
Qualifying Exam in Basic Analysis, August 2011

Duke University, Mathematics Department

Time Allowed: 3 hours

All answers and statements should be proved; no partial credit is given to answers without justification.

Part I: 6 points each, do all 9 questions

1. Let f : R → R be defined by f(x) = 0 when x is rational and f(x) = x when x is irrational. Prove that f is
continuous at x = 0 and f is discontinuous for any x 6= 0.

2. True or False: If xn ∈ R is a bounded sequence such that lim supxn ≤ lim inf xn then xn converges.

3. Give an example of a sequence of functions fn : [0, 1] → R such that fn → 0 pointwise on [0, 1] yet

∫ 1

0

fn(x) dx 6→ 0.

4. True or False: If xnyn is a convergent sequence of nonzero real numbers and if xn

yn

converges, then both xn and
yn are convergent.

5. Let f(x) = x tan2 x for x ∈ (0, π/2). Calculate (f−1)′(π/4).

6. Consider the differential equation
f ′′(x) = a(x)f(x)

on R, where a(x) ≥ 0 and continuous. Suppose f solves the equation, and that f(0) = f(1) = 0. Show that
f(x) = 0 for all x ∈ R.

7. Show that equation arctan(2x− 1) = 5− 2x has at least one real solution.

8. Let f ∈ C1([a, b]) and f ′(x) < 0 for all x ∈ [a, b]. Prove that f is strictly monotonically descreasing, i.e.
f(x) < f(y) for all x > y, x, y ∈ [a, b]

9. Let f ∈ C([0, 1]). Prove or disprove:

(a) if
∫ 1

0
f(t)dt = 0, then f = 0.

(b) if f(x) ≥ 0 for every x ∈ [0, 1] and
∫ 1

0
f(t)dt = 0, then f = 0.

(c) if for every x ∈ [0, 1],
∫

x

0
f(t)dt = 0, then f = 0.

Part II: 10 points each. Choose 5 out of 7 questions. Only 5 answers will be counted
in your score.

1. Show that

lim
n→∞

(

n

n2 + 12
+

n

n2 + 22
+ · · ·+

n

n2 + n2

)

=
π

4

2. (a) Show that the following is an inner product on R
2;

〈(x1, y1), (x2, y2)〉 = 2x1x2 + x1y2 + y1x2 + 2y1y2 .

(b) Explain why
d((x1, y1), (x2, y2)) = 2(x1 − x2)

2 + 2(x1 − x2)(y1 − y2) + 2(y1 − y2)
2

gives a metric on R
2.

(c) Explain why
{

(x, y) : 2x2 + 2xy + 2y2 ≤ 1
}

is a convex set in R
2.
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3. Let γ : [0, 1] → R
3 be a continuous path with γ(0) = (0, 0, 0) and γ(1) = (1, 1, 1). Show that γ meets the unit

sphere S =
{

(x, y, z) ∈ R
3
∣

∣ x2 + y2 + z2 = 1
}

.

4. A real-valued function f defined on an interval (a, b) is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1 − λ)f(y)

whenever a < x, y < b, 0 < λ < 1. Prove that every convex function is continuous.

5. Consider a bounded sequence {xn} in R. Let ωx be the set of limit points of {xn}, i.e. the set of points y in R

for which there exist a subsequence of {xn} converging to y.

(a) What can you say about the cardinality of ωx? Can it be 0 (i.e. ωx = ∅)? Finite? Countably infinite?
Uncountably infinite?

(b) Is ωx bounded?

(c) Let {yn} be a second bounded sequence in R, and ωy the corresponding set of limit points. Let a ∈ ωx

and b ∈ ωy. Is a · b necessarily a limit point of {xn · yn}?

(d) Prove or disprove: ωx is closed.

6. Consider the series of functions

f(x) =

+∞
∑

n=1

fn(x)

where

fn(x) =

+∞
∑

n=1

tanh(nx)− nx4

n(n4 + x4)
.

Recall that tanh(y) = e
2y

−1

e2y+1
.

(a) Show that the series converges pointwise on R. [Hint: show that fn(x)/(−x4/n4) → 1 as n → +∞, for
every x 6= 0.]

(b) Show that, in general, for a series of functions
∑+∞

n=1
fn to converge uniformly on a subset E of R, it is

necessary that the fn converges uniformly to 0. Is this also a sufficient condition?

(c) Determine on which intervals (bounded and unbounded) of R the convergence is uniform. [Hint: for
unbounded intervals, look at limx→±∞ fn(x), then use (b).]

(d) Show that
∣

∣

∣

∣

∫ 1

0

f(x)dx

∣

∣

∣

∣

≤
+∞
∑

n=1

(

1

n5
+

1

5n4

)

.

7. Let

K(f)(x) =

∫ 1

0

k(x, y)f(y)dy x ∈ [0, 1]

where k ∈ C([0, 1]× [0, 1]).

(a) Show that if f is square-integrable on [0, 1] (i.e.
∫ 1

0
|f(x)|2dx), then so is |Kf |2.

(b) Show that K is a linear operator from square-integrable functions to square-integrable functions, i.e.
K(αf + βg) = αKf + βKg for any α, β ∈ R and f, g square integrable.

(c) Show that for any ǫ > 0 there exists a linear operator Kǫ such that (a)
∫ 1

0
|Kf(x) − Kǫf(x)|2dx <

ǫ
∫ 1

0
|f(x)|2dx for all square integrable f , and (b) Kǫ has a finite-dimensional range, i.e. show that

the subspace spanned by {Kǫf} with f ranging over all square integrable functions on [0, 1] is a finite-
dimensional vector space.
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