dx = lim

b→∞

∫ b

0

3

x2 + 4
dx =

3

2
lim
b→∞

arctan
(
x

2

) ∣∣∣∣
b

0

=
3

2
lim
b→∞

arctan
(
b

2

)
=

3π

4
,

by integral table V-24. Since the integral converges so does the series.

16. The series
∞∑

n=1

(
3

4

)n
is a convergent geometric series, but

∞∑

n=1

1

n
is the divergent harmonic series.

If
∞∑

n=1

((
3

4

)n
+

1

n

)
converged, then

∞∑

n=1

((
3

4

)n
+

1

n

)
−
∞∑

n=1

(
3

4

)n
=

∞∑

n=1

1

n
would converge by Theorem 9.2.

Therefore
∞∑

n=1

((
3

4

)n
+

1

n

)
diverges.

17. The series can be written as ∞∑

n=1

n+ 2n

n2n
=

∞∑

n=1

(
1

2n
+

1

n

)
.

If this series converges, then
∞∑

n=1

(
1

2n
+

1

n

)
−
∞∑

n=1

1

2n
=

∞∑

n=1

1

n
would converge by Theorem 9.2. Since this is the

harmonic series, which diverges, then the series
∞∑

n=1

n+ 2n

n
diverges.

18. Let an = (lnn)/n and f(x) = (lnx)/x. We use the integral test and consider the improper integral
∫ ∞

c

lnx

x
dx.

Since ∫ R

c

lnx

x
dx =

1

2
(lnx)2

∣∣∣
R

c
=

1

2

(
(lnR)2 − (ln c)2

)
,

and lnR grows without bound as R → ∞, the integral diverges. Therefore, the integral test tells us that the series,
∞∑

n=1

lnn

n
, also diverges.
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19. We use the integral test and calculate the corresponding improper integral,
∫∞

3
(x+ 1)/(x2 + 2x+ 2) dx:

∫ ∞

3

x+ 1

x2 + 2x+ 2
dx = lim

b→∞

∫ b

3

x+ 1

x2 + 2x+ 2
dx = lim

b→∞

1

2
ln |x2 + 2x+ 2|

∣∣∣∣
b

3

= lim
b→∞

1

2
(ln(b2 + 2b+ 2)− ln 17).

Since the limit does not exist (it is∞), the integral diverges, so the series
∞∑

n=3

n+ 1

n2 + 2n+ 2
diverges.

20. Using ln(2n) = n ln 2, we see that ∑ 1

ln(2n)
=
∑ 1

(ln 2)n
.

The series on the right is the harmonic series multiplied by 1/ ln 2. Since the harmonic series diverges,
∑∞

n=1
1/ ln(2n)

diverges.

21. Using ln(2n) = n ln 2, we see that
∞∑

n=1

1

(ln (2n))2
=

∞∑

n=1

1

(ln 2)2n2
.

Since
∑

1/n2 converges,
∑

1/((ln (2))2n2) converges by property 1 of Theorem 9.2.

22. (a) With an = ln((n+ 1)/n) we have

Sn = a1 + a2 + a3 + · · ·+ an−1 + an

= ln(2/1) + ln(3/2) + ln(4/3) + · · ·+ ln(n/(n− 1)) + ln((n+ 1)/n)

= ln
(

2

1
· 3

2
· 4

3
· · · n

n− 1
· n+ 1

n

)
= ln(n+ 1).

(b) Since the limit of the partial sums, limn→∞ Sn = limn→∞ ln(n+ 1), does not exist, the series diverges.

23. (a) Using r = eln r and n = elnn we have rlnn = e(ln r)(lnn) = nln r .
(b) By part (a) we have rlnn = nln r = 1/n− ln r . Since the p-series

∑
1/np converges if and only if p > 1, the series∑∞

n=1
1/n− ln r converges if and only if− ln r > 1, which is equivalent to ln r < −1 or r < 1/e. Thus

∑∞
n=1

rlnn

converges if 0 < r < 1/e and diverges if r ≥ 1/e.

24. (a) A common denominator is k(k + 1) so

1

k
− 1

k + 1
=

k + 1

k(k + 1)
− k

k(k + 1)
=
k + 1− k
k(k + 1)

=
1

k(k + 1)
.

(b) Using the result of part (a), the partial sum can be written as

S3 =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 =
1

1
− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
= 1− 1

4
.

All of the intermediate terms cancel out, leaving only the first and last terms. Thus S10 = 1− 1

11
and Sn = 1− 1

n+ 1
.

(c) The limit of Sn as n→∞ is lim
n→∞

(
1− 1

n+ 1

)
= 1− 0 = 1. Thus the series

∞∑

k=1

1

k(k + 1)
converges to 1.

25. (a) The partial sum

S4 = ln
(

1 · 3
2 · 2

)
+ ln

(
2 · 4
3 · 3

)
+ ln

(
3 · 5
4 · 4

)
.

Using the property ln(A) + ln(B) = ln(AB), we get

S4 = ln
(

1 · 3 · 2 · 4 · 3 · 5
2 · 2 · 3 · 3 · 4 · 4

)
.

The intermediate factors cancel out, leaving only ln
(

1 · 5
2 · 4

)
, so S4 = ln

(
5

8

)
.

(b) For the partial sum Sn, similar steps yield

Sn = ln

(
1 · 3 · 2 · 4 · 3 · 5 · · · (n− 1)(n+ 1)

2 · 2 · 3 · 3 · 4 · 4 · · ·n · n

)
.

As before, most of the factors cancel, leaving Sn = ln
(
n+ 1

2n

)
.
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(c) The limit of Sn = ln
(
n+ 1

2n

)
as n→∞ is lim

n→∞
ln
(
n+ 1

2n

)
= ln

(
1

2

)
. Thus the series

∞∑

k=2

ln

(
(k − 1)(k + 1)

k2

)

converges to ln
(

1

2

)
.

26. Let Sn be the nth partial sum for
∑

an and let Tn be the nth partial sum for
∑

bn. Then the nth partial sums for∑
(an+bn),

∑
(an−bn), and

∑
kan are Sn+Tn, Sn−Tn, and kSn, respectively. To show that these series converge,

we have to show that the limits of their partial sums exist. By the properties of limits,

lim
n→∞

(Sn + Tn) = lim
n→∞

Sn + lim
n→∞

Tn

lim
n→∞

(Sn − Tn) = lim
n→∞

Sn − lim
n→∞

Tn

lim
n→∞

kSn = k lim
n→∞

Sn.

This proves that the limits of the partial sums exist, so the series converge.

27. Let Sn be the n-th partial sum for
∑

an and let Tn be the n-th partial sum for
∑

bn. Suppose that SN = TN + k. Since
an = bn for n ≥ N , we have Sn = Tn + k for n ≥ N . Hence if Sn converges to a limit, so does Tn, and vice versa.
Thus,

∑
an and

∑
bn either both converge or both diverge.

28. We have an = Sn − Sn−1. If
∑

an converges, then S = limn→∞ Sn exists. Hence limn→∞ Sn−1 exists and is equal
to S also. Thus

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0.

29. From Property 1 in Theorem 9.2, we know that if
∑

an converges, then so does
∑

kan.
Now suppose that

∑
an diverges and

∑
kan converges for k 6= 0. Thus using Property 1 and replacing

∑
an by∑

kan, we know that the following series converges:
∑ 1

k
(kan) =

∑
an.

Thus, we have arrived at a contradiction, which means our original assumption, that
∞∑

n=1

kan converged, must be wrong.

30. A typical partial sum of the series
∞∑

n=1

(an+1 − an), say S5, shows what happens in the general case:

S5 = (a2 − a1) + (a3 − a2) + (a4 − a3) + (a5 − a4) + (a6 − a5) = a6 − a1

as all of the intermediate terms cancel out. The same thing will happen in the general partial sum: Sn = an+1 − a1.

Now the series
∞∑

n=1

(an+1−an) converges if the sequence of partial sums Sn has a limit as n→∞. Since we’re as-

suming that the original series
∞∑

n=1

an converges, we know that lim
n→∞

an = lim
n→∞

an+1 = 0 by property 3 of Theorem 9.2.

Thus
lim
n→∞

Sn = lim
n→∞

(an+1 − a1) = 0− a1 = −a1.

Since the sequence of partial sums converges (to −a1), the series
∞∑

n=1

(an+1 − an) converges (also to −a1).

31. If an = 1 for all n, then
∑

an diverges but
∑

(an+1 − an) =
∑

0 converges. If an = n for all n, then
∑

an diverges,
and
∑

an+1 − an =
∑

1 diverges

32. (a) Let N an integer with N ≥ c. Consider the series
∞∑

i=N+1

ai. The partial sums of this series are increasing because all

the terms in the series are positive. We show the partial sums are bounded using the right-hand sum in Figure 9.4. We
see that for each positive integer k

f(N + 1) + f(N + 2) + · · ·+ f(N + k) ≤
∫ N+k

N

f(x) dx.
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Since f(n) = an for all n, and c ≤ N , we have

aN+1 + aN+2 + · · ·+ aN+k ≤
∫ N+k

c

f(x) dx.

Since f(x) is a positive function,
∫ N+k

c
f(x) dx ≤

∫ b
c
f(x) dx for all b ≥ N + k. Since f is positive and∫∞

c
f(x) dx is convergent,

∫ N+k

c
f(x) dx <

∫∞
c
f(x) dx, so we have

aN+1 + aN+2 + · · ·+ aN+k ≤
∫ ∞

c

f(x) dx for all k.

Thus, the partial sums of the series
∞∑

i=N+1

ai are bounded and increasing, so this series converges by Theorem 9.1.

Now use Theorem 9.2, property 2, to conclude that
∞∑

i=1

ai converges.

c N N + 1

f(x)

	

Area = f(N + 3)	

Area = f(N + 1)

	

Area = f(N + 2)

x

Figure 9.4

c N N + 1

	

Area = f(N)

	

Area = f(N + 1)

	

Area = f(N + 2)

f(x)

x

Figure 9.5

(b) We now suppose
∫ ∞

c

f(x) dx diverges. In Figure 9.5 we see that for each positive integer k

∫ N+k+1

N

f(x) dx ≤ f(N) + f(N + 1) + · · ·+ f(N + k).

Since f(n) = an for all n, we have
∫ N+k+1

N

f(x) dx ≤ aN + aN+1 + · · ·+ aN+k.

Since f(x) is defined for all x ≥ c, if
∫∞
c
f(x) dx is divergent, then

∫∞
N
f(x) dx is divergent. So as k →∞, the the

integral
∫ N+k+1

N
f(x) dx diverges, so the partial sums of the series

∞∑

i=N

ai diverge. Thus, the series
∞∑

i=1

ai diverges.

More precisely, suppose the series converged. Then the partial sums would be bounded. (The partial sums would
be less than the sum of the series, since all the terms in the series are positive.) But that would imply that the integral
converged, by Theorem 9.1 on Convergence of Monotone Bounded Sequences. This contradicts the assumption that∫∞
N
f(x) dx is divergent.

33. (a) Show that the sum of each group of fractions is more than 1/2.
(b) Explain why this shows that the harmonic series does not converge.

(a) Notice that
1

3
+

1

4
>

1

4
+

1

4
=

2

4
=

1

2
1

5
+

1

6
+

1

7
+

1

8
>

1

8
+

1

8
+

1

8
+

1

8
=

4

8
=

1

2
1

9
+

1

10
+ · · ·+ 1

16
>

1

16
+

1

16
+ · · ·+ 1

16
=

8

16
=

1

2
.

In the same way, we can see that the sum of the fractions in each grouping is greater than 1/2.



9.3 SOLUTIONS 649

(b) Since the sum of the first n groups is greater than n/2, it follows that the partial sums of the harmonic series are not
bounded. Thus, the harmonic series diverges.

34. (a) Since for x > 0, ∫
1

x lnx
dx = ln(lnx) + C

we have ∫ ∞

2

1

x lnx
dx = lim

b→∞

∫ b

2

1

x lnx
dx = lim

b→∞
(ln(ln b)− ln(ln 2)) =∞.

The series diverges by the integral test.
(b) The terms in each group are decreasing so we can bound each group as follows:

1

3 ln 3
+

1

4 ln 4
>

1

4 ln 4
+

1

4 ln 4
=

1

2 ln 4

and
1

5 ln 5
+

1

6 ln 6
+

1

7 ln 7
+

1

8 ln 8
> 4

1

8 ln 8
=

1

2 ln 8
.

Similarly, the group whose final term is 1/(2n ln(2n)) is greater than 1/(2 ln(2n)) = 1/(2(ln 2)n). Thus

2N∑

n=2

1

n lnn
>

N∑

n=1

1

2(ln 2)n
.

The series on the right is the harmonic series multiplied by the constant 1/(2 ln 2). Since the harmonic series diverges,∑
1/(n lnn) diverges.

35. (a) The left-hand sum approximation to
∫ n

1

1

x
dx in Figure 9.6 shows that

∫ n

1

dx

x
< 1 +

1

2
+

1

3
+ · · ·+ 1

n

lnn− ln 1 < 1 +
1

2
+

1

3
+ · · ·+ 1

n

0 < 1 +
1

2
+

1

3
+ · · ·+ 1

n
− lnn.

Thus, 0 < an.

1 2 3
. . . n n+ 1

f(x) = 1/x

x

Figure 9.6

n n+ 1

f(x) = 1/x

x

Figure 9.7

(b) We calculate

an − an+1 =
(

1 +
1

2
+

1

3
+ · · ·+ 1

n

)
− lnn−

((
1 +

1

2
+

1

3
+ · · ·+ 1

n+ 1

)
− ln(n+ 1)

)

= ln(n+ 1)− lnn− 1

n+ 1
.

But using the right sum with one rectangle in Figure 9.7, we see that
∫ n+1

n

dx

x
>

1

n+ 1

ln(n+ 1)− lnn >
1

n+ 1
.
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Thus

an − an+1 = ln(n+ 1)− lnn− 1

n+ 1
> 0.

an > an+1.

(c) Since an is a decreasing sequence bounded below by 0, Theorem 9.1 ensures that limn→∞ an exists.
(d) The sequence converges slowly, but a calculator or computer gives a200 = 0.5797. For comparison, a100 = 0.5822,

a500 = 0.5782. Thus, γ = 0.58. More extensive calculations show that γ = 0.577216.

36. (a) A calculator or computer gives
20∑

1

1

n2
=

1

12
+

1

22
+ · · ·+ 1

202
= 1.596.

(b) Since
∞∑

1

1

n2
=
π2

6
, the answer to part (a) gives

π2

6
≈ 1.596

π ≈
√

6 · 1.596 = 3.09

(c) A calculator or computer gives

100∑

1

1

n2
=

1

12
+

1

22
+ · · ·+ 1

1002
= 1.635,

so

π2

6
≈ 1.635

π ≈
√

6 · 1.635 = 3.13.

(d) The error in approximating π2/6 by
∑20

1
1/n2 is the tail of the series

∑∞
21

1/n2. From Figure 9.8, we see that

∞∑

21

1

n2
<

∫ ∞

20

dx

x2
= − 1

x

∣∣∣∣
∞

20

=
1

20
= 0.05.

A similar argument leads to a bound for the error in approximating π2/6 by
∑100

1
1/n2 as

∞∑

101

1

n2
<

∫ ∞

100

dx

x2
= − 1

x

∣∣∣∣
∞

100

=
1

100
= 0.01.

20 21 22
. . .

1/x2

x

Figure 9.8

37. (a) We have e > 1 + 1 + 1/2 + 1/6 + 1/24 = 65/24 = 2.708.
(b) We have

1

n!
=

1

1 · 2 · 3 · 4 · · ·n ≤
1

1 · 2 · 2 · 2 · · · 2 =
1

2n−1
.

(c) The inequality in part (b) can be used to replace the given series with a geometric series that we can sum.

e =

∞∑

n=0

1

n!
= 1 +

∞∑

n=1

1

n!
< 1 +

∞∑

n=1

1

2n−1
= 1 +

1

1− 1/2
= 3.



9.4 SOLUTIONS 651

38. (a) The right-hand sum for
∫ N

0
xNdx with ∆x = 1 is the sum 15 · 1 + 25 · 1 + 35 · 1 + · · ·+N5 · 1 = SN . This sum is

greater than the integral because the integrand x5 is increasing on the interval 0 < x < N . Since
∫ N

0
x5dx = N6/6,

we have SN > N6/6.
(b) The left-hand sum for

∫ N+1

1
xNdx with ∆x = 1 is the sum 15 · 1 + 25 · 1 + 35 · 1 + · · · + N5 · 1 = SN .

This sum is less than the integral because the integrand x5 is increasing on the interval 1 < x < N + 1. Since∫ N+1

1
x5dx = ((N + 1)6 − 1)/6, we have SN < ((N + 1)6 − 1)/6.

(c) By parts (a) and (b) we have

N6/6

N6/6
= 1 <

SN
N6/6

<
((N + 1)6 − 1)/6

N6/6
= (1 +

1

N
)6 − 1

N6
.

Since both limN→∞ 1 = 1 and limN→∞((1 + 1
N

)6− 1
N6 ) = 1, we conclude that the limit in the middle also equals

1, limN→∞ SN/(N
6/6) = 1.

Solutions for Section 9.4

Exercises

1. Let an = 1/(n− 3), for n ≥ 4. Since n− 3 < n, we have 1/(n− 3) > 1/n, so

an >
1

n
.

The harmonic series
∞∑

n=4

1

n
diverges, so the comparison test tells us that the series

∞∑

n=4

1

n− 3
also diverges.

2. Let an = 1/(n2 + 2). Since n2 + 2 > n2, we have 1/(n2 + 2) < 1/n2, so

0 < an <
1

n2
.

The series
∞∑

n=1

1

n2
converges, so the comparison test tells us that the series

∞∑

n=1

1

n2 + 2
also converges.

3. Let an = e−n/n2. Since e−n < 1, for n ≥ 1,we have
e−n

n2
<

1

n2
, so

0 < an <
1

n2
.

The series
∞∑

n=1

1

n2
converges, so the comparison test tells us that the series

∞∑

n=1

e−n

n2
also converges.

4. Let an = 1/(3n + 1). Since 3n + 1 > 3n, we have 1/(3n + 1) < 1/3n =
(

1

3

)n
, so

0 < an <
(

1

3

)n
.

Thus we can compare the series
∞∑

n=1

1

3n + 1
with the geometric series

∞∑

n=1

(
1

3

)n
. This geometric series converges since

|1/3| < 1, so the comparison test tells us that
∞∑

n=1

1

3n + 1
also converges.

5. Let an = 1/(n4 + en). Since n4 + en > n4, we have
1

n4 + en
<

1

n4
,

so
0 < an <

1

n4
.

Since the p-series
∞∑

n=1

1

n4
converges, the comparison test tells us that the series

∞∑

n=1

1

n4 + en
also converges.
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6. Since lnn ≤ n for n ≥ 2, we have 1/ lnn ≥ 1/n, so the series diverges by comparison with the harmonic series,∑
1/n.

7. Let an = n2/(n4 + 1). Since n4 + 1 > n4, we have
1

n4 + 1
<

1

n4
, so

an =
n2

n4 + 1
<
n2

n4
=

1

n2
,

therefore
0 < an <

1

n2
.

Since the p-series
∞∑

n=1

1

n2
converges, the comparison test tells us that the series

∞∑

n=1

n2

n4 + 1
converges also.

8. We know that | sinn| < 1, so ∣∣∣n sinn

n3 + 1

∣∣∣ ≤ n

n3 + 1
<

n

n3
=

1

n2
.

Since the p-series
∞∑

n=1

1

n2
converges, comparison gives that

∞∑

n=1

∣∣∣n sinn

n3 + 1

∣∣∣ converges. Thus, by Theorem 9.6,
∞∑

n=1

n sinn

n3 + 1

converges.

9. Let an = (2n + 1)/(n2n − 1). Since n2n − 1 < n2n + n = n(2n + 1), we have

2n + 1

n2n − 1
>

2n + 1

n(2n + 1)
=

1

n
.

Therefore, we can compare the series
∞∑

n=1

2n + 1

n2n − 1
with the divergent harmonic series

∞∑

n=1

1

n
. The comparison test tells

us that
∞∑

n=1

2n + 1

n2n − 1
also diverges.

10. Since an = 1/(2n)!, replacing n by n+ 1 gives an+1 = 1/(2n+ 2)!. Thus

|an+1|
|an|

=

1

(2n+ 2)!
1

(2n)!

=
(2n)!

(2n+ 2)!
=

(2n)!

(2n+ 2)(2n+ 1)(2n)!
=

1

(2n+ 2)(2n+ 1)
,

so

L = lim
n→∞

|an+1|
|an|

= lim
n→∞

1

(2n+ 2)(2n+ 1)
= 0.

Since L = 0, the ratio test tells us that
∞∑

n=1

1

(2n)!
converges.

11. Since an = (n!)2/(2n)!, replacing n by n+ 1 gives an+1 = ((n+ 1)!)2/(2n+ 2)!. Thus,

|an+1|
|an|

=

((n+ 1)!)2

(2n+ 2)!

(n!)2

(2n)!

=
((n+ 1)!)2

(2n+ 2)!
· (2n)!

(n!)2
.

However, since (n+ 1)! = (n+ 1)n! and (2n+ 2)! = (2n+ 2)(2n+ 1)(2n)!, we have

|an+1|
|an|

=
(n+ 1)2(n!)2(2n)!

(2n+ 2)(2n+ 1)(2n)!(n!)2
=

(n+ 1)2

(2n+ 2)(2n+ 1)
=

n+ 1

4n+ 2
,

so

L = lim
n→∞

|an+1|
|an|

=
1

4
.

Since L < 1, the ratio test tells us that
∞∑

n=1

(n!)2

(2n)!
converges.
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12. Since an = (2n)!/(n!(n+ 1)!), replacing n by n+ 1 gives an+1 = (2n+ 2)!/((n+ 1)!(n+ 2)!). Thus,

|an+1|
|an|

=

(2n+ 2)!

(n+ 1)!(n+ 2)!

(2n)!

n!(n+ 1)!

=
(2n+ 2)!

(n+ 1)!(n+ 2)!
· n!(n+ 1)!

(2n)!
.

However, since (n+ 2)! = (n+ 2)(n+ 1)n! and (2n+ 2)! = (2n+ 2)(2n+ 1)(2n)!, we have

|an+1|
|an|

=
(2n+ 2)(2n+ 1)

(n+ 2)(n+ 1)
=

2(2n+ 1)

n+ 2
,

so

L = lim
n→∞

|an+1|
|an|

= 4.

Since L > 1, the ratio test tells us that
∞∑

n=1

(2n)!

n!(n+ 1)!
diverges.

13. Since an = 1/(rnn!), replacing n by n+ 1 gives an+1 = 1/(rn+1(n+ 1)!). Thus

|an+1|
|an|

=

1

rn+1(n+ 1)!
1

rnn!

=
rnn!

rn+1(n+ 1)!
=

1

r(n+ 1)
,

so

L = lim
n→∞

|an+1|
|an|

=
1

r
lim
n→∞

1

n+ 1
= 0.

Since L = 0, the ratio test tells us that
∞∑

n=1

1

rnn!
converges for all r > 0.

14. Since an = 1/(nen), replacing n by n+ 1 gives an+1 = 1/(n+ 1)en+1. Thus

|an+1|
|an|

=

1

(n+ 1)en+1

1

nen

=
nen

(n+ 1)en+1
=
(

n

n+ 1

)
1

e
.

Therefore

L = lim
n→∞

|an+1|
|an|

=
1

e
< 1.

Since L < 1, the ratio test tells us that
∞∑

n=1

1

nen
converges.

15. Since an = 2n/(n3 + 1), replacing n by n+ 1 gives an+1 = 2n+1/((n+ 1)3 + 1). Thus

|an+1|
|an|

=

2n+1

(n+ 1)3 + 1

2n

n3 + 1

=
2n+1

(n+ 1)3 + 1
· n

3 + 1

2n
= 2

n3 + 1

(n+ 1)3 + 1
,

so

L = lim
n→∞

|an+1|
|an|

= 2.

Since L > 1 the ratio test tells us that the series
∞∑

n=0

2n

n3 + 1
diverges.

16. Even though the first term is negative, the terms alternate in sign, so it is an alternating series.

17. Since cos(nπ) = (−1)n, this is an alternating series.

18. Since (−1)n cos(nπ) = (−1)2n = 1, this is not an alternating series.

19. Since an = cosn is not always positive, this is not an alternating series.
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20. Let an = 1/
√
n. Then replacing n by n+1 we have an+1 = 1/

√
n+ 1. Since

√
n+ 1 >

√
n, we have

1√
n+ 1

<
1√
n

,

hence an+1 < an. In addition, limn→∞ an = 0 so
∞∑

n=0

(−1)n√
n

converges by the alternating series test.

21. Let an = 1/(2n+ 1). Then replacing n by n+ 1 gives an+1 = 1/(2n+ 3). Since 2n+ 3 > 2n+ 1, we have

0 < an+1 =
1

2n+ 3
<

1

2n+ 1
= an.

We also have limn→∞ an = 0. Therefore, the alternating series test tells us that the series
∞∑

n=1

(−1)n−1

2n+ 1
converges.

22. Let an = 1/(n2 + 2n+ 1) = 1/(n+ 1)2. Then replacing n by n+ 1 gives an+1 = 1/(n+ 2)2. Since n+ 2 > n+ 1,
we have

1

(n+ 2)2
<

1

(n+ 1)2

so
0 < an+1 < an.

We also have limn→∞ an = 0. Therefore, the alternating series test tells us that the series
∞∑

n=1

(−1)n−1

n2 + 2n+ 1
converges.

23. Let an = 1/en. Then replacing n by n + 1 we have an+1 = 1/en+1. Since en+1 > en, we have
1

en+1
<

1

en
, hence

an+1 < an. In addition, limn→∞ an = 0 so
∞∑

n=1

(−1)n

en
converges by the alternating series test. We can also observe

that the series is geometric with ratio x = −1/e can hence converges since |x| < 1.

24. We have
an
bn

=
(5n+ 1)/(3n2)

1/n
=

5n+ 1

3n
,

so
lim
n→∞

an
bn

= lim
n→∞

5n+ 1

3n
=

5

3
= c 6= 0.

Since
∞∑

n=1

1

n
is a divergent harmonic series, the original series diverges.

25. We have
an
bn

=
((1 + n)/(3n))n

(1/3)n
=
(
n+ 1

n

)n
=
(

1 +
1

n

)n
,

so
lim
n→∞

an
bn

= lim
n→∞

(
1 +

1

n

)n
= e = c 6= 0.

Since
∞∑

n=1

(
1

3

)n
is a convergent geometric series, the original series converges.

26. The nth term an = 1/(n4 − 7) behaves like 1/n4 for large n, so we take bn = 1/n4. We have

lim
n→∞

an
bn

= lim
n→∞

1/(n4 − 7)

1/n4
= lim
n→∞

n4

n4 − 7
= 1.

The limit comparison test applies with c = 1. The p-series
∑

1/n4 converges because p = 4 > 1. Therefore∑
1/(n4 − 7) also converges.

27. The nth term an = (n+ 1)/(n2 + 2) behaves like n/n2 = 1/n for large n, so we take bn = 1/n. We have

lim
n→∞

an
bn

= lim
n→∞

(n+ 1)/(n2 + 2)

1/n
= lim
n→∞

n2 + n

n2 + 2
= 1.

The limit comparison test applies with c = 1. Since the harmonic series
∑

1/n diverges, the series
∑

(n+ 1)/(n2 + 2)
also diverges.
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28. The nth term an = (n3− 2n2 +n+ 1)/(n4− 2) behaves like n3/n4 = 1/n for large n, so we take bn = 1/n. We have

lim
n→∞

an
bn

= lim
n→∞

(n3 − 2n2 + n+ 1)/(n4 − 2)

1/n
= lim
n→∞

n4 − 2n3 + n2 + n

n4 − 2
= 1.

The limit comparison test applies with c = 1. The harmonic series
∑

1/n diverges. Thus
∑(

n3 − 2n2 + n+ 1
)
/
(
n4 − 2

)
also diverges.

29. The nth term an = 2n/(3n − 1) behaves like 2n/3n for large n, so we take bn = 2n/3n. We have

lim
n→∞

an
bn

= lim
n→∞

2n/(3n − 1)

2n/3n
= lim
n→∞

3n

3n − 1
= lim
n→∞

1

1− 3−n
= 1.

The limit comparison test applies with c = 1. The geometric series
∑

2n/3n =
∑

(2/3)n converges. Therefore∑
2n/(3n − 1) also converges.

30. The nth term an = 1/(2
√
n+
√
n+ 2) behaves like 1/(3

√
n) for large n, so we take bn = 1/(3

√
n). We have

lim
n→∞

an
bn

= lim
n→∞

1/(2
√
n+
√
n+ 2)

1/(3
√
n)

= lim
n→∞

3
√
n

2
√
n+
√
n+ 2

= lim
n→∞

3
√
n

√
n
(

2 +
√

1 + 2/n
)

= lim
n→∞

3

2 +
√

1 + 2/n
=

3

2 +
√

1 + 0

= 1.

The limit comparison test applies with c = 1. The series
∑

1/(3
√
n) diverges because it is a multiple of a p-series with

p = 1/2 < 1. Therefore
∑

1/(2
√
n+
√
n+ 2) also diverges.

31. The nth term,

an =
1

2n− 1
− 1

2n
=

1

4n2 − 2n
,

behaves like 1/(4n2) for large n, so we take bn = 1/(4n2). We have

lim
n→∞

an
bn

= lim
n→∞

1/(4n2 − 2n)

1/(4n2)
= lim
n→∞

4n2

4n2 − 2n
= lim
n→∞

1

1− 1/(2n)
= 1.

The limit comparison test applies with c = 1. The series
∑

1/(4n2) converges because it is a multiple of a p-series with
p = 2 > 1. Therefore

∑(
1

2n−1
− 1

2n

)
also converges.

Problems

32. The comparison test requires that an = (−1)n/n2 be positive. It is not.

33. The comparison test requires that an = sinn be positive for all n. It is not.

34. With an = (−1)n, we have |an+1/an| = 1, and limn→∞ |an+1/an| = 1, so the test gives no information.

35. With an = sinn, we have |an+1/an| = | sin(n+ 1)/ sinn|, which does not have a limit as n→∞, so the test does not
apply.

36. The sequence an = n does not satisfy either an+1 < an or limn→∞ an = 0.

37. The alternating series test requires an = sinn be positive, which it is not. This is not an alternating series.

38. The alternating series test requires an = 2− 1/n which is positive and satisfies an+1 < an but limn→∞ an = 2 6= 0.

39. The partial sums are S1 = 1, S2 = −1, S3 = 2, S10 = −5, S11 = 6, S100 = −50, S101 = 51, S1000 = −500,
S1001 = 501, which appear to be oscillating further and further from 0. This series does not converge.

40. The partial sums look like: S1 = 1, S2 = 0.9, S3 = 0.91, S4 = 0.909, S5 = 0.9091, S6 = 0.90909. The series appears
to be converging to 0.909090 . . . or 10/11.

Since an = 10−k is positive and decreasing and lim
n→∞

10−n = 0, the alternating series test confirms the convergence

of the series.
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41. The partial sums look like: S1 = 1, S2 = 0, S3 = 0.5, S4 = 0.3333, S5 = 0.375, S10 = 0.3679, S20 = 0.3679, and
higher partial sums agree with these first 4 decimal places. The series appears to be converging to about 0.3679.

Since an = 1/n! is positive and decreasing and limn→∞ 1/n! = 0, the alternating series test confirms the conver-
gence of this series.

42. We use the ratio test and calculate

lim
n→∞

|an+1|
|an|

= lim
n→∞

(0.1)n+1/(n+ 1)!

(0.1)n/n!
= lim
n→∞

0.1

n+ 1
= 0.

Since the limit is less than 1, the series converges.

43. We use the ratio test and calculate

lim
n→∞

|an+1|
|an|

= lim
n→∞

n!/(n+ 1)2

(n− 1)!/n2
= lim
n→∞

(
n!

(n− 1)!
· n2

(n+ 1)2

)
= lim
n→∞

(
n · n2

(n+ 1)2

)
.

Since the limit does not exist (it is∞), the series diverges.

44. The first few terms of the series may be written

1 + e−1 + e−2 + e−3 + · · · ;

this is a geometric series with a = 1 and x = e−1 = 1/e. Since |x| < 1, the geometric series converges to

S =
1

1− x =
1

1− e−1
=

e

e− 1
.

45. The first few terms of the series may be written

e+ e2 + e3 + · · · = e+ e · e+ e · e2 + · · · ;

this is a geometric series with a = e and x = e. Since |x| > 1, this geometric series diverges.

46. Let an = 1/
√

3n− 1. Then replacing n by n+ 1 gives an+1 = 1/
√

3(n+ 1)− 1. Since

√
3(n+ 1)− 1 >

√
3n− 1,

we have
an+1 < an.

In addition, limn→∞ an = 0 so the alternating series test tells us that the series
∞∑

n=1

(−1)n−1

√
3n− 1

converges.

47. Since the exponential, 2n, grows faster than the power, n2, the terms are growing in size. Thus, lim
n→∞

an 6= 0. We conclude

that this series diverges.

48. Since 0 ≤ | sinn| ≤ 1 for all n, we may be able to compare with 1/n2. We have 0 ≤ | sinn/n2| ≤ 1/n2 for all n. So∑
| sinn/n2| converges by comparison with the convergent series

∑
(1/n2). Therefore

∑
(sinn/n2) also converges,

since absolute convergence implies convergence by Theorem 9.6.

49. Note that cos(nπ)/n = (−1)n/n, so this is an alternating series. Therefore, since 1/(n+1) < 1/n and limn→∞ 1/n =
0, we see that

∑
(cos(nπ)/n) converges by the alternating series test.

50. As n→∞, we see that
n+ 2

n2 − 1
→ n

n2
=

1

n
.

Since
∑

(1/n) diverges, we expect our series to have the same behavior.
More precisely, for all n ≥ 2, we have

0 ≤ 1

n
=

n

n2
≤ n+ 2

n2 − 1
,

so
∞∑

n=2

n+ 2

n2 − 1
diverges by comparison with the divergent series

∑ 1

n
.
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51. Since
3

lnn2
=

3

2 lnn
,

our series behaves like the series
∑

1/ lnn. More precisely, for all n ≥ 2, we have

0 ≤ 1

n
≤ 1

lnn
≤ 3

2 lnn
=

3

lnn2
,

so
∞∑

n=2

3

lnn2
diverges by comparison with the divergent series

∑ 1

n
.

52. Let an = 1/
√
n2(n+ 2). Since n2(n+ 2) = n3 + 2n2 > n3, we have

0 < an <
1

n3/2
.

Since the p-series
∞∑

n=1

1

n3/2
converges, the comparison test tells us that

∞∑

n=1

1√
n2(n+ 2)

also converges.

53. Let an = n(n+ 1)/
√
n3 + 2n2. Since n3 + 2n2 = n2(n+ 2), we have

an =
n(n+ 1)

n
√
n+ 2

=
n+ 1√
n+ 2

so an grows without bound as n→∞, therefore the series
∞∑

n=1

n(n+ 1)√
n3 + 2n2

diverges.

54. The nth partial sum of the series is given by

Sn = 1− 1

2
+

1

3
− · · ·+ (−1)n−1

n
,

so the absolute value of the first term omitted is 1/(n+ 1). By Theorem 9.9, we know that the value, S, of the sum differs
from Sn by less than 1/(n+1). Thus, we want to choose n large enough so that 1/(n+1) ≤ 0.01. Solving this inequality
for n yields n ≥ 99, so we take 99 or more terms in our partial sum.

55. The nth partial sum of the series is given by

Sn = 1− 2

3
+

4

9
− · · ·+ (−1)n

(
2

3

)n
,

so the absolute value of the first term omitted is (2/3)n+1. By Theorem 9.9, we know that the value, S, of the sum differs
from Sn by less than (2/3)n+1. Thus, we want to choose n large enough so that (2/3)n+1 ≤ 0.01. Solving this inequality
for n yields n ≥ 10.358, so we take 11 or more terms in our partial sum.

56. The nth partial sum of the series is given by

Sn =
1

2
− 1

24
+

1

720
− · · ·+ (−1)n−1

(2n)!
,

so the absolute value of the first term omitted is 1/(2n + 2)!. By Theorem 9.9, we know that the value, S, of the sum
differs from Sn by less than 1/(2n+2)!. Thus, we want to choose n large enough so that 1/(2n+2)! ≤ 0.01. Substituting
n = 2 into the expression 1/(2n + 2)! yields 1/720 which is less than 0.01. We therefore take 2 or more terms in our
partial sum.

57. Both
∑ (−1)n

2n
=
∑(−1

2

)n
and
∑ 1

2n
=
∑(

1

2

)n
are convergent geometric series. Thus

∑ (−1)n

2n
is abso-

lutely convergent.
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58. The series
∑ (−1)n

2n
converges by the alternating series test. However

∑ 1

2n
diverges because it is a multiple of the

harmonic series. Thus
∑ (−1)n

2n
is conditionally convergent.

59. Since
lim
n→∞

(
1 +

1

n2

)
= 1,

the nth term an = (−1)n
(
1 + 1

n2

)
does not tend to zero as n→∞. Thus, the series

∑
(−1)n

(
1 +

1

n2

)
is divergent.

60. The series
∑ (−1)n

n4 + 7
converges by the alternating series test. Moreover, the series

∑ 1

n4 + 7
converges by comparison

with the convergent p-series
∑ 1

n4
. Thus

∑ (−1)n

n4 + 7
is absolutely convergent.

61. Since 0 ≤ cn ≤ 2−n for all n, and since
∑

2−n is a convergent geometric series,
∑

cn converges by the Comparison
Test. Similarly, since 2n ≤ an, and since

∑
2n is a divergent geometric series,

∑
an diverges by the Comparison Test.

We do not have enough information to determine whether or not
∑

bn and
∑

dn converge.

62. (a) The sum
∑

an · bn =
∑

1/n5, which converges, as a p-series with p = 5, or by the integral test:

∫ ∞

1

1

x5
dx = lim

b→∞

x−4

(−4)

∣∣∣∣
b

1

= lim
b→∞

b−4

(−4)
+

1

4
=

1

4
.

Since this improper integral converges,
∑

an · bn also converges.
(b) This is an alternating series that satisfies the conditions of the alternating series test: the terms are decreasing and

have limit 0, so
∑

(−1)n/
√
n converges.

(c) We have anbn = 1/n, so
∑

anbn is the harmonic series, which diverges.

63. Since lim
n→∞

an/bn = 0, for large enough n we have |an/bn| < 1/2 and thus 0 ≤ |an| < bn/2 < bn . By the

comparison test applied to
∑
|an| and

∑
bn, the series

∑
|an| converges. The series

∑
an converges absolutely and

thus it converges.

64. Since lim
n→∞

an/bn = ∞, for large enough n we have an/bn > 1 and thus an > bn . By the comparison test applied to
∑

an and
∑

bn, the series
∑

an diverges.

65. Each term in
∑

bn is greater than or equal to a1 times a term in the harmonic series:

b1 = a1 · 1
b2 =

a1 + a2

2
> a1 · 1

2

b3 =
a1 + a2 + a3

3
> a1 · 1

3
...

bn =
a1 + a2 + · · ·+ an

n
> a1 · 1

n

Adding these inequalities gives ∑
bn > a1

∑ 1

n
.

Since the harmonic series
∑

1/n diverges, a1 times the harmonic series also diverges. Then, by the comparison test, the
series

∑
bn diverges.

66. Suppose we let cn = (−1)nan. (We have just given the terms of the series
∑

(−1)nan a new name.) Then

|cn| = |(−1)nan| = |an|.

Thus
∑
|cn| converges, and by Theorem 9.6,

∑
cn =

∑
(−1)nan converges.
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67. (a) Since
|an| = an if an ≥ 0

|an| = −an if an < 0,

we have
an + |an| = 2|an| if an ≥ 0

an + |an| = 0 if an < 0.

Thus, for all n,
0 ≤ an + |an| ≤ 2|an|.

(b) If
∑
|an| converges, then

∑
2|an| is convergent, so, by comparison,

∑
(an + |an|) is convergent. Then

∑
((an + |an|)− |an|) =

∑
an

is convergent, as it is the difference of two convergent series.

68. The limit
lim
n→∞

n
√
an = lim

n→∞

2

n
= 0 < 1,

so the series converges.

69. The limit
lim
n→∞

n
√
an = lim

n→∞

5n+ 1

3n2
= 0 < 1,

so the series converges.

Solutions for Section 9.5

Exercises

1. Yes.

2. No, because it contains negative powers of x.

3. No, each term is a power of a different quantity.

4. Yes. It’s a polynomial, or a series with all coefficients beyond the 7th being zero.

5. The general term can be written as
1 · 3 · 5 · · · (2n− 1)

2n · n!
xn for n ≥ 1. Other answers are possible.

6. The general term can be written as
p(p− 1)(p− 2) · · · (p− n+ 1)

n!
xn for n ≥ 1. Other answers are possible.

7. The general term can be written as
(−1)k(x− 1)2k

(2k)!
for k ≥ 0. Other answers are possible.

8. The general term can be written as
(−1)k+1(x− 1)2k+1

(2(k − 1))!
for k ≥ 1 or as

(−1)k(x− 1)2k+3

(2k)!
for k ≥ 0. Other answers

are possible.

9. The general term can be written as
(x− a)n

2n−1 · n!
for n ≥ 1. Other answers are possible.

10. The general term can be written as
(k + 1)(x+ 5)2k+1

(k − 1)!
for k ≥ 1 or as

(k + 2)(x+ 5)2k+3

k!
for k ≥ 0. Other answers

are possible.

11. This series may be written as
1 + 5x+ 25x2 + · · ·

so Cn = 5n. Using the ratio test, with an = 5nxn, we have

lim
n→∞

|an+1|
|an|

= |x| lim
n→∞

|Cn+1|
|Cn|

= |x| lim
n→∞

5n+1

5n
= 5|x|.

Thus the radius of convergence is R = 1/5.



660 Chapter Nine /SOLUTIONS

12. Since Cn = n3, replacing n by n+ 1 gives Cn+1 = (n+ 1)3. Using the ratio test, with an = n3xn, we have

|an+1|
|an|

= |x| |Cn+1|
|Cn|

= |x| (n+ 1)3

n3
= |x|

(
n+ 1

n

)3

.

We have

lim
n→∞

|an+1|
|an|

= |x|.

Thus the radius of convergence is R = 1.

13. Since Cn = (n + 1)/(2n + n), replacing n by n + 1 gives Cn+1 = (n + 2)/(2n+1 + n + 1). Using the ratio test, we
have

|an+1|
|an|

= |x| |Cn+1|
|Cn|

= |x| (n+ 2)/(2n+1 + n+ 1)

(n+ 1)/(2n + n)
= |x| n+ 2

2n+1 + n+ 1
· 2n + n

n+ 1
= |x|n+ 2

n+ 1
· 2n + n

2n+1 + n+ 1
.

Since
lim
n→∞

n+ 2

n+ 1
= 1

and

lim
n→∞

(
2n + n

2n+1 + n+ 1

)
=

1

2
lim
n→∞

(
2n + n

2n + (n+ 1)/2

)
=

1

2
,

because 2n dominates n as n→∞, we have

lim
n→∞

|an+1|
|an|

=
1

2
|x|.

Thus the radius of convergence is R = 2.

14. Since Cn = 2n/n, replacing n by n+ 1 gives Cn+1 = 2n+1/(n+ 1). Using the ratio test, we have

|an+1|
|an|

= |x− 1| |Cn+1|
|Cn|

= |x− 1|2
n+1/(n+ 1)

2n/n
= |x− 1| 2n+1

(n+ 1)
· n

2n
= 2|x− 1|

(
n

n+ 1

)
,

so

lim
n→∞

|an+1|
|an|

= 2|x− 1|.

Thus the radius of convergence is R = 1
2

.

15. To find R, we consider the following limit, where the coefficient of the nth term is given by Cn = n2.

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣
(n+ 1)2xn+1

n2xn

∣∣∣∣ = lim
n→∞

|x|n
2 + 2n+ 1

n2

= |x| lim
n→∞

(
1 + (2/n) + (1/n2)

1

)
= |x|.

Thus, the radius of convergence is R = 1.

16. The coefficient of the nth term is Cn = (−1)n+1/n2. Now consider the ratio
∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
n2xn+1

(n+ 1)2xn

∣∣∣∣→ |x| as n→∞.

Thus, the radius of convergence is R = 1.

17. Here the coefficient of the nth term is Cn = (2n/n!). Now we have
∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
(2n+1/(n+ 1)!)xn+1

(2n/n!)xn

∣∣∣∣ =
2|x|
n+ 1

→ 0 as n→∞.

Thus, the radius of convergence is R =∞, and the series converges for all x.

18. Here the coefficient of the nth term is Cn = n/(2n+ 1). Now we have
∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
((n+ 1)/(2n+ 3))xn+1

(n/(2n+ 1))xn

∣∣∣∣ =
(n+ 1)(2n+ 1)

n(2n+ 3)
|x| → |x| as n→∞.

Thus, by the ratio test, the radius of convergence is R = 1.
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19. Here Cn = (2n)!/(n!)2. We have:

∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
(2(n+ 1))!/((n+ 1)!)2xn+1

(2n)!/(n!)2xn

∣∣∣∣ =
(2(n+ 1))!

(2n)!
· (n!)2

((n+ 1)!)2
|x|

=
(2n+ 2)(2n+ 1)|x|

(n+ 1)2
→ 4|x| as n→∞.

Thus, the radius of convergence is R = 1/4.

20. Here the coefficient of the nth term is Cn = (2n+ 1)/n. Applying the ratio test, we consider:

∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
((2n+ 3)/(n+ 1))xn+1

((2n+ 1)/n)xn

∣∣∣∣ = |x|2n+ 3

2n+ 1
· n

n+ 1
→ |x| as n→∞.

Thus, the radius of convergence is R = 1.

21. We write the series as

x− x3

3
+
x5

5
− x7

7
+ · · ·+ (−1)n−1 x

2n−1

2n− 1
+ · · · ,

so

an = (−1)n−1 x
2n−1

2n− 1
.

Replacing n by n+ 1, we have

an+1 = (−1)n+1−1 x2(n+1)−1

2(n+ 1)− 1
= (−1)n

x2n+1

2n+ 1
.

Thus
|an+1|
|an|

=

∣∣∣∣
(−1)nx2n+1

2n+ 1

∣∣∣∣ ·
∣∣∣∣

2n− 1

(−1)n−1x2n−1

∣∣∣∣ =
2n− 1

2n+ 1
x2,

so

L = lim
n→∞

|an+1|
|an|

= lim
n→∞

2n− 1

2n+ 1
x2 = x2.

By the ratio test, this series converges if L < 1, that is, if x2 < 1, so R = 1.

22. (a) The general term of the series is xn/n if n is odd and −xn/n if n is even, so Cn = (−1)n−1/n, and we can use the
ratio test. We have

lim
n→∞

|an+1|
|an|

= |x| lim
n→∞

|(−1)n/(n+ 1)|
|(−1)n−1/n| = |x| lim

n→∞

n

n+ 1
= |x|.

Therefore the radius of convergence is R = 1. This tells us that the power series converges for |x| < 1 and does not
converge for |x| > 1. Notice that the radius of convergence does not tell us what happens at the endpoints, x = ±1.

(b) The endpoints of the interval of convergence are x = ±1. At x = 1, we have the series

1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)n−1

n
+ · · ·

This is an alternating series with an = 1/n, so by the alternating series test, it converges. At x = −1, we have the
series

−1− 1

2
− 1

3
− 1

4
− · · · − 1

n
− · · ·

This is the negative of the harmonic series, so it does not converge. Therefore the right endpoint is included, and the
left endpoint is not included in the interval of convergence, which is −1 < x ≤ 1.

23. Let Cn = 2n/n. Then replacing n by n+ 1 gives Cn+1 = 2n+1/(n+ 1). Using the ratio test, we have

|an+1|
|an|

= |x| |Cn+1|
|Cn|

= |x|2
n+1/(n+ 1)

2n/n
= |x| 2

n+1

n+ 1
· n

2n
= 2|x|

(
n

n+ 1

)
.

Thus

lim
n→∞

|an+1|
|an|

= 2|x|.

The radius of convergence is R = 1/2.
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For x = 1/2 the series becomes the harmonic series
∞∑

n=1

1

n
which diverges.

For x = −1/2 the series becomes the alternating series
∞∑

n=1

(−1)n

n
which converges. See Example 8 on page 460.

Problems

24. We use the ratio test: ∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
xn+1

3n+1
· 3n

xn

∣∣∣∣ =
|x|
3
.

Since |x|/3 < 1 when |x| < 3, the radius of convergence is 3 and the series converges for −3 < x < 3.
We check the endpoints:

x = 3 :

∞∑

n=0

xn

3n
=

∞∑

n=0

3n

3n
=

∞∑

n=0

1n which diverges.

x = −3 :

∞∑

n=0

xn

3n
=

∞∑

n=0

(−3)n

3n
=

∞∑

n=0

(−1)n which diverges.

The series diverges at both the endpoints, so the interval of convergence is −3 < x < 3.

25. We use the ratio test: ∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
(x− 3)n+1

n+ 1
· n

(x− 3)n

∣∣∣∣ =
n

n+ 1
· |x− 3|.

Since n/(n+ 1)→ 1 as n→∞, we have

lim
n→∞

∣∣∣an+1

an

∣∣∣ = |x− 3|.

The series converges for |x− 3| < 1. The radius of convergence is 1 and the series converges for 2 < x < 4.
We check the endpoints. For x = 2, we have

∞∑

n=2

(x− 3)n

n
=

∞∑

n=2

(2− 3)n

n
=

∞∑

n=2

(−1)n

n
.

This is the alternating harmonic series and converges. For x = 4, we have
∞∑

n=2

(x− 3)n

n
=

∞∑

n=2

(4− 3)n

n
=

∞∑

n=2

1

n
.

This is the harmonic series and diverges. The series converges at x = 2 and diverges at x = 4. Therefore, the interval of
convergence is 2 ≤ x < 4.

26. We use the ratio test: ∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
(n+ 1)2x2(n+1)

22(n+1)
· 22n

n2x2n

∣∣∣∣ =
(
n+ 1

n

)2

· x
2

4
.

Since (n+ 1)/n→ 1 as n→∞, we have

lim
n→∞

∣∣∣an+1

an

∣∣∣ =
x2

4
.

We have x2/4 < 1 when |x| < 2. The radius of convergence is 2 and the series converges for −2 < x < 2.
We check the endpoints. For x = −2, we have

∞∑

n=1

n2x2n

22n
=

∞∑

n=1

n2(−2)2n

22n
=

∞∑

n=1

n2,

which diverges. Similarly, for x = 2, we have
∞∑

n=1

n2x2n

22n
=

∞∑

n=1

n222n

22n
=

∞∑

n=1

n2,

which diverges. The series diverges at both endpoints, so the interval of convergence is −2 < x < 2.
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27. We use the ratio test:
∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
(−1)n+1(x− 5)n+1

2n+1(n+ 1)2
· 2nn2

(−1)n(x− 5)n

∣∣∣∣ =
(

n

n+ 1

)2

· |x− 5|
2

.

Since n/(n+ 1)→ 1 as n→∞, we have

lim
n→∞

∣∣∣an+1

an

∣∣∣ =
|x− 5|

2
.

We have |x− 5|/2 < 1 when |x− 5| < 2. The radius of convergence is 2 and the series converges for 3 < x < 7.
We check the endpoints. For x = 3, we have

∞∑

n=1

(−1)n(x− 5)n

2nn2
=

∞∑

n=1

(−1)n(3− 5)n

2nn2
=

∞∑

n=1

(−1)n(−2)n

2nn2
=

∞∑

n=1

1

n2
.

This is a p-series with p = 2 and it converges. For x = 7, we have
∞∑

n=1

(−1)n(x− 5)n

2nn2
=

∞∑

n=1

(−1)n(7− 5)n

2nn2
=

∞∑

n=1

(−1)n2n

2nn2
=

∞∑

n=1

(−1)n

n2
.

Since
∑ 1

n2
converges, the alternating series

∑ (−1)n

n2
also converges. The series converges at both its endpoints, so

the interval of convergence is 3 ≤ x ≤ 7.

28. The coefficient of the nth term of the binomial power series is given by

Cn =
p(p− 1)(p− 2) · · · (p− (n− 1))

n!
.

To apply the ratio test, consider
∣∣∣an+1

an

∣∣∣ = |x|
∣∣∣∣
p(p− 1)(p− 2) · · · (p− (n− 1))(p− n)/(n+ 1)!

p(p− 1)(p− 2) · · · (p− (n− 1))/n!

∣∣∣∣

= |x|
∣∣∣p− n
n+ 1

∣∣∣ = |x|
∣∣∣ p

n+ 1
− n

n+ 1

∣∣∣→ |x| as n→∞.

Thus, the radius of convergence is R = 1.

29. The kth coefficient in the series
∑

kCkx
k isDk = k·Ck. We are given that the series

∑
Ckx

k has radius of convergence
R by the ratio test, so

|x| lim
k→∞

|Ck+1|
|Ck|

=
|x|
R
.

Thus, applying the ratio test to the new series, we have

lim
k→∞

∣∣∣∣
Dk+1x

k+1

Dkxk

∣∣∣∣ = lim
k→∞

∣∣∣∣
(k + 1)Ck+1

kCk

∣∣∣∣ |x| =
|x|
R
.

Hence the new series has radius of convergence R.

30. The radius of convergence, R, is between 5 and 7.

31. The series is centered at x = −7. Since the series converges at x = 0, which is a distance of 7 from x = −7, the radius
of convergence, R, is at least 7. Since the series diverges at x = −17, which is a distance of 10 from x = −7, the radius
of convergence is no more than 10. That is, 7 ≤ R ≤ 10.

32. The radius of convergence of the series, R, is at least 4 but no larger than 7.

(a) False. Since 10 > R the series diverges.
(b) True. Since 3 < R the series converges.
(c) False. Since 1 < R the series converges.
(d) Not possible to determine since the radius of convergence may be more or less than 6.

33. The series is centered at x = 3. Since the series converges at x = 7, which is a distance of 4 from x = 3, we know
R ≥ 4. Since the series diverges at x = 10, which is a distance of 7 from x = 3, we know R ≤ 7. That is, 4 ≤ R ≤ 7.

Since x = 11 is a distance of 8 from x = 3, the series diverges at x = 11.
Since x = 5 is a distance of 2 from x = 3, the series converges there.
Since x = 0 is a distance of 3 from x = 3, the series converges at x = 3.
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34. (a) We use the ratio test:
∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
(−1)n+1x2(n+1)

22(n+1)((n+ 1)!)2
· 22n(n!)2

(−1)nx2n

∣∣∣∣

=
x2n+2

22n+2(n+ 1)2(n!)2
· 22n(n!)2

x2n

=
x2

4(n+ 1)2
.

For a fixed value of x, we have
x2

4(n+ 1)2
→ 0 as n→∞.

The series converges for all x, so the domain of J(x) is all real numbers.
(b) Since

J(x) = 1− x2

4
+ · · · ,

we have J(0) = 1.
(c) We have

S0(x) = 1

S1(x) = 1− x2

4

S2(x) = 1− x2

4
+
x4

64

S3(x) = 1− x2

4
+
x4

64
− x6

2304

S4(x) = 1− x2

4
+
x4

64
− x6

2304
+

x8

147,456
.

(d) The value of J(1) can be approximated using partial sums. Substituting x = 1 into the partial sum polynomials, we
have

S0(1) = 1

S1(1) = 0.75

S2(1) = 0.765625

S3(1) = 0.765191

S4(1) = 0.765198.

We estimate that J(1) ≈ 0.765. Theorem 9.9 can be used to bound the error.
(e) We see from the series that J(x) is an even function, so J(−1) = J(1). Thus, J(−1) ≈ 0.765.

35. (a) We have

f(x) = 1 + x+
x2

2
+ · · · ,

so
f(0) = 1 + 0 + 0 + · · · = 1.

(b) To find the domain of f , we find the interval of convergence.

lim
n→∞

|an+1|
|an|

= lim
n→∞

|xn+1/(n+ 1)!|
|xn/n!| = lim

n→∞

(
|x|n+1n!

|x|n(n+ 1)!

)
= |x| lim

n→∞

1

n+ 1
= 0.

Thus the series converges for all x, so the domain of f is all real numbers.
(c) Differentiating term-by-term gives

f ′(x) =
d

dx

( ∞∑

n=0

xn

n!

)
=

d

dx

(
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

)

= 0 + 1 + 2
x

2!
+ 3

x2

3!
+ 4

x3

4!
+ · · ·

= 1 + x+
x2

2!
+
x3

3!
+ · · · .
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Thus, the series for f and f ′ are the same, so
f(x) = f ′(x).

(d) We guess f(x) = ex.

36. (a) Since only odd powers are involved in the series for g(x),

g(x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

we see that g(x) is odd. Substituting x = 0 gives g(0) = 0.
(b) Differentiating term-by-term gives

g′(x) = 1− 3
x2

3!
+ 5

x4

5!
− 7

x6

7!
+ · · ·

= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · .

g′′(x) = 0− 2
x

2!
+ 4

x3

4!
− 6

x5

6!
+ · · ·

= −x+
x3

3!
− x5

5!
+ · · · .

So we see g′′(x) = −g(x).
(c) We guess g(x) = sinx since then g′(x) = cosx and g′′(x) = − sinx = g(x). We check g(0) = 0 = sin 0 and

g′(0) = 1 = cos 0.

37. (a) We have

(p(x))2 =

(
1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

)2

= 1− 2 · x
2

2
+

(
−x

2

2!

)2

+ 2
x4

4!
− 2

x6

6!
− 2

x2

2!
· x

4

4!
· · ·

= 1− x2 +
(

1

4
+

1

12

)
x4 − x6

(
1

3 · 5 · 4!
+

1

4!

)
· · ·

= 1− x2 +
x4

3
− 2

45
x6 · · · .

(q(x))2 =

(
x− x3

3!
+
x5

5!
− · · ·

)2

= x2

(
1− x2

3!
+
x4

5!
− · · ·

)2

= x2

(
1− 2

x2

3!
+

(
−x

2

3!

)2

+ 2
x4

5!
· · ·
)

= x2

(
1− x2

3
+ x4

(
1

(3!)2
+

1

5 · 4 · 3

)
· · ·
)

= x2

(
1− x2

3
+

2

45
x4 · · ·

)

= x2 − x4

3
+

2

45
x6 · · · .

Thus, up to terms in x6, we have
(p(x))2 + (q(x))2 = 1.

(b) The result of part (a) suggests that p(x) and q(x) could be the sine and cosine. Since p(x) is even and q(x) is odd,
we guess that p(x) = cosx and q(x) = sinx.
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Solutions for Chapter 9 Review

Exercises

1. As n increases, the term 4n is much larger than 3 and 7n is much larger than 5. Thus dividing the numerator and
denominator by n and using the fact that lim

n→∞
1/n = 0, we have

lim
n→∞

3 + 4n

5 + 7n
= lim
n→∞

(3/n) + 4

(5/n) + 7
=

4

7
.

Thus, the sequence converges to 4/7.

2. We have:
lim
n→∞

(
n+ 1

n

)
= 1.

The terms of the sequence do not approach 0, so the sequence diverges.

3. The first eight terms of the sequence are:
√

2

2
, 1,

√
2

2
, 0,−

√
2

2
,−1,−

√
2

2
, 0.

The sequence then repeats this pattern, so it diverges.

4. Since 1/n approaches zero and lnn becomes arbitrarily large as n→∞, the sequence diverges.

5. If b = 1, then the sum is 6. If b 6= 1, we use the formula for the sum of a finite geometric series. This is a six-term
geometric series (n = 6) with initial term a = b5 and constant ratio x = b :

Sum =
a(1− xn)

1− x =
b5(1− b6)

1− b .

6. This is a geometric series with k − 2 terms in it, so n = k − 2. The initial term is a = (0.5)3 = 0.125 and the constant
ratio is x = 0.5. Using the formula for the sum of a finite geometric series, we get

Sum =
a(1− xn)

1− x =
0.125(1− (0.5)k−2)

1− 0.5
= 0.25(1− (0.5)k−2).

7.
∞∑

n=0

3n + 5

4n
=

∞∑

n=0

(
3

4

)n
+

∞∑

n=0

5

4n
, a sum of two geometric series.

∞∑

n=0

(
3

4

)n
=

1

1− 3
4

= 4

∞∑

n=0

5

4n
=

5

1− 1
4

=
20

3

so
∞∑

n=0

3n + 5

4n
= 4 +

20

3
=

32

3
.

8. We use the integral test to determine whether this series converges or diverges. To do so we determine whether the

corresponding improper integral
∫ ∞

1

1

(x+ 2)2
dx converges or diverges:

∫ ∞

1

1

(x+ 2)2
dx = lim

b→∞

∫ b

1

1

(x+ 2)2
dx

= lim
b→∞

∫ b

3

1

w2
dw (Substitute w = x+ 2)

= lim
b→∞

− 1

w

∣∣∣∣
b

3

= lim
b→∞

(
−1

b
+

1

3

)
=

1

3
.

Since the integral
∫ ∞

1

1

(x+ 2)2
dx converges, we conclude from the integral test that the series

∞∑

n=1

1

(n+ 2)2
converges.
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9. We use the integral test to determine whether this series converges or diverges. To do so we determine whether the

corresponding improper integral
∫ ∞

1

3x2 + 2x

x3 + x2 + 1
dx converges or diverges. The integral can be calculated using the

substitution w = x3 + x2 + 1, dw = (3x2 + 2x) dx.
∫ ∞

1

3x2 + 2x

x3 + x2 + 1
dx = lim

b→∞

∫ b

1

3x2 + 2x

x3 + x2 + 1
dx

= lim
b→∞

ln |x3 + x2 + 1|
∣∣∣∣
b

1

= lim
b→∞

(
ln |b3 + b2 + 1| − ln 3

)
=∞.

Since the integral
∫ ∞

1

3x2 + 2x

x3 + x2 + 1
dx diverges, we conclude from the integral test that the series

∞∑

n=1

3n2 + 2n

n3 + n2 + 1

diverges.

10. We use the integral test to determine whether this series converges or diverges. We determine whether the corresponding

improper integral
∫ ∞

0

xe−x
2

dx converges or diverges:

∫ ∞

0

xe−x
2

dx = lim
b→∞

∫ b

0

xe−x
2

dx = lim
b→∞

−1

2
e−x

2

∣∣∣∣
b

0

= lim
b→∞

(
−1

2
e−b

2

+
1

2

)
=

1

2
.

Since the integral
∫ ∞

0

xe−x
2

dx converges, we conclude from the integral test that the series
∞∑

n=0

ne−n
2

converges.

11. We use the integral test to determine whether this series converges or diverges. To do so we determine whether the

corresponding improper integral
∫ ∞

2

2

x2 − 1
dx converges or diverges:

∫ ∞

2

2

x2 − 1
dx = lim

b→∞

∫ b

2

2

x2 − 1
dx

= lim
b→∞

(∫ b

2

(
1

x− 1
− 1

x+ 1

)
dx

)
(Using partial fractions)

= lim
b→∞

(
ln |x− 1| − ln |x+ 1|

∣∣∣∣
b

2

)

= lim
b→∞

(
ln
∣∣∣x− 1

x+ 1

∣∣∣
∣∣∣∣
b

2

)

= lim
b→∞

(
ln

∣∣∣ b− 1

b+ 1

∣∣∣− ln
(

1

3

))
= ln 1− ln

1

3
= ln 3.

Since the integral
∫ ∞

2

2

x2 − 1
dx converges, we conclude that the series

∞∑

n=2

2

n2 − 1
converges.

12. Let an = n2/(3n2 + 4). Since 3n2 + 4 > 3n2, we have
n2

3n2 + 4
<

1

3
, so

0 < an <
(

1

3

)n
.

The geometric series
∞∑

n=1

(
1

3

)n
converges, so the comparison test tells us that the series

∞∑

n=1

(
n2

3n2 + 4

)n
also con-

verges.
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13. Let an = 1/(n sin2 n). Since 0 < sin2 n < 1, for any positive integer n, we have n sin2 n < n, so
1

n sin2 n
>

1

n
, thus

an >
1

n
.

The harmonic series
∞∑

n=1

1

n
diverges, so the comparison test tells us that the series

∞∑

n=1

1

n sin2 n
also diverges.

14. The nth term an =
√
n− 1/(n2 + 3) behaves like

√
n/n2 = 1/n3/2 for large n, so we take bn = 1/n3/2. We have

lim
n→∞

an
bn

= lim
n→∞

√
n− 1/(n2 + 3)

1/n3/2
= lim
n→∞

n3/2
√
n− 1

n2 + 3
= lim
n→∞

n2
√

1− 1/n

n2(1 + 3/n2)
= 1.

The limit comparison test applies with c = 1. The p-series
∑

1/n3/2 converges because p = 3/2 > 1. Therefore∑√
n− 1/(n2 + 3) also converges.

15. The nth term an = (n3 − 2n2 + n+ 1)/(n5 − 2) behaves like n3/n5 = 1/n2 for large n, so we take bn = 1/n2. We
have

lim
n→∞

an
bn

= lim
n→∞

(n3 − 2n2 + n+ 1)/(n5 − 2)

1/n2
= lim
n→∞

n5 − 2n4 + n3 + n2

n5 − 2
= 1.

The limit comparison test applies with c = 1. The p-series
∑

1/n2 converges because p = 2 > 1. Therefore the series∑(
n3 − 2n2 + n+ 1

)
/
(
n5 − 2

)
also converges.

16. The nth term is an = sin(1/n2). When n is large, 1/n2 is near zero, so sin(1/n2) is near 1/n2. We see that sin(1/n2)
behaves like 1/n2 for large n, so we take bn = 1/n2. We have

lim
n→∞

an
bn

= lim
n→∞

sin(1/n2)

1/n2

= lim
x→0

sinx

x
= 1.

The limit comparison test applies with c = 1. The p-series
∑

1/n2 converges because p = 2 > 1. Therefore
∑

sin(1/n2)
also converges.

17. The nth term an = 1/(
√
n3 − 1) behaves like 1/

√
n3 = 1/n3/2 for large n, so we take bn = 1/n3/2. We have

lim
n→∞

an
bn

= lim
n→∞

1/
√
n3 − 1

1/n3/2
= lim
n→∞

n3/2

√
n3 − 1

= lim
n→∞

n3/2

n3/2
√

1− 1/n3
= lim
n→∞

1√
1− 1/n3

=
1√

1− 0
= 1.

The limit comparison test applies with c = 1. The p-series
∑

1/n3/2 converges because p = 3/2 > 1. Therefore∑
1/
√
n3 − 1 also converges.

18. Since an = 1/(2nn!), replacing n by n+ 1 gives an+1 = 1/(2n+1(n+ 1)!). Thus

|an+1|
|an|

=

1

2n+1(n+ 1)!
1

2nn!

=
2nn!

2n+1(n+ 1)!
=

1

2(n+ 1)
,

so

L = lim
n→∞

|an+1|
|an|

= lim
n→∞

1

2n+ 2
= 0.

Since L < 1, the ratio test tells us that
∞∑

n=1

1

2nn!
converges.

19. Since an = n!(n+ 1)!/(2n)!, replacing n by n+ 1 gives an+1 = (n+ 1)!(n+ 2)!/(2n+ 2)!. Thus,

|an+1|
|an|

=

(n+ 1)!(n+ 2)!

(2n+ 2)!

n!(n+ 1)!

(2n)!

=
(n+ 1)!(n+ 2)!

(2n+ 2)!
· (2n)!

n!(n+ 1)!
.
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However, since (n+ 2)! = (n+ 2)(n+ 1)n! and (2n+ 2)! = (2n+ 2)(2n+ 1)(2n)!, we have

|an+1|
|an|

=
(n+ 2)(n+ 1)

(2n+ 2)(2n+ 1)
=

n+ 2

2(2n+ 1)
,

so

L = lim
n→∞

|an+1|
|an|

=
1

4
.

Since L < 1, the ratio test tells us that
∞∑

n=1

n!(n+ 1)!

(2n)!
converges.

20. Let an = 1/(n2 + 1). Then replacing n by n+ 1 gives an+1 = 1/((n+ 1)2 + 1). Since (n+ 1)2 + 1 > n2 + 1, we have

0 <
1

(n+ 1)2 + 1
<

1

n2 + 1
,

so
0 < an+1 < an.

We also have limn→∞ an = 0, therefore, the alternating series test tells us that the series
∞∑

n=1

(−1)n

n2 + 1
converges.

21. Let an = 1/
√
n2 + 1. Then replacing n by n + 1 we have an+1 = 1/

√
(n+ 1)2 + 1. Since

√
(n+ 1)2 + 1 >√

n2 + 1, we have
1√

(n+ 1)2 + 1
<

1√
n2 + 1

,

so
0 < an+1 < an.

In addition, limn→∞ an = 0 so
∞∑

n=0

(−1)n√
n2 + 1

converges by the alternating series test.

22. Since f(x) = 1/(x+ 1) is continuous, positive and decreasing, we apply the integral test, and we obtain
∫ ∞

1

1

x+ 1
dx = lim

b→∞

∫ b

1

1

1 + x
dx = lim

b→∞
(ln(b+ 1)− ln 2) =∞.

Since this improper integral diverges, the series
∞∑

n=1

1

n+ 1
also diverges. We can also observe the series is the harmonic

series, with the first term missing, and hence diverges by Property 2 of Theorem 9.2.

23. This is a p-series with p > 1, so it converges.

24. We use the integral test to determine whether this series converges or diverges. To do so we determine whether the

corresponding improper integral
∫ ∞

3

2√
x− 2

dx converges or diverges:

∫ ∞

3

2√
x− 2

dx = lim
b→∞

∫ b

3

2√
x− 2

dx

= lim
b→∞

∫ b

1

2√
w
dw (Substitute w = x− 2.)

= lim
b→∞

4
√
w

∣∣∣∣
b

1

=∞.

Since the limit does not exist, the integral
∫ ∞

3

2√
x− 2

dx diverges, and we conclude from the integral test that the series

∞∑

n=3

2√
n− 2

diverges. The limit comparison test with bn = 1/
√
n can also be used.



670 Chapter Nine /SOLUTIONS

25. This is an alternating series. Let an = 1/(
√
n + 1). Then limn→∞ an = 0. Now replace n by n + 1 to give an+1 =

1/(
√
n+ 1 + 1). Since

√
n+ 1 + 1 >

√
n+ 1, we have

1√
n+ 1 + 1

<
1√
n+ 1

, so

0 < an+1 =
1√

n+ 1 + 1
<

1√
n+ 1

= an.

Therefore, the alternating series test tells us that the series
∞∑

n=1

(−1)n−1

√
n+ 1

converges.

26. Writing an = n2/(n2 + 1), we have limn→∞ an = 1 so the series diverges by Property 3 of Theorem 9.2.

27. We use the integral test to determine whether this series converges or diverges. To do so we determine whether the

corresponding improper integral
∫ ∞

1

x2

x3 + 1
dx converges or diverges:

∫ ∞

1

x2

x3 + 1
dx = lim

b→∞

∫ b

1

x2

x3 + 1
dx = lim

b→∞

1

3
ln |x3 + 1|

∣∣∣∣
b

1

= lim
b→∞

(
1

3
ln(b3 + 1)− 1

3
ln 2
)
.

Since the limit does not exist, the integral
∫ ∞

1

x2

x3 + 1
dx diverges an so we conclude from the integral test that the

series
∞∑

n=1

n2

n3 + 1
diverges. The limit comparison test with bn = 1/n can also be used.

28. We use the ratio test. Since an = 3n/(2n)!, replacing n by n+ 1 gives an+1 = 3n+1/(2n+ 2)!. Thus

an+1

an
=

3n+1/(2n+ 2)!

3n/(2n)!
=

3n+1

(2n+ 2)!
· (2n)!

3n
.

Since (2n+ 2)! = (2n+ 2)(2n+ 1)(2n)!, we have

an+1

an
=

3

(2n+ 2)(2n+ 1)
,

so
L = lim

n→∞

an+1

an
= 0.

Since L < 1, the ratio test tells us that the series
∞∑

n=1

3n

(2n)!
converges.

29. We use the ratio test. Since an = (2n)!/(n!)2, replacing n by n+ 1 gives an+1 = (2n+ 2)!/((n+ 1)!)2. Thus

an+1

an
=

(2n+ 2)!

((n+ 1)!)2

(2n)!

(n!)2

=
(2n+ 2)!

(n+ 1)!(n+ 1)!
· n!n!

(2n)!
.

Since (2n+ 2)! = (2n+ 2)(2n+ 1)(2n)! and (n+ 1)! = (n+ 1)n!, we have

an+1

an
=

(2n+ 2)(2n+ 1)

(n+ 1)(n+ 1)
,

therefore
L = lim

n→∞

an+1

an
= 4.

As L > 1 the ratio test tells us that the series
∞∑

n=1

(2n)!

(n!)2
diverges.

30. The series can be written as ∞∑

n=1

n2 + 2n

n22n
=

∞∑

n=1

1

2n
+

∞∑

n=1

1

n2
.

Since
∞∑

n=1

1

2n
is a convergent geometric series and

∞∑

n=1

1

n2
converges as a p-series with p > 1, we see

∞∑

n=1

n2 + 2n

n22n

converges by Theorem 9.2.
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31. Let an = 2−n
(n+ 1)

(n+ 2)
=
(
n+ 1

n+ 2

)(
1

2n

)
. Since

(n+ 1)

(n+ 2)
< 1 and

1

2n
=
(

1

2

)n
, we have

0 < an <
(

1

2

)n
,

so that we can compare the series
∞∑

n=1

2−n
(n+ 1)

(n+ 2)
with the convergent geometric series

∞∑

n=1

(
1

2

)n
. The comparison test

tells us that ∞∑

n=1

2−n
(n+ 1)

(n+ 2)

also converges.

32. We have

L = lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

2n+1

(2n+ 3)!
· (2n+ 1)!

2n
= lim
n→∞

2

(2n+ 3)(2n+ 2)
= 0,

so the series converges by the ratio test, since L < 1.

33. Since there is an n in the numerator and a
√
n in the denominator, the terms in this series are increasing in magnitude. We

have

lim
n→∞

∣∣∣∣
n+ 1√
n

(−1)n
∣∣∣∣ = lim

n→∞

n+ 1√
n

=∞,

so limn→∞(−1)n(n+ 1)/
√
n does not approach zero. Therefore, the series diverges by Property 3 of Theorem 9.2.

34. The series can be written as
∞∑

n=0

2 + 3n

5n
=

∞∑

n=0

(
2

5n
+

3n

5n

)
=

∞∑

n=0

(
2
(

1

5

)n
+
(

3

5

)n)
.

The series
∞∑

n=0

(
1

5

)n
is a geometric series which converges because | 1

5
| < 1. Likewise, the geometric series

∞∑

n=0

(
3

5

)n

converges because | 3
5
| < 1. Since both series converge, Property 1 of Theorem 9.2 tells us that the series

∞∑

n=0

2 + 3n

5n
also

converges.

35. Writing an = 1/(2 + sinn), we have limn→∞ an does not exist, so the series diverges by Property 3 of Theorem 9.2.

36. We use the integral test to determine whether this series converges or diverges. To do so we determine whether the

corresponding improper integral
∫ ∞

3

1

(2x− 5)3
dx converges or diverges:

∫ ∞

3

1

(2x− 5)3
dx =

1

2
lim
b→∞

∫ b

1

1

w3
dw (Substitute w = 2x− 5)

= −1

2
lim
b→∞

1

2w2

∣∣∣∣
b

1

= −1

2
lim
b→∞

(
1

2b2
− 1

2

)
=

1

4
.

Since the integral
∫ ∞

3

1

(2x− 5)3
dx converges, we conclude from the integral test that the series

∞∑

n=3

1

(2n− 5)3

converges. The limit comparison test, with bn = 1/n3 can also be used.

37. The nth term an = 1/(n3 − 3) behaves like 1/n3 for large n, so we take bn = 1/n3. We have

lim
n→∞

an
bn

= lim
n→∞

1/(n3 − 3)

1/n3
= lim
n→∞

n3

n3 − 3
= 1.

The limit comparison test applies with c = 1. The p-series
∑

1/n3 converges because p = 3 > 1. Therefore
∑

1/(n3−
3 also converges.
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38. Note that ∞∑

n=1

sin(nπ/2)

n3
= 1− 1

33
+

1

53
− 1

73
+ · · ·

is an alternating series with the absolute values of the terms decreasing to 0. Thus, the series converges by the alternating
series test.

39. Since ln(1 + 1/k) = ln((k + 1)/k) = ln(k + 1)− ln k, the nth partial sum of this series is

Sn =

n∑

k=1

ln
(

1 +
1

k

)

=

n∑

k=1

ln(k + 1)−
n∑

k=1

ln k

= (ln 2 + ln 3 + · · ·+ ln(n+ 1))− (ln 1 + ln 2 + · · ·+ lnn)

= ln(n+ 1)− ln 1

= ln(n+ 1).

Thus, the partial sums, Sn, grow without bound as n→∞, so the series diverges by the definition.

40. The ratio test gives

L = lim
n→∞

an+1

an
= lim
n→∞

(n+ 1)/2n+1

n/2n
= lim
n→∞

n+ 1

2n
=

1

2
,

so the series converges since L < 1.

41. Since lnn grows much more slowly than n, we suspect that (lnn)2 < n for large n. This can be confirmed with
L’Hopital’s rule.

lim
n→∞

(lnn)2

n
= lim
n→∞

2(lnn)/n

1
= lim
n→∞

2(lnn)

n
= 0.

Therefore, for large n, we have (lnn)2/n < 1, and hence for large n,

1

n
<

1

(lnn)2
.

Thus
∑∞

n=2
1/(lnn)2 diverges by comparison with the divergent harmonic series

∑
1/n.

42. Since Cn = n, replacing n by n+ 1 gives Cn+1 = n+ 1. Using the ratio test with an = nxn, we have

lim
n→∞

|an+1|
|an|

= |x| lim
n→∞

|Cn+1|
|Cn|

= |x| lim
n→∞

n+ 1

n
= |x|.

Thus the radius of convergence is R = 1.

43. Let Cn =
(2n)!

(n!)2
. Then replacing n by n+ 1, we have Cn+1 =

(2n+ 2)!

((n+ 1)!)2
. Thus, with an = (2n)!xn/(n!)2, we have

|an+1|
|an|

= |x| |Cn+1|
|Cn|

= |x| (2n+ 2)!/((n+ 1)!)2

(2n)!/(n!)2
= |x| (2n+ 2)!

(2n)!
· (n!)2

((n+ 1)!)2
.

Since (2n+ 2)! = (2n+ 2)(2n+ 1)(2n)! and (n+ 1)! = (n+ 1)n! we have

|Cn+1|
|Cn|

=
(2n+ 2)(2n+ 1)

(n+ 1)(n+ 1)
,

so

lim
n→∞

|an+1|
|an|

= |x| lim
n→∞

|Cn+1|
|Cn|

= |x| lim
n→∞

(2n+ 2)(2n+ 1)

(n+ 1)(n+ 1)
= |x| lim

n→∞

4n+ 2

n+ 1
= 4|x|,

so the radius of convergence of this series is R = 1/4.
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44. Let Cn = 2n + n2. Then replacing n by n+ 1 gives Cn+1 = 2n+1 + (n+ 1)2. Using the ratio test, we have

|an+1|
|an|

= |x| |Cn+1|
|Cn|

= |x|2
n+1 + (n+ 1)2

2n + n2
= 2|x|

(
2n + 1

2
(n+ 1)2

2n + n2

)
.

Since 2n dominates n2 as n→∞, we have

lim
n→∞

|an+1|
|an|

= 2|x|.

Thus the radius of convergence is R = 1
2

.

45. Let Cn = 1/(n! + 1). Then replacing n by n+ 1 gives Cn+1 = 1/((n+ 1)! + 1). Using the ratio test, we have

|an+1|
|an|

= |x| |Cn+1|
|Cn|

= |x|1/((n+ 1)! + 1)

1/(n! + 1)
= |x| n! + 1

(n+ 1)! + 1
.

Since n! and (n+ 1)! dominate the constant term 1 as n→∞ and (n+ 1)! = (n+ 1) · n! we have

lim
n→∞

|an+1|
|an|

= 0.

Thus the radius of convergence is R =∞.

Problems

46. The series
∑ (−1)n

n1/2
converges by the alternating series test. However

∑ 1

n1/2
diverges because it is a p-series with

p = 1/2 ≤ 1. Thus
∑ (−1)n

n1/2
is conditionally convergent.

47. Since
lim
n→∞

n

n+ 1
= 1 6= 0

the series
∑

(−1)n
n

n+ 1
does not converge. It is a divergent series.

48. The series can be written as ∞∑

n=1

nr + rn

nrrn
=

∞∑

n=1

1

rn
+

∞∑

n=1

1

nr
.

If 0 < r < 1, both series diverge, but if r > 1 both series converge.

If r = 1 the given series becomes
∞∑

n=1

n+ 1

n
which diverges.

By Theorem 9.2 the given series converges if r > 1.

49. We use the ratio test: ∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
xn+1

3n+1(n+ 1)2
· 3nn2

xn

∣∣∣∣ =
(

n

n+ 1

)2

· |x|
3
.

Since n/(n+ 1)→ 1 as n→∞, we have

lim
n→∞

∣∣∣an+1

an

∣∣∣ =
|x|
3
.

We have |x|/3 < 1 when |x| < 3. The radius of convergence is 3 and the series converges for −3 < x < 3.
We check the endpoints. For x = −3, we have

∞∑

n=1

xn

3nn2
=

∞∑

n=1

(−3)n

3nn2
=

∞∑

n=1

(−1)n

n2
.

We know
∑ 1

n2
is a p-series with p = 2 so it converges. Therefore the alternating series

∑ (−1)n

n2
also converges.

For x = 3, we have
∞∑

n=1

xn

3nn2
=

∞∑

n=1

3n

3nn2
=

∞∑

n=1

1

n2
.

This is a p-series with p = 2 and it converges. The series converges at both its endpoints and the interval of convergence
is −3 ≤ x ≤ 3.
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50. We use the ratio test: ∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
(−1)n+1(x− 2)n+1

5n+1
· 5n

(−1)n(x− 2)n

∣∣∣∣ =
|x− 2|

5
.

Since |x− 2|/5 < 1 when |x− 2| < 5, the radius of convergence is 5 and the series converges for −3 < x < 7.
We check the endpoints:

x = −3 :

∞∑

n=0

(−1)n(x− 2)n

5n
=

∞∑

n=0

(−1)n(−3− 2)n

5n
=

∞∑

n=0

1 which diverges.

x = 7 :

∞∑

n=0

(−1)n(x− 2)n

5n
=

∞∑

n=0

(−1)n(7− 2)n

5n
=

∞∑

n=0

(−1)n which diverges.

The series diverges at both the endpoints, so the interval of convergence is −3 < x < 7.

51. We use the ratio test: ∣∣∣an+1

an

∣∣∣ =

∣∣∣∣
(−1)n+1xn+1

n+ 1
· n

(−1)nxn

∣∣∣∣ =
n

n+ 1
· |x|.

Since n/(n+ 1)→ 1 as n→∞, we have

lim
n→∞

∣∣∣an+1

an

∣∣∣ = |x|.

The series converges for |x| < 1. The radius of convergence is 1 and the series converges for −1 < x < 1.
We check the endpoints. For x = −1, we have

∞∑

n=1

(−1)nxn

n
=

∞∑

n=1

(−1)n(−1)n

n
=

∞∑

n=1

1

n
.

This is the harmonic series and diverges. For x = 1, we have

∞∑

n=1

(−1)nxn

n
=

∞∑

n=1

(−1)n(1)n

n
=

∞∑

n=1

(−1)n

n
.

This is the alternating harmonic series and converges. The series diverges at x = −1 and converges at x = 1. Therefore,
interval of convergence is −1 < x ≤ 1.

52. The series converges for |x − 2| = 2 and diverges for |x − 2| = 4, thus the radius of convergence of the series, R, is at
least 2 but no larger than 4.

(a) False. If x = 7 then |x− 2| = 5, so the series diverges.
(b) False. If x = 1 then |x− 2| = 1, so the series converges.
(c) True. If x = 0.5 then |x− 2| = 1.5, so the series converges.
(d) If x = 5 then |x− 2| = 3 and it is not possible to determine whether or not the series converges at this point.
(e) False. If x = −3 then |x− 2| = 5, so the series diverges.

53. (a) Using an argument similar to Example 5 in Section 9.5, we take

an = (−1)n
t2n

(2n)!
,

so, replacing n by n+ 1,

an+1 = (−1)n+1 t2(n+1)

(2(n+ 1))!
= (−1)n+1 t2n+2

(2n+ 2)!
.

Thus,
|an+1|
|an|

=
|(−1)n+1t2n+2/(2n+ 2)!|
|(−1)nt2n/(2n)!| =

t2

(2n+ 2)(2n+ 1)
,

so

lim
n→∞

|an+1|
|an|

= lim
n→∞

t2

(2n+ 2)(2n+ 1)
= 0.

The radius of convergence is therefore ∞, so the series converges for all t. Therefore, the domain of h is all real
numbers.
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(b) Since h involves only even powers,

h(t) = 1− t2

2!
+
t4

4!
− t6

6!
+ · · · ,

h is an even function.
(c) Differentiating term-by-term, we have

h′(t) = 0− 2
t

2!
+ 4

t3

4!
− 6

t6

6!
+ · · ·

= −t+
t3

3!
− t5

5!
+ · · · .

h′′(t) = −1 + 3
t2

3!
− 5

t4

5!
+ · · ·

= −1 +
t2

2!
− t4

4!
+ · · · .

So we see h′′(t) = −h(t).

54. (a) It is easier to work with the value of the car first and then find the yearly losses. The value of the car goes down by
10% a year. Thus, the value at the end of the first years is v1 = 30,000(0.9). The value at the end of the second year
is v2 = 30,000(0.9)2. The value at the end of n years is vn = 30,000(0.9)n. Thus, the losses in the first four years
are

l1 = 30,000(0.1)

l2 = v1 − v2 = 30,000(0.9)− 30,000(0.9)2 = 30,000(0.9)(0.1)

l3 = v2 − v3 = 30,000(0.9)2 − 30,000(0.9)3 = 30,000(0.9)2(0.1)

l4 = v3 − v4 = 30,000(0.9)3 − 30,000(0.9)4 = 30,000(0.9)3(0.1).

Thus,
ln = vn−1 − vn = 30,000(0.9)n−1(0.1) = 3000(0.9)n−1.

(b) In the first year, m1 = 500; in the second year, m2 = 500(1.2); in the third year, m3 = 500(1.2)2. Thus

mn = 500(1.2)n−1.

(c) We want to find n such that mn ≥ ln, so

500(1.2)n−1 ≥ 3000(0.9)n−1.

We solve

500(1.2)n−1 = 3000(0.9)n−1

(1.2)n−1

(0.9)n−1
=

3000

500
(

1.2

0.9

)n−1

= 6

(n− 1) ln
(

1.2

0.9

)
= ln 6

n− 1 =
ln 6

ln(1.2/0.9)

n = 6.228 + 1 = 7.228.

So, maintenance first exceeds losses in year 8. In year 7,

l7 = 3000(0.9)6 = $1594, m7 = 500(1.2)6 = $1493.

In year 8,
l8 = 3000(0.9)7 = $1435, m8 = 500(1.2)7 = $1792.
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55.

Present value of first coupon =
50

1.06

Present value of second coupon =
50

(1.06)2
, etc.

Total present value =
50

1.06
+

50

(1.06)2
+ · · ·+ 50

(1.06)10

︸ ︷︷ ︸
coupons

+
1000

(1.06)10

︸ ︷︷ ︸
principal

=
50

1.06

(
1 +

1

1.06
+ · · ·+ 1

(1.06)9

)
+

1000

(1.06)10

=
50

1.06

(
1−

(
1

1.06

)10

1− 1
1.06

)
+

1000

(1.06)10

= 368.004 + 558.395

= $926.40

56.

Present value of first coupon =
50

1.04

Present value of second coupon =
50

(1.04)2
, etc.

Total present value =
50

1.04
+

50

(1.04)2
+ · · ·+ 50

(1.04)10

︸ ︷︷ ︸
coupons

+
1000

(1.04)10

︸ ︷︷ ︸
principal

=
50

1.04

(
1 +

1

1.04
+ · · ·+ 1

(1.04)9

)
+

1000

(1.04)10

=
50

1.04

(
1−

(
1

1.04

)10

1− 1
1.04

)
+

1000

(1.04)10

= 405.545 + 675.564

= $1081.11

57. (a)

Present value of first coupon =
50

1.05

Present value of second coupon =
50

(1.05)2
, etc.

Total present value =
50

1.05
+

50

(1.05)2
+ · · ·+ 50

(1.05)10

︸ ︷︷ ︸
coupons

+
1000

(1.05)10

︸ ︷︷ ︸
principal

=
50

1.05

(
1 +

1

1.05
+ · · ·+ 1

(1.05)9

)
+

1000

(1.05)10

=
50

1.05

(
1−

(
1

1.05

)10

1− 1
1.05

)
+

1000

(1.05)10

= 386.087 + 613.913

= $1000
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(b) When the interest rate is 5%, the present value equals the principal.
(c) When the interest rate is more than 5%, the present value is smaller than it is when interest is 5% and must therefore

be less than the principal. Since the bond will sell for around its present value, it will sell for less than the principal;
hence the description trading at discount.

(d) When the interest rate is less than 5%, the present value is more than the principal. Hence the bond will be selling for
more than the principal, and is described as trading at a premium.

58. The amount of cephalexin in the body is given by Q(t) = Q0e
−kt, where Q0 = Q(0) and k is a constant. Since the

half-life is 0.9 hours,
1

2
= e−0.9k, k = − 1

0.9
ln

1

2
≈ 0.8.

(a) After 6 hours
Q = Q0e

−k(6) ≈ Q0e
−0.8(6) = Q0(0.01).

Thus, the percentage of the cephalexin that remains after 6 hours ≈ 1%.
(b)

Q1 = 250

Q2 = 250 + 250(0.01)

Q3 = 250 + 250(0.01) + 250(0.01)2

Q4 = 250 + 250(0.01) + 250(0.01)2 + 250(0.01)3

(c)

Q3 =
250(1− (0.01)3)

1− 0.01
≈ 252.5

Q4 =
250(1− (0.01)4)

1− 0.01
≈ 252.5

Thus, by the time a patient has taken three cephalexin tablets, the quantity of drug in the body has leveled off to 252.5
mg.

(d) Looking at the answers to part (b) shows that

Qn = 250 + 250(0.01) + 250(0.01)2 + · · ·+ 250(0.01)n−1

=
250(1− (0.01)n)

1− 0.01
.

(e) In the long run, n→∞. So,

Q = lim
n→∞

Qn =
250

1− 0.01
= 252.5.

59. (a) (i) On the night of December 31, 1999:
First deposit will have grown to 2(1.04)7 million dollars.
Second deposit will have grown to 2(1.04)6 million dollars.
· · ·
Most recent deposit (Jan.1, 1999) will have grown to 2(1.04) million dollars.

Thus

Total amount = 2(1.04)7 + 2(1.04)6 + · · ·+ 2(1.04)

= 2(1.04)(1 + 1.04 + · · ·+ (1.04)6

︸ ︷︷ ︸
finite geometric series

)

= 2(1.04)

(
1− (1.04)7

1− 1.04

)

= 16.43 million dollars.
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(ii) Notice that if 10 payments are made, there are 9 years between the first and the last. On the day of the last
payment:

First deposit will have grown to 2(1.04)9 million dollars.
Second deposit will have grown to 2(1.04)8 million dollars.
· · ·
Last deposit will be 2 million dollars.

Therefore

Total amount = 2(1.04)9 + 2(1.04)8 + · · ·+ 2

= 2(1 + 1.04 + (1.04)2 + · · ·+ (1.04)9

︸ ︷︷ ︸
finite geometric series

)

= 2

(
1− (1.04)10

1− 1.04

)

= 24.01 million dollars.

(b) In part (a) (ii) we found the future value of the contract 9 years in the future. Thus

Present Value =
24.01

(1.04)9
= 16.87 million dollars.

Alternatively, we can calculate the present value of each of the payments separately:

Present Value = 2 +
2

1.04
+

2

(1.04)2
+ · · ·+ 2

(1.04)9

= 2

(
1− (1/1.04)10

1− 1/1.04

)
= 16.87 million dollars.

Notice that the present value of the contract ($16.87 million) is considerably less than the face value of the contract,
$20 million.

60. A person should expect to pay the present value of the bond on the day it is bought.

Present value of first payment =
10

1.04

Present value of second payment =
10

(1.04)2
, etc.

Therefore,

Total present value =
10

1.04
+

10

(1.04)2
+

10

(1.04)3
+ · · · .

This is a geometric series with a =
10

1.04
and x =

1

1.04
, so

Total present value =
10

1.04

1− 1
1.04

= £250.

61. (a)

Total amount of money deposited = 100 + 92 + 84.64 + · · ·
= 100 + 100(0.92) + 100(0.92)2 + · · ·

=
100

1− 0.92
= 1250 dollars

(b) Credit multiplier = 1250/100 = 12.50
The 12.50 is the factor by which the bank has increased its deposits, from $100 to $1250.
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62. If the half-life is T hours, then the exponential decay formula Q = Q0e
−kt gives k = ln 2/T . If we start with Q0 = 1

tablet, then the amount of drug present in the body after 5T hours is

Q = e−5kT = e−5 ln 2 = 0.03125,

so 3.125% of a tablet remains. Thus, immediately after taking the first tablet, there is one tablet in the body. Five half-lives
later, this has reduced to 1 · 0.03125 = 0.03125 tablets, and immediately after the second tablet there are 1 + 0.03125
tablets in the body. Continuing this forever leads to

Number of tablets in body = 1 + 0.03125 + (0.03125)2 + · · ·+ (0.03125)n + · · · .
This is an infinite geometric series, with common ratio x = 0.03125, and sum 1/(1− x). Thus

Number of tablets in body =
1

1− 0.03125
= 1.0323.

63. This series converges by the alternating series test, so we can use Theorem 9.9. The nth partial sum of the series is given
by

Sn = 1− 1

6
+

1

120
− · · ·+ (−1)n−1

(2n− 1)!
,

so the absolute value of the first term omitted is 1/(2n + 1)!. By Theorem 9.9, we know that the true value of the sum
differs from Sn by less than 1/(2n+1)!. Thus, we want to choose n large enough so that 1/(2n+1)! ≤ 0.01. Substituting
n = 2 into the expression 1/(2n+ 1)! yields 1/720 which is less than 0.01, so S2 = 1− (1/6) = 5/6 approximates the
sum to within 0.01 of the actual sum.

64. No. If the series
∞∑

n=1

(−1)n−1an converges then, using Theorem 9.2, part 3, we have lim
n→∞

(−1)n−1an = 0, which cannot

happen if lim
n→∞

an 6= 0.

65. If
∑

(an + bn) converged, then
∑

(an + bn) −
∑

an =
∑

bn would converge by Theorem 9.2. Since we know that∑
bn does not converge, we conclude that

∑
(an + bn) diverges.

66. We have 0 ≤ an/n ≤ an for all n ≥ 1. Therefore, since
∑

an converges,
∑

an/n converges by the Comparison Test.

67. Since
∑

an converge, we know that limn→∞ an = 0. Thus limn→∞(1/an) does not exist, and it follows that
∑

(1/an)
diverges by Property 3 of Theorem 9.2.

68. There is not enough information to determine whether or not nan converges. To see that this is the case, note that if
an = 1/n2, then

∑
nan =

∑
(1/n), which diverges. However, if an = 1/n3 then

∑
nan =

∑
(1/n2), which

converges.

69. We have an+(an/2) = (3/2)an, so the series
∑

(an+an/2) converges since it is a constant multiple of the convergent
series

∑
an.

70. Since
∑

an converges, we know that limn→∞ an = 0. Therefore, we can choose a positive integer N large enough so
that |an| ≤ 1 for all n ≥ N , so we have 0 ≤ a2

n ≤ an for all n ≥ N . Thus, by Property 2 of Theorem 9.2,
∑

a2
n

converges by comparison with the convergent series
∑

an.

71. The series ∞∑

n=1

(
1

n
+

1

n

)
=

∞∑

n=1

2

n

diverges by Theorem 9.2 and the fact that
∞∑

n=1

1

n
diverges.

The series ∞∑

n=1

(
1

n
− 1

n

)
=

∞∑

n=1

0 = 0

converges. But
∞∑

n=1

− 1

n
diverges by Theorem 9.2 and the fact that

∞∑

n=1

1

n
diverges.

Thus, if an = 1/n and bn = 1/n, so that
∑

an and
∑

bn both diverge, we see that
∑

(an + bn) may diverge.
If, on the other hand, an = 1/n and bn = −1/n, so that

∑
an and

∑
bn both diverge, we see that

∑
(an + bn)

may converge.
Therefore, if

∑
an and

∑
bn both diverge, we cannot tell whether

∑
(an + bn) converges or diverges. Thus the

statement is true.
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72. We want to estimate
100,000∑

k=1

1

k
using left and right Riemann sum approximations to f(x) = 1/x on the interval 1 ≤

x ≤ 100,000. Figure 9.9 shows a left Riemann sum approximation with 99,999 terms. Since f(x) is decreasing, the left
Riemann sum overestimates the area under the curve. Figure 9.9 shows that the first term in the sum is f(1) · 1 and the
last is f(99,999) · 1, so we have

∫ 100,000

1

1

x
dx < LHS = f(1) · 1 + f(2) · 1 + · · ·+ f(99,999) · 1.

Since f(x) = 1/x, the left Riemann sum is

LHS =
1

1
· 1 +

1

2
· 1 + · · ·+ 1

99,999
· 1 =

99,999∑

k=1

1

k
,

so ∫ 100,000

1

1

x
dx <

99,999∑

k=1

1

k
.

Since we want the sum to go k = 100,000 rather than k = 99,999, we add 1/100,000 to both sides:

∫ 100,000

1

1

x
dx+

1

100,000
<

99,999∑

k=1

1

k
+

1

100,000
=

100,000∑

k=1

1

k
.

The left Riemann sum has therefore given us an underestimate for our sum. We now use the right Riemann sum in
Figure 9.10 to get an overestimate for our sum.

1 x1 x2 · · · 100,000

1
x

x

Figure 9.9

1 x1 x2 · · · 100,000

1
x

x

Figure 9.10

The right Riemann sum again has 99,999 terms, but this time the sum underestimates the area under the curve.
Figure 9.10 shows that the first rectangle has area f(2) · 1 and the last f(100,000) · 1, so we have

RHS = f(2) · 1 + f(3) · 1 + · · ·+ f(100,000) · 1 <
∫ 100,000

1

1

x
dx.

Since f(x) = 1/x, the right Riemann sum is

RHS =
1

2
· 1 +

1

3
· 1 + · · ·+ 1

100,000
· 1 =

100,000∑

k=2

1

k
.

So
100,000∑

k=2

1

k
<

∫ 100,000

1

1

x
dx.

Since we want the sum to start at k = 1, we add 1 to both sides:

100,000∑

k=1

1

k
=

1

1
+

100,000∑

k=2

1

k
< 1 +

∫ 100,000

1

1

x
dx.
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Putting these under- and overestimates together, we have

∫ 100,000

1

1

x
dx+

1

100,000
<

100,000∑

k=1

1

k
< 1 +

∫ 100,000

1

1

x
dx.

Since
∫ 100,000

1

1

x
dx = ln 100,000− ln 1 = 11.513, we have

11.513 <

100,000∑

k=1

1

k
< 12.513.

Therefore we have
100,000∑

k=1

1

k
≈ 12.

73. Using a right-hand sum, we have
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
<

∫ n

1

dx

x
= lnn.

If a computer could add a million terms in one second, then it could add

60
sec
min
· 60

min
hour

· 24
hour
day
· 365

days
year

· 1 million
terms
sec

terms per year. Thus,

1 +
1

2
+

1

3
· · ·+ 1

n
< 1 + lnn = 1 + ln(60 · 60 · 24 · 365 · 106) ≈ 32.082 < 33.

So the sum after one year is about 32.

74. The argument is false. Property 1 of Theorem 9.2 only applies to convergent series. In addition, by the limits comparison
test with bn = 1/n2, the series converges.

CHECK YOUR UNDERSTANDING

1. False. The first 1000 terms could be the same for two different sequences and yet one sequence converges and the other
diverges. For example, sn = 0 for all n is a convergent sequence, but

tn =
{

0 if n ≤ 1000
n if n > 1000

is a divergent sequence.

2. False. The limit could be zero. For example, sn = 1/n is a convergent sequence of positive terms and lim
n→∞

sn = 0.

3. True. If there is no term greater than a million, then the sequence is bounded by 0 < sn < 106 for all n.

4. True. If there is only a finite number of terms greater than a million, then we can choose the largest of them to be an upper
bound M for the sequence. Thus the sequence is bounded by 0 < sn ≤M for all n.

5. False. The terms sn tend to the limit of the sequence which may not be zero. For example, sn = 1 + 1/n is a convergent
sequence and sn tends to 1 as n increases.

6. True. The definition of convergence of a series is that its partial sums are a convergent sequence.

7. False. For example the sequence−2,−1, 0, 1, 2, 3, . . . with sn = n−3 is monotone increasing and has both positive and
negative terms.

8. True. If a monotone sequence does not converge, then it is unbounded. If moreover the sequence contains only positive
terms then it is bounded below by zero. Thus it is not bounded above, and in particular it is not bounded above by a
million.

9. False. The sequence −1, 1,−1, 1, . . . given by sn = (−1)n alternates in sign but does not converge.

10. False. The decreasing sequence −1,−2,−3, . . . has all terms less than a million, but it has no lower bound. Thus it is
unbounded.
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11. True. A geometric series, a+ ax+ ax2 + · · ·, is a power series about x = 0 with all coefficients equal to a.

12. False. Writing out terms, we have
(x− 1) + (x− 2)2 + (x− 3)3 + · · · .

A power series is a sum of powers of (x− a) for constant a. In this case, the value of a changes from term to term, so it
is not a power series.

13. True. This power series has an interval of convergence about x = 0. If the power series converges for x = 2, the radius
of convergence is 2 or more. Thus, x = 1 is well within the interval of convergence, so the series converges at x = 1.

14. False. This power series has an interval of convergence about x = 0. Knowing the power series converges for x = 1 does
not tell us whether the series converges for x = 2. Since the series converges at x = 1, we know the radius of convergence
is at least 1. However, we do not know whether the interval of convergence extends as far as x = 2, so we cannot say
whether the series converges at x = 2.

For example,
∑ xn

2n
converges for x = 1 (it is a geometric series with ratio of 1/2), but does not converge for

x = 2 (the terms do not go to 0).
Since this statement is not true for all Cn, the statement is false.

15. True. This power series has an interval of convergence centered on x = 0. If the power series does not converge for x = 1,
then the radius of convergence is less than or equal to 1. Thus, x = 2 lies outside the interval of convergence, so the series
does not converge there.

16. False. It does not tell us anything to know that bn is larger than a convergent series. For example, if an = 1/n2 and
bn = 1, then 0 ≤ an ≤ bn and

∑
an converges, but

∑
bn diverges. Since this statement is not true for all an and bn,

the statement is false.

17. True. This is one of the statements of the comparison test.

18. True. Consider the series
∑

(−bn) and
∑

(−an). The series
∑

(−bn) converges, since
∑

bn converges, and

0 ≤ −an ≤ −bn.

By the comparison test,
∑

(−an) converges, so
∑

an converges.

19. False. It is true that if
∑
|an| converges, then we know that

∑
an converges. However, knowing that

∑
an converges

does not tell us that
∑
|an| converges.

For example, if an = (−1)n−1/n, then
∑

an converges by the alternating series test. However,
∑
|an| is the

harmonic series which diverges.

20. False. For example, if an = 1/n and bn = −1/n, then |an + bn| = 0, so
∑
|an + bn| converges. However

∑
|an| and∑

|bn| are the harmonic series, which diverge.

21. False. For example, if an = 1/n2, then

lim
n→∞

|an+1|
|an|

= lim
n→∞

1/(n+ 1)2

1/n2
= lim
n→∞

n2

(n+ 1)2
= 1.

However,
∑

1/n2 converges.

22. False, since if we write out the terms of the series, using the fact that cos 0 = 1, cosπ = −1, cos(2π) = 1, cos(3π) = −1,
and so on, we have

(−1)0 cos 0 + (−1)1 cosπ + (−1)2 cos 2π + (−1)3 cos 3π + · · ·
= (1)(1) + (−1)(−1) + (1)(1) + (−1)(−1) + · · ·
= 1 + 1 + 1 + 1 + · · · .

This is not an alternating series.

23. True. Writing out the terms of this series, we have

(1 + (−1)1) + (1 + (−1)2) + (1 + (−1)3) + (1 + (−1)4) + · · ·
= (1− 1) + (1 + 1) + (1− 1) + (1 + 1) + · · ·
= 0 + 2 + 0 + 2 + · · · .

24. False. This is an alternating series, but since the terms do not go to zero, it does not converge.
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25. False. The terms in the series do not go to zero:

2(−1)1 + 2(−1)2 + 2(−1)3 + 2(−1)4 + 2(−1)5 + · · · = 2−1 + 21 + 2−1 + 21 + 2−1 + · · ·
= 1/2 + 2 + 1/2 + 2 + 1/2 + · · · .

26. False. For example, if an = (−1)n−1/n, then
∑

an converges by the alternating series test. But (−1)nan = (−1)n(−1)n−1/n =
(−1)2n−1/n = −1/n. Thus,

∑
(−1)nan is the negative of the harmonic series and does not converge.

27. This is true. It is a restatement of Theorem 9.9.

28. This statement is false. The statement is true if the series converges by the alternating series test, but not in general.
Consider, for example, the alternating series

S = 10− 0.01 + 0.8− 0.7− 0 + 0− 0 + · · · .

Since the later terms are all 0, we can find the sum exactly:

S = 10.69.

If we approximated the sum by the first term, S1 = 10, the magnitude of the first term omitted would be 0.01. Thus, if
the statement in this problem were true, we would say that the true value of the sum lay between 10 + 0.01 = 10.01 and
10− 0.01 = 9.99 which it does not.

29. True. Let cn = (−1)n|an|. Then |cn| = |an| so
∑
|cn| converges, and therefore

∑
cn =

∑
(−1)n|an| converges.

30. True. Since the series is alternating, Theorem 9.9 gives the error bound. Summing the first 100 terms gives S100, and if
the true sum is S,

|S − S100| < a101 =
1

101
< 0.01.

31. True. The radius of convergence, R, is given by lim
n→∞

|Cn+1|/|Cn| = 1/R, if this limit exists, and since these series have

the same coefficients, Cn, the radii of convergence are the same.

32. False. Two series can have the same radius of convergence without having the same coefficients. For example,
∑

xn and∑
nxn both have radius of convergence of 1:

lim
n→∞

Cn+1

Cn
= lim
n→∞

1

1
= 1 and lim

n→∞

Bn+1

Bn
= lim
n→∞

n+ 1

n
= 1.

33. True. If the terms do not tend to zero, the partial sums do not tend to a limit. For example, if the terms are all greater than
0.1, the partial sums will grow without bound.

34. False. Consider the series
∞∑

n=1

1/n. This series does not converge, but 1/n→ 0 as n→∞.

35. False. If an = bn = 1/n, then
∑

an and
∑

bn do not converge. However, anbn = 1/n2, so
∑

anbn does converge.

36. False. If anbn = 1/n2 and an = bn = 1/n, then
∑

anbn converges, but
∑

an and
∑

bn do not converge.

37. True. If
∑
|an| is convergent, then so is

∑
an.

38. False. The alternating harmonic series
∑ (−1)n

n
is conditionally convergent because it converges by the Alternating

Series test, but the harmonic series
∑∣∣∣∣

(−1)n

n

∣∣∣∣ =
∑ 1

n
is divergent. The alternating harmonic series is not absolutely

convergent.

39. False. There are power series, such as
∑

xn/n, which converge at one endpoint, −1, but not at the other, 1.

40. True. By the comparison test, if
∑

an is larger term-by-term than a divergent series, then
∑

an diverges. If
∑

bn
diverges, then so does

∑
0.5bn.

41. True. The power series
∑

Cn(x− a)n converges at x = a.

42. True. Since the power series converges at x = 10, the radius of convergence is at least 10. Thus, x = −9 must be within
the interval of convergence.
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43. False. If
∑

Cnx
n converges at x = 10, the radius of convergence is at least 10. However, if the radius of convergence

were exactly 10, then x = 10 is the endpoint of the interval of convergence and convergence there does not guarantee
convergence at the other endpoint.

44. True. Intervals of convergence can be of any length and centered at any point and can include one endpoint and not the
other.

45. False. The interval of convergence of
∑

Cnx
n is centered at the origin.

46. True. The interval of convergence is centered on x = a, so a = (−11 + 1)/2 = −5.

PROJECTS FOR CHAPTER NINE

1. (a) To show f is decreasing for x > 1, we look at f ′(x):

f ′(x) = n(n+ 1)xn−1 − n(n+ 1)xn = n(n+ 1)xn−1(1− x).

Thus, for x > 1, we have f ′(x) < 0, so f is decreasing. Since f(1) = 1, this means f(x) < 1 for x > 1.
Factoring xn out of f(x), we get

f(x) = (n+ 1)xn − nxn+1 = xn(n+ 1− nx) < 1.

(b) We simplify the value of x

x =
1 + 1/n

1 + 1/(n+ 1)
=

(n+ 1)/n

(n+ 2)/(n+ 1)
=

(n+ 1)2

n(n+ 2)
.

Before substituting into xn(n+ 1− nx) < 1, we calculate

n+ 1− nx = n+ 1− n (n+ 1)2

n(n+ 2)

=
(n+ 1)(n+ 2)− (n+ 1)2

n+ 2

=
(n+ 1)(n+ 2− (n+ 1))

n+ 2
=
n+ 1

n+ 2
.

Thus, substituting into the inequality from part (a), xn(n+ 1− nx) < 1, gives

xn
(
n+ 1

n+ 2

)
< 1.

(c) We want to show sn < sn+1. Since sn = (1 + 1/n)
n and sn+1 = (1 + 1/(n+ 1))

n+1, using the
definition of x, we have

sn
sn+1

=
(1 + 1/n)n

(1 + 1/(n+ 1))n
· 1

(1 + 1/(n+ 1))

= xn
(
n+ 1

n+ 2

)
.

Thus, by part (b), we have
sn
sn+1

= xn
(
n+ 1

n+ 2

)
< 1,

so
sn < sn+1.

Thus, the sequence is increasing.
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(d) Substituting x = 1 + 1/2n into the inequality from part (a) gives
(

1 +
1

2n

)n(
n+ 1− n

(
1 +

1

2n

))
=

(
1 +

1

2n

)n(
1− 1

2

)
=

1

2

(
1 +

1

2n

)n
< 1.

Thus (
1 +

1

2n

)n
< 2.

(e) When we square this inequality, we get
(

1 +
1

2n

)2n

< 4,

that is, for all n
s2n < 4.

Thus, the even terms are bounded above by 4. Because we have shown the sequence is increasing, for each
odd term, we have

s2n−1 < 22n < 4,

so the odd terms are also bounded above by 4. Since all terms are bounded below by 0, the sequence is
bounded.

(f) From parts (c) and (e), we know that the sequence is increasing and bounded, and therefore, by Theo-
rem 9.1, it has a limit.

2. (a) (i) p2

(ii) There are two ways to do this. One way is to compute your opponent’s probability of winning two in
a row, which is (1− p)2. Then the probability that neither of you win the next points is:

1− (Probability you win next two + Probability opponent wins next two)

= 1− (p2 + (1− p)2)

= 1− (p2 + 1− 2p+ p2)

= 2p2 − 2p

= 2p(1− p).

The other way to compute this is to observe either you win the first point and lose the second or vice
versa. Both have probability p(1− p), so the probability you split the points is 2p(1− p).

(iii)

Probability = (Probability of splitting next two) · (Probability of winning two after that)
= 2p(1− p)p2

(iv)

Probability = (Probability of winning next two) + (Probability of splitting next two,
winning two after that)

= p2 + 2p(1− p)p2

(v) The probability is:

w = (Probability of winning first two)
+ (Probability of splitting first two)·(Probability of winning next two)
+ (Prob. of split. first two)·(Prob. of split. next two)·(Prob. of winning next two)
+ · · ·
= p2 + 2p(1− p)p2 + (2p(1− p))2

p2 + · · · .
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This is an infinite geometric series with a first term of p2 and a ratio of 2p(1 − p). Therefore the
probability of winning is

w =
p2

1− 2p(1− p) .

(vi) For p = 0.5, w = (0.5)2

1−2(0.5)(1−(0.5)) = 0.5. This is what we would expect. If you and your opponent
are equally likely to score the next point, you and your opponent are equally likely to win the next
game.

For p = 0.6, w = (0.6)2

1−2(0.6)(0.4) = 0.69. Here your probability of winning the next point has been
magnified to a probability 0.69 of winning the game. Thus it gives the better player an advantage to
have to win by two points, rather than the “sudden death” of winning by just one point. This makes
sense: when you have to win by two, the stronger player always gets a second chance to overcome the
weaker player’s winning the first point on a “fluke.”

For p = 0.7, w = (0.7)2

1−2(0.7)(0.3) = 0.84. Again, the stronger player’s probability of winning is
magnified.

For p = 0.4, w = (0.4)2

1−2(0.4)(0.6) = 0.31. We already computed that for p = 0.6, w = 0.69. Thus
the value for w when p = 0.4, should be the same as the probability of your opponent winning for
p = 0.6, namely 1− 0.69 = 0.31.

(b) (i)
S = (Prob. you score first point)

+(Prob. you lose first point, your opponent loses the next,
you win the next)

+(Prob. you lose a point, opponent loses, you lose,
opponent loses, you win)

+ · · ·
= (Prob. you score first point)

+(Prob. you lose)·(Prob. opponent loses)·(Prob. you win)
+(Prob. you lose)·(Prob. opponent loses)·(Prob. you lose)
·(Prob. opponent loses)·(Prob. you win)+ · · ·

= p+ (1− p)(1− q)p+ ((1− p)(1− q))2
p+ · · ·

=
p

1− (1− p)(1− q)

(ii) Since S is your probability of winning the next point, we can use the formula computed in part (v) of (a)
for winning two points in a row, thereby winning the game:

w =
S2

1− 2S(1− S)
.

• When p = 0.5 and q = 0.5,

S =
0.5

1− (0.5)(0.5)
= 0.67.

Therefore

w =
S2

1− 2S(1− S)
=

(0.67)2

1− 2(0.67)(1− 0.67)
= 0.80.

• When p = 0.6 and q = 0.5,

S =
0.6

1− (0.4)(0.5)
= 0.75 and w =

(0.75)2

1− 2(0.75)(1− 0.75)
= 0.9.
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3. (a) Let k by the relative rate of decay, per minute, of quinine. Since quinine’s half-life is 11.5 hours, we have

1

2
= e−k(11.5)(60),

so
k =

ln 2

(11.5)(60)
≈ 0.001.

Hence, k = 0.1%/min.
(b) Just prior to 8 am of the first day the patient has no quinine in her body. Assuming the drug mixes rapidly in

the patient’s body, she has about 50/70 ≈ 0.714 mg/kg of the drug soon after 8 am. Suppose we represent
the concentration of quinine in the patient (in mg/kg) by x and represent time since 8 am (in minutes) by
t. Then

x = Ae−0.001t,

whereA is the initial concentration and k = −0.001 is the rate at which quinine is metabolized per minute.
There are 24 · 60 = 1440 minutes in a day. On the first day, the patient begins with 0.714 mg/kg in her
system, so just before 8 am of the second day the patient’s system holds

0.714e−0.001·1440 ≈ 0.169 mg/kg.

After the patient’s second dose of quinine, her system contains 0.714 + 0.169 = 0.883 mg/kg of quinine.
(c) By continuing in a similar manner, we see that just prior to 8 am on the third day, she has 0.883e−0.001·1440 ≈

0.209 mg/kg; just after 8 am, she has 0.209 + 0.714 = 0.923 mg/kg. Just prior to 8 am on the fourth day,
she has 0.923e−0.001·1440 ≈ 0.218 mg/kg; just after 8 am, she has 0.228 + 0.714 = 0.932 mg/kg. We can
keep going with these calculations: just prior to 8 am on the fifth day, the concentration is 0.221 mg/kg;
on the sixth day, it is 0.222 mg/kg; on the seventh day, it is 0.222 mg/kg, and so on forever.

We find a formula for the concentration just after the nth dose as follows. The last dose contributes
0.714 mg/kg. The previous dose contributes 0.714e−0.001(1440) mg/kg. The dose before that contributes
0.714e−0.001(2)(1440) mg/kg, and so on, back to 0.714e−0.001(n−1)(1440) mg/kg from the initial dose. So

Concentration just
after n doses = 0.714 + 0.714e−1.44 + 0.714

(
e−1.44

)2
+ · · ·+ 0.714

(
e−1.44

)n−1
.

We notice that this is a geometric series, with sum given by

Concentration just
after n doses = 0.714

(
1− e−1.44n

1− e−1.44

)
= 0.936(1− e−1.44n).

Although the concentration of quinine does not reach an equilibrium it does fall into a steady-state
pattern which repeats over and over again. This makes sense; at some point the patient must metabolize
the daily dosage exactly. If we let n → ∞ in our formula, we have e−1.44n → 0, which means that the
concentration just after the nth dose gets very close to 0.936. So the concentration just before the nth dose
is 0.936− 0.714 = 0.222, as we found in our calculations for the first few days.

(d)

1 2 3 4 5

0.222

0.936

0.714

t

x

Figure 9.11

If we keep setting the clock back to 0 minutes each day at 8 am, then we have that at t = 0 each day,
the concentration (starting on the fifth day or so) is 0.936 mg/kg. As the day progresses, we have

x = 0.936e−0.001·t.
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(e) The average concentration of quinine in the patient is given by the integral of the concentration over a day,
divided by the time in a day:

Average concentration =
1

1440

∫ 1440

0

x dt =
1

1440

∫ 1440

0

0.936e−0.001tdt

=
0.936

1440

(−e−0.001t

0.001

) ∣∣∣∣
1440

0

=
0.936

1.44
(1− e−1.44)

≈ 0.496 mg/kg.

(f) Since the average concentration is 0.496 mg/kg and the minimum effective average concentration is 0.4
mg/kg, this treatment is effective. It is also safe—the highest concentration (0.936 mg/kg, achieved shortly
after 8 am) is less than the toxic concentration of 3.0 mg/kg.

(g) Each dose of 25 mg corresponds to 25/70 = 0.357 mg/kg. Let xs be the steady-state concentration just
before each 0.357 mg/kg dose. Then xs + 0.357 will be the concentration just after the dose. Since we are
in a steady-state, this concentration decays to exactly xs just before the next dose. So

xs = (xs + 0.357)e−0.001(12)(60).

This means

xs =
0.357e−0.001(12)(60)

1− e−0.001(12)(60)
≈ 0.339 mg/kg,

so xs + 0.357 = 0.696 mg/kg is the concentration just after each dose. At t minutes after a dose, for
0 ≤ t ≤ (12)(60), there is a steady-state concentration of

x = 0.696e−0.001t mg/kg.

This means

Average concentration =
1

720

∫ 720

0

x dt ≈ 1

720

∫ 720

0

0.696e−0.001tdt

=
0.696

720

[−e−0.001t

0.001

] ∣∣∣∣
720

0

=
0.696

0.72
[1− 0.487]

≈ 0.496 mg/kg.

This treatment is also effective and safe. The average concentration of 0.496 mg/kg is greater than 0.4
mg/kg, and the highest concentration of 0.696 mg/kg is less than 3 mg/kg.

(h) For an exponentially decaying function, the average value between two points (x0, y0) and (x1, y1) is
(y0−y1)

(x1−x0)r , where r is the relative rate of decay and A0 is the initial concentration. The reason is as follows.

Average =
1

x1 − x0

∫ x1

x0

A0e
−rtdt

=
A0

x1 − x0

[
e−rt

r

] ∣∣∣∣
x1

x0

=
y0 − y1

(x1 − x0) · r
(i) Since a steady state has been reached, y0 is the concentration right after a dose and y1 is the concentration

just prior to a dose. Thus, y0 − y1 represents the increase in concentration from each dose. Furthermore,
x1 − x0 is the time between doses. When we go to the new protocol, we halve both the numerator and
the denominator of the equation for the average concentration, and so the average remains unchanged.
Similarly, if we were to double the dose to 100 mg and give it every 48 hours we would simply be doubling
both the numerator and the denominator; again the average concentration would not change.

(j) We want the final concentration to be 10−10 kg/kg = 10−4 mg/kg. We therefore need to solve for t in
10−4 = 0.883 · e−0.001·t. Doing so yields t ≈ 9086 min ≈ 6.3 days.


