

Qualifying Exam in Basic Analysis, August 2011

Duke University, Mathematics Department

Time Allowed: 3 hours

All answers and statements should be proved; no partial credit is given to answers without justification.

Part I: 6 points each, do all 9 questions

1. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x) = 0$ when x is rational and $f(x) = x$ when x is irrational. Prove that f is continuous at $x = 0$ and f is discontinuous for any $x \neq 0$.
2. True or False: If $x_n \in \mathbb{R}$ is a bounded sequence such that $\limsup x_n \leq \liminf x_n$ then x_n converges.
3. Give an example of a sequence of functions $f_n : [0, 1] \rightarrow \mathbb{R}$ such that $f_n \rightarrow 0$ pointwise on $[0, 1]$ yet

$$\int_0^1 f_n(x) dx \neq 0.$$

4. True or False: If $x_n y_n$ is a convergent sequence of nonzero real numbers and if $\frac{x_n}{y_n}$ converges, then both x_n and y_n are convergent.
5. Let $f(x) = x \tan^2 x$ for $x \in (0, \pi/2)$. Calculate $(f^{-1})'(\pi/4)$.
6. Consider the differential equation $f''(x) = a(x)f(x)$ on \mathbb{R} , where $a(x) \geq 0$ and continuous. Suppose f solves the equation, and that $f(0) = f(1) = 0$. Show that $f(x) = 0$ for all $x \in \mathbb{R}$.
7. Show that equation $\arctan(2x - 1) = 5 - 2x$ has at least one real solution.
8. Let $f \in C^1([a, b])$ and $f'(x) < 0$ for all $x \in [a, b]$. Prove that f is strictly monotonically decreasing, i.e. $f(x) < f(y)$ for all $x > y$, $x, y \in [a, b]$
9. Let $f \in C([0, 1])$. Prove or disprove:
 - (a) if $\int_0^1 f(t) dt = 0$, then $f = 0$.
 - (b) if $f(x) \geq 0$ for every $x \in [0, 1]$ and $\int_0^1 f(t) dt = 0$, then $f = 0$.
 - (c) if for every $x \in [0, 1]$, $\int_0^x f(t) dt = 0$, then $f = 0$.

Part II: 10 points each. Choose 5 out of 7 questions. Only 5 answers will be counted in your score.

1. Show that

$$\lim_{n \rightarrow \infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \cdots + \frac{n}{n^2 + n^2} \right) = \frac{\pi}{4}$$

2. (a) Show that the following is an inner product on \mathbb{R}^2 :

$$\langle (x_1, y_1), (x_2, y_2) \rangle = 2x_1x_2 + x_1y_2 + y_1x_2 + 2y_1y_2.$$

(b) Explain why

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{2(x_1 - x_2)^2 + 2(x_1 - x_2)(y_1 - y_2) + 2(y_1 - y_2)^2}$$

gives a metric on \mathbb{R}^2 .

(c) Explain why

$$\{(x, y) : 2x^2 + 2xy + 2y^2 \leq 1\}$$

is a convex set in \mathbb{R}^2 .

3. Let $\gamma : [0, 1] \rightarrow \mathbb{R}^3$ be a continuous path with $\gamma(0) = (0, 0, 0)$ and $\gamma(1) = (1, 1, 1)$. Show that γ meets the unit sphere $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$.

4. A real-valued function f defined on an interval (a, b) is said to be convex if

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

whenever $a < x, y < b$, $0 < \lambda < 1$. Prove that every convex function is continuous.

5. Consider a bounded sequence $\{x_n\}$ in \mathbb{R} . Let ω_x be the set of limit points of $\{x_n\}$, i.e. the set of points y in \mathbb{R} for which there exist a subsequence of $\{x_n\}$ converging to y .

- What can you say about the cardinality of ω_x ? Can it be 0 (i.e. $\omega_x = \emptyset$)? Finite? Countably infinite? Uncountably infinite?
- Is ω_x bounded?
- Let $\{y_n\}$ be a second bounded sequence in \mathbb{R} , and ω_y the corresponding set of limit points. Let $a \in \omega_x$ and $b \in \omega_y$. Is $a \cdot b$ necessarily a limit point of $\{x_n \cdot y_n\}$?
- Prove or disprove: ω_x is closed.

6. Consider the series of functions

$$f(x) = \sum_{n=1}^{+\infty} f_n(x)$$

where

$$f_n(x) = \sum_{n=1}^{+\infty} \frac{\tanh(nx) - nx^4}{n(n^4 + x^4)}.$$

Recall that $\tanh(y) = \frac{e^{2y} - 1}{e^{2y} + 1}$.

- Show that the series converges pointwise on \mathbb{R} . [Hint: show that $f_n(x)/(-x^4/n^4) \rightarrow 1$ as $n \rightarrow +\infty$, for every $x \neq 0$.]
- Show that, in general, for a series of functions $\sum_{n=1}^{+\infty} f_n$ to converge uniformly on a subset E of \mathbb{R} , it is necessary that the f_n converges uniformly to 0. Is this also a sufficient condition?
- Determine on which intervals (bounded and unbounded) of \mathbb{R} the convergence is uniform. [Hint: for unbounded intervals, look at $\lim_{x \rightarrow \pm\infty} f_n(x)$, then use (b).]
- Show that

$$\left| \int_0^1 f(x) dx \right| \leq \sum_{n=1}^{+\infty} \left(\frac{1}{n^5} + \frac{1}{5n^4} \right).$$

7. Let

$$K(f)(x) = \int_0^1 k(x, y) f(y) dy \quad x \in [0, 1]$$

where $k \in \mathcal{C}([0, 1] \times [0, 1])$.

- Show that if f is square-integrable on $[0, 1]$ (i.e. $\int_0^1 |f(x)|^2 dx$), then so is $|Kf|^2$.
- Show that K is a linear operator from square-integrable functions to square-integrable functions, i.e. $K(\alpha f + \beta g) = \alpha Kf + \beta Kg$ for any $\alpha, \beta \in \mathbb{R}$ and f, g square integrable.
- Show that for any $\epsilon > 0$ there exists a linear operator K_ϵ such that (a) $\int_0^1 |Kf(x) - K_\epsilon f(x)|^2 dx < \epsilon \int_0^1 |f(x)|^2 dx$ for all square integrable f , and (b) K_ϵ has a finite-dimensional range, i.e. show that the subspace spanned by $\{K_\epsilon f\}$ with f ranging over all square integrable functions on $[0, 1]$ is a finite-dimensional vector space.