

Qualifying Examination in Linear Algebra

August 2013

Instructions:

Choose **SEVEN** of the eight problems; only write solutions for these seven.

Please write neatly.

Please be sure to communicate your reasoning clearly.

Good luck!

Notation:

\mathbb{R} = the field of real numbers.

$\mathcal{N}(M)$ refers to the nullspace of a matrix M .

$\mathcal{R}(M)$ refers to the range (columnspace) of a matrix M .

M^T is the transpose of a matrix M .

$\langle \mathbf{x}, \mathbf{y} \rangle$ denotes an inner product of two vectors.

Scoring:

Each of the seven problems will count 10 points.

Examination Problems

1.

- (a) Show that the i th row of an invertible matrix A is orthogonal to the j th column of A^{-1} if $i \neq j$.
- (b) Let $M_n(\mathbb{R})$ be the vector space of all real $n \times n$ matrices. Define the *commutator* of matrices A and B in $M_n(\mathbb{R})$ to be

$$[A, B] \equiv AB - BA.$$

- i. Define a transformation $T : M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R})$ by $T(X) = [A, X]$, where A is a fixed nonzero matrix in $M_n(\mathbb{R})$. Is T a linear transformation? Justify your answer.
- ii. If $n = 2,013$, what is the numerical value of the trace of $I_{2,013} - [A, B]$. Show your work.

2. Let

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & \pi & e & 0 \\ 0 & 0 & 1 & 13 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

- (a) Find bases for the row and column spaces of A .
- (b) Determine the nullity of A . Is the linear transformation associated with A one-to-one? Justify your answer.
- (c) Let \mathcal{N} be the nullspace of A and let \mathcal{V} be a two dimensional subspace of \mathbb{R}^5 such that $\mathcal{V} + \mathcal{N}$ is three dimensional. Determine the dimension of $\mathcal{V} \cap \mathcal{N}$.

3. Let B be an $n \times n$ matrix with eigenvalues $\lambda_1 = 1, \lambda_2 = 2, \dots, \lambda_n = n$.

- (a) Is B invertible? Diagonalizable? Justify your answers.
- (b) Determine the eigenvalues of B^{-2013} .
- (c) Let $p(x)$ be the characteristic polynomial of B . Given the function

$$f(x) = 2e^x + x^2 p(x),$$

compute $\det[f(B)]$.

4. Let Q be an orthogonal matrix.

- Is Q^{2013} orthogonal? Justify your answer.
- If the angle between the vectors \mathbf{x} and \mathbf{y} is $\pi/3$, determine the angle between $Q^{2013}\mathbf{x}$ and $Q^{2013}\mathbf{y}$.
- Show that $Q + (1/2)I$ is invertible.

5. Consider the inner product space \mathbb{R}^3 with the standard inner product. Let $\mathbf{x} = (1, 2, 1)$, and let $S \subset \mathbb{R}^3$ denote the orthogonal complement of the span of \mathbf{x} (S is the set of all $\mathbf{y} \in \mathbb{R}^3$ such that $\langle \mathbf{y}, \mathbf{x} \rangle = 0$). Compute the matrix M for the linear transformation of \mathbb{R}^3 which is the orthogonal projection of \mathbb{R}^3 onto S .

6. Suppose that A is a real, symmetric $n \times n$ matrix. Suppose $\{e_1, \dots, e_n\}$ is a given orthogonal basis for \mathbb{R}^n .

- Either prove the following or give a counter example: If $\langle e_k, Ae_k \rangle > 0$ for each $k = 1, \dots, n$, then A is positive definite.
- Suppose A is the matrix
$$A = \begin{pmatrix} 5 & 1 \\ 1 & 5 \end{pmatrix}.$$
Find a real $n \times n$ matrix B such that $A = BB^T$. Hint: observe that $\mathbf{v}_1 = (1, 1)$ and $\mathbf{v}_2 = (1, -1)$ are eigenvectors of A .

7. Find a real 5×5 matrix A having characteristic polynomial $p(x) = x^2(x + 7)^3$ such that the nullspace of the matrix $A + 7I$ is two-dimensional. Express your answer in Jordan canonical form. Is the answer unique? Explain.

8. Suppose M is a real $n \times n$ matrix. Let $\mathbf{y} \in \mathbb{R}^n$ be a given vector.

- Show that if $\mathbf{y} \in \mathcal{R}(M)$, then \mathbf{y} is orthogonal to $\mathcal{N}(M^T)$.
- Show that if a vector $\mathbf{z} \in \mathbb{R}^n$ is orthogonal to $\mathcal{R}(M)$, then $\mathbf{z} \in \mathcal{N}(M^T)$.