

Qualifying Exam in Basic Analysis June 2009

Part I (60 points)

(a) State two equivalent definitions for what it means for a set in \mathbb{R}^n to be compact.

(b) State what it means for a sequence of functions, f_n , to converge uniformly to a limiting function, f , on a set E . Give an example of a sequence of functions that converges pointwise but not uniformly.

(c) Suppose that $\{a_n\}$ is a sequence of real numbers and that $a_n \rightarrow a$. Suppose that $a_n > 4$ for all n . Prove that $a \geq 4$.

(d) Give an example of a series of real numbers that converges (say how you know it), but does not converge absolutely.

(e) Suppose that f is continuously differentiable on $[0, 1]$, $f(0) = 0$, and $f'(x) \leq 1$ for all $x \in [0, 1]$. Prove that $f(x) \leq x$ for all $x \in [0, 1]$.

(f) Consider the following function, f , on the interval $[0, 2]$. $f(x) = 2$ if $0 \leq x < 1$, $f(1) = 9$, $f(x) = \frac{1}{2}$ if $1 < x \leq 2$. Prove that f is Riemann integrable. Compute $\int_0^2 f(x) dx$.

(g) Let X be a metric space with metric ρ . Let $\{x_n\}$ be a sequence of elements of X that converge to a limit $x \in X$. Suppose $y \in X$. Prove that the sequence of real numbers, $\{\rho(x_n, y)\}$ converges to $\rho(x, y)$.

(h) Use a linear approximation to the function $f(x) = \sqrt{x}$ near $x = 9$ to approximate $\sqrt{9.2}$. Estimate the error in your approximation.

(i) Let f be a continuously differentiable on \mathbb{R}^2 and suppose that $\gamma(t) = \langle x(t), y(t) \rangle$ for $0 \leq t \leq 1$ is a level set. Prove that $\gamma'(t)$ is perpendicular to $\nabla f(\gamma(t))$ for all $0 \leq t \leq 1$.

(j) State the implicit function theorem for functions of two variables. Let $f(x, y) = \sin(x+y) + x^2$. Prove that if $|y|$ and $|\epsilon|$ are sufficiently small, there is an x such that $f(x, y) = \epsilon$.

Part II (40 points - choose 4 out of 5)

1. (i) Define the term **radius of convergence** as applied to power series.
(ii) Find the radius of convergence of this power series:

$$f(x) = \sum_{n=1}^{\infty} 2^n n^2 x^n. \quad (0.1)$$

2. (i) For $f(x) = \cos(2\pi x)$, find a polynomial $g_k(x)$ of order k such that

$$g_k(0) = f(0), \quad g'_k(0) = f'(0), \quad g''_k(0) = f''(0), \quad \dots \quad g_k^{(k)}(0) = f^{(k)}(0) \quad (0.2)$$

(ii) Prove that for any x fixed, $\{g_k(x)\}_{k=1}^{\infty}$ is a Cauchy sequence.
(iii) Prove that

$$\lim_{k \rightarrow \infty} \int_{-1}^1 g_k(x) dx = \int_{-1}^1 f(x) dx \quad (0.3)$$

3. If $f(x, y) = e^{-x} \sin(y)$, show that

$$\int_C \nabla f \cdot \mathbf{n} \, ds = 0 \quad (0.4)$$

for any smooth, simple closed curve C in \mathbb{R}^2 .

4. Suppose that f is a continuous function on $[0, 1]$ and that $\sup f = 1$. Prove that there is a point $p \in [0, 1]$ such that $f(p) = 1$.

5. Consider the nonlinear function $f(x, y) : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $f = (f_1(x, y), f_2(x, y))$, defined by

$$f_1(x, y) = -\frac{x^2}{2} + \frac{y^3}{3} + 2x + 2, \quad f_2(x, y) = y^2 - 4x \quad (0.5)$$

(i) Find an affine function $g : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ which best approximates f in a neighborhood of the point $(x, y) = (1, 1)$.

(ii) Using the Inverse Function Theorem, explain why the map $f(x, y)$ is invertible (bijective) in a sufficiently small neighborhood of the point $(x, y) = (1, 1)$.