

Department of Mathematics

Qualifying Examination in Linear Algebra

Fall examination

Saturday, 15 August 2009

Instructions:

Choose **FIVE** of the six problems; only write solutions for these five.

Please write neatly.

Please be sure to communicate your reasoning clearly.

Good luck!

Notation:

\mathbb{R} = the field of real numbers.

Scoring:

Each of the five problems will count 12 points.

Examination Problems

- Find the matrix for the linear transformation on \mathbb{R}^3 given by reflection in the plane $x + y = z$.
 - Find an orthonormal basis for the subspace of \mathbb{R}^4 orthogonal to $(0, 1, 1, -1)$.
- Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$
 - Find bases for the row and column spaces of \mathbf{A} .
 - Let $T_{\mathbf{A}} : \mathbb{R}^5 \rightarrow \mathbb{R}^3$ be the linear transformation associated with \mathbf{A} .
 - Determine the rank and nullity of $T_{\mathbf{A}}$.
 - Is $T_{\mathbf{A}}$ one-to-one? Justify your answer.
 - Let V be the kernel of $T_{\mathbf{A}}$ and W a two dimensional subspace of \mathbb{R}^5 that intersects V in a 1-dimensional subspace. Compute the dimension of $V + W$.
- Let \mathbf{A} be the matrix
$$\mathbf{A} = \begin{pmatrix} -3 & -13 & -2 \\ 0 & 1 & 0 \\ 4 & 14 & 3 \end{pmatrix}.$$
Find matrices \mathbf{B}, \mathbf{J} such that \mathbf{J} is in Jordan canonical form and $\mathbf{B}\mathbf{A}\mathbf{B}^{-1} = \mathbf{J}$.
- Let \mathbf{A} be a Hermitian matrix.
 - Show that the eigenvalues of \mathbf{A} are real.
 - Show that the eigenvectors of \mathbf{A} from different eigenspaces are orthogonal (with respect to the standard Hermitian inner product).
 - Show that $\mathbf{A} + i\mathbf{I}$ is invertible, where $i = \sqrt{-1}$ and \mathbf{I} is the identity matrix.
- Let V be a finite-dimensional vector space over some field, let V^* be the dual vector space to V , and let V^{**} be the dual vector space to V^* . Construct a map from V to V^{**} that is an isomorphism, and prove that it is an isomorphism.
- Let \mathbf{V} be a positive definite matrix (real and symmetric).
 - Give a one-sentence reason why \mathbf{V} is an invertible matrix.
 - State the Spectral Theorem and use it to show that a positive definite matrix \mathbf{V} has a *square root*, i.e., find a matrix \mathbf{H} such that $\mathbf{V} = \mathbf{H}\mathbf{H}^T$.
 - Is your answer \mathbf{H} from (b) necessarily an invertible, symmetric matrix? Justify your answer.