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Overview

My research includes both (a) answering mathematical questions in stochastic processes,
dynamical systems, and analysis and (b) using mathematics to answer biological questions.
The mathematical questions that I work on typically arise from biological questions.

I have extensively studied stochastic hybrid systems. I have proven that ODEs with ran-
domly switching right-hand sides can exhibit surprising behavior [14]. I have also developed
theoretical machinery for analyzing PDEs with randomly switching boundary conditions [15].
These results have important implications both for the mathematical study of stochastic hy-
brid systems and for biological applications.

I have also used mathematical modeling to address the arsenic poisoning crisis in Bangladesh
[13], [16]. This ongoing project is a collaboration between myself and one other mathemati-
cian, one biologist, one biochemist, one epidemiologist, and two undergraduates.

1. Stochastic Hybrid Systems

Stochastic hybrid systems are a type of stochastic process that are used in many areas of
biology (for example, molecular biology [6], ecology [24], epidemiology [9]) and many other
applied areas outside of biology [23]. The word “hybrid” is used because these processes
involve both continuous dynamics and discrete events. One example is a dynamical system
whose right-hand side randomly switches between elements of a collection of vector fields.
The continuous dynamics in this example are the different right-hand sides of the dynamical
system, and the discrete events are when the right-hand side switches.

In general, a stochastic hybrid system is a continuous-time stochastic process with two
components: a continuous component (Xt)t≥0 and a jump component (Jt)t≥0. The jump
component Jt is a jump process on a finite set, and for each element of its state space we
assign some continuous dynamics to Xt. In between jumps of Jt, the component Xt evolves
according to the dynamics associated with the current state of Jt. When Jt jumps, Xt

switches to following the dynamics associated with the new state of Jt.

1.1. Stochastically switched linear ODEs. Consider the stochastic process driven by an
ordinary differential equation whose right-hand side randomly switches between a collection
of different linear terms. Explicitly, consider the process (Xt, Jt) where Xt ∈ Rd solves

Ẋt = AJtXt

with Jt a continuous-time Markov jump process on a finite set E and {Aj}j∈E a set of real
matrices. Despite their apparent simplicity, my co-authors and I have proven that these
systems can have surprising behavior.

In [14], my co-authors and I constructed planar examples that switch between two ma-
trices where the individual matrices and the average of the two matrices are all stable (all
eigenvalues have strictly negative real part), but nonetheless the process goes to infinity at
large time for certain values of the switching rate. To state our result precisely, let r scale
the rate at which the right-hand side switches by letting Jt have generator rQ, and define
the average matrix Ā :=

∑
j∈E Ajπj where π is the invariant measure of Jt.

Theorem 1. There exist matrices A0, A1 ∈ R2×2 so that A0, A1, and Ā are each stable, but
nonetheless ||Xt|| → ∞ almost surely as t→∞ for some switching rate r.
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We further constructed examples in higher dimensions where again A0, A1, and Ā are all
stable, but ||Xt|| has arbitrarily many transitions between converging to ∞ and converging
to 0 as the switching rate varies:

Theorem 2. For any positive integer n, there exist matrices A0, A1 and n non-overlapping
intervals {(ak, bk)}ni=1 so that

(1) A0, A1, and Ā are each stable.
(2) If the switching rate r /∈

⋃n
i=1(ai, bi), then ||Xt|| → 0 almost surely as t→∞.

(3) For every i ∈ {1, . . . , n}, ||Xt|| → ∞ almost surely as t→∞ for some switching rate
r ∈ (ai, bi).

Our results are part of a broad literature on ODE switching systems. Our work is a
stochastic counterpart to the extensive work done by control theorists in the past decade on
deterministically switched linear ODEs (see [18] for a review). In [4], the authors consider
stochastically switched linear ODEs with two stable matrices and show that the process may
go to infinity at large time as long as the average of the two matrices has a positive eigenvalue.
Thus, our results show that their assumption on the average matrix is not necessary to ensure
a blowup.

Our work in [14] also has important implications for the general study of stochastic hybrid
systems. [8], [5], [3], and [1] all study invariant measures for stochastic hybrid systems. Our
work shows that the existence of invariant measures may depend on the switching rates in
a complicated way. In [10], [11], and [2], the authors provide conditions under which their
randomly switched systems behave according to the individual systems for slow switching
and according to the average system for fast switching. In [14], we prove that stochastically
switched linear ODEs also obey this principle by proving that if the individual matrices are
each stable, then limt→∞ ||Xt|| = 0 for sufficiently slow switching rate and if the average
matrix is stable, then limt→∞ ||Xt|| = 0 for sufficiently fast switching rate. However, our
Theorem 2 above shows that the transition between the slow and fast switching regimes can
be arbitrarily complicated.

1.1.1. Future work. I conjecture that the large time behavior of stochastically switched linear
ODEs depends solely on the spectrum of a (possibly infinite) sum of nested commutators of
the matrices {Aj}j∈E and that this sum is given explicitly by the Baker-Campbell-Hausdorff
formula. The Baker-Campbell-Hausdorff formula is a classical result in group theory that
can be used to represent the logarithm of a product of exponentiated matrices in terms
of a (possibly infinite) sum of nested commutators of those matrices [20]. My conjecture
is consistent with numerical simulations and all the results in [4] and [14]. Indeed, this
conjecture was the motivation for the examples in [14].

Verifying this conjecture would lend insight to more complicated ODE switching prob-
lems. For example, in [1] the authors study ODEs with right-hand sides that randomly
switch between possibly non-linear elements of a collection of vector fields. In that paper,
the authors provide conditions on the Lie brackets of the vector fields that ensure uniqueness
and absolute continuity of an invariant measure. Thus the commutators in my conjecture
give context to these conditions on the Lie brackets. Furthermore, confirming this conjec-
ture would provide Lyapunov exponents for products of a large family of random matrices.
Finally, this conjecture can be seen as providing higher order terms to the finite-dimensional
case of the main result in [12].
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1.2. Infinite-dimensional systems and random PDEs. I have developed general math-
ematical machinery for analyzing stochastic hybrid systems [15]. This machinery combines
techniques from various fields of mathematics, including probability, ergodic theory, and
functional analysis, to yield explicit formulae for important statistics of these processes. My
methods are particularly useful for infinite-dimensional processes, such PDEs with randomly
switching boundary conditions.

This machinery examines stochastic hybrid systems from the viewpoint of iterated random
maps on abstract spaces. Consider a stochastic hybrid system (Xt, Jt) ∈ X × E with X a
complete separable metric space and E a finite set. For each j ∈ E, define Φt

j : X → X to be
the flow map for the continuous dynamics associated with state j. Thus Xt is constructed
by repeatedly applying the flow maps according to the evolution of the jump component Jt.

If Jt does not depend on Xt and the flow maps Φt
j are contracting in some average sense,

then I have proven that Xt converges in distribution as t→∞. Furthermore, I have shown
that this limiting distribution is invariant under applications of the flow map Φτ

ξ for random
variables τ and ξ chosen appropriately. This invariance property is the main tool that yields
explicit formulae for statistics of the process.

We are able to cast many stochastic hybrid systems into this framework. Applying these
tools to parabolic PDEs with randomly switching boundary conditions yields explicit for-
mulae for expectations, variances, and covariances of the Fourier coefficients of the solution.
In Section 1.3 below, I apply these tools to the heat equation with a randomly switching
boundary condition.

1.2.1. Future work. My current results only hold under the assumption that the jump compo-
nent is independent of the continuous component. Motivated both by biological applications
and purely mathematical interest, I aim to generalize my current machinery to remove this
assumption. A biological example requiring this generalization is a membrane channel whose
stochastic opening and closing is correlated to internal state variables such as membrane po-
tential.

If we allow the jump rates to depend on Xt, and if we assume this dependence is Lipschitz
and make appropriate contractive assumptions on the flow maps Φt

j, then Xt converges in
distribution. Furthermore, it follows from similar arguments to those in [15] that this limiting
distribution is invariant under applications of the flow map Φτ

ξ for some random variables
τ and ξ. The difficulty now lies in finding the distributions of τ and ξ, but once these are
obtained, then formulae for statistics of the process as in [15] follow quickly.

1.3. Insect respiration. My work analyzing PDEs with randomly switching boundary con-
ditions was prompted by various biological questions, including questions in cell polarization,
neuroscience, and immunology. I have devoted the most effort to a question concerning insect
respiration.

Essentially all insects breathe via a network of tubes that allows oxygen and carbon dioxide
to diffuse to and from their cells [22]. Air enters and exits this network through valve-like
holes (called spiracles) in the exoskeleton. These spiracles regulate air flow by opening and
closing. Surprisingly, spiracles have three distinct phases of activity, each typically lasting
for hours. There is a completely closed phase, a completely open phase, and a flutter phase
in which the spiracles rapidly open and close [17].
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Insect physiologists have proposed at least five major hypotheses to explain the purpose
of this behavior [7]. In order to address these competing hypotheses, physiologists would like
to understand how much cellular oxygen uptake decreases as a result of the spiracles closing.

To answer this question, I began with the following prototype model. I represent a tube
by the interval [0, L] and model the oxygen concentration at a point x ∈ [0, L] at time t
by the function u(x, t). As diffusion is the primary mechanism for oxygen movement in the
tubes (see [19]), the function u satisfies the heat equation with some diffusion coefficient D.
I impose an absorbing boundary condition at the left endpoint of the interval to represent
cellular oxygen absorption where the tube meets the insect tissue. The right endpoint rep-
resents the spiracle, and since the spiracle opens and closes, the boundary condition here
switches between a no flux boundary condition, ux(L, t) = 0 (spiracle closed) and a Dirichlet
boundary condition, u(L, t) = c > 0 (spiracle open).

My mathematical machinery for analyzing PDEs with randomly switching boundary con-
ditions yields an explicit formula for the average oxygen intake to the tissue as a function of
the spiracle opening and closing [15]. To illustrate, suppose that the spiracle switches from
open to closed and from closed to open with exponential rates r0 and r1 respectively. If we
let ρ = r0/r1 and γ = L

√
(r0 + r1)/D, then the expected oxygen flux to the cells at large

time is given by

cD

L

(
1 +

ρ

γ
tanh(γ)

)−1

.

1.3.1. Future work. I will apply this theoretical result to the real problem of insect respiratory
tubes. This will entail taking into account the geometry and other properties of the tubular
network. My preliminary results indicate that the flutter phase does not reduce oxygen
uptake as much as previously thought. Thus, hypotheses that posit spiracular control as a
means of avoiding oxygen toxicity (such as in [7]) may need revision.

2. Arsenic Detoxification

Chronic ingestion of arsenic from contaminated drinking water is a health hazard in over
70 countries. The problem is most disastrous in Bangladesh after an attempt in the 1970’s to
improve drinking water backfired. This well-intentioned effort led to what the World Health
Organization has called “the largest mass poisoning of a population in history” [21].

I have used mathematical modeling to address this crisis. I have developed a model of
arsenic detoxification that was used to interpret clinical data from Bangladesh and evaluate
nutritional supplements aimed at increasing arsenic detoxification [13]. More recently, I have
used modeling to elucidate the biochemical pathway of arsenic detoxification and suggest
new supplementation strategies for increasing arsenic detoxification [16]. In both cases, the
models consist of a system of ODEs that we solve numerically.

This interdisciplinary project is an ongoing collaboration with a nutritional biochemist
at Columbia University, Mary Gamble, an epidemiologist at Columbia University, Megan
Hall, a biologist at Duke University, Fred Nijhout, and a mathematician at Duke University,
Michael Reed. A pair of Duke undergraduates, Molly Cinderella and Jina Yun have been
instrumental to our work.

I am excited to mentor undergraduates in research projects. Modeling projects such as this
are ideal for undergraduates since they require only ODEs. Furthermore, undergraduates
enjoy projects like this because they can help alleviate pressing public health problems.
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