

Qualifying Exam in Basic Analysis, August 2012

Duke University, Mathematics Department

Time Allowed: 3 hours

All answers and statements should be proved; no partial credit is given to answers without justification.

Part I: 6 points each, do all 6 questions

1. State and prove the Cauchy-Schwartz inequality.
2. State some reasonable conditions under which a function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ satisfies

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

everywhere on \mathbb{R}^2 and prove this equality under the condition you give.

3. For $a_1, \dots, a_n > 0$, let the arithmetic mean be

$$\frac{1}{n} \sum_{i=1}^n a_i$$

and the geometric mean be

$$\sqrt[n]{\prod_{i=1}^n a_i}.$$

Is one always larger than the other? State a theorem and prove it, or provide suitable counterexamples.

4. State and prove the contraction mapping principle (also known as the Banach fixed point theorem).
5. Let $f : [0, 1] \rightarrow \mathbb{R}$. Define what it means for f to be continuous at a point $x_0 \in (0, 1)$. Then give an example of a function that is discontinuous everywhere except at $x_0 = \frac{1}{2}$.
6. Let f be the solution of

$$f'(x) = -(x^2 e^{-x^2} + 1)f(x)^3 \quad , \quad f(0) = 2.$$

How many solutions does the equation $f(x) = \sin(x)$ have on \mathbb{R} ?

Part II: 10 points each. Do all 5 questions.

1. Is

$$f(x) = \frac{1 + x^2}{x \sqrt[4]{1 - \cos \frac{1}{x}}}$$

in $L^1(0, 1)$?

2. Define, for $x \in [0, 1]$

$$f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n^3} \cos(2\pi n x).$$

Show that f is well-defined, i.e. the right-hand side converges pointwise for every $x \in [0, 1]$. Is f continuous on $[0, 1]$? Is f differentiable on $[0, 1]$? If so, what is the derivative of f ?

3. Let f_n be a sequence of continuous functions $[0, 1] \rightarrow \mathbb{R}$ such that each f_n satisfies $f_n(0) = 1$ and is 1-Lipschitz, i.e. $|f_n(x) - f_n(y)| \leq |x - y|$ for all $x, y \in [0, 1]$. Show that $\{f_n\}$ has a subsequence that converges uniformly on $[0, 1]$. [Hint: Find a subsequence that converges point wise in suitably many points (e.g. a countable dense subset of $[0, 1]$), and then show that it (or a subsequence thereof) converges uniformly on all of $[0, 1]$].

4. Let, for $a > 0$,

$$f(x, y) = \begin{cases} \frac{x^5 + y^4}{(x^2 + y^2)^a + x^2 y^4} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}.$$

Determine for which values of a this function has each of the following properties:

- f is continuous at $(0, 0)$;
- f is differentiable at $(0, 0)$.

5. Let for $n \geq 1$

$$g_n(x) = \frac{x^3}{n + x^4} \tanh \frac{1}{nx^2 + 2},$$

where of course $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. Study the point-wise and uniform convergence of the sequence $\{g_n\}$, i.e. determine the subsets of \mathbb{R} where the sequence $\{g_n\}$ converges point-wise, and the subsets of \mathbb{R} where the convergence is uniform.