

Qualifying Exam in Basic Analysis, January 2013

Duke University, Mathematics Department

Time Allowed: 3 hours

All answers and statements should be proved; no partial credit is given to answers without justification.

- Given an example of a bounded closed metric space that is not compact. [10pts]
- Suppose (X, d) is a metric space. Let T be a contraction on X , i.e. $d(Tx, Ty) \leq \alpha \cdot d(x, y)$, for some $\alpha < 1$. Consider the statement:
for any $x_0 \in X$, the sequence $\{T^n x_0\}_{n=0}^{+\infty}$ converges to a point $x^* \in X$
 - Show that this statement is false in general.
 - Define the notion of completeness of a metric space, and prove that if (X, d) is complete, the statement above is true. [20pts]
- State and prove the fundamental Theorem of calculus, and how it can be applied to compute $\int_0^1 f'(x)dx$, when f' is continuous $[0, 1] \rightarrow \mathbb{R}$. Then state and prove a (partial) generalization of this result to calculate $\int_{\Omega} \nabla f(\mathbf{x})d\mathbf{x}$ for a function $f : \Omega \rightarrow \mathbb{R}$, where Ω is a connected domain in \mathbb{R}^2 with smooth boundary. [20pts]
- Is $\frac{(e^{-|x|}-1)\cos x}{x}$ Riemann integrable on \mathbb{R} ? Prove or disprove. [10pts]
- Consider the sequence of functions

$$f_n(x) = (x^{2n} + 2^{nx})^{\frac{1}{n}} \quad n \geq 1.$$

Determine the set E of pointwise convergence to its limit function on E . Prove pointwise convergence on E . Then determine if f_n converges uniformly on E . [20pts]

- Consider the function

$$f(x, y) = x^2 y^2 e^{-2x^2 - 3y^2}.$$

- Determine if the following limits exist, and calculate those which do:

$$\lim_{(x,y) \rightarrow \infty} f(x, y) \quad , \quad \lim_{(x,y) \rightarrow \infty} f(x, y) e^{2x^2}.$$

- Determine the stationary points of f in \mathbb{R}^2 and determine their nature.

[20pts]