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1. Introduction

I am interested in all areas of theoretical and applied probability. Specifically, I have worked on
problems on hermitian and non-hermitian random matrices. Lately, my research is on understand-
ing the behavior of random matrices that arise out of sparse graphs. Along with that I also study
the large n behavior of statistical physics models on sparse graphs. Recently I have developed a
keen interest on problems on percolation. I am also interested to work in problems arising from
other branches of science like Biology, Physics, Statistics, Social Networks etc in which probability
theory can provide greater understanding.

Below I briefly describe my works so far, and my current research projects.

2. Limiting spectral distribution of random matrices

Denoting λj(An), j = 1, 2, . . . , n, to be the eigenvalues of a n × n matrix An, let LAn be the
empirical spectral distribution (esd) of An, i.e.

LAn :=
1

n

n∑
j=1

δλj(An). (2.1)

Depending on whether the random matrix An is hermitian or not, the random probability measure
LAn will be either supported on the real line or on the complex plane.

2.1. Limiting spectral distribution of non-hermitian random matrices. Since the seminal
work of Wigner [32] there has been a lot of work in understanding the behavior of eigenvalues of
different matrix ensembles. A large proportion of these works are for hermitian matrix ensembles.
Compared to the hermitian matrix ensembles, the results on the non-hermitian matrix ensembles
are very limited. For example, the conjecture about the circular law was proved only recently in
[36] after a long series of works (see historical references in [13]). Analyzing the spectrum of a
non-hermitian matrix is usually much more challenging than its hermitian analogue. One reason
being the sensitivity of the eigenvalues under small perturbation. A very small perturbation in
non-hermitian matrices can lead to an entirely different limiting spectrum. Moreover the spectrum
now being supported on the complex plane, many of the techniques, like the method of moments,
the Stieltjes transform, which work very well for hermitian matrices fail in this regime. This calls for
new tools to analyze the spectrum of non-hermitian matrices. Girko [20] proposed a general scheme
to analyze the esd of a non-hermitian matrix An by relating it to the singular value distribution of
Avn := An − vIn, for v ∈ C. This approach requires the convergence of the integral of log(·) under
the singular value distribution of Avn for all v ∈ C. Therefore one needs a careful control on the
small singular values of Avn. Performing this careful analysis, when all entries of An are i.i.d. zero
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mean unit variance random variables, Tao and Vu were able to prove the circular law conjecture in
[36].
However this delicate analysis of the small singular values is not so straightforward in almost all
natural ensembles. Thereby very few results are available in non-hermitian regime. For example, no
results are known for sparse directed graphs. More specifically, let us consider an oriented d-regular
graph on n vertices. That is, each vertex in the graph has d incoming edges and d outgoing edges.
It was conjectured very recently in [13] that the esd of An, the adjacency matrix of a uniformly
chosen d-regular oriented graph on n vertices, converge to a measure µd, for d ≥ 3, which has a
density given by

µd(dz) =
1

π

d2(d− 1)

(d2 − |z|2)2
I|z|≤√d.

It can be checked that µd is also the Brown measure of free sum of d Haar unitary operators.
Motivated by this observation, with Amir Dembo in [8] we consider the sum of d i.i.d. Haar
distributed Unitary and Orthogonal matrices, and prove that the esd converges to µd for all d ≥ 2.
To prove our result we adapt the techniques of [23]. In [23] the authors consider the esd of
UnTnVn, where Un, Vn are i.i.d. Haar distributed Unitary matrices, and Tn is real diagonal such
that the imaginary part of the Stieltjes transform of Tn is uniformly bounded. Their method do
not immediately yield the result in our set-up because of the boundedness assumption. Using [23]
we obtain the Schwinger-Dyson equation in our set-up, which relates the Stieltjes transform in
the case of sum of d Unitary/Orthogonal matrices with that of (d − 1). Analyzing this equation,
by induction on d, we identify the unbounded regions as a function of d. This analysis together
with the help of the results in [30] give the main theorem of [8]. The boundedness assumption in
[23] prevents the presence of any atoms in the limiting spectral distribution of Tn. Even the case
Tn = In can not be considered in [23]. As a result of our analysis of Schwinger-Dyson equation
we can improve the bounded assumption, thereby allowing Tn’s for which the limit has atoms,
unbounded density and singular distributions.

Next the natural extension will be to prove that the limiting law of the esd of sum of d i.i.d.
uniform permutation matrices is again µd. The basis of the methods used in [8] is the analysis of
the relevant Schwinger-Dyson equation. The continuity property of the unitary and the orthogonal
groups is crucial to obtain the Schwinger-Dyson equation. Since the permutation group is discrete,
finding an analogue of Schwinger-Dyson is a non-trivial and challenging task. Furthermore, one
needs to find results analogous to the ones obtained in [30]. With Amir Dembo, Eyal Lubetzky
and Ofer Zeitouni [9], we have taken up these tasks. This work is currently in progress.

In another research project [2], I consider sparse directed Erdős-Rényi graph G(n, pn) with

pn � logn
n but pn � nα−1 (α > 0). The objective is to obtain the limit law of the esd of the

adjacency matrices of such sparse graphs. It is believed that in this regime the limit should be the
circular law. However only when pn = O(nα−1), extending the ideas of [36], in [33] the circular law
conjecture has been proved. Because of smaller number of independent random variables extending
the ideas of [33] to this more sparse case is not straightforward. With the help of a slightly different
approach, I have been able to prove the circular law conjecture for sparse directed Erdős-Rényi

graphs when pn ≥ (logn)α

n for some α. Currently I am working on the draft.

2.2. Limiting spectral distribution of hermitian random matrices. In the hermitian regime
many of the problems are motivated by its application in different fields. Lately statisticians are
interested in high dimensional inference, and a lot of problems on random matrices arise from
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there. When the number of parameters to be estimated also grows to infinity, obtaining a consistent
estimator often becomes a difficult task. Estimators which work well in low dimensional set-up often
fail to be consistent. For example, it is well known that when the rows of a n × p matrix X are
i.i.d. Np(0, Ip), p-variate Gaussian with identity covariance matrix, then the esd of the normalized
sample covariance matrix converges to the Marčenko-Pastur law, whenever p/n→ (0,∞) (see [26]),
which is clearly inconsistent for the spectral distribution of the population covariance matrix. In
[6], with Arup Bose and Sanchayan Sen we study similar problems in the context of a time series.
We show there that the esd of sample autocovariance matrices is inconsistent for the population
spectral distribution. In high dimensional statistical inference the regularization of covariance
matrices by banding/tapering or thresholding has received particular interest (c.f. [11, 12, 19]) in
order to obtain consistent estimators. Banding and tapering techniques also appear in time series
analysis in the context of nonparametric spectral density estimation. Motivated by these we put
some appropriate banding structure on the sample autocovariance matrices, and show that under
some mild conditions the esd is a consistent estimator. If the elements of the sample autocovariance
matrices are tapered by a kernel, then the same result continue to hold.
Specifically, in [6] we consider the linear process X = {Xt}t∈Z, given by

Xt =
∞∑
k=0

θkεt−k (2.2)

where {εt, t ∈ Z} is a sequence of i.i.d. zero mean unit variance random variables and {θk}k∈Z are
some given constants. For such a stationary process one can define a population autocovariance
matrix Σn(X), where Σn(X)(i, j) = γX(i− j) = cov(Xi, Xj). It is well known that for the autoco-
variance function {γX(k)}k∈Z there exists a unique distribution, termed as the spectral distribution,
such that

γX(h) =

ˆ 1

0
exp(2πihx)dFX(x) for all h. (2.3)

Let Γn(X) be the sample autocovariance matrix, i.e. Γn(X)(i, j) = γ̂X(i − j) where the sample

autocovariance function γ̂X(k) = n−1
∑n−|k|

i=1 XiXi+|k|. Though γ̂X(k) → γX(k) almost surely for
each k, it is well known that the largest eigenvalue of Σn(X) − Γn(X) does not go to zero (c.f.
[27, 34, 35]). Motivated by this we studied the behavior the limit of the esd of Γn(X). Using the
method of moments argument, under a weak condition on {θk}k∈Z, we show that the limit exists
and is inconsistent for the population spectral distribution. That is, the limiting esd of Γn(X)
is different from that of Σn(X). Our method of moment argument in [6] is based on the scheme
introduced by Bryc, Dembo and Jiang in [15]. However a careful approach needs to be taken here
because of the inherent strong non-linear dependence among the entries of Γn(X).
In order find a consistent estimator, we consider the following two types of banded sample autoco-
variance matrices: for a sequence of positive integers {mn} such that mn → ∞ and mn/n → α ∈
[0,∞) as n→∞, we define Γα,In (X) be the n×n matrix formed out of Γn(X) by setting γ̂X(k) = 0

whenever |k| ≥ mn. Further we let Γα,IIn (X) to be the mn × mn principal minor of Γn(X). In
[6, Theorem 2.3] we show that, under some weak conditions on {θk} and for any choice of the

distribution of {εt, t ∈ Z} with zero mean and unit variance, the esd of Γα,In (X) and Γα,IIn (X) is a
consistent estimator iff α = 0. Furthermore for a symmetric bounded kernel K, which is continuous
at 0 and K(0) = 1 we define a matrix Γαn,K(X) such that its (i, j)th entry is K((i− j)/m)γ̂X(i− j),
and show that again it is consistent estimator iff α = 0.
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Toeplitz and Hankel matrices are two examples of non-classical random matrix ensembles which
have also received importance lately. Because of the additional structures of these matrices results
related to the limiting esd are limited. The existence of the limiting esd for these two ensembles
were only proved in [15]. In [4], with Arup Bose we study the limiting esd of a class of random
matrices which are closely related to Toeplitz and Hankel matrices. In these matrices we scale each
entry of the matrices by the square root of the number of times the random variable corresponding
to that entry appears in the matrix. Due to this natural scaling we call them balanced Toeplitz and
Hankel matrices. Note that for balanced Toeplitz matrix the diagonal are scaled by

√
n, whereas

the top right and bottom left entries are not scaled at all. Due to this non-uniform scaling one needs
to carefully adapt the method of moments techniques appropriately to apply it here. Verifying the
Carleman’s condition becomes an extremely challenging calculus problem. We bypass this issue
using a truncation technique, and therefore it is not clear whether the limit moments uniquely
characterize the distribution.

In an earlier project with Arup Bose [5] we studied the limiting esd of several band matrices. Our
results include banded version of Toeplitz, Hankel, symmetric circulant, reverse circulant and several
palindromic matrices. We noted that for symmetric circulant, reverse circulant and palindromic
matrices the limit is universal with respect to the banding parameter (c.f. [5, Theorem 1]). Whereas
the limiting esd of Toeplitz and Hankel matrices do see the effect of banding parameter. For α = 0,
we prove that the limiting esd for Toeplitz matrices is Gaussian and that for the Hankel matrices
is a symmetrized chi distribution. Using the method of moments here we show that all these results
are universal with respect to the distribution of the entries of the matrices. After we finished this
work, we learnt about two similar independent works [24] and [25]. Assuming the existence of all
moments, in [24] the author considers band Toeplitz matrices and proves the results. In [25] the
authors consider band Toeplitz and Hankel matrices with entries having all moments, and proves
the relevant result. The latter result is based on the representation of Toeplitz and Hankel matrices
as linear combinations of backward and forward shift matrices. Our technique of proof in [5] is able
to prove all the results in [24, 25] under less assumptions on the entries and contain a larger class
of band matrices.

3. Statistical physics models on sparse graphs

Over the last few decades probabilists have become very interested in understanding many fasci-
nating phenomena of statistical mechanics. Remarkable progresses have been made in percolation
theory, interacting particle systems, and recently in conformal invariance. Apart from these dy-
namic fields of research another area which has received great importance and seen many works
being done in recent years, is the study of different statistical physics models on large sparse graphs.
Among all the statistical physics models, probably the simplest and non-trivial model is the Ising
model. Given any finite graph Gn = (Vn, En) the Ising measure on it is given by the following
probability measure:

νβ,Bn (x) =
1

Zn(β,B)
exp

{
β
∑

(i,j)∈En

xixj +B
∑
i∈Vn

xi

}
, (3.1)

where x = {xi : i ∈ Vn} with xi ∈ {−1,+1}, and Zn(β,B) is an appropriate normalizing constant
(also known as partition function). In statistical physics literature the parameter B is called the
external magnetic field parameter, and β is termed as inverse temperature parameter. When β ≥ 0
the model in (3.1) is termed as ferromagnetic and otherwise anti-ferromagnetic. Initially the Ising
model was introduced to understand the behavior of materials at different temperature. This lead
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to the study of this model on lattices. However recently there is an increasing interest in studying
this model on non-lattice complex networks (see [29] and the references therein). Study of this
model on sparse graphs is also motivated by its applications in combinatorics, computer science,
statistical inference and other fields.
It is often very hard to study the Ising measure on large graphs because of its unknown normalizing
constant Zn(β,B). Therefore a first step to understand this measure is to analyze the large n limit
of the log-partition function, namely to find the limit of 1

n logZn(β,B). For sparse graphs this task
is achieved in [16, 17, 21, 31]. Beyond that, perhaps the most interesting feature of the distribution
in (3.1) is its “phase transition” phenomenon. Namely, for a wide class of graphs it is believed that
when B = 0 and β is larger than the critical value then the Ising measure decomposes into convex
combination of well-separated simple components. For sparse graphs existence of this phenomenon
was proven only for a sequence of k-regular locally tree-like graphs (c.f. [28]). In a project with
Amir Dembo [7], we consider a more general sequence of tree-like graphs, and prove the universality
of this phenomenon.
More precisely, we say that the graph sequence {Gn} is locally tree-like, when for large n the
neighborhood of a typical vertex has approximately the law of the neighborhood of the root of a

randomly chosen limiting tree. One expects that the marginal distribution of νβ,Bn (·) converges
to the marginal distribution on a neighborhood of the root for some Ising Gibbs measure on the
limiting tree T. Since for B = 0 and β large, there are uncountably many Ising Gibbs measures,
the convergence to a particular Gibbs measure is not at all clear, as is the choice of the correct
Gibbs measure. In [28], it was shown that for k-regular trees, the plus/minus boundary conditions
play a special role. Indeed, it was proved that if Gn’s are locally tree-like graphs, which converge
locally weakly to k-regular trees T = Tk then, for any β > 0 and B = 0,

νβ,0n (·)→ 1

2
νβ,0+,T(·) +

1

2
νβ,0−,T(·), (3.2)

where νβ,B±,T are the Ising measures on tree T with respect to plus (minus) boundary condition. It

is further shown there that, when the graphs {Gn}n∈N are edge-expanders ,

νβ,0n,±(·)→ νβ,0±,T(·), (3.3)

where νβ,0n,+(·) and νβ,0n,−(·) are the measures (3.1) conditioned to, respectively,
∑

i xi≥0 and
∑

i xi≤0.
The latter sharp result provides a better understanding of νn(·), and is much harder to prove than
(3.2). For genuinely random limiting trees, in [7] we show that, under a mild but natural continuity
assumption, the convergence in (3.2) and (3.3) continue to hold, where now T is chosen according
to the limiting tree measure, thereby establishing the claimed universality of this phenomenon.

Most of the proofs of [28] involves explicit calculations which rely on the k-regularity of the
graphs Gn and the limiting tree, and thereby does not extend to our set-up. Proof of (3.3) relies
on choosing certain functionals of the spin configurations on Gn, which approximate the indicator
on the vertices that are in “− state”, and whose values concentrate. At the level of generality of
our setting the only tools are unimodularity of the law of the limiting tree and properties of simple
random walk on it. Using these tools we successfully come up with some choices of functionals, based
on the average occupation measure of the simple random walk on the tree, and prove (3.3) holds
under the same continuity property, for any edge-expander Gn’s. We also show that the continuity
assumption holds for all limiting measures for large values of β, if the minimum degree is bounded
below by 2. We further confirm that, subject to minimal degree at least 3, the configuration models
corresponding to Multitype Galton Watson (MGW) trees are edge-expanders, thereby our theorem
applies for most naturally appearing locally tree-like graphs.
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After proving the above results for Ising model, one naturally asks whether an analogue of (3.2) and
(3.3) hold for the Potts model. The Potts model on a finite graph Gn = (Vn, En) is a generalization
of the Ising model and is given by the probability measure:

νβ,B,qn (σ) =
1

Zn(β,B, q)
exp

{
β
∑

(i,j)∈En

δσi,σj +B
∑
i∈Vn

δσi,1

}
, (3.4)

where σ = {σi : i ∈ Vn} and σ ∈ {1, 2, . . . , q}|Vn|, for some integer q ≥ 3. It is believed that when
tree-like graphs Gn converge to a k-regular tree Tk, then for B = 0 and any β ≥ 0, the measure

νβ,B,qn (·) converges locally weakly to the symmetric mixture of νβ,0i,Tk
(·), where νβ,0i,Tk

(·) is the Potts

measure on Tk with i-boundary condition. This gives an analogue of (3.2). An analogue of (3.3)
can be formulated similarly. Analyzing the Potts model is challenging than Ising model because of
several reasons. One crucial difference between these two models is that for Ising model when B > 0
there is only one Ising Gibbs measure on Tk. Whereas for the Potts model there is a non-uniqueness
region, in which even for B > 0, there are uncountably many Potts Gibbs measures in that region
(c.f. [17]). Moreover, all the proofs on Ising model are heavily dependent on FKG inequality, which
is also lacking in the Potts model. A way to tackle the latter problem is to move to the random
cluster model, proving the relevant results there and then use the Edwards-Sokal coupling to move
back to the Potts model. However for infinite trees, the infinite volume random cluster model with
general boundary condition is not well understood, making the problem challenging. In an ongoing
research project [1], I am pursuing this task of obtaining the weak limit of the Potts model for
k-regular locally tree-like graphs, by relating it to the random cluster models.

In an another project with Sumit Mukherjee [10], we consider the Ising model on hypercube Hd.
That is, the vertex set of the graph Hd is {0, 1}d, and an edge is drawn between two vertices if their
hamming distance is one. Our goal is to find the limiting log-partition of this model, appropriately
scaled, as d→∞. It is believed that the mean field prediction would hold for this model. That is,
the limiting log-partition function would have the same limit as in the Curie-Weiss model.
More specifically, the conjecture is that 1

n logZn(βd , B)→ φ(β,B) where n = 2d,

φ(β,B) := sup{ϕβ,B(m),m ∈ [−1, 1]}, ϕβ,B(m) := Bm+
1

2
βm2 +H

(1 +m

2

)
,

and H(x) := −x log x − (1 − x) log(1 − x). Note that the hypercube Hd is not a tree-like graph.
Therefore none of the techniques developed in [16, 17, 18] is applicable here. On the other hand if
we consider an Ising model on the Erdős-Rényi graph G(n, pn), then as long as npn → ∞, it can
be shown that the limiting log-partition function obeys the mean field prediction. One crucial fact
which helps here is the existence of a spectral gap. The hypercube Hd lacks this property as well,
making the problem more challenging. In [10] we prove the conjecture for β < 1, and now working
on β > 1 to prove the same.

4. Percolation

During the formulation of a simple stochastic model Broadbent and Hammersley [14] formulated
the ‘percolation model’, around half a century ago. Since then this area has been a very active area
of research and lots of work has been done to understand this model on different graphs. Various
percolation models are very well understood on Z2. However there are few percolation models on Z2

which are yet to be understood. For example, consider the following model: On Z2 each horizontal
edge is right-oriented with probability p ∈ (0, 1), and otherwise left-oriented. Also each vertical
edge is oriented upwards with probability p and otherwise oriented downwards. Let θ(p) denote
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the probability that the origin 0 is the endpoint of an infinite self-avoiding path oriented away from
0. In [22] it was conjectured that θ(p) > 0 iff p 6= 1/2. The intuitive reasoning here is similar to
the random walk: When p 6= 1/2 there will be a drift in one direction which will enable to create

a oriented path escaping to infinity. By coupling with oriented percolation on
−→
Z 2 it can be shown

that for all p > −→p c, θ(p) > 0. It is also known that if any small positive density of oriented edges is
added at random then the process is supercritical. However nothing much is known for this model.
Due to lack of the monotonicity property here, one does not have the FKG and BK inequalities
for this model. Since these inequalities play crucial roles in almost all of the proof, absence of such
inequalities makes the model harder to analyze. Using a multi scale analysis, in a current project
with Riddhipratim Basu [3] we are trying to prove the aforementioned conjecture.
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