
Qualifying Exam in Basic Analysis August 2009

Duke University, Mathematics Department

Time Allowed: 3 hours

Part I: 6 points each, do all questions

1. Let fn(x) be a sequence of continuous functions that converges uniformly to a function f(x) on
[0, 1]. Suppose that g(x) is continuous on [0, 1]. Prove that fn(x)g(x) → f(x)g(x) uniformly
on [0, 1].

2. Let an ≥ 0 and suppose that
∑

∞

n=0 an converges. Prove that
∑

∞

n=0 a2
n converges.

3. Consider the mapping, F(x, y), from R
2 to R

2 given by (x, y) −→ (x(y + 1), 3x − 2y). Prove
that F is invertible near (0, 0).

4. Suppose that f(x) is a twice continuously differentiable function on [0, 1] and that f(0) = 3,
f ′(0) = 2 and |f ′′(x)| ≤ 0.5 for all x ∈ [0, 1]. Estimate

∫ 1
0 ef(x) dx.

5. Prove that
∑

∞

n=1 sin 1
n2 converges.

6. Let {an} and {bn} be sequences of real numbers. If a is an accumulation point of {an} and
b is an accumulation point of {bn}, is ab necessarily an accumulation point of {anbn}? Prove
it or give a counterexample.

7. Let {an} and {bn} be bounded sequences of real numbers. Prove that supn (an + bn) ≤
supn an + supn bn and give an example to show that strict inequality can hold.

8. Let C(t) = (x(t), y(t), z(t)) be a differentiable curve in R
3, where x(t) = t3, y(t) = sin (πt),

and z(t) = tt. Give the scalar equation for the plane (e.g. ax + by + cz = d) passing through
C(2) that is perpendicular to the tangent to the curve at t = 2.

9. Either prove or give a counterexample to the following statement: If f(x) is a continuous
function on R that is periodic, then it is uniformly continuous.

10. Let f be a continuous function from a metric space, 〈X, ρ〉, to R. If {xn} is a Cauchy sequence
in 〈X, ρ〉, is {f(xn)} necessarily a Cauchy sequence in R? Prove it or give a counterexample.

Part II: 10 points each. Choose 4 out of 5 questions. Only 4 questions will be

counted in your score.

1. Prove that
∫ 4

2

(

∞
∑

n=0

(x − 3)n

2n

)

dx =
∞

∑

n=0

(
∫ 4

2

(x − 3)n

2n
dx

)

.

2. Suppose that C is a simple closed curve in R
2 parameterized by r(s):

(a) For what general condition on the vector field V(x) : R
2 → R

2 must

∫

C

V · n ds = 0

be true? Here n is the exterior normal vector to C at a point r(s) ∈ C. Give an example
of a non-constant vector field V satisfying this condition.
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(b) For what general condition on the vector field V must

∫

C

V · dr = 0

be true? Give an example of a non-constant vector field V satisfying this condition.

3. Let Q ⊂ R
2 be the square

Q =
{

(x, y) ∈ R
2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}

.

Define the map F(x, y) = (f1(x, y), f2(x, y)) : Q → R
2 by

f1(x, y) = 2x − y + 3, f2(x, y) = 4 + x2 + 2y2

Let A denote the image of Q under the map F. Compute the area of A. It may help to
express the area as an integral.

4. Suppose f(x, y) : R
2 → R and g(x, y) : R

2 → R are continuously differentiable functions.
Suppose that the set of points where g(x, y) = 0 is a simple closed curve in R2.

(a) Prove that the minimum of f(x, y) on the curve g(x, y) = 0 must be attained at some
point (x0, y0) ∈ R

2.

(b) Prove that if the point (x0, y0) is such a minimizer, then ∇f and ∇g must be linearly
dependent at x(x0, y0): there are λ1, λ2 ∈ R such that

λ1∇f(x0, y0) + λ2∇g(x0, y0) = 0

and λ2
1 + λ2

2 > 0.

5. Define lnx =
∫ x

1
1
t
dt. (This definition is the only property of lnx you may use.)

(a) Prove that lnx is strictly monotone increasing.

(b) Prove that lnx → ∞ as x → ∞.

(c) Prove that there is a unique number e such that ln e = 1.
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