10.1 SOLUTIONS

CHAPTER TEN
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Solutions for Section 10.1

Exercises
1. Let f(z) = 1% — (1—2)"". Then £(0) = 1.
flz) =101 -2)"* f(0) =1,
() =211 —x)3 f7(0) =2,
() =311 —x)~* 1(0) = 31,
FU) =41 -2)°  fD(0) =4y,
P 2) =511 —2)"°  fO(0) = 3L,
fO.)=6(1—2)""  fO0) =6l
fO) =701 -2)"8 @) =1
Py(z) =1+ x4+ 2% +2°,
Ps(z) =1+az+a> +2° +2* +2°,
Prz)=1+z+2°+2° +2* +2° +2° + 27,
2. Let ——=(1 +2)~'. Then f(0) =1
flz)=-11+2)"? f(0) = -1,
@) =211 +2)7° 17(0) =21,
f(x) = =311 +x)~" f7(0) = =31,
fP(z) =41 +2)7° F00) = 41,
[Oe) ==5l1+2)""  [(0) = -5,
@) =6!(1+z)"" £9(0) = 6!,
D)= -1 +2)"8 FO0) = -1,
&) =811 +z)7° F®(0) = 8!

Py(z)=1—a+42° —2° + 2",
Ps(zx) =1—ax+a° —2® + 2" —2° + 25,

P(zx)=1—az+a> -2 +2* —2° + 25 — 2" + 25

3. Let f(z) = V142 = (1 +x)'/2 Then £(0) = 1, and
fl@) =501 +a) 12 F0) =3,
ey = —Hu+n) R ) =4,
J7(2) = 3(1+2)" §7(0) = &,
fO@) =BT f00) = .
Thus,
Py(z) =1+ %1: — éazz,
Ps(z) =1+ %x — éxQ + %xs,

1 1, 135 5 4
Pua) =14+ Ly L2 1 s
1(2) =1+ 58— g2+ 607 — 1557
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4. Let f(z) = YT —ax = (1 — x)/3. Then £(0) = 1, and

Then,

1 lx— lx2 - ix
3 9 81
%x, Lo 58

9 81

Thus,

N o= M

[\_3|&2w[\_3|$2 [\3|$2

6. Let f(x) =In(1 + z). Then f(0) =1In1 =0, and

(1+a)™ !
(- )(1+w) f
=2(1+a)7° "
x —3'(1+) @

f'(z) = (0)
(z) (0)
(z) (0)
(z) = (0) =
(x) =411 +2)~° F2(0) =41,
a) = (0)
(z) = (0)
(z) = (0)
(z) = (0)

f(x
" (x
(
(

4)

7)=-Sl1+2)"  fO0) =
f(7) z) =6!(1+xz)" 7 f(7) 0) = 6!,
(8) x —71(1 + ) -8 f(8) 0) =
f<9> z) =8(1+x)° £ (0) = 8L

So,
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7. Let f(x) = arctan z. Then f(0) = arctan 0 = 0, and

/

fl@)=1/1+2%) = (1+2)" f0) =1,
(@) = (1)1 +2*) %22 f"(0) =0,
() = 21(1 4 2%) 732222 + (= 1)(1 + 2%) 722 f(0) = -2,
fW(z) = =311+ ) 49323 £ 21(1 4+ %) 7%2%z
+21(1 + 22)732%¢ f@0) =o.

Therefore,
Ps(x) = Py(z) =2 — %x?’.

8. Let f(x) = tanx. So f(0) = tan0 = 0, and

f'(x) =1/cos’z f0) =1,
' (z) = QSlnx/ cos® 1(0) =0,
" (x) = (2/ cos® x) + (6sin® -/ cos” x) £ (0) =2,
¥ (z) = (16sinz/ cos® z) + (24sin® z/ cos® z) f@(0) =o.
Thus,
3
Ps(z) = Pi(z) = z + %
9. Let f(z) 11+x = (14z)" "% Then f(0) = 1
fl@) = —5(1+a)®2 f(0) = -3,
F() = (1 +2) 71(0) = &,
f///(x) — 72;35(1 +m)77/2 f///(o) — 7%’
FO@) = B+ a) f0(0) = 25T
Then,
SPTRE URR S I S T P
Py(z)=1 2x+ 51527 1 2w+ 3%
13-5 4 L 302 5.
_p 13-5-7a_ L., 32 5.5, 35 4
Pa(w) = Ps@) + =@ = 1= 5@+ 57 = 367 + 1557

10. Let f(z) = (1 + z)".
(a) Suppose that p = 0. Then f(z) = 1 and f*) () = 0 for any k > 1. Thus Ps(z) = Ps3(z) = Py(z) = 1.
(b) If p=1then f(z) =1+, so
f(0) =1,
flz) =1,
fMay=0 k>2

Thus Py(z) = Ps(z) = Pa(z) =1+ .
(c) In general:

f(@)=(1+z),
f(@) =p(l+ )",
(@) =pp— 1)1 +2)P2,
@) =pp—1)p—-2)1+2)?,
FP@) =pp—1)(p—2)(p—3)(1+2)

691
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(0) =1,
f'(0)=p,
f70) =plp—-1),
F70) =plp—1)(p—2),
FP0) =pp—1)(p-2)(p-3)
Py(z) =1+ px+ p(p2— )mQ,
pp—=1) o pp-1(p-2) 35
Ps(z) =14 pz+ 5 % + 5 x°,
Pi(z) = 1+px+p(p2— )m2+p(p—1()3(p—2)x3
plp—=1)(p—-2)p—3) 4
+ 24

11. Let f(z) = e®. Since f¥)(z) = e” = f(x) forall k > 1, the Taylor polynomial of degree 4 for f(z) = e® about z = 1
is

P4(:E):el+el(x71)+%(m71)2+%(x71)3+%(x71)4
—e[l@-D+ 3@+ g -1+ 5@ — 1.

12. Let f(z) = V142 = (1+xz)2
, 1 _ 1 _ / _ .
Then f'(z) = 5(1 +2)7 Y2 ) = _Z(l + )72 and f"'(z) = g(l + x)~*/2. The Taylor polynomial of degree
three about = = 1 is thus

_1 —3/2
Py(w) = (1+1)"? + %(1 +1) @ -1)+ %(x —1)?
3 —5/2
J,-%(x_ 1)3
- pol @-1?, @1
_\[<1+ 4 3 128 )
13. Let f(z) =sinz. f(§) = 1.
f'(z) = cosx F(z) =0,
f//(m)_fsll’lx f//(%):71’
f///(x) = —cCcosx f///(g) -0,
f@(z) =sinz FO(z) =1

So,

™

14. Let f(x) = cosx. Then cos § =sin § = g
Then f/(z) = —sinz, f’(x) = — cosz, and
x=m/4is

f""(x) = sinz, so the Taylor polynomial for cos x of degree three about

—cos = 2 ginZT 3
Pg(:v):cosg+(fsin£) (JE*%)Jr—Q! 4 ($7£> + 3!4 (xf£>
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15. Let f(x) = In(2?). Then In(1?) =In1 = 0.
Then f'(z) = 2271, f"(z) = =222, f""(z) = 42~>, and f¥ (z) = —1227%.
The Taylor polynomial of degree 4 for f(x) = In(2?) about z = 1 is

p— . 72 . 73 — . 74
P4(x):1n(12)+2.1*1(x—1)+%@-1)%431, (m—l)s—i—%(m—l)‘l
_ _ _ _ 2 é _ 372 _ 4
=0+2z—-1)—(z—1) +6(at 1) 24(m 1)

2, 2 3 1 4
=2xz-1)—(z-1) +§(a:71)37§(:r71) .

16. Let f(z) = sin 2z. Then sin (2 (%)) =sin§ = 1.
Then f'(x) = 2cos 2z, f(x) = —4sin 2z, f""'(x) = —8cos 2z, and f* () = 16sin 2 so the Taylor polynomial for
sin 2z of degree four about x = 7 /4 is

Py(z) = sin (QJ) + 2cos (2—W> (a;— Z) - % (x— 3)2 _ Beos (%) (az— 5)3 + % (

4 4 4 2! 4

T ™2 8-0 m™\3 16-1 m\4
=t420(e-7)-21(e-§) 5 (o= §) v (- 7)

Problems

17. Since P (x) is the second degree Taylor polynomial for f(x) about = 0, P2(0) = f(0), which says a = f(0). Since

di Q(l‘) - = fl(0)7
b = f'(0); and since

d2 1

EPQ(x) e = f (O),

2¢ = f”(0). In other words, a is the y-intercept of f(x), b is the slope of the tangent line to f(z) at z = 0 and c tells us
the concavity of f(x) near z = 0. So ¢ < 0 since f is concave down; b > 0 since f is increasing; a > 0 since f(0) > 0.

18. As we can see from Problem 17, a is the y-intercept of f(z), b is the slope of the tangent line to f(x) at z = 0 and c tells
us the concavity of f(x) near z = 0.
Soa>0,b<0andc <0.

19. As we can see from Problem 17, a is the y-intercept of f(z), b is the slope of the tangent line to f(x) at z = 0 and c tells
us the concavity of f(x) near z = 0.
Soa < 0,b>0andc > 0.

20. As we can see from Problem 17, a is the y-intercept of f(x), b is the slope of the tangent line to f(z) at z = 0 and c tells
us the concavity of f(x) near z = 0.
Soa < 0,b<0andc > 0.

21. Using the fact that

Fla) = Paa) = £0) + £/ + L1002

and identifying coefficients with those given for P»(z), we obtain the following:

(a) f(0) = constant term which equals 5, so  f(0) =5.
(b) f'(0) = coefficient of = which equals —7, so f'(0)=-7.
(©) % = coefficient of =* which equals 8, so f”(0) = 16.

22. Using the fact that

f(x) = Ps(z) = £(0) + f'(0)x + f”(.())m2 n
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and identifying coefficients with those given for Ps (), we obtain the following:
(a) f(0) = constant term which equals 0, so f(0) =
(b) f'(0) = coefficient of z which equals 3, so  f/(0) =
© L ( 3;(0) = coefficient of 2> which equals —4, so  f"(0) = —24.
5
(d) fs—!(o) = coefficient of z° which equals 0, SO f(5)(0) 0
(e) % = coefficient of z° which equals 5, so  f(0) = 5(6!) = 3600.

23. (a) We have

@) = 95) + 8O —5) + Lo 5y + L 5y 4
Substituting gives
9(z) =3 -2 —5) + iz —5) — 5 (2 5)°+

The degree 2 Taylor polynomial, P (z), is obtained by truncating after the (x — 5)? term:
Py(z) =3 —2(z—5)+ %(x —5)2

The degree 3 Taylor polynomial, Ps(z), is obtained by truncating after the (z — 5)* term:

Py(z) = 3 —2(z — 5) + %(m 52 %(m —5)3.
(b) Substitute x = 4.9 into the Taylor polynomial of degree 2:

Py(4.9) =3 —2(4.9 — 5) + %(4.9 —5)% = 3.205.

From the Taylor polynomial of degree 3, we obtain

P3(4.9) =3 —2(4.9 — 5) + %(4.9 —-5)% - %(4.9 —5)% =3.2055.

24. (a) The upper half of the circle is given by the function

y=flx)=v1-a

We want to approximate the circle near the point where = = 0. Since f(0) = 1 and

oy L 2oy = %

fle) = 501 =22 = -

" _ 1 = _1 )32 (Lop) = _ 1 _ z?
1) = o = (50 =) (20) = - o -

we have f/(0) = 0 and f"(0) = —1. The best fitting parabola is the second degree Taylor polynomial
1
Py(z)=1- 5102,

(b

~

Substituting x = 0.1 gives
1
f(0.1) = P2(0.1) =1 — 5(0.1)2 = 0.995,
so the point is (0.1, 0.995).

25.
f(z) =4z — T 42 f(O)
f(z) =8z -7 1(0) =
f(x) =8 17(0) = 8

s0 P2(z) = 2+ (—7)z + §2* = 42® — Tz + 2. We notice that f(z) = P2(x) in this case.
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26. f'(z) = 32 4 142 — 5, f”'(z) = 6z + 14, f"”(x) = 6. Thus, about a = 0,

-5 14 6

=1-b5z+ 72> +a°
= f(=).

27. (a) We’ll make the following conjecture:
“If f(z) is a polynomial of degree n, i.e.

f(z) =ao+ a1z + a2x2 + -+ an_1mn71 + anz”,

then P, (z), the n'" degree Taylor polynomial for f(z) about = = 0, is f(z) itself.”

695

(b) All we need to do is to calculate P, (x), the n*® degree Taylor polynomial for f about 2 = 0 and see if it is the same

as f(x).
f(0) = ao;
£ (0) = (a1 4 2a0x + - - + nanazn_l)yzzo
= a1;
F'(0) = (2a2 +3-2azx + -+ +n(n — l)anx"72)|mzo
= 2las.

If we continue doing this, we’ll see in general

F™0) = klag,  k=1,2,3,---,n.

Therefore,
flO f/lo f(n)o ”
Pata) = 10 + L0 D02y IO,
= a0+ a1z 4 aoz® + - + anz”
= f(=).
28.
; O 2
lim 2% = lim — 3L = lim (1- 2 ) =1.
z—0 & z—0 X z—0 3!
29.
i L0010 ) (1 2 1
z—0  x2 T 250 x2 Ta—o\2 4l ) T2
h? m®  nt
30. Forf(h):eh7P4(h'):1+h+?+§+ESO
(@)
_eh—1-h . Pi(h)—1-h
R
_h~>0 ]’L2
= lim 1—|—£—|—h—2
T h—o\2 0 3! 4l
1
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(b)

= lim
h—0 h3 h—0 h3

:limL:lim (i-i-E)
h—0  h3 h—o \3! = 4!
1 1
=3 5
Using Taylor polynomials of higher degree would not have changed the results since the terms with higher powers of h
all go to zero as h — 0.

31. (a) We use the Taylor polynomial of degree two for f and h about x = 2.

J@) ~ 1@+ F @ -2+ LB @22 = 3@ o

2! 2
R (2
h(z) = h(2) + R (2)(z — 2) + %(m —2)% = g(az —2)?
Thus, using the fact that near x = 2 we can approximate a function by Taylor polynomials
3(p —92)2
lim _f(x) = lim 75 (@ ) = §

e—2 g(x)  o—2 I(z—2)2 e
(b) We use the Taylor polynomial of degree two for f and g about x = 2.

Fa) = 1@+ £ ) -2+ L P2y = 3 o

g(x) =~ g(2)+ ¢ (2)(x —2) + g/;(f) (x—2)* =22(z —2) + g(ac —2)%

Thus,

lim 2% — fim -2y — lim M 7270
a2 gz)  e—2\22(x—2)+5(x—2)2 ) «—2\2245(x—2)) 22
32. Let f(x) be a function that has derivatives up to order n at x = a. Let

Po(z) =Co+ Ci(x —a) + -+ + Cp(z — a)"

be the polynomial of degree n that approximates f(z) about x = a. We require that P, (x) and all of its first n derivatives
agree with those of the function f(z) at z = a, i.e., we want

f™(a) = P (a).
When we substitute © = a in P, (), all the terms except the first drop out, so
Now differentiate P, (z):

Pl(z) = Cy +2C2(z — a) +3C3(z — a)® + - -+ nCp(z —a)" .
Substitute = a again, which yields

Differentiate P, (z):

P)(z) =20 +3-2C3(x —a) 4+ -+ n(n —1)Cp(x —a)" >
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and substitute x = a again:
f"(a) = Pl(a) = 2Ca.

Differentiating and substituting again gives

" (a) = P}'(a) = 3-2Cs.
Similarly,
% (a) = P, (a) = kICy.
SO, CO = f(a), Cl = f’(a), CQ = fl;(!a) . Cg = f”:;!(a) . and so on.
If we adopt the convention that f(*)(a) = f(a) and 0! = 1, then

®)
c=1 k,(a), k=0,1,2,--,n.

Therefore,

f(@) = Pp(z) = Co+ Ci(z — a) + Ca(xz — a)2 oo+ Cr(z—a)”

" (n)
= f(a) + f'(a)(z —a) + f 2(!a) (x—a)’+-- + f n!(a) (z —a)".
3. ) flz)=e"
fl(z)= 2ze” () =201+ 2x2)ezz, f(x) =43z + 2163)6””2,
F9z) =43+ 6x2)e“”2 + 43z + 2x3)2xe”32.
The Taylor polynomial about z = 0 is

0 2 0 12
1
=1+ x> + —gt
2
(b) f(x) = e”. The Taylor polynomial of degree 2 is

2
. r  x° 15

697

If we substitute > for z in the Taylor polynomial for e” of degree 2, we will get Py (z), the Taylor polynomial for

35‘2 .
e” of degree 4:

Q2(2?) = 1+ 2% + = (27)

2
=142+ 1374
2
= P4(:E)
x  x? 210 ,
(c) Let Qio(z) =1+ T + o +- 4+ o be the Taylor polynomial of degree 10 for e® about z = 0. Then
Pao(z) = Qo(a?)
2 212 2110
= (27) (z7)
=1 — -
L TR TR TI]
I — 220
=14+ 4 4T
LTI TR TiT
(d) Lete” ~ Qs(x) =1+ & +---+ 2/ Then
e %" ~ Qs(—22)
_ -2z (—2z)?  (—22)®  (—22)' (—22)°
R T R R

4 2 4
:1—2x+2x2—§x3+§x4—ﬁx5.
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34. (a) The equation sinx = 0.2 has one solution near x = 0 and infinitely many others, one near each multiple of 7. See
3

Figure 10.1. The equation z — % = 0.2 has three solutions, one near x = 0 and two others. See Figure 10.2.
Y Yy
/\ﬂlx# y=0.2 _
- - ———————— y=0.2
x
. 3
Figure 10.1: Graph of y = sinz and y = 0.2 Figure 10.2: Graph of y = z — % and y = 0.2

(b) Near z = 0, the cubic Taylor polynomial 2 — 2% /3! & sin z. Thus, the solutions to the two equations near x = 0 are
approximately equal. The other solutions are not close. The reason is that z — 2® /3! only approximates sin z near
x = 0 but not further away. See Figure 10.3.

x — 23/3|
Figure 10.3
3
sint t—L% t?
3s. ~~ 31— =
@ = ¢ 6
1. 1 2 3 (1
/%ﬂtdt%/ (1—%) dt:t—i—s —0.94444 - - -
0 0 0
. 3 5
o St tomts 8
t t 6 ' 120

1

=0.94611- - -
0

1 1 2 4 3 5
sint t t t t
Mo~ (1-2 4+ )a=t-L

/0 ¢ /0( 6+120) 18 600

36. (a) Since the coefficient of the x-term of each f is 1, we know f1(0) = f5(0) = f5(0) = 1. Thus, each of the f's slopes
upward near 0, and are in the second figure.
The coefficient of the z-term in g1 and in g is 1, so g7 (0) = g5(0) = 1. For g5 however, g5(0) = —1. Thus,
g1 and go slope up near 0, but g3 slopes down. The gs are in the first figure.
(b) Since g1(0) = g2(0) = g3(0) = 1, the point A is (0,1).
Since f1(0) = f2(0) = f3(0) = 2, the point B is (0, 2).
(c) Since g3 slopes down, gs is I. Since the coefficient of 2 for g1 is 2, we know
1"
91 (0)
o = 2 s0 g7 (0) = 4.
By similar reasoning g4 (0) = 2. Since g1 and g» are concave up, and g; has a larger second derivative, g; is Il and

g2 is 1.
Calculating the second derivatives of the fs from the coefficients z2, we find

HOo)y=4  fO)=-2 [0 =2

Thus, f1 and f3 are concave up, with f; having the larger second derivative, so f; is Il and f3 is IIl. Then f3 is
concave down and is I.
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Solutions for Section 10.2

Exercises

1. Differentiating (1 + 2)3/2:

fl) = (1+2)** (0) =1,
fl(@) = (3/2)(1 +a)'/* F'0) =3,
f(@) = (1/2)(3/2)(1 + )12 = (3/9) (1 + )~/ ) =14,
f(@) = (=1/2)(3/4) (1 +2) 7% = (=3/8)(1+2) 7% f7(0) = —¢.
F@) = () = 14 Dy BT (/0
:1_|_3_x+£_£+...
2 8 16
2. Differentiating +/z + 1:
(2) = Va+1=(z+D"* £0) =1,
fl@) = (1/4) (= + 1)~/ f10) =1,
F(@) = (=3/4)(1/4)(x +1)77* = (=3/16)(x + 1)~/ £7(0) = =55,
F(@) = (=7/4)(=3/16)(z + 1) /" = (21/64) (@ + )TV f7(0) = F.
. B 1 (—=3/16)2* = (21/64)z®
flz)=vVz+1 1+Z~x+ 51 3 I
TS i
4 32 128
3. Differentiating sin(—z):
f(z) = sin(—x) (0) =0,
f'(@) = cos(—z)(—1) = — cos(—x) f(0) = -1,
f'(@) = =(=sin(—x))(~1) = —sin(—z)  f"(0) =0,
§"(@) = — cos(~a)(~1) = cos(—) 70 =1
f@(z) = —sin(—z)(—1) = sin(—=) @) =o,
79(2) = cos(—2)(~1) = — cos(—z) F9(0) = -1,
19 (2) = —(—sin(—a))(-1) = —sin(~z)  F©(0) =0,
fM(z) = = cos(—z)(—1) = cos(—z) £ =1.
f(:c):sin(—x):O—l-x—i—%—&-%—&-%—i— _;f +06i!+1%+
= ettt

Notice that the series for sin(—x) is obtained from the series for sin by changing the signs. This is expected since
sin(—z) = sinx.

4. Differentiating In(1 — x)

(z) =In(1 — ) £(0) =0,
fla)y=E)=-1-2)" £1(0) = -1,
@) =—(-(1-2) ) (1) =—(1—x)> 1(0) = -1,
@) ==2(-(1-2)?) (1) ==2(1—2)"*  f"(0)=-2

fOx) = =3(=21 —2) )(-1)=-6(1—2)"* fP(0)=-6.
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10.2 SOLUTIONS
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14. Again using the derivatives found in Problem 13, we have

1 1 z-2 (x—-2?% 3@x-2)°
= _ + I
x 2 4 4-2! 8-3!
1 @-y), @2 @-2°,
2 4 8 16
15. Using the derivatives from Problem 13, we have
fC)=-1, f(-H=-1, f'(-1)=-2 [f"(-1)=-6
Hence,
1 20z +1)*  6(z+1)°
P T
=—1—(z+1)—(z+1)° = (z+1)°—

16. The general term can be written as " for n > 0.

17. The general term can be written as (—1)"z"™ for n > 0.

18. The general term can be written as —z™ /n forn > 1.

19. The general term can be written as (—1)""'2™ /n forn > 1.
(-1

20. The general term can be written as

—1)*z2*+1 /(2k + 1)! for k > 0.

21. The general term can be written as (—1)*z?*** /(2k 4 1) for k > 0.
22. The general term can be written as 2% /k! for k > 0.
23. The general term can be written as (—1)*z***2 /(2k)! for k > 0.

Problems
24. (a)
f(z) = sinz”
f(@) = (cosa?)20
' (x) = (~sinz )4x + (cos z*)2
" (x) = (= cosz®)82° + (—sinz”)8z + (—sinz”)4x
= (- cosz”)8z” + (—sinz?)12z
@ (z) = (sinz?)163" + (— cos 2)242”* + (— cos #2)24z” + (— sin z?)12
= (sinz”)16z" + (— cos 2°)48z” + (—sinz”)12
O (z) = (cos2?)322° + (sinz?)64z> + (sin z?)962°

+(— cos2%)96x + (— cos z°)24x
= (cos %)32z° + (sinz%)160z° 4 (— cos 2°)120z

F9x) = (—sinz?)642° + (cos 22)160z" + (cos #2)320z" + (sin z2)4802>

So,

+(sin 2°)2402° + (— cos £°)120
= (—sinz?)642° + (cos 2?)480z* + (sin z*)7202”

+ (— cos 2%)120

(0)=0 fPo)y= o,
f0)=0 o0 = o,
£7(0) =2 £9(0) = —120,
£y =0
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Thus
. 2 120
f(x):S]nx 252__6| 6+.
1
=a’— 2%+

As we can see, the amount of calculation in order to find the higher derivatives of sin z? increases very rapidly. In
fact, the next non-zero term in the Taylor expansion of sin 2 is the 10*™® derivative term, which really requires a lot

of work to get.

()
1 1 5

1 e __3 —_— —_— . e
sinz == B!x —|—5!x

The first couple of coefficients of the above expansion are the same as those in part (a). If we substitute > for z in
the Taylor expansion of sin z, we should get the Taylor expansion of sin z>2.

sinz® = z2° — %(mQ)S —+ é(mQ)S —
:x27$x6+$x107---
25. (a) (z) = In(1 + 2x) (0)=0
f'@) = 7% f(0) =2
(@) = e f7(0)=—4
f’”(m) — (1+1261>3 f///(o) — 16

ln(1+2x):2x—2w2+§x3+---

(b) To get the expression for In(1 + 2x) from the series for In(1 + x), substitute 2z for x in the series

2 3 4
ln(l—f—x):m—%—i—%—%—i—
to get
22)%  (22)°  (22)*
ln(1+2x):2x—(§) +(§) —(j) oo

4_|_...

oy
:2x—2m2+i—4x
3
(c) Since the interval of convergence for In(1 + z) is —1 < z < 1, substituting 2x for x suggests the interval of
convergence of In(1 + 2z) is =1 <2z < l,or—1 <z < 1.
26. By looking at Figure 10.4, we see that the Taylor polynomials are reasonable approximations for the function f(x)
v 1+ x between x = —1 and z = 1. Thus a good guess is that the interval of convergence is —1 < =z < 1.

f@)y=vz+1

Figure 10.4
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27.

28.

29.

30.

31.
32.
33.
34.
35.

Chapter Ten /SOLUTIONS

By looking at Figure 10.5 we can that the Taylor polynomials are reasonable approximations for the function f(z) =

\/11+_I between x = —1 and x = 1. Thus a good guess is that the interval of convergence is —1 < = < 1.
|
|
|
|
flz) = ﬁ \
‘ x
-1 1
Pr () i
|
P5(CE) }
I I Lz |
~1 1 2 3 Ps(x) » ‘
Figure 10.5 Figure 10.6

. 1 . .
The graph suggests that the Taylor polynomials converge to f(z) = 1 on the interval —1 < = < 1. See Figure 10.6.

—x
Since 1
—— =l4z42°+2° .
l1-z
the ratio test gives
n+1
fim 19l o B
Thus, the series converges if |z| < 1|; thatis, —1 < z < 1.
The Taylor series for In(1 — z) is
2 3 n
x x x
Inl-z)=—-2— — — — — - — —
(1-=) 7~ 3 - ,
SO . )
lim [@n 1] = |z| lim [+ 1) = |z| lim ‘L‘ = |z|.

Thus the series converges for || < 1, and the radius of convergence is 1. Note: This series can be obtained from the series
for In(1 + z) by replacing = by —z and has the same radius of convergence as the series for In(1 4 z).

(a) We have shown that the series is

~1 —1)(p—2
1ergchza(z72' ) 2 4 PP 3)'(17 )ud

so the general term is
plp=1)...(p=(n=1) »
n! ’

(b) We use the ratio test

pp—1)...(p— (n—1))(p—n) n!
(n+Dlplp—1)...(p— (n—1))

lani]

= |z| lim p—n‘.

lim = |z| lim
n—oo |an\ n—oo

Since p is fixed, we have
lim ’p - ”‘ —1,

so R=1.

This is the series for e” with x replaced by 2, so the series converges to e?.

This is the series for sin  with x replaced by 1, so the series converges to sin 1.

This is the series for 1/(1 — z) with  replaced by 1/4, so the series converges to 1/(1 — (1/4)) = 4/3.
This is the series for cos x with x replaced by 10, so the series converges to cos 10.

This is the series for In(1 + ) with x replaced by 1/2, so the series converges to In(3/2).



36.

37.

38.

39.

40.

41.
42,

43.
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The Taylor series for f(z) = 1/(1+ z) is

1
1+

=l-s+a*—a>+---.

Substituting x = 0.1 gives

1 1
1-01+ (01— 01>+ = = —.
+(01) (0.1)7 + 1+01 11
Alternatively, this is a geometric series witha = 1, x = —0.1.
This is the series for ¢ with z = 3 substituted. Thus
9 27 81 32 3 3
L4384+ g+t =143+ g+ 5+ =’
This is the series for cos x with x = 1 substituted. Thus
1 1 1
1-— 5 —+ z @ + - = cos 1
This is the series for e* with —0.1 substituted for x, so
0.01  0.001 01
1—01+—2| T +---=e .
. 2 3 1 . . .1 4
Since 1 + z + x° 4+ x” 4+ - - - = ——, a geometric series, we solve =5giving - =1—z,s0x = —.
11—z 11—z 5 5
. 1 1 ..
Since z — §x2 + §x3 + - =In(1 + x), we solve In(1 4 2) = 0.2, giving 1 + = = %2, s0 2z = e*2 — 1.

(a)

(b)
©

Let C,, be the coefficient of the n

From the coefficients of the (z — 1) terms of the fs, we see that
A =1 fLO)=-1  f3(1)=-
From the (z — 1)? terms of the fs, we see that

FO) B )

20 7 ST o b
so fi'(1) = =2, f3'(1) =2, f5'(1) =2
Thus, f1 slopes up at z = 1 and f> and f3 slope down; f3 slopes down more steeply than f5. This means that
the fs are in the first figure, since graphs II and III in the second figure have the same negative slope at point B.
By a similar argument, we find

gi(4)=—-1, go(4)=-1, g5(4)=1,andgy(4) =-2, ¢g7(4) =2, g5(4)=2.

Thus, two of the gs slope down, one of which is concave up and one is concave down; the third g slopes up and is
concave up. This confirms that the gs are in the second figure.
Since f1(1) = f2(1) = f3(1) = 3, the point A is (1, 3).
Since g1(4) = g2(4) = g3(4) = b, the point B is (4, 5).
In the first figure, graph I is f; since it slopes up. Graph Il is f> since it slopes down, but less steeply than graph III,
which is f3.

In the second figure, graph I is g3, since it slopes up. Graph II is g2 since it slopes down and is concave up.
Graph Il is g; since it slopes down and is concave down.

th term in the series. Note that

d 22
0=C = %(1’26 ) ,
=0
and since
6 I2
%;(xQe )
l = 06 = =0 s
2 6!
we have .
d 2 22 - 6!
=0
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44. Let C,, be the coefficient of the n*® term in the series. C; = £/(0)/1l,s0 f'(0) =1!C; =1-1=1.
Similarly, f”(0) = 2!C; = 2! £ = 1;
f///((]) =3l1C3 =3!. é =21=2:
FA9(0) = 10!Cy = 10! - L= 10 _ g1 — 362880.

45. We define e’ to be

e? =1+i0+

(@0)*  (0)°  @0)"  (i0)°  (i60)°
ST TR TR TR
Suppose we consider the expression cos 6 + i sin 8, with cos 6 and sin 6 replaced by their Taylor series:

. 9> o' 6 . 9 0°
COS&+ZSIH9:<1§+IE+-” +1 €f§+§f~-
Reordering terms, we have

0% 0> 6*  h°  6°

cos@+isin9:1+i9—§—§+z+ﬁ_ﬁ_...
Using the fact that 2 = —1, % = —i,i* = 1,4® =4, - - -, we can rewrite the series as
-1\ 2 1\ 3 -1\ 4 -5 -\ 6
0050+isin0:1+i9+(19) +(Z0) +(19) +(29) +(19) 4o

2! 3! 4! 5! 6!
Amazingly enough, this series is the Taylor series for e” with 6 substituted for . Therefore, we have shown that

.. 10
cosf +isinf = e".

Solutions for Section 10.3

Exercises

1. Substitutey:—mintoey:1+y+§+%—?+~--.Weget

—e _ (—2)* | (-2)°

e —1+(—$)+T+T+"'
-1 272 373
SR TR T

2. Substitute z = 62 into series for cos x:
(6%, (0*)"  (*)°

2y

cos (7)) =1— T ol +--
1 04 08 912
=gty et

3. We'll use

G E) e
2 2 2/ 3!
2 3
_ y_ vy . v _
_1+2 g "6
Substitute y = —2x.
_ 2 _ 3
Vi ) B ) -
2 8 16
2 1’3
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4. Substituting x = —2y into In(1 4+ z) = = — é +2 % + -+ gives
_ (=29 | (=29)° (=2y)"*
In(1 —2y) = (—2y) 5 + 3 1 +
= —2y—2y2— §y3—4y4—---.
5. Since %(arcsin x) = 11 = =1+ 12?4+ %x4 + 1361’6 + - - -, integrating gives
arcsinx = c+x + 1m3+ ixs + ix7+---
- 6 40 112 '
Since arcsin0 = 0, ¢ = 0.
6.
3 o _ 3 (¢*)? | )" (¢*)°
9" cos(¢7) = ¢ (1_ 2 T e T
goO 80
B 20 4l 6!
7. Substituting 2 = —22 into s =0+ 2)"E=1- lo+ 327 — 2o+ gives
1 (—2%) N 3(=2%)?  5(=2%)° L
Vi 2 8 16
_ 12,34, 55
—1+2z+8z+16z+ .
8.
z_ a2 oy, (=277 (=)’
o7 e —z<1+(—z)+ o + a0 + -
s E T
B 2l 3
9. We substitute 3¢ into the series for sin  and multiply by ¢. Since
. 2 2® a7
smm:x—g—i—a—ﬁ—k---,
substituting 3t gives
. _ (3t)° . (3t)° (3t)"
sin(3t) = (3t) — 3l + ST
—9.3 81,5 —243 ;
=3t+ —t —t — .
+ 2 + 40 + 560 +
> 9 81 243
tsin(3t) =3t — St* 4 0 — 48 4.
sin(3?) 2" " st T
10. Substituting the series for sin§ = 6 — g + % — -+ - into
1 14 1 4
/1 =14 Zy—= .
Ty=lhgy gyt Y
gives
JE— 1 0 0 1 0 0 :
1+SIH9:1+§ (9—54'5—) —g (0—§+§—

707
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11 2 3 3 5
. t t t t t
(1+t)Slnt(1+§§+E"') (t§+§>

Multiplying and collecting terms yields

) t2 A ¢t
\/(1+t)51nt—t+§—<§+§>+(E—E +--

12 7 3 1 4
=t =t — - —tt
tol Tt Tt T

12.
2 2t 2t ¢S

t —_— JE— J— — PR PR S — “ ..

ecost—<1+t+2!+3!+4!+ )(1 2!+4! 6!+

Multiplying out and collecting terms gives

elcost=1+t+ i_i + ﬁ_ﬁ + ﬁ+ﬁ_i + ..
21 2! 3t 2! 41 4l (22

3t
=14t— — — — 4,
+ T 6"

13. Multiplying out gives (1 + )% = 1 + 3z + 322 + x>, Since this polynomial equals the original function for all z, it must
be the Taylor series. The general term is 0 - =™ for n > 4.

14. Substituting ¢ into the series for sin z gives

t2)3 (t2)5 (_1)k(t2)2k+1
in(t? :t27( g
sin(t") T A T ru D R
/6 410 (—1)kgih+2
— 2y
sttt g
Therefore
t7 tll (_l)kt4k+3
1 2 3— 3—_ —_— DEEEEY _— ... —_ 3
bsin(t") — ¢ <t CTI R O T t
t7 tll (_1)kt4k+3
— 4y 4N 4 fork > 1.
ETI TR VI T ork =
15. Using the Binomial theorem:
1
1—x
=(1—z)/?
- — —z)? —1/2)(=3/2)--- (-1 - 1)(—z)"
:1—|—<—1)(—1:)+( 1/2)( 2?:/2)( 2) —|—~~~+( /2(=3/2) (|2 n+1(z2) +--- forn > 1.
. n:
Substituting 1 for z:
-y
1—9y2
1/2)(3/2)--- (4 - y>"
:1+—y2+—y4+~~-+(/)(/) (34n-by +.-- forn > 1.
2 8 n!
16.
1 1

24z  20+2)
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17. Using the binomial expansion for (1 + ) ! with z = —r/a:

: i(g):a(ll_g)f(”(‘%))l

oo () S () U ()

e
\
<

QI+~ Q|+~ 2|~ 2

/\/}/\ |
|
—~
Sl |
N—— Q3
+ N—
— +
Iz
N |
v}
Q3
+ ~
— v
Q= I
N _
e |
+ e
~—
w
~ 4
~_

—
+

18. Using the binomial expansion for (1 + z)*/? with z = h/T"

= (e gn) = (r ()= vE (1 5)

f( (/)( )+ + 427 <%>2+(1/2)(—1?{!2)(—3/2) (%)3)

OO RO

7= (e (1)< () =570 1)

P
U (1 g (1) + B2 (1) QRS (1))

w6 0 G )

20. Using the binomial expansion for (1 4 z) ™2 with x = r/a:

21.

709
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Problems

22. (a) Since the Taylor series for e” and e~ are given by

22 2 2t
—1+x+—+§+f+
—e 22 2 2t
e *IB+§*§+E+7
we have
. . 22 23 ot ot
e’ +e 72+0x+2 +03 4! +.o=2+447 +ﬁ+

(b) For x near 0, we can approximate e” +e~ by its second degree Taylor polynomial, P»(x), whose graph is a parabola:
e +e " x Py(z) =2+

23. (a) Since the Taylor series for e” and e™* are given by

22 22 2t 4P
_1+x+7+§+7+§+
B .
—1fx+f2'ff3'+f*f5'+
we have 2 5 . 5 5 s
_ T T T T
e "=0+2 0— 2— 0— 2—-4—2 — 4+ —
e + 22 + + 3'+ + 5l x+3+60+

(b) For x near 0, we can approximate e® — e~ by its third degree Taylor polynomial, Ps(x):

23
e’ —e %Pg(l‘)ZQI-‘r?.

The function Ps(z) is a cubic polynomial whose graph is symmetric about the origin.
24. Since it does not depend on n, we can factor out e ¥, giving

kKK
tt ottt

This is the series for e*

25. Notice that Y  pz? ~1,is the derivative, term-by-term, of a geometric series:

oo B d )

E px? 1:1~a:0—|—2v:rl+3~:r2—|—---:%(x—kaf—l—:cd—l—---).
—_—— ——

Geometric series

For |z| < 1, the sum of the geometric series with first term 2 and common ratio z is

x+x2+w3+...: z

1—z

me T dr (1fx> - _(1xi;)1;(_1) - =

Differentiating gives
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26. The Taylor expansion about § = 0 for sin 0 is

9*§+5*F+
So 3 5 7
. 0 0 0
The Taylor expansion about 6 = 0 for cos € is
0> ot 6°
COSG—l g-‘rz—a-‘r
The Taylor expansion for ! about § = 0is
Y P 1+96 B
S S B L B
1+0 '

So, substituting —#? for 6:

g = 1 () (0% = (%) (<0
=146 +6"+6°+6°+---.

For small §, we can neglect the terms above quadratic in these expansions, giving:

1+sinf~1+6
02

f~1— —

cos >

1 2
— =1 .
o + 0

For all 6 # 0, we have
2

0 2
1—-—=<1+4+06".
B <1+
Also, since §2 < 6 for 0 < 6 < 1, we have

2

1—%<1+92<1+9.

So, for small positive 8, we have

1
cos@<1_702<1+sin6.
27. From the series for In(1 + y),
23 gt
In(1 =y— =+ — =
n(l+y)=y—5+5 -+,
we get
4 6 8
(1o =2 Y v Y
n(l+y°)=y s T35 -7t
The Taylor series for siny is
3 5 7
Y Y Y
A TR T
w o_ oyt Yyt
A T T T
The Taylor series for cos y is
2 4 6
cosyzlfy—+yf*yf+”‘

20 4l 6!

4l
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So 2 4 6
Yy Yy v
17cosy—2! 4!+6!+
Near y = 0, we can drop terms beyond the fourth degree in each expression:
4
In(1+y°) ~y° - %
.2 2
siny” &y
2 4
~Y Y
1 —cosy~ o

(Note: These functions are all even, so what holds for negative y will hold for positive y.)
Clearly 1 — cosy is smallest, because the 3> term has a factor of % Thus, for small y,

Yy y 2 Y 2
ST A R
)
1 —cosy < In(1+y°) < sin(y?).
. 1 .
28. The Taylor series about 0 for y = —— is

1—a22
y:1—|—x2+x4+x6+---.

The series for y = (1 + :r)l/ 4 is, using the binomial expansion,

_Hzﬁz(j)wjg(j)(i)mjpu
Y= g Ug) a1 1) 30 :

The series fory = /1 + g =1+ g)lﬂ is, again using the binomial expansion,

P £+1(_1) x_2+1<_1><_§> @ |
Y=iTe T \Tg) g a2 2) 18 :

= (1-a)" ¥,

Similarly for y = :

e (D (DD 5 (D D) 5

Near 0, let’s truncate these series after their 2 terms:

]

1
1— a2 ~lta,
13
1 V4 gyt 32
(1+2) TR
xT 1 2
J1+ 21 e
Tyt
1 1 )
~1+ - =
=z 2" tg”

Thus ﬁ looks like a parabola opening upward near the origin, with y-axis as the axis of symmetry, so (a) = L.
1

Now \/ﬁ

has the largest positive slope (%), and is concave up (because the coefficient of 2 is positive). So (d) =
1L
The last two both have positive slope (i) and are concave down. Since (1 + m)% has the smallest second derivative

(i.e., the most negative coefficient of z2), (b) = IV and therefore (c) = III.
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29. y

(@)

4 .1'6

_z2 -1 x
¢ *x+§*§+
1

1+ z2
Notice that the first two terms are the same in both series.
is greater.
(b) T isg

(c) Even because the only terms involved are of even degree.
. a2 .
(d) The coefficients for e™® become extremely small for higher powers of x, and we can “counteract” the effect of these
powers for large values of z. The series for ﬁ has no such coefficients.

30. (a) The Taylor approximation to f(z) = cosh x about x = 0 is of the form

" 2 (n) n
coshz ~ cosh(0) + f'(0)x + # 4o+ f T(L?)ﬂ? _

‘We have the following results:

f(z) =coshz so f(0) =
f'(z) =sinhz so f(0)=0
f(z) = dci (sinhz) = coshz so f/(0) =1,
f"(z) =sinhz so f"(0) =0.

The derivatives continue to alternate between cosh x and sinh z, so their values at 0 continue to alternate between 0
and 1. Therefore

22 23 et
coshz~1+0-z+1- 5-4-0.54_1.1_,_...,
so the degree 8 Taylor approximation is given by
. . 22 ozt 6 28
coshz ~ +§+*+§+§'

(b) We use the polynomial obtained from part (a) to estimate cosh 1,

1 1 1 1
coshl~1+ — o1 + + ol + 3 1.543080357.

Compared to the actual value of cosh 1 = 1.543080635 . . ., the error is less than 10~°.

(c) Since %(cosh z) = sinh z, we have

. d 22zt 2% 28
sinhz ~ — 1—|———|———|———|—
dx

2! 6! 8!
_ 2x 473 62° 8z”
St Ter Ter
1‘3 1‘5 x7
T+ o+ o o

3t 5 Tl
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> n
31. Since e” = Z a:_' and sinh 2z = (e** — ¢72%) /2, the Taylor expansion for sinh 2z is
n!
n=0

Since cosh 2z = (e*® 4 ¢72%) /2, we have

cosh 2z = % (Z (2:;)” + Z (Zf)n> = % (Z(l + (—1)")(25!)n
n=0 n=0 n=0
B & (2x)2m
B Z (2m)!

32. (a) f@) =1 +az)(1+bx)"" =1 +ax) (1 — bz + (bx)® — (bz)® + - )
=1+ (a—b)x+ (b* — ab)z® + - -

b) ¥ =l+a+2 ...
Equating coefficients:

a—b=1,
1
2 —_
b® —ab= 5"
Solving gives a = %, b= f%.
33. Q | Q R
1 1 1 z
-1 | 1
1 1
E=k —
@ ((R—l)2 (R+1)2>
_kQ 1 _ 1
T E\0-r 1Ry
Since |%| < 1, we can expand the two terms using the binomial expansion:
—2
(-1
(- 52 R
_ 1 (%)’ -%)°
—1-2(—5) + (D) TE + (DI -
1 1\ 72
- (14 =
(1t L) ( + R)
_ 1 (%)° ()°
—1-2( ) + (DL + (9T 4
Substituting, we get:
kQ 2 3 4 2 3 4 kQ (4
eltaretwt et w0~ w (5t

using only the first two non-zero terms.




34.

35.

36.
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Using the binomial expansion we have

2\ 1/2
Ve =a(1+ —)
( @ (1/2)(=1/2) 2t | (1/2)(=1/2)(=3/2) 2° +)

2 a2 2! at 3!

pla? 12t 12t
2a2 8a* 16 aS '

Similarly, we have
2

Va2 — g2 = 1____1m__ix__...
2a? 8a* 16aS '
Combining gives
2

1lx 1 28 T 128
Z:\/GQ-FJIQ \/(12—112_(1(2 2a2+2'1—65+"'>_;+§¥+"'

This time we are interested in how a function behaves at large values in its domain. Therefore, we don’t want to expand
V =270 (v/R? + a? — R) about R = 0. We want to find a variable which becomes small as R gets large. Since R > a,

it is helpful to write
a2
V = R2no 1+ 2 1].
We can now expand a series in terms of (%)2. This may seem strange, but suspend your disbelief. The Taylor series for
\/1+ 1‘;—2 is

e +M(R_) Ve

2 R? 2
B 1a> 1 ’ i
SoV = R2no | 1+ SR 3 ﬁ + ... —1|]. For large R, we can drop the —5 +7 term and terms of higher
order, so
2
moa
V ~ .
R

Notice that what we really did by expanding around (%) = 0 was expanding around R = co. We then get a series that
converges for large R.

(a) If ¢ = 0,
leftside =b(14+1+4+1)=3b~x0

so the equation is almost satisfied and there could be a solution near ¢ = 0.

(b) We have
¢* ¢
sing = ¢,7+§,_”
_ ¢* |, ¢
cosp = 172'+If---
So

2 4 2 4
cos2¢—(1—%+%—-~-) <1—%+%—~~>.

Neglecting terms of order ¢ and higher, we get

sing ~ ¢
cos¢ ~ 1
cos2¢z 1.

So¢+b(14+1+ 1)~ 0, whence ¢ ~ —30.
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37. (a) Factoring the expression for t; — t2, we get

213 2l 2l 2l
At =1t1 —te = — _
e c(l —v?/c?) c\/1—1)2/62 C\/l—'l)2/02 - c(l —v?/c?)
2(l1 +12) 2(11 +12)

TP oo

_2(l1+l2) 1 B 1
=T \TmeE T e )

Expanding the two terms within the parentheses in terms of v?/c? gives

w2\ 02 (—1)(=2) [ =2\°  (—D)(=2)(=3) [ —?\®
(10_2) _1+c_2+%<c_2) +()(3¢(C_2> L.

2(ly + 12) v2 vt 28 102 30t 5 o8
At — 1+ — 4~ 4+ 2 4] 22 27 ..
c JrcQJrc‘lJrcﬁ+ 2¢2 8c* 16cf
2 +k) (102 50t 10
c 2c¢2 8¢t 16cb

2 4
At~ itlz) (” + 5”—) .

c 2 4t
(b) For small v. we can neglect all but the first nonzero term, so

At~ (i+1l2) v _ (l1+lz)U2.

c c? c3

Thus, At is proportional to v with constant of proportionality (11 + l2)/c®.
mM
m+ M’
. mM
If M >> m, then the denominator m + M ~ M ,so u ~ S m.

(b) ' ag
_ M N _ 2 _ 1
“_m(m+M)_m<%+%>_m(1+%>

We can use the binomial expansion since §; < 1.

e ) - G e

) Ifm =~ LM, then 22 ~ —L_ ~ 0.000545.

38. (@) u=

1836 M 1836
So a first order approximation to p would give u = m(1 — 0.000545). The percentage difference from p = m is
—0.0545%.

39. (a) Fora/h < 1, we have

L 1 _1(,_1e  3a'
(a2 4+ h2)1/2 " h(14+a2/h2)V/2  h 2h2 ' 8ht )7
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Thus

2GMmh( 1a®> 3a* )
R ez 22

2
_26Mmld (| 8a® \_GMm (| 3a
T a2 2hR2 4R2°77 ) T K2 4p2 )

(b) Taking only the first nonzero term gives

GMm
h?
Notice that this approximation to F" is independent of a.
(¢) Ifa/h = 0.02, then a®/h* = 0.0004, so

F =~

GMm
F =~ e

Thus, the approximations differ by 0.0003 = 0.03%.
40. (a) If his much smaller than R, we can say that (R + h) =~ R, giving the approximation

(1— %(0.0004)) = GMm 4 6.0003).

h2

mgR? N mgR? .

F=Tyme ~ e =™

()
. ng2 _ mg _ _o
F=myme =~ aramez - ML T1/E)
_ (=2) (h (=2)(=3) (h\* | (=2)(=3)(—4) (h\®
m9<l+T(ﬁ)+T(ﬁ) P (R) +>
o <1_%+ﬁ_4_h3+...>
- RTR R

(c) The first order correction comes from term —2h/R. The approximation for F is then given by
2h

F=~ 1-—).

" ( R )

If the first order correction alters the estimate for F' by 10%, we have

% =0.10 so h =0.05R =~ 0.05(6400) = 320 km.

The approximation F' &~ mg is good to within 10% — that is, up to about 300 km.
41. (a) We take the left-hand Riemann sum with the formula

Left-hand sum = (1 + 0.9608 + 0.8521 + 0.6977 + 0.5273)(0.2) = 0.8076.

Similarly,
Right-hand sum = (0.9608 + 0.8521 + 0.6977 4 0.5273 + 0.3679)(0.2) = 0.6812.
(b) Since
2
—a? 2y, (=2%)?  (=a?)°
zt a®

77
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©

1 5 1 (I}4 wﬁ
/eiwd:cz/ (1—w2+———>dx
o o 2 6
(e |
N 3 10 42

= 0.74286.
0

(d) We can improve the left and right sum values by averaging them to get 0.74439 or by increasing the number of

subdivisions. We can improve on the estimate using the Taylor approximation by taking more terms.

42. (a) The Taylor seriesfor 1/(1 —z) =1+z 4+ 2> +2°+ .., 50

1 # _ 2 3
568 = T g = L+ (002 +(0.02)7 +(0.02)° + ..

= 1.020408...

(b) Since d/dx(1/(1 — )) = (1/(1 — =))?, the Taylor series for 1/(1 — x)? is
d . )
%(1+$+$2+x5+...):1+2x—|—3x2+4$3+---
Thus

1 1

(0.99)2 ~ (1—0.01)2

1+ 2(0.01) + 3(0.0001) + 4(0.000001) + - - -

= 1.0203040506 . . .

Solutions for Section 10.4

Exercises

1. Let f(z) = €° so f(0.1) = e%'. The error bound in the Taylor approximation of degree 3 for f(0.1) = 3% about
x =0is:
M-j0.1—-0[*  M(0.1)*
4! 24
where | (z)] < M for0 < z < 0.1. Now, f® () = €®. By looking at the graph of e®, we see that | f*)(z)] is
maximized for x between 0 and 0.1 when = = 0.1. Thus,

|Es| = |£(0.1) — P5(0.1)] <

|f(4)‘ < 6041

SO
0.1

- (0.1)*
|Es| < % ~ 0.00000460.

2. Let f(x) = sinz, so £(0.2) = sin(0.2). The error bound in the Taylor approximation of degree 3 for f(0.2) = sin(0.2)

about x = 0 is:
M-[0.2—0]* M(0.2)*

4! 24
where |f® (z)| < M for 0 < 2 < 0.2. Now, f® () = sin z. By looking at the graph of sin z, we see that | f ) (z)| is
maximized for x between 0 and 0.2 when x = 0.2. Thus,

|Es| = [£(0.2) = P5(0.2)] <

|f] < sin(0.2),

SO
sin(0.2) - (0.2)*

~ 0.0000132.
24

|E3] <
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3. Let f(x) = cosz, so f(—0.3) = cos(—0.3). The error bound in the Taylor approximation of degree 3 for f(0.2) =
cos(—0.3) about z = 0 is:

M-|-03-0" M(-03)"

| B3| = [£(~0.3) = P3(~0.3)] < al 24 7

where |f® (z)| < M for 0 > x > —0.3. Now, f*)(z) = cos x. By looking at the graph of cos x, we see that | f ) (z)|
is maximized for x between 0 and —0.3 when x = 0. Thus,

I <cos0=1,

SO
1-(-0.3)*

oY ~ 0.000338.

| B3| <

4. Let f(x) = v/1 + x. The error bound for the Taylor approximation of degree three for f(2) = /0.9 about x = 0 is:

M-|-01-0* M- (-0.1)*
4! o 24 '

|Es| = |f(=0.1) = P3(=0.1)] <

where | f*)| < M for0 > = > —0.1. Since f® (z) = —12(1+ x)~(7/? | we see that if x is between 0 and —0.1, the
maximum is at —0.1. Thus [ f®)z)| < 12(1 — 0.1)~"/2. Thus,

15
16

_72 (=0.1)*

E3| <
|Bs| < o

(1-0.1) ~ 0.00000565.

5. Let f(x) = In(1 + z). The error bound in the Taylor approximation of degree 3 about z = 0 is:

M-[0.5—0[* M(0.5)"

|Ea| = |£(0.5) = P5(0.5)] < al 24

where | f*) ()| < M for 0 < z < 0.5. Since

3!

(4) —

and the denominator attains its minimum when z = 0, we have | f ) (z)| < 3!, so

3!(0.5)*

Eyl <
Bl < —54

=~ 0.016.

1
. The error bound for the Taylor approximation of degree three for f(2) = —= about
Niew ylor app g f2)

3

M-]2-0* M-2°
4! o240

|Es| = |f(2) — P3(2)] <
where \f(4>| < M for 0 < z < 2. Since

f(4)(x) _ %(1 _i_m)f(9/2)7

we see that if - is between 0 and 2, |f®z)| < 105 Thus,

4
15,2 _ 10 _ 437

Fa| < —2 .22
|Bs] < 16 24 24

This is not a very helpful bound on the error, but that is to be expected as the Taylor series does not converge at x = 2.
(At x = 2, we are outside the interval of convergence.)
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7. Let f(x) = tanz. The error bound for the Taylor approximation of degree three for f(1) = tan 1 about z = 0 is:

M-1-0* M
Bs| = 1f (1) = Bs(@)l < —fy—— =5,

where \f(4>(ac)| < M for 0 < z < 1. Now,

_ 16sinz 24 sin® x

fD ()

cosd x cosbz
From a graph of f*)(z), we see that f() (z) is increasing for & between 0 and 1. Thus,
£ @) < 179 1) ~ 39,

SO

IBs| < % — 165,

This is not a very helpful error bound! The reason the error bound is so huge is that z = 1 is getting near the vertical
asymptote of the tangent graph, and the fourth derivative is enormous there.

8. Let f(x) = (1—2)/3,s0 £(0.5) = (0.5)'/3. The error bound in the Taylor approximation of degree 3 for f(0.5) = 0.53
about x = 0 is: | . .
M-|05—0* M(0.5)
Es| = b)) — P3(0.5)] < =
|Bs| = 17(0.5) ~ Py(0.5)] < 210 0oL,
where \f(4)(x)| < M for 0 < z < 0.5. Now,
@ _ 80 . 13
) = 31— )"0,
By looking at the graph of (1 — ) ~(*1/3) | we see that | f*) (x)| is maximized for 2 between 0 and 0.5 when = 0.5.
Thus,
|f(4)| < @ (1)—(11/3) _ @ .211/37
81 \2 81
50 /3 (0.5)*
80 -2 - (0.
B3| < ——— =~ 0.033.
|Es| < 21 0.033
Problems

9. (a) The Taylor polynomial of degree 0 about ¢ = 0 for f(t) = e’ is simply Py(z) = 1. Since e’ > 1 on [0, 0.5], the

approximation is an underestimate.
(b) Using the zero degree error bound, if | f'(¢)| < M for 0 < ¢t < 0.5, then

|Eo| < M -|t| < M(0.5).
Since |f'(t)| = |e*| = e is increasing on [0, 0.5],
PO < < VE=2,

Therefore

|Eo| < (2)(0.5) =1.
(Note: By looking at a graph of f(¢) and its 0" degree approximation, it is easy to see that the greatest error occurs
when ¢t = 0.5, and the error is ¢®® — 1 ~ 0.65 < 1. So our error bound works.)

10. (a) The second-degree Taylor polynomial for f(t) = e’ is Pa2(t) = 1 + ¢ + t*/2. Since the full expansion of e’ =

1+t+12/24+3/6 +t*/24 + - - - is clearly larger than Py(t) for t > 0, Py(t) is an underestimate on [0, 0.5].
(b) Using the second-degree error bound, if | f ) (t)| < M for 0 < t < 0.5, then

3
<My < MO5)
3! 6

Since | ) (t)| = e’ and €' is increasing on [0, 0.5],

O < <Va=2.

| E2|

So 5
|Ba| < —(2)(2'5) < 0.047,



11.

12.

13.

14.

15.

16.

10.4 SOLUTIONS 721

(a) 6 is the first degree approximation of f(#) = sin #; it is also the second degree approximation, since the next term in
the Taylor expansion is 0.
Py (0) = 0 is an overestimate for 0 < 6 < 1, and is an underestimate for —1 < @ < 0. (This can be seen easily from
a graph.)
(b) Using the second degree error bound, if |f(3)(9)| < M for —1 < 6 < 1, then
3
MOP M
3~ 6
For what value of M is | f®)(0)] < M for —1 < 6 < 12 Well, |f® ()| = | — cos 0] < 1. So |Ez| <

3
(a) 60— 37 is the third degree Taylor approximation of f(6) = sin 6; it is also the fourth degree approximation, since the

|Es| <

=0.17.

1
6

next term in the Taylor expansion is 0.
P5(0) is an underestimate for 0 < 6 < 1, and is an overestimate for —1 < 6 < 0. (This can be checked with a
calculator.)

(b) Using the fourth degree error bound, if | f*)(6)] < M for —1 < 6 < 1, then

5
Moo _ M

5! — 120
For what value of M is | f*)(0)] < M for —1 < 6 < 12 Since f®(#) = cos 6 and | cos 0| < 1, we have

|Es] <

1
< —<0. .
|Ea| < {55 < 0.0084

(a) (1) The vertical distance between the graph of y = cosx and y = Pio(z) at £ = 6 is no more than 4, so
|Error in Py (6)| < 4.

Since at x = 6 the cos z and Pao(z) graphs are indistinguishable in this figure, the error must be less than the
smallest division we can see, which is about 0.2 so,

|Error in Pao(6)] < 0.2.

(i) The maximum error occurs at the ends of the interval, that is, at x = —9,2 = 9. At x = 9, the graphs of
y = cosz and y = P»o(x) are no more than 1 apart, so

Maximum error in P (z) <1
for—-9<z<9 -

(b) We are looking for the largest z-interval on which the graphs of y = cosz and y = Pio(x) are indistinguishable.
This is hard to estimate accurately from the figure, though —4 < x < 4 certainly satisfies this condition.

The maximum possible error for the n*™ degree Taylor polynomial about 2 = 0 approximating cosz is |E,| <
p_ln+1 .. . .
%, where | cos(™ V) x| < M for 0 < z < 1. Now the derivatives of cos x are simply cos z, sin z, — cos x, and

. . n+1
— sin . The largest magnitude these ever take is 1, so | cos ™V ()| < 1, and thus | E,,| < 12 L. The same

— (n+1)! — (n+1)!"
argument works for sin x.

By the results of Problem 14, if we approximate cos 1 using the n*® degree polynomial, the error is at most m
For the answer to be correct to four decimal places, the error must be less than 0.00005. Thus, the first n such that

(n%)! < 0.00005 will work. In particular, when n = 7, é = Wlm < 0.00005, so the 7" degree Taylor polynomial
will give the desired result. For six decimal places, we need ﬁ < 0.0000005. Since n = 9 works, the 9'" degree
Taylor polynomial is sufficient.
(@
Table 10.1 Table 10.2
Fi=sinx —x Fi=sinx —x
x sinz E z | sinx E
—0.5 | —0.4794 | 0.0206 0 |0 0
—0.4 | —0.3894 | 0.0106 0.1 | 0.0998 | —0.0002
—0.3 | —0.2955 | 0.0045 0.2 | 0.1987 | —0.0013
—0.2 | —0.1987 | 0.0013 0.3 | 0.2955 | —0.0045
—0.1 | —0.0998 | 0.0002 0.4 | 0.3894 | —0.0106
0.5 | 0.4794 | —0.0206
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(b) See answer to part (a) above.

©o 0.03 f———————-

-——- —0.03 +-——-——--

The fact that the graph of E; lies between the horizontal lines at +0.03 shows that |E1| < 0.03 for —0.5 <
z < 0.5.

17. (a) See Figure 10.7. The graph of E; looks like a parabola. Since the graph of E; is sandwiched between the graph of
Yy = 2?2 and the z axis, we have

|Ei| <a® for |z <0.1.

Yy Yy
\ 001 I _ .2 ’ €
N y=x= 7 y=ua3 /
N // El /
2 / —0.1 B
1 = = - } — Es Lo
-0.1 0.1 e 0.1
7/
/
/
—0.01 + / —0.001 +
Figure 10.7 Figure 10.8

(b) See Figure 10.8. The graph of Es looks like a cubic, sandwiched between the graph of y = 23 and the x axis, so
|E2| < 2® for |z| <0.1.

(c) Using the Taylor expansion

v _q 2?2
e’ = +$+§+§+"'
we see that ) 5 .
© o T T
E1:€ —(1+1’) g—F?‘FE‘F
Thus for small z, the = /2! term dominates, so
2
T
E = o0
and so F; is approximately a quadratic.
Similarly
2 3 4
@ TN_ T T
E,=e —(1+m+7)— 30 + 1 +
Thus for small z, the > /3! term dominates, so
3
T
Ey = a7
and so E» is approximately a cubic.
18. 0.01
—0.1 0.1
1 -
Eo
—0.01—+

The graph of Ey looks like a parabola, and the graph shows

|Eo| < 0.01 for |z| <0.1.



19.

20.

Solutions for Section 10.5

10.5 SOLUTIONS

(In fact | Eg| < 0.005 on this interval.) Since

1 2?2 ozt a2t
cosr=1-——r —|——4! Gl +-
2 4 6
T T T
EO:cosx—lz——Z! +—4! o + e
So, for small x,

22
E()%f?’

and therefore the graph of Ej is parabolic.

723

Since f(z) = e®, the (n+1)* derivative f("*V)(z) is also ®, no matter what n is. Now fix a number z and let M = e®,
then |1 (t)| < e’ < e on the interval 0 < ¢ < . (This works for z > 0; if # < 0 then we can take M = 1.) The

important observation is that for any x the same number M bounds all the higher derivatives f (n+1) (z).
By the error bound formula, we now have
M |;lc|”'*'1

[En(@)] = le” = Pa(e)| < T 0y

for every n.
To show that the errors go to zero, we must show that for a fixed = and a fixed number M,
—0 as n — oo.

Since M is fixed, we need only show that

1 n+1

m‘[l]‘| —0 as n— oo.

This was shown in the text on page 500. Therefore, the Taylor series 1 4 = + 22 /2! 4 - - - does converge to e”.

N 2 Z°
51na:—x—§+5—---
Write the error in approximating sin = by the Taylor polynomial of degree n = 2k + 1 as E,, so that
3 5 2k+1
inr—z— 4+ T o)
SMT=T =gty D ey T B

(Notice that (—1)* = 1if k is even and (—1)¥ = —1if k is odd.) We want to show that if  is fixed, E,, — 0 as k — oc.

Since f(x) = sin z, all the derivatives of f(z) are & sin x or & cos z, so we have for all n and all ©
fO D (@) < 1.
Using the bound on the error given in the text on page 500, we see that

k
‘Enl S m‘m|2 +2

By the argument in the text on page 500, we know that for all z,

|2k+2 |n+1

| _ =
2k +2)!  (n+1)!

Thus the Taylor series for sin & does converge to sin x for every x.

—0 as n=2k+1— oo.

Exercises

1.
2.

No, a Fourier series has terms of the form cos nx, not cos™ x.

Not a Fourier series because terms are not of the form sin nz.
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3. Yes. Terms are of the form sin nx and cos nzx.

4. Yes. This is a Fourier series where the cos nx terms all have coefficients of zero.

5.
3 M iwyae= L [ g ] =0
a0 = o - x w_27r__ﬂ x ; x| =
1 ™ r ro ™
alzf/ f(@)coszdr = = / 7COS$d‘T+/ cosxdw]
™
o L/ = 0
B 0 ™
1 . .
= — |—sinz +sinw 1 =0.
™
L -7 0
Similarly, a2 and a3 are both 0.
(In fact, notice f(x) cos nz is an odd function, so fjﬂ f(z)cosnx =0.)
17 . e "
b= — f(@)sinzdr = = —sinzdz + sinz dz
m - ™ LJ —m 0
il Mo
= =—|cosz| +(—cosx)|l |=—
™
L - 0
1 (" : il .
by = — f(x)sin2zxde = = —sin 2z dz + sin 2z dz
m -7 ™ LJ —m 0
11 ’ 1 "
= 5 cos 2z - + (75 cos 2x) J =0.
1" . e i
by = — f(x)sin3zxdr = = —sin 3z dz + sin 3z dz
n -7 ™ LJ —m 0
r 0 ™
1)1 1 4
= § cos 3z B + (—gcos?uc) J =5
Thus, Fi (z) = Fa(z) = %Sinx and F3(z) = % sinx + %r sin 3z.
1+ 14
—r -7
} — i T
s ™
+-1 41
Fi(z) = Fo(z) = ~ sinz F3(z) = %sinm—i—%siniﬁm
6. First,

1 T 1 0 ™
ao—%/wf(z)dz—%[/ﬂ—mdm—k/o zdz]

To find the a;’s, we use the integral table. For n > 1,

0

/

™

/

f(z) cos(nz) dx

™

3=

ap = —
i T

3=

(-

+ (% sin(nz) + % cos(nx))

210

T
2

—+

-7

L

27

—x cos(nx) dx—i-/ x cos(nx) dx}
0

(m))

0

— —5 COs

= sin(nz) 5
n

-

|

™

0
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1 1 1
= ( - + — cos(—nm) + — cos(nw) — n2>
2
= —1
p— (cosnm — 1)
Thus, a1 = —2,a2 = 0, and a3 = —=. To find the b;’s, note that f(z) is even, so for n > 1, f(z) sin(nz) is odd.
Thus,/ f(z)sin(nz) = 0,s0all the b’s are 0. Fy = Fr = 5 — 2 cosz, Fs = Z — 2 cosz — 4= cos 3z
T4 T+
—r T —7 T
| | x | | xT
F1(J:):F2(x):%—%cosz Fg(x):%—%COS$—%COS3J}

7. The energy of the function f(z) is

_ 1 [T 2, L [T 5 1 g
Eiﬂ'/,ﬁ(f(x)) dxfﬂ[xdxfsﬂx

1, 5 3 2 2,
= — — (- = — =-m =6.57974.
5T m T =5 =T
From Problem 6, we know all the b;’s are 0 and ap = 5, a1 = —%, a2 =0,a3 = —ﬁ. Therefore the energy in the

constant term and first three harmonics is

AR+ AT+ A3 + A2 =242 + ad + db + a?

6.57596
hich that th tai
which means that they contain 6.57974
8. First, we find ag.
1
ao

_ T, 1 (2
o) " dx_27r<3

2 16 16
2 (T )+ 210+ — 6.
( 4 2 0 8172 6.57596

= 0.99942 ~ 99.942% of the total energy.

o
—Tr _3

To find a,,n > 1, we use the integral table (I1I-15 and III-16).

™

us
1 2
Ap = — x” cosnx dx
—T

™

3=

-

2
Fal 2x 2 .
{_n sin(nz) + = cos(nx) — 3 sm(nm)}

FL—Z cos(nm) + i—z cos(—nw)]

3=

ES

= — cos(nm)

n2

Again, cos(nm) = (—1)" for all integers n, s0 a, = (—1)" . Note that

1 v
b, = 7/ 22 sinnz de.
e

-

. . . . . . s .
22 is an even function, and sin nz is odd, so 22 sin nz is odd. Thus fﬂr 22 sinnz dz = 0, and b,, = 0 for all n.

We deduce that the n*" Fourier polynomial for f (where n > 1) is

2 = i 4 .
=3 + ;(71) = cos(ix).
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In particular, we have the graphs in Figure 10.9.

F3(x)
72T flz) =22
Fa(x)
Fi(z)

Figure 10.9

L[ I ™
a0 = o _ﬂh(z)dm—%/o axdm—z

As in Problem 10, we use the integral table (III-15 and III-16) to find formulas for a,, and b,,.

™

1 (" 1 [7 1 1
an = — / h(z) cos(nz) dz = = / zcosnrdr = = (E sin(nz) + — Cos(nm))
. 7 /o m\n n

™

0

Note that since cos(nm) = (—1)", an = 0if n is even and a, = ——3— if n is odd.
1 (7 I
bn = = h(zx) cos(nz)dr = — zsinx dx
™) 7/,

™

_1 < — % cos(nz) + % Sin(mﬁ))

™

= % ( — %cos(mr))

1
=- cos(nm)

0

(=)™ ifn>1

S

We have that the n*® Fourier polynomial for h (for n > 1) is

Hy(z) = % + Z (% (cos(m) - 1) - cos(iz) + M)

This can also be written as
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where [%] denotes the biggest integer smaller than or equal to 3. In particular, we have the graphs in Figure 10.10.

T h(x)

Figure 10.10

10. To find the n'" Fourier polynomial, we must come up with a general formula for a,, and b,,. First, we find ao.

1 [ 1 [ 1 [22]"
a0 = 5- _ﬂg(a:)da:—%/_ﬂxdx—%[g 7r:|—0

Now we use the integral table (III-15 and III-16) to find a,, and b,, for n > 1.

™

an = 1 / xcosnxdx = 1 <m sin(nz) + LQ cos(naz))
m\n n

— -7

™

1/ 1 1
== <nQ cos(nm) — = COS(—TLﬂ')) =0

(Note that since x cos nx is odd, we could have deduced that f jﬂ zcosnx = 0.)

bn = 1 / rsinnx dx = 1 ( -z cos(nx) + % sin(n:r))
T ) . n n

s

—T

_ ! ( - %cos(nﬂ') - % cos(—nﬂ'))

s

2
=- cos(n)

Notice that cos(nm) = (—1)" for all integers n, 0 b, = (—1)"T'(2).
Thus the n*" Fourier polynomial for g is

() = Z(q)”lgsin(m).

In particular, we have the graphs in Figure 10.11.
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G 9(z)
Gs(x)
Ga(x)
Gi(z)
—m
} T
s
-t
Figure 10.11
Problems
11. (a) The graph of g(x) is
—1 ()
I I
I I
I I
I I
I L =
-7 —7/2 w/2 0

First find the Fourier coefficients: ag is the average value of g on [—, 7] so from the graph, it is clear that

a0 =5-(mx1)=73,
or analytically,
T /2 /2
1 1 1 1 /m T
ap = — g(z)dx = — lde = —=x ——(—7(7—>)
2 | 27 )2 2 )2 2m \2 2
1 1
- %(ﬂ') 57
1 o 1 /2 1 /2
ap = —/ g(z) coskx dx = —/ coskx dxr = — sinkx
™ s km
—r —7/2 —7/2
L (sinkj—ﬂ- — sin (—k—ﬂ)) L (2sin k—ﬂ-)
 km 2 2/))  kr 2/’
1 ™ 1 /2 1 /2
by = —/ g(z)sinkz dx = —/ sinkx dr = —— coskzx
T ) T ) o km 2

So,
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which gives

1 2 2
Fs(x) = 5 + ~ 08T — o cos 3.

Fg(m)
, . i 9(x)
| |

| |
I I z
-7 w/2 w/2 i

(b) There are cosines instead of sines (but the energy spectrum remains the same).

12. We have f(z) = 2,0 < = < 1. Let t = 2mx — w. Notice that as z varies from 0 to 1, ¢ varies from —m to 7. Thus
if we rewrite the function in terms of ¢, we can find the Fourier series in terms of ¢ in the usual way. To do this, let
g(t) = f(z) =2 = 4= on —7 < t < m. We now find the fourth degree Fourier polynomial for g.

I 1 [Tt+n 1 ([
o= o= = — | S ldt= —— S+t
0= 5r | 90 27r/ 27 (27r)2<2+”)

-

™

1

-7

Notice, ao is the average value of both f and g. Forn > 1,

1L [Tt+m 1 [
an = ;[W o cos(nt)dt = ﬁ/ (t cos(nt) + mcos(nt))dt

-
™

1 7t . 1 .
= — [E sin(nt) + 3 cos(nt) + - sm(nt)}

272 -
=0.
_ 1 Tt 1 . '
bn = - [W o sin(nt) dt = 92 ,/,,,(t sin(nt) + 7 sin(nt)) dt
1 t 1 - .
=53 [_E cos(nt) + 2 sin(nt) — - cos(nt)} B
— #(—4% cos(mn)) = —% cos(mn) = %(—1)”*’1,

We get the integrals for a,, and b,, using the integral table (formulas III-15 and III-16).
Thus, the Fourier polynomial of degree 4 for g is:

Ga(t) = % + %sint - %sin% + % sin 3t — % sin 4¢t.
Now, since g(t) = f(x), the Fourier polynomial of degree 4 for f can be found by replacing ¢ in terms of x again. Thus,
1 2 1 2 1
Fy(z) = 3 + - sin(2rz — ) — . sin(4rz — 2m) + 3 sin(6rx — 3mw) — o sin(8rx — 4m).

Now, using the fact that sin(x — 7) = — sinz and sin(z — 27) = sinz, etc., we have:

Fy(z) = % - sin(27mz) — %sin(47r:r) — % sin(67z) — % sin(87x).
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13. Since the period is 2, we make the substitution ¢ = o — 7. Thus, x = ”T” We find the Fourier coefficients. Notice
that all of the integrals are the same as in Problem 12 except for an extra factor of 2. Thus, ap = 1, a, = 0, and
bn = 2 (=1)"", so:

4 2 4 1
G4(t) =14+ —sint — = sin2t + — sin 3t — — sin 4¢.
ks i 3T T
Again, we substitute back in to get a Fourier polynomial in terms of x:
4 . 2 .
Fy(x) =1+ —sin(rx — w) — = sin(2wz — 27)
0 0
+4 sin(3wx — 3m) 1sin(élﬂc 4)
— L — 3m) — — mr — 4m
3T T

4 2 4 1
=1- - sin(mwz) — . sin(27z) — 3 sin(37wz) — . sin(4nz).

Notice in this case, the terms in our series are sin(nmx), not sin(27nx), as in Problem 12. In general, the terms will
2

be sin(n "), where b is the period.
14. The signal received on earth is in the form of a periodic function h(t), which can be expanded in a Fourier series

h(t) = ao + a1 cost + az cos 2t + ag cos 3t + - - -
+ by sint + by sin 2t + b3 sin 3t + - - -

If the periodic noise consists of only the second and higher harmonics of the Fourier series, then the original signal
contributed the fundamental harmonic plus the constant term, i.e.,

a + aicost+bisint = Acost
0 1 1

constant term  fundamental harmonic  original signal

In order to find A, we need to find ao, a1, and b;. Looking at the graph of h(t), we see

1
ao = average value of h(t) = o (Area above the x-axis — Area below the x-axis)
Y
1 T T T T T
5 [0 (3) - (0 (5) 20 (3) +0(3) +50(3))]
1 m T 1
-5 [0(5) - (3)] -z 00
/ h(t) costdt
—3m/4 —7/2 —m/4
|:/ —50costdt—|—/ 0costdt—|—/ —30costdt
—7 —3m/4 —7/2

/4 /2 3w /4 T
+/ SOCostdt+/ —30costdt+/ Ocostdt+/ —50costdt:|
—7/4 /4 /2 3mw/4

—3m/4 —7/4
— 30sint

3=

3=

= lf)() sint

-

—7/2



/4
—30sint
—m/4

/2
— 50sint
/4

+80sint

3#/4]

™

(- 4) (e 9)

= l[25x/§+ 15v/2 — 30 + 40V2 + 40v2 — 30 + 15v/2 + 25V/2]
™

= %[160\/5 —60] = 52.93,

b = l/ h(t)sintdt

s

3=

L ™ 37 /4

/2

1 —3m/4 —7/4 /4 /2
= — |50cost + 30cost — 80 cost + 30cost

i L —7 —7/2 —m/4 /4

[ V2 V2 V2 V2
=P (2(1)) 30 (20) - 80 (22

+30 (o - g) + 50 (—1 - (—g)ﬂ

_ {50 <§ 0> - 30 (? - (1)) +80 (? - (ﬁ

r p—3n/4 —7/2 —7/4
= / —508intdt—|—/ Osintdt-i—/ —30sintdt

/4 /2 3mw/4
+/ 805intdt+/ 73OSintdt+/ Osintdt+/
—m/4 /4 /2 3

™

/4

_1 [—25v/2+ 50 + 15v/2 — 0 — 15v/2 — 50 + 25V/2] :1(0)=0.
™ ™

+ 50cost

10.5 SOLUTIONS

—50sint dt]

3#/4]

Also, we could have just noted that by = + fjﬂ h(t) sintdt = 0 because h(t)sint is an odd function.

Substituting in, we get

ap +aycost+bysint =0+ 52.93cost + 0 = Acost.

So A = 52.93.

731

15. The energy spectrum of the flute shows that the first two harmonics have equal energies and contribute the most energy
by far. The higher harmonics contribute relatively little energy. In contrast, the energy spectrum of the bassoon shows the
comparative weakness of the first two harmonics to the third harmonic which is the strongest component.

16. Let f(z) = ax cos kx + by sin kz. Then the energy of f is given by

1/ (f(ac))2 dx = l/ (ak cos kx + by, sinkx)2 dx
s . T r
= 1 / (ai cos® kx — 2arby, cos kx sin kx + b3 sin® kz) dx
0 —T
= ai / cos® kx dr — 2ayby / cos kx sin kx dx + bi /

A= A

[a%ﬁ — 2abr - 0+ biﬂ = ai + bi.

17. Since each square in the graph has area () - (0.2),

ao:%/7r flx)dz

sin? kz dx}
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= QL . (%) - (0.2) [Number of squares under graph above z-axis
7r

— Number of squares above graph below z axis]

1 s
~—-(—)-(02)-[1 11 — 14] = 0.25.
- (5)(02)-[134 11— 14) = 0.25

Approximate the Fourier coefficients using Riemann sums.

Q
== 3|~
—
=
—~
=
(@]
o
)
/\
+
~
/‘\
\_/
@]
]
]
/‘\
b \./
+
=
—
=
(@]
o
w0
—~
=
+
~
~—
~—
(@]
o
7]
~—
~—
_

Similarly for by:

/ f(x)sinz dz

. [f( ) sin(— )+f( )un( ) + f(0)sin(0) + f (g) sin (%)} .

= 210:92)(0) + ()(=1) + (~L7)(0) + 0.V - 5

= —0.15.
So our first Fourier approximation is

Fi(z) = 0.25 - 1.31cosz — 0.15sin z.

2,,

y = Fi(z)
/NT/N

T T T T
— y - / ™ 2
-1

Similarly for as:

/ f(x) cos2x dx

~ [f( ) cos(—2m) + f( )cos( ) + f(0) cos(0) + f (g) cos(—w)} .

= 20921 + (1)(=1) + (~LT)V) + O] - 5

=-124

/ f(x)sin 2z dzx

Similarly for ba:

(0.92)(0) + (1)(0) + (~1.7)(0) + (0.N)(0)] - 5

~ = [f( ) sin(—27) —|—f< 2) sin(—m) 4+ f(0)sin(0) + f (g) sin(—ﬂ)} .

ol

]

ol

ol
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So our second Fourier approximation is

F>(z) =0.25 — 1.31cosz — 0.15sinz — 1.24 cos 2x.

= F
9t y = F(x)
1 N\ /V\ -z
—2m, - ™ 27

—2

As you can see from comparing our graphs of F; and F5 to the original, our estimates of the Fourier coefficients are
not very accurate.

There are other methods of estimating the Fourier coefficients such as taking other Riemann sums, using Simpson’s
rule, and using the trapezoid rule. With each method, the greater the number of subdivisions, the more accurate the
estimates of the Fourier coefficients.

The actual function graphed in the problem was

.3
sin(2
(5) sin 2x

1 2 1
y=——13cosx — sing — 2 cos 2z — -
4 i

=0.25—-1.3cosx — 0.18sinz — 0.63 cos 2x — 0.057 sin 2x.

18. The Fourier series for f is

z) =ao+ Zak coskx + Zbk sin kx.
k=1 k=1

Pick any positive integer m. Then multiply through by sin mz, to get

oo oo
f(x)sinmz = agsinmz + E ay, cos kx sinmx + E bi sin kx sinmx.
k=1 k=1

Now, integrate term-by-term on the interval [—, 7] to get

T Fid o0 oo
/ f(z)sinmzdx = / ao sinmx + E ay cos kx sinmx + E br sin kxsinmx | dx
—T —T

k=1 k=1

= ag / sinmx dx + Z (ak / cos kx sinmax dm)

- k=1 Q0
+ Z (bk / sin kz sin mx dx) .
k=1 -7

Since m is a positive integer, we know that the first term of the above expression is zero (because f ﬁﬂ sinma dx = 0).

Since f cos kx sin mx dxr = 0, we know that everything in the first infinite sum is zero. Since f sin kz sin mz dx =
0 where k& # m, the second infinite sum reduces down to the case where kK = m so

/ f(z)sinmzdz = bm/ sinmx sin ma dx = by, 7.

:l/ f(z)sinmez dz.
T -7

Divide by 7 to get
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19. (a)

]
]

—3r —27 - 2w 3

The energy of the pulse train f is

Next, find the Fourier coefficients:

1 1 1
ao = average value of f on [—7, 7] = %( Area) = %(1) =5
1 [" 1 1/2 1 1/2
ak:—/ f(as)coskmdx:—/ coskx dr = —sinkzx
L - T J 12 km 12
-1 (sin (E) —sin (7&)) -1 (25in (E>)
ok 2 2/))  krm 2))’
1 [ 1 1/2 1 1/2
bkz—/ f(x)sinkxdr = = sinkx dr = —-— cos kx
)= ™ —-1/2 k —1/2

o (§)on () - 0=

The energy of f contained in the constant term is

2
A3:2a8:2<i) S
2w

which is ) )
ﬁ _ Y2n = 1 ~ 0.159155 = 15.9155% of the total.
E 1/m 2w

The fraction of energy contained in the first harmonic is

(25in%)
2 2 -
% - %1 =" 7 ~0292653.

The fraction of energy contained in both the constant term and the first harmonic together is

A7 AR
T+~ 0.150155 + 0.202653 = 0.451808%.

(b) The formula for the energy of the k&'® harmonic is

sk 2 22k
Ai—ai+b2_(28m2> por o 2

km k272

By graphing it as a continuous function for k£ > 1, we see its overall behavior as k gets larger. See Figure 10.12. The
energy spectrum for the first five terms is graphed below as well in Figure 10.13.
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y ‘Ai
0.1
0.08 0. 08
0.06 0.06
0.04 27r2
0.02 |
k ! k
1 5 10 15 20 0 4 5
Figure 10.12 Figure 10.13

(c) The constant term and the first five harmonics are needed to capture 90% of the energy of f. This was determined by
adding the fractions of energy of f contained in each harmonic until the sum reached at least 90% of the total energy

of f:
Af A} A3 A3 AT AR
ETETETE TR TR S0

25111( ) sm( ) sln(%)

(d) Fs(z) = % + cosx + == S“’l cos 2z + cos 3z + 5'2“2 cosdx + cos bx
~— Fs5(=)
i i\ fx) i i
I
I 1] [
AN\ A AL A oA =
-3 —2m -7 _1'1 ™ 2 3
2 2
20. (a)
n r
N N
N N
N N
N I
N N
I N
N N
Ll Ll z
—3r —27 - ™ 2 3T

Next, find the Fourier coefficients:

ao = average value of f on [—7, 7] = QL( Area) = — (2) _ L
T

1 [T 1 [ 1 1o
ar = —/ f(z)coskrder = —/ coskxdr = —sinkzx

T ) . T J s km s

(i (5 i (FYY — (e (

(0 (5) —n (=5)) = 5 (2 (3))

1" 1 1 1o
b = —/ f(x)sinkxdx = —/ sinkx dr = —— cos kx

T ™ J 15 km s

- (on(5) o (2)) = o=
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The energy of f contained in the constant term is

1\2 2
A2 =2 2:2(—) =_-_

0= <o 5w 2572
which is

AF _2/257% 1

= — =~ 0.063662 = 6.3662 f the total.
E = 2/5m  br % ofthe tota
The fraction of energy contained in the first harmonic is

2 sin % 2
s _a_ ()
et e =~ 0.12563.
E E %
The fraction of energy contained in both the constant term and the first harmonic together is

T

5 + fl ~ 0.06366 + 0.12563 = 0.18929 = 18.929%.

(b) The formula for the energy of the k&'® harmonic is

sk 2 2k
Aizai+b2=(zsm5> L

km k2m2

By graphing this formula as a continuous function for k > 1, we see its overall behavior as k gets larger in Fig-
ure 10.14. The energy spectrum for the first five terms is shown in Figure 10.15.

2
Yy A
0.02 0.02
k
0.015 - 0.015
0.01 0.01
527
0.005 0.005
k ! k
1 10 20 30 40 0 1 2 3 4 5
Figure 10.14

Figure 10.15
(¢) The constant term and the first five harmonics contain

A2 AT AT AT AT A2

E+E+f+f+f+fw6l'5255%
of the total energy of f.
(d) The fifth Fourier approximation to f is

.1 .o .3 soo4
1 2sin(z) sin(£) 2sin(g) sin(F) 2sin1
F5(x) = &= + =22 cosx + —2> cos 2z + —5_2= cos 3z + —5-2~ cos 4x + =32= cos 5.

T
3
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21. (a)

=
8
&

= o———————

—37 —27 -r -1 |
The energy of the pulse train f is

p=2 [ twra-1

Next, find the Fourier coefficients:

1 1 1
ao = average value of f on [—7, 7] = 2—( Area) = 2—(2) ==,
Y T ™

1 [ 1! 1.
ar = — f(x)coskxdr = = coskxdr = — sinkx
o o km .
— L (sink — sin(—k)) = = (2sink)
T km S T n 't ’

1

—1

™ 1
bk:l/ f(ac)sinkxdx:l/ sinkxdx:—icosk:x
L O km
1

1
= 7E(cosk —cos(—k)) = H(O) =0.

The energy of f contained in the constant term is
12 2
Aﬁ:mﬁ:z(-) ==
which is
A5 2/7? _
E ~ 2/m
The fraction of energy contained in the first harmonic is

~ 0.3183 = 31.83% of the total.

3=

. 2
A2 2 2sin 1
A1 _ 3 u ~ 0.4508 = 45.08%.

E E

:!Iw:‘

The fraction of energy contained in both the constant term and the first harmonic together is

A3 | AR
20 1 21 % 0.7691 = 76.91%.
ETE %

(b) The fraction of energy contained in the second harmonic is

: 2
A3 _a_ ()
2 =2 =1 201316 = 13.16%

™

so the fraction of energy contained in the constant term and first two harmonics is

A3 A A3 _ _
T+ + g~ 0.7691 4 0.1316 = 0.9007 = 90.07%.

Therefore, the constant term and the first two harmonics are needed to capture 90% of the energy of f.

737
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©

1 2sin1 sin 2 2sin 3
cosx + —— cos 2x +
s

os 3

22. As c gets closer and closer to 0, the energy of the pulse train will also approach 0, since

™ c/2
E= 1/ (f(2))* dz = l/ 12dp = 1 (5 - (79)) =<
- T J ey T \2 2 s
The energy spectrum shows the relative distribution of the energy of f among its harmonics. The fraction of energy carried
by each harmonic gets smaller as ¢ gets closer to 0, as shown by comparing the k*® terms of the Fourier series for pulse
trains with ¢ = 2,1, 0.4. For instance, notice that the fraction or percentage of energy carried by the constant term gets
smaller as c gets smaller; the same is true for the energy carried by the first harmonic.

If each harmonic contributes less energy, then more harmonics are needed to capture a fixed percentage of energy.
For example, if ¢ = 2, only the constant term and the first two harmonics are needed to capture 90% of the total energy of
that pulse train. If ¢ = 1, the constant term and the first five harmonics are needed to get 90% of the energy of that pulse
train. If ¢ = 0.4, the constant term and the first thirteen harmonics are needed to get 90% of the energy of that pulse train.
This means that more harmonics, or more terms in the series, are needed to get an accurate approximation. Compare the
graphs of the fifth and thirteenth Fourier approximations of f in Problem 20.

23. By formula II-11 of the integral table,

™

/ cos kx cosmx dx = ﬁ (m cos(kz) sin(mz) — k sin(kx) cos(mm))

-

-7
Again, since sin(nm) = 0 for any integer n, it is easy to see that this expression is simply 0.

24. We make the substitution u = mx, dx = %du. Then

U 1 u=mmm
/ cos’ ma do = — cos® u du.
- m u=—mm
By Formula I'V-18 of the integral table, this equals
mm mT
11 1
-z 1du = —
+ p— /_ du =0+ o Y

mT

mm

1 [1 . }
— | = cosusSmu
m |2

—mm —mm

1
= %(277171”) =.

25. The easiest way to do this is to use Problem 24.

/sinzmxdx:/ (1—cos2mm)dx:/ d;t—/ cos” max dx

= 27 —m using Problem 24

= T.
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26. By formula II-12 of the integral table,

s
/ sin kx cos mx dx

— %}CQ (m sin(kx) sin(mx) + k cos(kx) COS(mm))
m2 —

1

=1 [m sin(k) sin(mm) + k cos(km) cos(mm)

—msin(—km) sin(—mn) — k cos(—km) cos(mw)] .

Since k and m are positive integers, sin(km) = sin(mn) = sin(—kn) = sin(—mm) = 0. Also, cos(kmr) = cos(—km)
since cos x is even. Thus this expression reduces to 0. [Note: since sin kx cos ma is odd, so f fﬂ sin kx cos mx dx must
be 0.]

27. Using formula II-10 in the integral table,

™

/ sin kx sinmez dx = ﬁ [k cos(kx) sin(mz) — msin(kz) cos(mx)}

-

Again, since sin(nm) = 0 for all integers n, this expression reduces to 0.

28. (a) To show that g(t) is periodic with period 27, we calculate
L (be+2m)\ b bty
g(t+27r)f(727r >f(%+b)f(g)g(t)-

Since g(t + 2m) = g(t) for all ¢, we know that g(¢) is periodic with period 27. In addition

o (5 =1 (522 = s

(b) We make the change of variable ¢ = 27x/b, dt = (27/b)dz in the usual formulas for the Fourier coefficients of
g(t), as follows:

b b/2 %
ap = S g(t)dt = i/ g (2%—%) 2—7rdsc _1 f(x)dx
r=—b/2 b

b/2

1 [ 1 21 2rkx\ 27
ar = ; \/tziﬂ-g(t) COS(kt) dt = ; /2:_b/2g (T) COS (T) T dzx
b/2
_2 f(z) cos (27T]m) dz
b b2 b
7r b/2
1 . 1 2rx\ . (2wkx\ 2w
b = = /t:_ g(t) sin(kt) dt = p /I__b/Qg (T) sm( A ) > d

b/2
= z/ f(z)sin (27rkx) dx
b b2 b

(c) By part (a), the Fourier series for f(z) can be obtained by substituting ¢ = 27z /b into the Fourier series for g(t)
which was found in part (b).
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Solutions for Chapter 10 Review.

Exercises
1. 61%1+€(x71)+§($71)2
1 1 )
2. lnx%ln2—|—§(x—2)— g(:r—Q)

3 Sian—L—FL QH_E _|_L :C_‘_E :
' V2 V2 1) 2v2 4

4. Differentiating f(z) = tanx, we get f'(z) = 1/ cos®> z, f”'(z) = 2sinz/ cos® z.

Since tan(w/4) = 1, cos(n/4) = sin(n/4) = 1/+/2, we have f(n/4) = 1, f'(r/4) = 1/(1/V2)* = 2,

ya
f(w/4) = 20068 = 450

a1 ()4 () (- 9)+ 57 (-5

T 4 7\ 2 s 7\ 2

5. f'(x) = 32® 4+ 142 — 5, f"(x) = 62 + 14, f"”’(x) = 6. The Taylor polynomial about 2 = 1 is

12 20 6
Piy(z) =4+ F(x -1+ j(x -1+ g(x —1)3

=44+12(x — 1) +10(x — 1)> + (z — 1)°.

Notice that if you multiply out and collect terms in Ps(z), you will get f(x) back.
6. We multiply the series for e’ by 2. Since

t2 3
=l o+
¢ 21 " 3l ’

multiplying by ¢* gives
th 4
2t _ 42,3 U
te" =t +t+2!+3!+

1,1
= t2 ts _t4 _t5 st
+P 4ot + ot

7. We substitute 3y into the series for cos z. Since

o1 1'2 1,4 1'6
COST = _§+I_a+.”7

substituting x = 3y gives

cos(3y) =1— (33!)2 + (33!)4 - (Séjl)'s 4.
= —gy2+%y4—%y6+m
8.
0% cos 0 = 6° (1 — (9;)2 + (642!)4 — (0;)6 + >
R A
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9. Substituting y = ¢% insiny =y — L + = — = 4 ... gives

(6 410 414
1 27 2_7 —_—— — ..
sint® =t 3 + 5l 7l +

10.

_1
S U ¥ SR
\/47:272\/1—'72 2

T . 1 .
11. Substituting y = —42 into T =1—-y+ y2 - y3 + .- gives
Y

= 14422 4162 +642° + -
1 — a2 z 6z 64z
12.

_t
T+t

—t(l+t) ' =t (1 b (-1t + (—1)2(!—2)t2 N

—1)(=2)(=3) 5
QG )H__.)

3

=ttt

13. We use the binomial series to expand 1/+/1 — 22 and multiply by z2. Since

I —i2 gL (=1/2)(=3/2) o (=1/2)(=3/2)(=5/2) s
1+x—(1+:c) =1 5%+ 5 z” + al x° +
B R I L N
=1 23:—1— 83: 161’ 4+
Substituting z = —2z2 gives
2
z . 1 2y, 3, 252 5 213
— 5 (=) + g(=27)" = 5 (=27)" +
B 1o, 3,4 155
—1—|—2z —|—8z +16z—|— .
Multiplying by 22, we have
Z2 2 4 3 6 5 8
=2+ -z + g2+ A+

14.

™
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o _ o (i hY h (Y (Y,
a+b_a(1+§)_ a - a a a

16. Using the binomial expansion for (1 + z)3/2 with = y/B.
5 3/2 o\ \ 3/2 2\ 3/2
(B® +4°)** = <B2 +B? (BQ)) = (32 (1+ (%) )) =B’ (1+ (%) )
_ 5 (1 ) <(%)> L (320172 ((%) ) L B20/C12) (@)) y )
2! 3!
(B E) w6 )

17. Using the binomial expansion for (1 + z) =%/ with = = r/a:

15.

r —3/2
@ - (a+at D)7 (i ))3/2 “en () ,
- e (1o (5) + B (1) SRR (1))

3!
(-4 )+E<£)2,§(£)3+...
T ad/2 2 8 \a 16 \a '

T
a

Problems

18. (a) Factoring out 7(1.02)® and using the formula for the sum of a finite geometric series with @ = 7(1.02)® and » =
1/1.02, we see

B 5 7 7 _ 7
Sum = 7(1.02)% + 7(1.02)% + 7(1.02) + 7 + oy T moap T T oy

3 1 1
= 7(1.02) (1+ 1.02) + 02)2 +-- 102 103)

. (1 - (1.021)104)

T.02
1.02)1%* — 1 1.02
_ 7(1oz)? (02— 1102
7(1.02) ( (1.02)104  0.02
_7(1.02'% —1)
T 0.02(1.02)100

(b) Using the Taylor expansion for ¢” with z = (0.1)2, we see

7(0 1) 7(0.1)°

=7 (1 +(0.1)% + (0'21!)4 - (O;!)G + )

Sum =7+ 7(0.1)% + = 4

_ 76(0‘1)2

— 7001
19. Infinite geometric series witha = 1, z = —1/3, so

1 3
1—(-1/3) 4

Sum =



20.

21.

22,

23.

24,

25.

26.

27.
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Finite geometric series which can be rewritten as

1—1/21
S(Huuu...g):g(/>:16(11).

2 4 8 213 1-1/2 214
This is the series for e” with x = —2 substituted. Thus
1—2+%—%+%+---:1+(—2)+ (_22,)2 + (_32!)3 + (_42,)4 +oe=e
This is the series for sin z with x = 2 substituted. Thus
2*%+35%*137!8+"':2*§+25*T*27*:+"‘:Sin2.

Factoring out a 3, we see
1

1
3(1+1+5+3!

+I+a+“')—3e = 3e.

Factoring out a 0.1, we see

0.1)®  (0.1)° 0.1)" )
0.1 <0.1— ( 3!) + ( 5!) _ 7!) +> = 0.1sin(0.1).

Using the fact that

1 0 " 0
fa) ~ Py(a) = FO) + O+ L 002 08
and identifying coefficients with those given for Ps(x), we obtain the following:

(a) f(0) = constant term which equals 2, so  f(0)=2.

(b) f'(0) = coefficient of = which equals —1, so f'(0)=—1.

(© f?ﬁo) = coefficient of 22 which equals —1/3, so  f"(0)=-2/3.
(d) fs—!@ = coefficient of 2* which equals 2, so  f"(0) = 12.

The second degree Taylor polynomial for f(z) around x = 3 is

Fo) ~ £ + @) - 3) + LD @ a2
10

=1+5(:c—3)—E(m—?))?:1+5(x—3)—5(m—3)2.

Substituting x = 3.1, we get

f(31) =~ 145(3.1—3)—5(3.1—3)> =1+5(0.1) — 5(0.01) = 1.45.
(a) Writing

and using the Binomial expansion, we have

f(l’)%Pz(a:):b<1_lx_z> b

2a 242

743

(b) A graph of the upper half the ellipse is shown in Figure 10.16. Since the graph has a horizontal tangent at z = 0, the

coefficient of x is 0.
(c) The parabola is
_, b?
v= 2a2’

Its z-intercepts are x = +/2a.
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(d) The graphs of

x? z?
= =24/1—— and =2—-—
y = f(x) 9 y 5
are shown in Figure 10.17. The maximum difference occurs at x = 0.1 or x = —0.1, so
1)? 1)2 -
Maximum error = 2 — % -2 1—% ~3-107".
Taylor polynomial: Ellipse:
— 2
Yy y—Q—CE/Q y y:2 1_1,2/9
b
l D
x
—a a

-3v2 -3 3
Figure 10.16: Graph of 3v2

y=0by/1—122/a? Figure 10.17

28. Write out series expansions about x = 0, and compare the first few terms:

. T T
81nx—x—§+a+~
2 3
x x
In(1 =r——=+ = -
n(l4+z)== 5 + 3
2 4 2 4
x x x T
1_C°SI_I_<1_§+I_”)_§_I+
v _q_ 2?2
e’ — —m+§+§+---
arctanx = dv_ _ A—2®42" - )dz
14+ 22
23 2
=x— 3 + = + (note that the arbitrary constant is 0)

2?2

So, considering just the first term or two (since we are interested in small x)

1—cosz <xzvV1l—z<In(l+z)<arctanz < sinz <z <e” — 1.

1
29. The graph in Figure 10.18 suggests that the Taylor polynomials converge to f(x) = Tz
Taylor expansion is
1

flx) = T+ =l-z4+z -2 +2"— .-,
so the ratio test gives
N O B [ s B

Thus, the series converges if |z| < 1; thatis —1 < z < 1.

on the interval (—1,1). The
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!
|
|
|
| flx) = ﬁ
‘ —¥ T
-1 1
| Pr(a)
|
|
} Ps(x)
|
! Ps(z)

Figure 10.18

30. First we use the Taylor series expansion for In(1 + ¢),

_, Lo 1 14
In(1+t)=t 2t +3t 4t +

to find the Taylor series expansion of In(1 + x + z?) by putting t = 2 + 2. We get

ln(1+x+$2)=x+%x2 §x3+111$ +.
Next we use the Taylor series for sin x to get
sinz = (sinz)® = (z — %x + EIO:CS =gt - %m‘* +
Finally 2 1.2 2,3, 1.4
ln(1+sﬂi6n4gx:r)*:r:2x inm%;j_x—k _)%, e 10

31. (a) The series for 222 jg

sin20 1 (20)>  (20)° 4607 40*
—-[920— =24
7 9(9 3 75 5 15
so lim Sln29:2.
6—0 0
(b) Near § = 0, we make the approximation
sin 26 2_%92
o ~° 3
sotheparabolalsy—2——02
32. (a) f(t)=te.
Use the Taylor expansion for e’ :
2
ft) = <1+t+ +3'+ )
A
=t+t +—+§+ =
. 3t
fydt= [ te'dt= t+tP+ ot e | dt
0 0 0 2t 3
2B ! t° ’
T3 trat et
2?2 zt x°
oty tratsa e

745
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(c) Substitutez =1 :

1tetdt 1+1+L+L+
o 2 4-21 " 5.3

In the integral above, to integrate by parts, let u = ¢, dv = e’ dt, so du = dt, v = €.
1 1

—/ ddt=e—(e—1)=

0 0

1
/ te' dt = te'
0
1 1

sTstTatEE T

Hence

33. (a) Since v4 — z? = 2,/1 — x2/4, we use the Binomial expansion

(i () ()

(b) Substituting the Taylor series in the integral gives

1 1 2 4 3 51
T T xT x
d—a?de~ | (2-L T ) de=20-L - | — 10135
/0 e /O( 4 64) T2 300,

(c) Since x = 2sint, we have dz = 2 cost dt; in addition t = 0 when x = 0 and ¢ = 7/6 when z = 1. Thus

1 /6
/ 4fx2d:v:/ 4 —4sin®t-2costdt
0 0
/6 /6
:/ 2.2 1—sin2tcostdt:4/ cos® t dt.
0 0

Using the table of integrals, we find

/6
4/ cos’tdt=4-
0

(d) Using a calculator, (v/3/3) + (7/3) = 1.9132, so the answers to parts (b) and (c) agree to three decimal places.

34. (a) Since f(l — J:Q)_l/Qdm = arcsin z, we use the Taylor series for (1 — xg)_l/Q to find the Taylor series for arcsin x:

/6
(costsint +t)

N =

T . T ™ \/§ s
*2(‘“’555“16%) 5 t3

0

R 34,5 0, 3
1—-2%) 1+ x+8x+16 +128x+
so
e — | (125 2de — I B S B B
arcsmx—/(l 2?2y = :r+6:r —|—40x —|—112 —|—1152 +
(b) From Example 4 in Section 10.3, we know
1 1 1
arctanx:x—§x3+3x5—?x7+---
so that
arctanx 96—%1’34-1965 ;967-5-

- = Hl, as x — 0.
arcsinx  x + x3+—x5+mx7+ 1152x9+
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35. (a) The Taylor polynomial of degree 2 is

V(z) ~ V(0) + V'(0)x +

Since z = 0 is a minimum, V'(0) = 0 and V"”(0) > 0. We can not say anything about the sign or value of V' (0).
Thus
V(0
V(z) ~ V(0) + T()mQ.

(b) Differentiating gives an approximation to V'(x) at points near the origin
V'(z) =~ V"(0)x.
Thus, the force on the particle is approximated by — V"' (0)z.
Force = —V'(z) =~ —V"(0)=.

Since V" (0) > 0, the force is approximately proportional to  with negative proportionality constant, —V"/(0). This
means that when z is positive, the force is negative, which means pointing toward the origin. When x is negative, the
force is positive, which means pointing toward the origin. Thus, the force always points toward the origin.

Physical principles tell us that the particle is at equilibrium at the minimum potential. The direction of the force
toward the origin supports this, as the force is tending to restore the particle to the origin.

36. (a) Since the expression under the square root sign, 1 — 2> must be positive in order to give a real value of m, we have

2

1—- >0

— <1
2

2 2
vt <,
so —c<wv<ec.

In other words, the object can never travel faster that the speed of light.
(b) m

2

—1/2
(c) Notice that m = mg <1 - 2)2) . If we substitute u = fé, we get m = mo(1 + u)71/2
C C

and we can use the

binomial expansion to get:

m_mo(l_%u+wuz+...>
_m0(1+1ﬁ+§v_4+...>,

(d) We would expect this series to converge only for values of the original function that exist, namely when |v| < c.
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37. (a) To find when V' takes on its minimum values, set % =0.So
6 12
nd (Q(m) () ) —0
dr r r
Vo (—12rgr™ " + 12r5°r %) =0

6, —7 12 —13
12rgr~ " = 12r5°r

6 6
To =T
rT=7To

12r§ 6
Rewriting V' (r) as :—OVO (1 — (%0) ) , we see that V'(r) > 0 for r > ro and V'(r) < 0 for r < rq. Thus,
7

V = —V5(2(1)% — (1)'*) = =V} is a minimum.
(Note: We discard the negative root —r¢ since the distance r must be positive.)

(b)
V(r)=-V <2 (T—O)G - (T())m) Vire) = Vo
r T V' (ro) = 0
Vi(r) = *‘/()(7121"87“77 + 127’327’713) V" (ro) = T2Vorg?
V"(r) = —Vo(84rr—® — 156rg°r~ 1)

The Taylor series is thus:
2 5 1
‘/(T)—*—V0+72[/0T0 '(7“—7‘0) ‘*24-"'

(c) The difference between V' and its minimum value —V is

2
V= (Vo) = 361, =10

To
which is approximately proportional to (r — r¢)? since terms containing higher powers of (r — 7o) have relatively

small values for r near rg.
(d) From part (a) we know that dV/dr = 0 when r = ro, hence F' = 0 when r = ro. Since, if we discard powers of

(r — 7o) higher than the second,
(r —10)?
V(r) ~ -V <1 — 36—

To
giving
dv —
F=-"CxT2. (V) = -T2V

T—To
5 -
7‘0 To

So F is approximately proportional to (r — 7¢).
_ GM G
38. (a) F= GR_2 + g¥+—7:)2
_ GM m_ 1
b) F="%+ 5 aroe
Since & < 1, use the binomial expansion:

@:(1+%)72:1_2(%)+(—2)(—3)_R—!)+~~-

(c) Discarding higher power terms, we get

R R®
Looking at the expression, we see that the term % is the field strength at a distance R from a single particle
of mass M + m. The correction term, — 2?{3”7', is negative because the field strength exerted by a particle of mass

(M + m) at a distance R would clearly be larger than the field strength at P in the question.
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39. Since expanding f(z + h) and g(z + h) in Taylor series gives

Flat ) = £+ f@n+ I

G
2!96 "

g(z+h) = g(zx) + ¢ (x)h +

+...,

we substitute to get

flz+h)g(x +h) — f(z)g()
(f(x) + f’(x)fi;Jr 3f" (@) +..)(g(z) + g'(@)h + 39" ()R + ...) = f(2)g(x)
f(@)g(x) + (f (2)g(x) + f(x)g'(x))h f Terms in h” and higher powers — f(x)g(x)
h(f'(z)g(x) + f(x)g (x) + Terms in h an}Zl higher powers)

= f(x)g(x) + f(2)g (x) + Tefms in h and higher powers.

Thus, taking the limit as h — 0, we get

d . flx+h)glz+h) — f(x)g(x)
75 (@)g(2)) = lim A

= f'(2)g(z) + f(2)g' (x).

40. Expanding f(y + k) and g(x + h) in Taylor series gives

P+ k) = )+ F kLR

g// (:L') h2

g(z+h) = g(z) + ¢ (x)h + 51

4.
Now lety = g(z) andy + k = g(x + h). Then k = g(xz + h) — g(z) so

1
Substituting g(x + h) = y + k and y = g(=) in the series for f(y + k) gives

f// T 5
(o)

flgla+h) = fg(@)) + f(g(=)k + e

Now, substituting for k, we get

Flae+ 1) = Fo(a)) + F(a(a)) - (' (@ + Lm0

= f(g(x)) + (f'(g(x))) - ¢’ (x)h + Terms in h? and higher powers.

(¢ (@)h+...)"+--

So, substituting for f(g(z + h)) and dividing by h, we get

flglz+ 1)) — flg(x))

h = f'(g(x)) - ¢’ () + Terms in h and higher powers,

and thus, taking the limit as h — 0,

4t o(e)) = tim TEEHR) = F(9(@)

dx h—0 h

= f'(9(2)) - ¢'(2).

749
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41. (a) Notice g’(0) = 0 because g has a critical point at z = 0. So, for n > 2,

" 1" n
< _ g'(0) 2 9"(0) s 9™ (0) .
g(@) = Pu(z) = 9(0) + =5~z R T B Hey e A
(b) The Second Derivative test says that if g’ (0) > 0, then 0 is a local minimum and if " (0) < 0, 0 is a local maximum.
1
(c) Letn = 2. Then Ps(z) = g(0) + 92—('0) 2. So, for z near 0,
1
0
o(x) — 9(0) = L0

If g (0) > 0, then g(z) — g(0) > 0, as long as x stays near 0. In other words, there exists a small interval around
2 = 0 such that for any z in this interval g(z) > g(0). So ¢(0) is a local minimum.
The case when g”(0) < 0 is treated similarly; then g(0) is a local maximum.

42. The situation is more complicated. Let’s first consider the case when g'”'(0) # 0. To be specific let g”’(0) > 0. Then

9"/(0) 3
9(2) ~ Po(2) = 9(0) + L
g"(0) 3 . g"'(0) : :
So, g(z) — g(0) = 3l z”. (Notice that T > 0 is a constant.) Now, no matter how small an open interval
: : "
. . . 0
around x = 0 is, there are always some 1 and x2 in [ such that 1 < 0 and 2 > 0, which means that g 3(' )x? <0

g/// (0)
3!

maximum. (If g”’(0) < 0, the same conclusion still holds. Try it! The reasoning is similar.)

Now let’s consider the case when "’ (0) = 0. If g*)(0) > 0, then by the fourth degree Taylor polynomial approxi-

mation to g at x = 0, we have

and x5 > 0,ie g(z1) — g(0) < 0and g(x2) — g(0) > 0. Thus, g(0) is neither a local minimum nor a local

for 2 in a small open interval around = 0. So g(0) is a local minimum. (If ¢ (0) < 0, then g(0) is a local maximum.)
In general, suppose that g(k) (0) # 0, k > 2, and all the derivatives of g with order less than k are 0. In this case

g looks like cz® near z = 0, which determines its behavior there. Then g(0) is neither a local minimum nor a local

maximum if & is odd. For k even, g(0) is a local minimum if g™ (0) > 0, and g(0) is a local maximum if g*)(0) < 0.

43. Let us begin by finding the Fourier coefficients for f(x). Since f is odd, ffﬂ f(x)dz = 0and ffﬂ f(x) cosnx dr = 0.
Thus a; = 0 for all 2 > 0. On the other hand,

™ 0 ™
bi = 1 / f(z)sinnzdr = 1 {/ —sin(nx) dz +/ sin(nx) dm}
m -7 ™ -7 0
11 o "
= |:E cos(nx) B - cos(nx) J

1
= — |:COSO — cos(—nm) — cos(nm) + cos 0]
nm

= % (1 — cos(n7r)> .

Since cos(nm) = (—1)", this is 0 if n is even, and = if n is odd. Thus the n™

Fourier polynomial (where n is odd) is
4 4 4
F,(z) = p sinz + 3 sin3z + -+ — sin(nx).

As n — oo, the n™ Fourier polynomial must approach f(z) on the interval (—m, ), except at the point = 0 (where f
is not continuous). In particular, if z = 7,

4 . 4 .3
F.(1) = ;smg + ﬁsm?ﬂ
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But F, (1) approaches f(%) = 1 as n — oo, so

- 1 1 1 i 1 . -
—F.(1)=1—- = R -1 1= =
7 ) st 7t DT g T 1

44. Lett = 2w — 7. Then, g(t) = f(z) = >™ = ¢'*™. Notice that as x varies from 0 to 1, ¢ varies from —7 to 7. Thus,
we can find the Fourier coefficients for g(t):

1 7 Y 1 " =1
= tydt = — dt = — =
@ = on _ﬂg() 271/_7re o ¢ B 27
an = l/ et cos(nt)dt = e—/ e’ cos(nt)dt.
T —T T —T
Using the integral table, Formula I1-8, yields:
- % . 1et(cos(nt) + nsin(nt)) B
o1
= % ] (e" —e ") (cos(nm))
_ (=1 (="
B ™ n%+1
1 ™ T ™
bn = —/ et sin(nt)dt = 6—/ e’ sin(nt)dt.
a —T m —Tr
Again, using the integral table, Formula II-9, yields:
< #et(sin(nt) — ncos(nt)) ’
T o n241 .
K
= —% n27f|— ] (e™ — e ™) cos(nm)
_ (627r _ 1) (_1)n+1n
B T n?+1
Thus, after factoring a bit, we get:
11 1 1 1 2 1
Gs(t) = ¢ - (5 ~3 cost + 3 sint + £ cos 2t — £ sin 2t — 0 cos 3t + % sin3t) .
Now, we substitute x back in for ¢:
27
e —1,1 1 1 . 1
Fs(x) = - (5 ~3 cos(2mx — ) + 3 sin(2rx — ) + 5 cos(4mx — 27)
7% sin(4rx — 2m) — %0 cos(6mz — 3m) + % sin(6rx — 3m)).
Recalling that cos(z — m) = — cos z, sin(x — m) = —sinz, cos(z — 27) = cos z, and sin(x — 27) = sin z, we have:
1,1 1 1 1 2
Fs5(x) = ‘ - §+§COSQ7T$— Esin27m'+ 5cos47rm— gsin47m‘

1
+ 0 cos b — % sin 67rm> .

300 -
200

100
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45. (a) Expand f(z) into its Fourier series:

f(x) = ao+ a1 cosx + azcos2x + azcos3x + - + ag coskx + - - -

+bisinx + bosin2x + b3sin3x + --- + b sinkx + - - -
Then differentiate term-by-term:

f/(x) = —qisinx — 2a2sin2x — 3azsin3x — - -+ — kag sinkx — - - -
+b1 cosx + 2bs cos 2z + 3bs cos3x + - -+ + kb coskx + - - -

Regroup terms:
f'(z) = +b1 cos x + 2b2 cos 2z + 3bz cos 3 + - - - + kb coskx + -+ -

—a1sinx — 2assin2x — 3azsin3x — --- — kagpsinkx — - - -

which forms a Fourier series for the derivative f’(x). The Fourier coefficient of cos kz is kb, and the Fourier coeffi-
cient of sin kx is —kay. Note that there is no constant term as you would expect from the formula kay with k& = 0.
Note also that if the k'™ harmonic f is absent, so is that of f.

(b) If the amplitude of the k™ harmonic of fis

A =+/a2 +b%, k>1,
then the amplitude of the &t harmonic of f' is
V(kbe)? + (—kay)? = /k2(02 + a2) = kr/a2 + b2 = kA

(c) The energy of the k"™ harmonic of f’ is k* times the energy of the k" harmonic of f.
46. Let 7 and s be the Fourier coefficients of Af + Bg. Then

ro = 1 ’ [Af(:r) + Bg(:v)] dz

2 f
=A 1 7Tf(x)dx +B = ’ (z) dz
n 2 | 2m 77rg
:‘Aa0+chm
Similarly,

1 /" |:Af(m) + Bg(m):| cos(kx) dz

™
™

A [% / f(x) cos(kx) dm} +B |:% / g(z) cos(kx) dx:|
= Aai + Bes.

Tk

And finally,

Sk = 1 /7T [Af(ﬂc) + Bg(x)] sin(kz) dx

™

|2 [ st as] 5|2 [ otopsnten

= Acy + Bdy.

47. Since g(z) = f(z + c), we have that [g(x)]? = [f(z + ¢)]?, so g* is f? shifted horizontally by c. Since f has period 2,
so does f2 and g?. If you think of the definite integral as an area, then because of the periodicity, integrals of f2 over any
interval of length 27 have the same value. So

T+c

Energy of f = /W (f(alc))2 dx = / (f(av))2 dx.

—7m+c
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Now we know that

A= 3

Energy of g z))* dx
)

z + ¢))? dz.

/ 7;(9(
[ Z(f(

Using the substitution ¢ = = 4+ ¢, we see that the two energies are equal.

CAS Challenge Problems

48. (a)

(b)

49. (a)

(b)

©
(d)

The Taylor polynomials of degree 10 are

4 6 8 10
2z T 2z
Forsin®z, P, 2% s T
orsine, Polr) =" = 5+ T~ 315 T T4
4 6 8 10
For cos? , Qlo(x)zl_x2+£_2i+L_ 2z

3 45 315 14175

The coefficients in Pio(x) are the negatives of the corresponding coefficients of Q10 (). The constant term of Pio(x)
is 0 and the constant term of Q19(x) is 1. Thus, Pio(x) and Q10(z) satisfy

Qlo(l’) =1- Plo(l’).

This makes sense because cos z and sin? z satisfy the identity

2 .2
cos“x =1—sin" x.

The Taylor polynomials of degree 7 are
3 . 5 B 27
6 120 5040
223 22° 427
For si =p— -
or sin x cos z, Qr(z) ==z 3 + 15 315

For sin z, Pr(z) =2 —

The coefficient of 2® in Q7(z) is —2/3, and the coefficient of z* in Py(x) is —1/6, so the ratio is

-2/3
-1/6
The corresponding ratios for 2:° and z” are
2/15 —4/315
it S d ——— =64.
1/120 and 540~ O

It appears that the ratio is always a power of 2. For 23, itis 4 = 22; for 2°, itis 16 = 24; for 27, it is 64 = 2°. This
suggests that in general, for the coefficient of ™, it is 2",
From the identity sin(2z) = 2sin x cos z, we expect that P7(2z) = 2Q7(x). So, if a, is the coefficient of z" in
P;(z), and if by, is the coefficient of 2™ in Q7 (z), then, since the z" terms P7(2z) and 2Q7(z) must be equal, we
have

an(2z)" = 2byz™.

Dividing both sides by ™ and combining the powers of 2, this gives the pattern we observed. For a,, # 0,

b _ gnt,

an
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50. (a) For f(z) = x* we have f'(x) = 2z so the tangent line is

y=f2)+f2)z-2)=4+4~-2)
y =4z — 4.

For g(z) = x> — 42 4+ 8z — 7, we have ¢’ (z) = 32% — 8z + 8, so the tangent line is

y=9()+g' (e -1)=-2+3(x~-1)
y =3z —5.

For h(z) = 22 4+ 4a® — 3z + 7, we have h/(z) = 62 4 82 — 3. So the tangent line is
y=h(-1)+h(-)(z+1)=12-5(=+1)

y=—-br+T.

(b) Division by a CAS or by hand gives

f(x) z? 4z — 4

(x—2)2:(:r—2)2:1+(x—2)2 so r(z) =4z —4,

glz)  2®—42®+8x -7 _ 3r—5 e
@1 w_1)2 =z—-2+ @_1p so r(zr) =3z — 5,
h(z) 22 44a® —3x+7 bz +7 -
EFSIE EFSIE =2z + EEEEh so r(z)=-bx+7T.

(c) In each of these three cases, y = r(x) is the equation of the tangent line. We conjecture that this is true in general.
(d) The Taylor expansion of a function p(z) is

p”(a)

5 (as—a)2 +

p(x) = pla) +p'(a)(z —a) +

Now divide p(z) by (z — a)?. On the right-hand side, all terms from p”’(a)(x — a)? /2! onward contain a power of
(z—a)? and divide exactly by (z—a)? to give a polynomial g(z), say. So the remainder is () = p(a)+p’(a)(z—a),
the tangent line.

51. (a) The Taylor polynomial is

1:2 1,4 136 1:8 1,10

P =14+ 5 — o5z -
(@) =1+ 73 = 735 * 30240 ~ 1209600 17900160

(b) All the terms have even degree. A polynomial with only terms of even degree is an even function. This suggests that
f might be an even function.
(c) To show that f is even, we must show that f(—z) = f(x).

x

—x — x x xe x
A L
_ ze® — sx(e” — 1)
e* —1
:xez—%mew—i—%x: %mez—l—%m: tz(e” — 1)+
e* —1 er —1 e* —1
1 T T T
7§x+ew—1iex—l+§if(x)
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52. (a) The Taylor polynomial is

3 7 11
x x x
Pul@) =5 -3 " &0
(b) Evaluating, we get
13 17 111
P(l)==-=—= = 0.310281
11(1) 3 42-1-1320 0.31028

1
S(l):/ sin(t%) dt = 0.310268.
0

We need to take about 6 decimal places in the answer as this allows us to see the error. (The values of P;1(1) and
S(1) start to differ in the fifth decimal place.) Thus, the percentage error is (0.310281 — 0.310268),/0.310268 =
0.000013/0.310268 = 0.000042 = 0.0042%. On the other hand,

23 27 211

Pu(2)=— -5+

3 " 12T 13 = 1.17056

2
5(2) = / sin(t?) dt = 0.804776.
0

The percentage error in this case is (1.17056 — 0.804776),/0.804776 = 0.365784/0.804776 = 0.454517, or about
45%.

CHECK YOUR UNDERSTANDING

False. For example, both f(z) = 22 and g(z) = x? + x> have Pz(z) = z?.

False. The approximation sin @ ~  — 63 /3! holds for  in radians, not degrees.

False. Pa(2) = £(5) + f'(5)(@ — 5) + (J(5)/2) (@ — 5) = € + (& — 5) + (¢*/2)(z — 5)2,

False. Since —1 is the coefficient of 22 in Py(x), we know that f”(0)/2! = —1, so f(0) < 0, which implies that f is
concave down near © = 0.

A

5. False. The Taylor series for sin « about x = 7 is calculated by taking derivatives and using the formula

f"(a)

fla) + f(a)(x —a) + 5 (x—a)+--.
The series for sin 2 about = 7 turns out to be
z—m)3 z—m)°
~@ =)+ 31 - 51

6. True. Since f is even, f(—z) = f(z) for all z. Taking the derivative of both sides of this equation, we get f'(—x)(—1) =
f'(x), which at z = 0 gives — f'(0) = f'(0), so f'(0) = 0. Taking the derivative again gives f"(—z) = f"(z),i.e., f"
is even. Using the same reasoning again, we get that f'”/(0) = 0, and, continuing in this way, we get f ) (0) = 0 for all
odd . Thus, for all odd 7, the coefficient of =™ in the Taylor series is f(™ (0)/n! = 0, so all the terms with odd exponent
are zero.

7. True. Since the Taylor series for cos z has only even powers, multiplying by =3 gives only odd powers.

8. True. The coefficient of z7 is —8/7!, so

100 _ -8

[

giving (7 (0) = —8.
9. False. The derivative of f(x)g(x) isnot f'(x)g’ (). If this statement were true, the Taylor series for (cos z)(sin z) would
have all zero terms.
10. True. Since the derivative of a sum is the sum of the derivatives, Taylor series add.

11. False. For example the quadratic approximation to cos « for « near 0 is 1 — 2 /2, whereas the linear approximation
is the constant function 1. Although the quadratic approximation is better near O, for large values of x it takes large
negative values, whereas the linear approximation stays equal to 1. Since cos x oscillates between 1 and —1, the linear
approximation is better than the quadratic for large x (although it is not very good).
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12

13.

14.
15.
16.

17.

18.

19.

20.

21.

22.

23.

Chapter Ten /SOLUTIONS

. False. The Taylor series converges on its interval of convergence, whereas f may be defined outside this interval.
For example, the series

1
l+z42°+2°+--- converges to - for |z| < 1.

-z
But 1/(1 — x) is defined for |x| > 1.

True. For large z, the graph of Pjo(z) looks like the graph of its highest powered term, zt0 /10!. But e” grows faster than
any power, so e” gets further and further away from 2'°/10! = Pio ().

False. For example, if a = 0 and f(z) = cosz, then P;(z) = 1, and P;(z) touches cosz at z = 0, 27, 4m, .. ..

False. If f is itself a polynomial of degree n then it is equal to its n*"

True. By Theorem 10.1, |E,, ()| < 10|z|™™*/(n + 1)\ Since lim, o0 |2|"T'/(n 4+ 1)! = 0, E,(x) — 0as n — oo,
so the Taylor series converges to f(z) for all z.
True

Taylor polynomial.

True. Since f is even, f(z) sin(mz) is odd for any m, so
I .
bm = p / f(x)sinz(mz)dz = 0.

False. Since f(—1) = g(—1) the graphs of f and g intersect at z = —1. Since f'(—1) < g'(—1), the slope of f is less
than the slope of g at z = —1. Thus f(x) > g(z) for all z sufficiently close to —1 on the left, and f(z) < g(z) for all ©
sufficiently close to —1 on the right.

True. If

z+1)°

P> () = Quadratic approximation to f = f(—1) + f'(=1)(z 4+ 1) + @(

z+1)°

"e_
Q2 () = Quadratic approximation to g = g(—1) + ¢'(—=1)(z + 1) + %(

then Pa(z) — Q2(z) = (f"(—=1) — ¢"(=1))(z +1)?/2 < 0 for all  # —1. Thus P2(z) < Q2(z) forall z # —1. This
implies that for z sufficiently close to —1 (but not equal to —1), we have f(z) < g(x).

True. We have

Li(z) + La(z) = (f1(0) + f1(0)z) + (f2(0) + f2(0)z) = (f1(0) + f2(0)) + (f1(0) + f2(0))z.
The right hand side is the linear approximation to fi + f2 near z = 0.
False. The quadratic approximation to f1(x) fo(z) near x = 0 is

1(0)£2(0) +2f1(0)f3(0) + f1(0)f(0) »
5 :

f1(0) f2(0) + (£1(0) £2(0) + f1(0) f2(0))x +

On the other hand, we have
Li(z) = f1(0) + fi(0)z, La(z) = f2(0) + f3(0)z,
SO

Li(2)La(2) = (f1(0) + f1(0)2)(f2(0) + f2(0)a) = f1(0)f2(0) + (f1(0)f2(0) + f3(0)f1(0))z + f1(0) f2(0)a.

The first two terms of the right side agree with the quadratic approximation to f1(z)f2(x) near x = 0, but the term of
degree 2 does not.

For example, the linear approximation to e” is 14, but the quadratic approximation to (e*)? = € is 1+ 2z 4222,
not (1+2)? =1+ 2z + 22

False. The Taylor series for f near z = 0 always converges at x = 0, since ZZO:O Cra™ at x = 0 is just the constant

Co.
True. When x = 1,

— F7(0) .~ S™(0)
Z YR :Z ol
n=0 n=0

Since f (n) (0) > nl, the terms of this series are all greater than 1. So the series cannot converge
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24. False. For example, if £ (0) = n!, then the Taylor series is

oo (n) 0 . ) .
> e =3
n=0 n=0

which converges at z = 1/2.

PROJECTS FOR CHAPTER TEN

1. (a) A calculator gives 4 tan—1(1/5) —tan~1(1/239) = 0.7853981634, which agrees with 7 /4 to ten decimal
places. Notice that you cannot verify that Machin’s formula is exactly true numerically (because any cal-
culator has only a finite number of digits.) Showing that the formula is exactly true requires a theoretical
argument.

(b) The Taylor polynomial of degree 5 approximating arctan x is

3 2b

arctanr ~ r — — + —.

3 5
1 1
m=4(4arctan | — | — arctan [ —
(taveten (5 ) - avtan (535
N441113+115 1113+
- 5 3\5 5\5 239 3\ 239

~ 3.141621029.

Thus,

The true value is 7 = 3.141592653.. . ..

(c) Because the values of z;, namely z = 1/5 and & = 1/239, are much smaller than 1, the terms in the series
get smaller much faster.

(d) (@) If A=arctan(120/119) and B = — arctan(1,/239), then

120 1
A= — d B=——.
tan 1 an tan 239
Substituting
120/119 —1/239
tan(A + B) = (120/119) + (=1/239) _
1—(120/119)(—1/239)
Thus
A+ B = arctan 1,
SO

120 1
arctan | — | — arctan [ —— | = arctan1.
119 239

(i) If A= B = arctan(1/5), then

(1/5)+1/5 _ 5

tan(A+ B) = ——F4— "~ = —.
A+ B) = mam) 1
Thus .
A+ B = arctan (E) ,
o)

2 arct ) t >
arctan 5 = arctan o)
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If A= B = 2arctan(1/5), then tan A = tan B = 5/12, so

(5/12) 4+ (5/12) 120

tan(A + B) = iy
an(A+B) =15 ) 5/12) — 119
Thus 190
A+B= ke
+ arctan (119> ,
SO

poeton (1) — wretan (120
arctan 5 = arctan 119 .

(iii) Using the result of part (a) and substituting the results of part (b), we obtain

1 1 T
4arctan | — | —arctan [ — | = arctan1 = —.
5 239 4

2. (a) (i) Using a Taylor series expansion, we have

Fzo = h) = f(0) — F'(mo)h + f”(;O)hQ - fm?f;’”")hs oo

So we have .
f(l‘o)_i(‘ro_h) _f/(xo)z f (on)h‘f'
This suggests the following bound for small A:
Ho0) =10 = 1) ()| < 222,
where |f”(z)| < M for |z — zo| < |h].
(i) We use Taylor series expansions:

Flao 1) = o) + F'(ao)h + L0002 o T2y

Flan—1) = fGoo) = oo+ 502 - L0y
Subtracting gives

f(xo +h) — f(xg — h) = 2f'(x0)h + mh3 + e

3!
1
= 2f/($0)h + gf,”(l'o)hs + ...
So
f(@o +h) — f(zo —h)
2h
This suggests the following bound for small A:

:f/($o)+$h2+~-

flwo+h)— flxzo—h) Mh?
T — f'(z0)| <

where |f"'(z)| < M for |z — zo| < |h].
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(iii) Expanding each term in the numerator is a Taylor series, we have
f(zo +2h) = f(xo) + 2f (wo)h + 2" (20)h* + gf”’(xo)h?’
+§f(4) (zo)h* + %f(5)(a;0)h5 4o
f" (o) f" (o)

fxo+h) = f(xo) + f'(xo)h + 5 B2+ = B3
(4) (5)
+f 44(!$0)h4 + / 5(!.T0)h5 T
f(l‘o - h) = f(.l?o) — f/(xo)h + f//;xo)hQ _ f”/?E!xO)hB
Jrf(4) (z0) o f(5)(x0)h5 N

41 5! o
Fla — 20) = f(zo) — 2 (wo)h + 2" (22 — 3 " (o)

2 4
+§f(4) (xo)h* — 1—5f(5)(1‘0)h5 toe
Combining the expansions in pairs, we have
8 2
8f(wo +h) = 8f (w0 — h) = 16" (zo)h + 2 " (wo)h* + S [P (wo)h + -
8 3 8 L5 5
f(wo+2h) = f(wo = 2h) = 4f (o) + 5 [ (wo)h® + 1= [P (wo)h” + -+

Thus,

759

—f(zo 4 2R) + 8f(xo + h) — 8f(xo — h) + flxo — 2h) = 12f' (zo)h — %f@ (zo)h® + ---

SO
7‘]"(1'0 + Qh) -+ Sf(.TO -+ h) — 8f(l’0 — h) —+ f(ZL'O — Qh) _ /(z ) B f(5)(.’£0)h4
12h 0 30
This suggests the following bound for small A,
—f(xo +2h) +8f(xo + h) —8f(xo — h) + f(zo —2h) Flao)| < Mh*
12h 0/l ="30
where | f)(2)| < M for |z — xo| < |h].
(b) (@ h | (f(zo) — f(zo—Rh))/h Error
1071 0.951626 4.837 x 1072
1072 0.995017 4.983 x 1073
1073 0.9995 4.998 x 1074
1074 0.99995 5x107°
The errors are roughly proportional to h, agreeing with part (a).
(i) h | (f(zo+h) — f(zo — h))/(2h) Error
107! 1.00167 1.668 x 1073
1072 1.00001667 1.667 x 107°
1073 1.0000001667 1.667 x 1077
1074 1.000000001667 1.667 x 107°

The errors are roughly proportional to h2, agreeing with part (a).
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(iii) | h | (=f(xo +2h) +8f(wo + h) — 8f(x0 — h) + f(zo — 2h))/(12h) Error
107t 0.99999667 3.337 x 1076
1072 0.9999999999667 3.333 x 1071
1073 0.99999999999999667 3.333 x 10714
1074 0.999999999999999999667 3.333 x 10718

The errors are roughly proportional to h*, agreeing with part (a). This is the most accurate formula.

© @ h | (f(zo)— f(zo—R)/h Error
1071 1.0001 x 10° 1.00 x 10'°
1072 1.0001 x 107 1.00 x 10'°
1073 1.0101 x 10® 1.01 x 10*°
1074 1.11111 x 10° 1.11 x 10%°
107° Undefined Undefined
107° —1.11111 x 10%° —1.11 x 10°
107" —1.0101 x 10*° —1.01 x 108
1078 —1.001 x 10'° —1.00 x 107
107° —1.0001 x 10'° —1.00 x 10°
) n | (f@o+ k) — f(wa —h)/(2h) Error
107! 1 x 102 1 x 1010
1072 1x10* 1 x 101°
1073 1.0001 x 10° 1.0001 x 10*°
1074 1.0101 x 10® 1.0101 x 10'°
107° Undefined Undefined
1076 —1.0101 x 10*° —1.01 x 108
1077 —1.0001 x 10*° —1.00 x 10°
1078 —1.000001 x 10*° —1.00 x 10*
107° —1.00000001 x 10*° —1.00 x 10?
(i) h (—=f(mo 4+ 2h) + 8f(xo + h) — 8f(xo — h) + f(zo — 2h))/(12h) Error
1071 1.25 x 102 1.00 x 10*°
1072 1.25 x 10* 1.00 x 10%°
1073 1.25013 x 10° 1.00 x 101°
1074 1.26326 x 108 1.01 x 10%°
1073 Undefined Undefined
1076 —9.99579 x 10° 4.21 x 10°
1077 —9.9999995998 x 10° 4.00 x 102
1078 —9.99999999996 x 10'° 4.00 x 1072
107° —9.999999999999996 x 10'° 4.00 x 107°

For relatively large values of h, these approximation formulas fail miserably. The main reason is that
f(x) = 1/z changes very quickly at zq = 107°. In fact, f(x) — 4o as z — 0. So we must use very
small values for h when estimating a limit (involving f and ¢ = 107?) as h — 0. Here, h > 107° is too
big, since the values of xy — h cross over the discontinuity at z = 0. For smaller values of h, that make
sure we stay on the good side of the abyss, these formulas work quite well. Already by A = 10~°, formula
(c) is the best approximation.



