

Qualifying Exam in Basic Analysis August 2009

Duke University, Mathematics Department

Time Allowed: 3 hours

Part I: 6 points each, do all questions

1. Let $f_n(x)$ be a sequence of continuous functions that converges uniformly to a function $f(x)$ on $[0, 1]$. Suppose that $g(x)$ is continuous on $[0, 1]$. Prove that $f_n(x)g(x) \rightarrow f(x)g(x)$ uniformly on $[0, 1]$.
2. Let $a_n \geq 0$ and suppose that $\sum_{n=0}^{\infty} a_n$ converges. Prove that $\sum_{n=0}^{\infty} a_n^2$ converges.
3. Consider the mapping, $\mathbf{F}(x, y)$, from \mathbb{R}^2 to \mathbb{R}^2 given by $(x, y) \rightarrow (x(y+1), 3x - 2y)$. Prove that \mathbf{F} is invertible near $(0, 0)$.
4. Suppose that $f(x)$ is a twice continuously differentiable function on $[0, 1]$ and that $f(0) = 3$, $f'(0) = 2$ and $|f''(x)| \leq 0.5$ for all $x \in [0, 1]$. Estimate $\int_0^1 e^{f(x)} dx$.
5. Prove that $\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$ converges.
6. Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers. If a is an accumulation point of $\{a_n\}$ and b is an accumulation point of $\{b_n\}$, is ab necessarily an accumulation point of $\{a_n b_n\}$? Prove it or give a counterexample.
7. Let $\{a_n\}$ and $\{b_n\}$ be bounded sequences of real numbers. Prove that $\sup_n (a_n + b_n) \leq \sup_n a_n + \sup_n b_n$ and give an example to show that strict inequality can hold.
8. Let $C(t) = (x(t), y(t), z(t))$ be a differentiable curve in \mathbb{R}^3 , where $x(t) = t^3$, $y(t) = \sin(\pi t)$, and $z(t) = t^t$. Give the scalar equation for the plane (e.g. $ax + by + cz = d$) passing through $C(2)$ that is perpendicular to the tangent to the curve at $t = 2$.
9. Either prove or give a counterexample to the following statement: If $f(x)$ is a continuous function on \mathbb{R} that is periodic, then it is uniformly continuous.
10. Let f be a continuous function from a metric space, $\langle X, \rho \rangle$, to \mathbb{R} . If $\{x_n\}$ is a Cauchy sequence in $\langle X, \rho \rangle$, is $\{f(x_n)\}$ necessarily a Cauchy sequence in \mathbb{R} ? Prove it or give a counterexample.

Part II: 10 points each. Choose 4 out of 5 questions. Only 4 questions will be counted in your score.

1. Prove that

$$\int_2^4 \left(\sum_{n=0}^{\infty} \frac{(x-3)^n}{2^n} \right) dx = \sum_{n=0}^{\infty} \left(\int_2^4 \frac{(x-3)^n}{2^n} dx \right).$$

2. Suppose that C is a simple closed curve in \mathbb{R}^2 parameterized by $\mathbf{r}(s)$:

(a) For what general condition on the vector field $\mathbf{V}(x) : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ must

$$\int_C \mathbf{V} \cdot \mathbf{n} ds = 0$$

be true? Here \mathbf{n} is the exterior normal vector to C at a point $\mathbf{r}(s) \in C$. Give an example of a non-constant vector field \mathbf{V} satisfying this condition.

(b) For what general condition on the vector field \mathbf{V} must

$$\int_C \mathbf{V} \cdot d\mathbf{r} = 0$$

be true? Give an example of a non-constant vector field \mathbf{V} satisfying this condition.

3. Let $Q \subset \mathbb{R}^2$ be the square

$$Q = \{(x, y) \in \mathbb{R}^2 \mid 0 \leq x \leq 1, 0 \leq y \leq 1\}.$$

Define the map $\mathbf{F}(x, y) = (f_1(x, y), f_2(x, y)) : Q \rightarrow \mathbb{R}^2$ by

$$f_1(x, y) = 2x - y + 3, \quad f_2(x, y) = 4 + x^2 + 2y^2$$

Let A denote the image of Q under the map \mathbf{F} . Compute the area of A . It may help to express the area as an integral.

4. Suppose $f(x, y) : \mathbb{R}^2 \rightarrow \mathbb{R}$ and $g(x, y) : \mathbb{R}^2 \rightarrow \mathbb{R}$ are continuously differentiable functions. Suppose that the set of points where $g(x, y) = 0$ is a simple closed curve in \mathbb{R}^2 .

(a) Prove that the minimum of $f(x, y)$ on the curve $g(x, y) = 0$ must be attained at some point $(x_0, y_0) \in \mathbb{R}^2$.
 (b) Prove that if the point (x_0, y_0) is such a minimizer, then ∇f and ∇g must be linearly dependent at $x(x_0, y_0)$: there are $\lambda_1, \lambda_2 \in \mathbb{R}$ such that

$$\lambda_1 \nabla f(x_0, y_0) + \lambda_2 \nabla g(x_0, y_0) = 0$$

and $\lambda_1^2 + \lambda_2^2 > 0$.

5. Define $\ln x = \int_1^x \frac{1}{t} dt$. (This definition is the only property of $\ln x$ you may use.)

(a) Prove that $\ln x$ is strictly monotone increasing.

(b) Prove that $\ln x \rightarrow \infty$ as $x \rightarrow \infty$.

(c) Prove that there is a unique number e such that $\ln e = 1$.