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Abstract

Despite the increased pressure on airlines to increase productivity in
recent times, a largely overlooked inefficiency in air travel is the board-
ing and unloading process. The typical airline uses a zone system, where
passengers board the plane from back to front in several groups. The ef-
ficiency of the zone system has come into question with the introduction
of the open-seating policy of Southwest Airlines. Despite conventional
wisdom, Southwest is able to turnaround planes at an uncanny rate with
their innovative methods. Hence, the optimality of the entire boarding
process has come into question.

We propose a stochastic agent-based simulation of the boarding process
in order to explore the effectiveness of novel boarding techniques. Our
model organizes the aircraft into discrete units called ‘processors.” Each
processor corresponds to a physical row of the aircraft. Passengers enter
the plane and are moved through the aircraft based on the functionality
of these processors. During each cycle of our simulation each row (pro-
cessor) can execute a single operation. Operations accomplish functions
such as moving passengers to the next row, stowing luggage or seating
passengers. The processor model tells us, from an initial ordering of pas-
sengers in a queue, how long the plane will take to board, and produces
a grid detailing the chronology of passenger seating.

We extend our processor model with a genetic algorithm, which we use to
search the space of possible passenger configurations for innovative and
effective patterns. This algorithm employs the biological techniques of
mutation and crossover to seek out locally optimal solutions to the pas-
senger boarding problem. We create a variant of this algorithm which is
designed to optimize a priori boarding patterns.

We also integrate a Markov chain model of passenger preference with our
processor model. We use this preference model to produce a simulation of
Southwest-style boarding, where seats are not assigned but are chosen by
individuals based on environmental constraints (such as seat availability).
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We validated our model using tests for rigor in both robustness and sen-
sitivity. We find that in robustness test cases that our model makes pre-
dictions that correlate well with empirical evidence.

We simulate many different a priori configurations, such as back to front,
window to aisle and alternate half-rows. When normalized to a random
boarding sequence, we found that window to aisle, the best performing
pattern, improved efficiency by 36% on average. Even more surprising,
the most common technique, zone boarding, performed even worse than
random. We compare these techniques to novel boarding sequences de-
veloped using our genetic algorithm.

Based on the output of our genetic algorithm, we recommend a hybrid
boarding process; a combination of window to aisle and alternate half-
rows. This technique is a three-zone process, like window to aisle, but
it allows family units to board first, simultaneously with window seat
passengers.
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1 Introduction

Flight technology has come a long way since the glider flown by
Orville and Wilbur during the autumn of 1903. Unlike aircraft so-
phistication however, passenger boarding techniques have seen lit-
tle evolution — much to the dismay of frequent fliers who have to
wade through the narrow aisles of airplanes and wait for granny
to stow away gifts for each of her 20 grandchildren. As the ti-
tle of a New York Times article emphatically suggests, 'Loading
an Airliner is Rocket Science.” Boarding time not only determines
airplane productivity but also impacts customer satisfaction. Pro-
longed boarding markedly reduces passengers’ perception of quality
and considerably increases total airplane turnaround time. The lat-
ter is particularly critical over short flights where a few additional
minutes spent boarding can throw off the day’s schedule. This pa-
per simulates different patterns of boarding sequences to determine
the optimal method of plane boarding.

1.1 Restatement of the Problem

The truth about the airline industry is that passengers have places
to be and people to see; airlines have planes to fly and dollars to dry.
In a utopia founded on world peace, sated bellies and zero boarding
or deplaning times, it is difficult to imagine passengers and airlines
having anything to whine about. But utopian dreams are but fan-
tasies. Unfortunately, passengers and airlines have to contend with
the frustration of waiting when boarding and deplaning. Both pas-
sengers and airlines thus have vested interests in the development of
boarding and deplaning patterns that minimize waiting times. This
is particularly true for the airlines, where the benefit of short board-
ing and deplaning times is two-fold — higher airplane productivity
and greater customer satisfaction. However, given the constraints
that airlines operate under — the structure of planes and the infras-
tructure of airports — the only mechanisms for minimizing waiting
times at the airlines’ disposal are the boarding and deplaning se-
quences.

When passengers board a plane, congestion builds in aisles as pas-
sengers stumble through the aisles or attempt to stow their luggage
in the overhead compartments. Congestion also results due to seat
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collisions where passengers have to leave their seats to make way for
passengers assigned seats closer to the windows. Ultimately, con-
gestion disrupts the smooth flow of passengers to their seats and
prolongs boarding.

Successful boarding sequences not only minimize congestion but also
allow passengers access to different parts of the plane in parallel, so
that many passengers can stow their luggage and find their seats at
the same time. In addition, these sequences must also be sufficiently
robust to accommodate stochastic variability in boarding. While it
is not difficult to develop solutions that specify the boarding and
deplaning sequence of each passenger, such solutions are difficult to
implement. Appropriate treatment of the problem calls for careful
and balanced analyses that weigh the practicality of implementa-
tion, performance and variability.

1.2 Survey of Previous Research

1.2.1 Discrete Random Process

In an article by Bachmat et al., the group proposed a discrete board-
ing process in which passengers are assigned seats before boarding.
The input to the process is an index for the position of each passen-
ger in the queue and a seat assignment for each passenger. Addi-
tionally, the researchers defined the aisle space that each passenger
occupies, the time it takes to clear the aisle once the designated row
is reached, and the distance between consecutive rows. The former
two parameters were sampled from distributions defined by the re-
searchers.

The model considers the travel path of each passenger. The pas-
senger moves as far down the aisle as they can until they reach an
obstacle, which is either the back of a queue or a person who is
preparing to sit in their row. Passengers who arrive at their row
clear the aisle after a delay time. The passengers behind them con-
tinue on their journey down the aisle once this delay time is over.
An important component of this process is that passengers may have
to wait for other passengers to stow away luggage before being free
to progress to their own seats. It follows that passengers can block
other passengers, thus resulting in the formation of a queue.
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The researchers define an ordering relation between passengers. Each
passenger can then be assigned a pointer which points to the last
passenger that blocked their path. By following the trail of pas-
sengers, the longest chain in the ordering ending at any particular
passenger can be identified. This identifies the number of rounds
that is needed for the simulation.

1.2.2 Other Simulation Studies

In "A simulation study of Passenger Boarding Times in Airplanes,’
H. Van Landeghem argues emphatically the two-fold benefits of min-
imizing total boarding times. Prolonged boarding not only degrades
customers’ perception of quality but also determines total airplane
turnaround time and therefore airline efficiency. In his paper, Lan-
deghem defines total boarding time as the interval between the point
the first passenger enters the plane to the point the last passenger
is seated in his/her assigned seat. To determine the ideal boarding
procedure, Landeghem simulates different patterns of boarding se-
quences in Arena. His simulations are based on an airplane with 132
seats divided into 23 rows with Row 1 and 23 having 3 seats and
the others having 6. Through the simulations, the first objective is
to reduce total boarding time. The second objective is to augment
the quality perception of the passengers by evaluating the average
and maximum individual boarding times as seen by the passengers.
For a further discussion of this model, please see Appendix A.

2 Model Overview

Research into airplane boarding has taken several approaches. Ana-
lytic approaches to the problem are extremely rare, due to its intrin-
sically high parallelism and significant stochastic variability. Most
approaches are simulative in nature. Simulation allows for the com-
plexity of the problem to be distributed, and hence presents a sim-
pler formulation. We here present a simulative model which can be
considered a stochastic agent-based approach.

Our preliminary model (this model is contained in Appendix B)
treats the plane as a line, with destinations (seats) at regular dis-
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tances along the line. Each passenger is modeled as an agent, and
moves along the line until reaching his seat. Each agent has a speed,
and is constrained by the slowest person in front of him. This sim-
plest model is merely a prototype, and is not used to derive experi-
mental results.

Our basic model takes into account the topology of the airplane.
Each row of the plane is broken into a discrete unit. We call these
units ‘processors’ since they determine the rate that an individual
moves through the system. Each processor has a queue, a list of
people waiting to be processed by it (and hence moved to the next
node of the system). Each agent has a particular destination pro-
cessor, the row where his seat is assigned.

The extended model adds additional parameters into the simula-
tion. For the first time, there is a one-to-one mapping of passengers
to seats. This layer accounts for passengers bringing baggage onto
the plane. We call a scenario where a passenger is waiting on an-
other passenger to stow his baggage a baggage collision. We also
model seat collisions. A seat collision occurs when a passenger is
sitting between another passenger and his seat (e.g., the passenger
with an assigned window seat must move around a passenger who
is sitting next to the aisle).

Our next model attempts to optimize boarding time based on the
order that passengers enter the plane. This is implemented using
a genetic algorithm over the search space of all possible orderings.
Crossovers and mutations occur, with the restriction that each al-
teration of seat ordering must preserve the property that every seat
is represented.

Our final model is a Markov chain used to model passenger pref-
erences in an open seating environment. This model simulates a
boarding process such as is used by Southwest Airlines.

We combine our models holistically, and each model interacts benefi-
cially with the other models described. The extended model is com-
bined with the genetic model and the passenger preference model to
analyze certain test scenarios. All of our results have the extended
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Figure 1: Basic processor based model

model at their heart. This allows us to compare results over dif-
ferent test cases, and generate a macroscopic view of the airplane
boarding problem.

3 Details of the Model

We will begin with a description of the model, beginning with the
basic algorithm and then continuing with its extensions.

3.1 Basic Model

The basic model is the foundation of our experimental results. We
model the topology of the plane using a compartmental model. We
divide the plane into compartments called ‘processors.” Each pro-
cessor is physically analogous to the space of one row in the plane.
By using differing layouts of processors, we can model a variety of
plane topologies.

In the basic model, each passenger is randomly assigned to a seat
on the plane. These seats are not necessarily unique: they are uni-
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formly drawn from all seats on the plane. Every seat is represented
as a coordinate pair (c¢,r), where r is a row of the plane and ¢ is
a specific seat number. In most modern aircraft, the seat number
is given a letter name (e.g., ‘A’ is usually the leftmost window seat
and ‘C’ the aisle seat). However, for simplicity we retain the use of
numerical coordinates.

Instead of each passenger being assigned a rate of movement through
the plane, in this model, the passengers move based on the function
of the processors. The processors are in series, with each proces-
sor having the next processor as one output (see figure 1). Since
movement is performed by processors pushing passengers from one
row to the next, each passenger stores only his destination. When
a passenger reaches a certain processor, he waits in a queue to be
processed. The queue is first in, first out, so that individual waiting
time can be minimized. (Furthermore, this is congruent with the
obvious physical constraint that people cannot move around each
other while in the aisle.) The initial state of the plane is that all
passengers are queued at the first processor.

During each iteration of the simulation, each processor is able to
perform one computation. This computation looks at the destina-
tion of the passenger. The function performed can be any of the
following:

e Pass. The normal behavior for the processor in cases where the
passenger’s destination is further along the plane is to allow
the passenger to pass. When the passenger passes, he moves
from the current processor to the end of the queue of the next
Processor.

e Fumble. With a certain small probability, the processor will
do nothing this cycle. This is the chance that a bag will get
caught in the aisle, that a passenger trips, or that some other
time-wasting random event occurs. (Note that a fumble is
not equivalent to time spent stowing baggage or rearranging
passengers. Our basic model only accounts for random time-
wasting events.)

e Sit Down. If this row contains the assigned seat for the pas-
senger currently in the processor, the passenger leaves the aisle
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and is seated.

e Idle. If there is no passenger in the processor (and the queue
is empty) the processor will do nothing.

The processors run sequentially in order from back to front. (If the
processors ran from front to back, during one time cycle, a passenger
could be processed in the first processor, move to the second, be
processed there, and continue in a similar manner the entire distance
to his seat.) They continue to run until every passenger has found
his seat.

The implementation of our algorithm can be seen in figure 2.

Assumptions made in Section 3.1

e The initial configuration of the system is that all passengers are
queued at the first row. In actuality, the situation is slightly dif-
ferent. All passengers are initially queued at the ticket counter,
where their boarding passes are scanned and they walk a short
distance to the plane. Hence, a more realistic alternative to
our process is a poisson arrival process from the ticket counter
to the queue for the first row. However, we feel that this addi-
tional process is unnecessary. It is not needed because of the
high speed at which the tickets are taken. This process closely
approximates the speed of normal walking. Hence, the passen-
gers will reach the queue at a much higher rate than they are
moved forward through the plane. Hence, the queue at proces-
sor 1 will form instantly, at the point that the first passengers
walk into the plane.

e There is no idle time between the first passenger entering queue
1 and the last. This assumption is also involved in our decision
to queue all passengers at the first processor. In some cases,
the airline could wait until there is no queue left before inviting
additional passengers to board. For example, if calling passen-
gers by zone, the airline could wait until all passengers in one
zone are seated before the next zone is invited onto the aircraft.
However, this is never to the airline’s advantage. We assume
that the airline desires maximum efficiency, and hence ensures
that there is no dead-time between passengers.
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e Special needs and business class passengers have already boarded.
We assume that the boarding of special needs and business
class passengers is not subject to time and order optimization.
Rather, airlines have an obligation to these customers for early
boarding. We start our simulation clock after these special
classes of passenger have already boarded. We deal only with
the bulk passenger class.

e Every passenger functions individually. We expect that effi-
ciency will be improved when passengers travel in groups since
they are self organizing (they do not collide with each other).

3.2 Extended Model

Each of the following subsections detail the modeling of an extension
to the basic model. The final form of our processor-based model
(and, hence, the origin of our results) combines the techniques of
all of these extensions (i.e., we are creating a holistic model, not
modeling these features separately).

3.2.1 Seat assignment

The initial model assigned seats randomly and without uniqueness.
In the final model, this has been remedied so that there is a one-
to-one correspondence between passengers and seats. The seat as-
signment can be chosen in many ways. As discussed later in the
paper, we investigated random, genetically evolved, back-to-front
and reverse pyramid loading schemes, among others.

Assumptions made in Section 3.2.1

e The plane is fully booked, and every seat is occupied. This
assumption allows us to optimize over the worst-case scenario.
Since airlines attempt to maximize profits, they attempt to
fully book as many flights as possible. Hence, most flights
will be fully or nearly fully booked. Likewise, an airline, when
scheduling, will schedule assuming the flight is fully booked (or
else risk delays). Hence, it is most important to understand
the fully booked scenario.
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Arriving Passenger  Seated Passengers  Time cost

Middle Aisle 9
Middle Aisle and Window 9
Window Aisle 9
Window Middle 9
Window Middle and Aisle 13

. .. . . . tr
Figure 3: Table of seat collision values, in normalized processor time -f<randc,

pass

All other combinations of arriving passenger and seated passengers result in no
time penalty.

3.2.2 Seat collisions

A common occurrence when loading a plane is the need for a passen-
ger to cross a seated passenger to reach his seat. For example, the
passenger assigned to the window seat 22A could be forced to move
across the passenger sitting in the middle seat 22B in order to reach
his seat. We call this situation a seat collision. In order to account
for seat collisions, we implemented a new processor function:

e Rearrange. This cycle is spent waiting for the aisle to clear
after the seat collision. This operation reduces the seat collision
counter by one.

Seat collisions have a certain time penalty (which is stored as
the seat collision counter) associated with them. This penalty is
dependent on what type of collision occurs. The possible collisions
for a standard 6-wide airplane can be seen in figure 3.

When a seat collision is detected, the processor for that row
spends a number of cycles equal to the time cost sorting out the
collision. During that time, no other passengers may enter the pro-
cessor (though they can enter the processor queue).

The values for the seat collision time costs were determined by phys-
ical experimentation involving multiple trials over a simulated plane
row.

Assumptions in section 3.2.2

e All seat collisions of a given type have the same time cost.
Though we could expect some variation in collision time (due
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to variation in passenger age or size), we expect the variation
to be small, except for an insignificant number of outlier cases.

3.2.3 Baggage

A major factor in airplane boarding times involves passengers stow-
ing their luggage. For a given plane, the number of overhead bins
is limited, and as they become increasingly full, the time it takes
to stow a bag increases. Hence, we developed a statistical model of
baggage handling. Baggage handling is performed by the processor
at a given row using the following command:

e Stow. This cycle is spent by a passenger storing his bag in the
overhead bin. The baggage handling counter is decreased by 1.

Baggage handling times are stored in the baggage handling counter.
To determine baggage handling times, we use a Weibull distribution
because of its added flexibility in shape and scale over other distri-
butions. The density function of our distribution is given by,

fla ) =5 (5) e &)
where A is a scaling parameter, x is a shape parameter, and x is the
number of people who have entered the plane from the boarding line
(figure 4).

Integrating over the number of people who have entered, we obtain
the following cumulative distribution function,

F(z,k,\) = /Omg <%>N1 e (
— 13

We use this cumulative distribution function as a measure of the
additional time it takes to load baggage as the plane fills up. The
expression for the waiting time of passenger x is given by,

[cx F(x,k,\)+ N

where ¢ is a measure of the additional time we would expect some-
one to take to store baggage when the plane is full, N is a gaussian
noise parameter which accounts for the non-uniformity of the board-
ing process and [] is the ceiling function.

)Kdy

ke
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Time taken to stow baggage

Figure 4: Cumulative distribution function of a Weibull distribution

We observe that the distribution had a sigmoidal shape, consis-
tent with our baggage loading process. When there are few people
in the plane, the time required to load baggage is relatively small
since there are a lot of empty spots in the baggage bins. As the
number of people increases, this time increases slowly when there is
still a lot of space and then rapidly as people start having to rear-
range compartments to fit their luggage. As the plane reaches full
capacity, the difference in time required to find space for baggage
becomes minimal as most baggage bins have relatively little space

left.

We note that the hazard rate (or failure rate) of this distribution
can be given for the following expression,

h(z,k,\) = (g) (§>(n—1)

For k > 1 we see that the failure rate is increasing, thus indicating
that the frequency with which people can not find space for luggage
is increasing.

3.2.4 Queue size

The initial model assumed that each processor could have an in-
finitely sized queue. This makes sense for the initial processor, as
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Figure 5: Model of a plane with two aisles

its queue consists of the passengers lined up along the loading ramp.
However, for processors inside the aircraft, we must consider that
the processor queue actually takes up physical space. Hence, we cap
all processor queues but the first at a length of 2. We used a cap of
2 as it corresponded well with physical reality when considering the
ratio of aisle length to passenger size.

3.2.5 Planes with multiple aisles

We modeled multi-aisle planes as processor sets with multiple pipelines.
Using this technique, planes of arbitrary sizes, topologies and en-
trance points can be modeled. We describe here the technique for
the modeling of a double-aisled plane, such as the Boeing 777.

As in the single-aisle model, all passengers are initially queued
at a single processor (see figure 5). For the double-aisled plane, this
processor represents the junction point at the entry of the plane. No
passengers are assigned seats at this row. From the first processor,
when a passenger is passed, he may move to either of two different
processors. Each of these two processors begins a serial chain of
processors akin to a single-aisled plane. Each passenger chooses an
aisle based on his seat assignment. As in real aircraft, certain rows
of the plane are widened so that a passenger can move from one
aisle to the other.
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It is important to note that some passengers (for example those
sitting in the middle of a row) may have seats equidistant to two
aisles. These passengers take the first available aisle. They are also
able to switch aisles at the predefined junction points.

This procedure can be generalized to four-aisle aircraft as well, such
as the forthcoming Airbus A380. In this model, not all aisles con-
nect. For example, a passenger cannot move across from an upstairs
aisle to a downstairs one. We can also simulate a plane with the gate
in the middle, or with two gates, or more by changing the configu-
ration of processors. Thus, our procedure can be used to simulate
any plane.

Assumptions in section 3.2.5

e All passengers choose the correct barrel. This also occurs on
real aircraft. Usually a steward is positioned at the junction
point (i.e., the first processor) to direct traffic. To make this
choice even easier, an airline could have color-coded boarding
passes, with each color corresponding to a different barrel.

e Limited forms of barrel-switching occur. We assume that only
passengers with middle-seat assignments switch barrels. Though
it is possible that other passengers could switch barrels in re-
ality (for example, walking through a less congested section on
the opposite side of the plane), we do not expect that this sort
of behavior commonly occurs.

3.2.6 Deplaning

Once passengers are on the aircraft, there usually comes a point
when they must disembark. Our processor based model is capable
of handling deplaning. During the deplaning scenario, the proces-
sors are reversed: they push passengers from the back of the plane
towards the front. Time spent retrieving baggage follows an oppo-
site distribution as the base model; the first passengers must spend
more time retrieving their baggage than later passengers. Further-
more, there are no seat collisions; everybody clears out of the plane
in order. The destination of all passengers during deplaning is the
front of the plane.
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Assumptions in Section 3.2.6

e Deplaning is an uncoordinated process. Though the method of
deplaning that we describe is not the fastest possible deplaning
process (the best is most likely some variant of aisle to window),
we believe that other deplaning methods will greatly decrease
customer satisfaction. For example, an aisle to window deplan-
ing process would cause window seat passengers near the front
of the plane to have to wait for virtually the entire plane to dis-
embark. This is sure to cause discontentment. Another reason
that coordinated deplaning is unlikely is that it is impossible
to control the movement of the passengers. In the boarding
process, passengers can be organized by color, zone or some
other method. In deplaning, no such control exists.

3.3 Boarding time optimization using a genetic algorithm

Our previous model is a simulation of an aircraft. Its input is a
list of passengers in some order. The passengers run through the
simulation, and the model outputs the total time it takes for ev-
ery passenger to reach his seat. Because it is a randomized model,
each experiment involves multiple runs through the simulation. The
model returns a final score which is the average time across all the
runs.

We used our model to find the average time taken by many boarding
techniques, including back to front and window to aisle. However,
testing these known passenger configurations does not, in itself, re-
sult in an ordering which achieves maximally efficient boarding. To
identify the best way to order passengers, we must search the entire
space of possible orderings.

The set of all possible orderings is vast, and hence it is impossi-
ble to test all possible configurations. Hence, we need a heuristic
algorithm that will explore the parts of the space that interest us the
most. This algorithm, upon convergence, will give us an optimum,
which, while unlikely to be a global optimum, will be a strong local
optimum.

To perform this search, we implemented a genetic algorithm, a type
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of search algorithm that derives the principles of its functioning from
evolutionary biology. A genetic algorithm begins with a set of ‘or-
ganisms.” An organism is one possible point in search space. In our
case, an organism is one possible arrangement of passengers in line
while waiting to board the plane. The algorithm begins with a set of
organisms called the population. Each organism in the population is
run through our processor model, and, based on the time it takes for
all passengers to be seated, given a score (also called a fitness score).

Once every organism has a score, some of the organisms are selected
to survive, while others die. Organisms with the highest score (i.e.,
are most fit) have the highest survival probability. Organisms that
survive are kept in the population, and the others are deleted. The
population is replenished by the addition of new organisms. New
organisms are either offspring of two surviving organisms from the
previous round or randomly generated. The algorithm runs for a set
number of generations, at which point it returns the best organism
remaining in the pool. Our genetic algorithm is diagrammed in fig-
ure 6.

The core of a genetic algorithm is the evolution of the population
over time. Over a significant number of generations (for our model,
around 60), the algorithm converges. The convergence is a local
maximum; the point of convergence is dependent on the initial ran-
dom population of individuals. The point of convergence is reached
using the properties of mutation and crossover.

3.3.1 Mutation and Crossover

In a genetic algorithm, mutation is the process by which an organ-
ism changes from one generation to the next. A crossover is the
genetic offspring of two individual organisms. We account for both
types of evolution in our model.

We first must consider what the genome or ‘DNA’ of our organ-
isms looks like. An organism is a listing of passengers and seats in
order (see figure 7).

Mutations are relatively simple. During a mutation, a random,
sequential section of the DNA is chosen and moved to a different
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1 2 3 4 )
22A 23C T7A 30F 2B

Passenger
Seat number

Figure 7: Sample genetic code

1 2 3 4 )
7TA 30F 22A 23C 2B

Passenger
Seat number

Figure 8: Mutated genetic code

location. A mutation of the above DNA could look like figure 8

Crossovers are more complicated. A special property of our solu-
tion space is the one-to-one correspondence between passengers and
seats. This means that the order of seat numbers in the DNA can
be switched, but the seat numbers must stay the same. In normal
DNA, a sequential piece of one organism’s DNA is exchanged with
the corresponding sequence of the other organism. Due to the one-
to-one correspondence property of our data, we cannot use this type
of crossover: if the 2 sequences chosen did not have the same set of
seats, our offspring would not have a valid genetic code.

Hence, we formulated a new form of crossover which preserves
the elements of a DNA code, but changes its order. This crossover
is illustrated in figure 9. The crossover algorithm first chooses a
sequence of seats from the genome of the first organism. It then
identifies the indices of these seats in the second organism. The
genomes of the two organisms are rearranged such that the ordering
of the selected seats is switched between the two organisms, while
all other seat assignments remain the same. In the example in the
figure, the seat sequence (3..4) is selected as the crossover. The
indices of (3..4) are 3 and 4 in the first organism and 1 and 5 in
the second. After the crossover, the indices of (3..4) are 1 and 5 in
the first organism and 3 and 4 in the second. The order of all the
other seats remains the same, but their indices are shifted due to
the change in location of 3 and 4.
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123456=312546

325146=253416

Figure 9: An example crossover

3.3.2 Population seeding

The genetic algorithm was run in two configurations. In the first,
the initial population of organisms was randomly determined. In
the second, the initial population was seeded. Seeding refers to the
practice of adding non-random organisms to the initial population.
In our seeded algorithm, we added two examples of each of the
tested types of boarding configuration (e.g., window to aisle and
back to front). Seeding helps the algorithm approach the global
maximum, as our beginning population contains individuals that
have high fitness.

3.4 The Southwest Model: integrating passenger prefer-
ence to our processor-based model

3.4.1 Model Overview

The Non-System System pioneered by Southwest Airlines appears
less like a well-engineered boarding sequence and more like a phi-
losophy of life that harks back to Thoreau standing on the banks
of Walden, urging us to ’Simplify, simplify.” In the Southwest sys-
tem, passengers board in the order that they arrive with no assigned
seats. To quantify the efficiency of the approach, simulation tech-
niques must extend beyond the modeling of boarding patterns to en-
compass the modeling of passenger preferences under environmental
constraints.
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In developing simulation techniques that model the impact of pref-
erences on total boarding time and on passenger seating chronology,
understanding passenger preference for different rows and seats is
crucial. In our model, seat preferences are encapsulated in matrix

B:[bl bg bﬁ]

which resembles the spatial arrangement of seats in each row. For
example, elements b; and bg represent the relative preferences for
window seats while elements by and b5 represent the relative prefer-
ences for middle seats.

The passenger’s desire to sit at a given row, to move forward or
to move backward is encapsulated in a transition matrix,

ajnp a2 ... Qa1p

a2 1 a2 2 e CL276
P =

a30,1 @302 --- a30,6

where matrix P satisfies

N
J=1

Element a;; represents the passenger’s desire to sit at Row i. Ele-
ment a; ;41 represents the passenger’s desire to move forward to Row
¢+ 1. Element a;;_; represents the passenger’s desire to move back
to Row ¢ — 1. It is important to note that desires are preferences
not probabilities. This means that although a passenger may have
the preference to move back a row, he cannot.

Since P is an irreducible, aperiodic transition matrix, a stationary
distribution exists. (For definitions of reducibility and periodicity,
as well as for the calculation of the stationary distribution, refer
to Appendix C). This distribution represents the probability that a
passenger will end up at a particular row given his preferences. By
applying Markov chain techniques, we can determine the stationary



Team 2056 Page 25 of 50

distribution, 7.
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The model incorporates each passenger’s decision-making process
given his preferences, his location within the plane, and other envi-
ronmental constraints. In deciding whether to move forward or to
sit at the current row, each passenger first considers his location. If
he is at the end of the plane, then the passenger has no option but
to sit at the last row. In addition, the passenger also has to consider
the number of people and available seats in front of him. If the num-
ber of available seats exceeds the number of people in front, then the
passenger has the option to move forward to the next row. If not,
he has to sit at the current row. Only the people and available seats
in front of the passenger are relevant because the passenger cannot
move backwards. This is reasonable since the passenger would face
great difficulty if he sought to move against human traffic as the
plane is boarding.

We have already discussed how row preferences are translated into a
passenger’s preference to be in a particular row. Therefore, it is also
necessary to explain the process and conditions under which these
preferences are adjusted:

e As the passenger moves forward he is forced to consider a fewer
number of rows (since he cannot move back).

e As the plane fills up, certain rows no longer have available seats
for the passenger to consider.

In both these cases, the preferences are redistributed so that the
relative preferences between all available rows remain the same.
Similarly, when seats in a particular row are occupied, the pas-
senger’s preference for taking a particular seat within that row is
readjusted so that the relative preference for available seats remain
the same and the sum of seat preferences across the row is one.
Therefore, the preferences for each standing individual are recom-
puted each time a passenger finds a seat.
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When a passenger gets to a row, his decision of whether to sit is
governed by a random process that favors the row according to the
relative preference that passenger has for that particular row. For
example, if the passenger is at Row 21, his decision to sit at Row
21 is dependent on a random process that takes into account the
probability that the passenger will end up in Row 21 given his row
preferences. After a passenger decides to sit at a given row, if the
row contains more than one available seat, his choice of where to sit
is governed by a random process that favors each seat according to
the passenger’s relative preference.

From a macro perspective, each passenger makes the decision of
where to sit autonomously. This decision is driven however, by
certain preferences and their corresponding probabilities that lend
order to the sitting sequence in the plane. Each cycle, the model
recomputes the preferences that each passenger has for a particular
row and a particular seat.

3.4.2 Assumptions made in Section

e The movement of passengers along the aisle of the plane is uni-
directional. Considering the difficulty of moving against the
flow of passengers as the plane is boarding, it is reasonable to
expect that passengers will only move forward or sit at the row
they are at. Additionally, passengers are aware of the number
of people and available seats in front of them. They will not
move forward unless the number of available seats exceeds the
number of people in front of them. While it is unlikely that
every passenger on a plane has visibility over the number of
people and available seats in front of them, it is not unchar-
acteristic of a passenger to sit at the row he is at if he thinks,
looking down the plane, that the number of passengers exceeds
(or is just equal to) the number of available seats.

e All passengers share a common propensity to sit at any given
row or to move forward along the aisle. Because passengers
prefer seats closer to the front of the aircraft, the desire to sit
at any given row is greater than the desire to move forward.
With a matrix representing the inclination that a passenger
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4

sits at a given row or chooses to move forward for each of the
30 rows, a stationary distribution can be constructed. This
distribution represents the probability that a passenger sits at
a particular row based on his seat preferences.

All passengers share a common preference for seats, favoring
window over aisle and aisle over the middle. Given that most
of us have had our fair share of being stuck between the talker
and the leaner, having a wall or empty space on one side does
not seem terribly unappealing. The window is most preferable
because it offers a view and the benefit of resting your head.

The decision to sit in a particular row is independent of the
decision to sit at a particular seat in that row. Such an as-
sumption is reasonable. In most cases, passengers first decide
on their row preference and on getting to that row then decide
which seat they prefer.

When a row of seats is filled, the probability that a passen-
ger sits in that particular row becomes zero. The probability
previously attributed to that row is then redistributed propor-
tionally among the unfilled rows according to the preference
probability already attributed to them. This process ensures
that the relative preferences of the unfilled rows remain the
same.

Boarding Patterns

Although our algorithm may be used to model planes of any size, we
study a standard 180 person plane to provide a more comprehensive
review of boarding patterns. The plane is designed with 30 rows
and 6 seats in every row.

4.1 Random Boarding Process

This boarding process is used as a baseline for comparison to other
models. The process involves the random assignment of seats to
passengers in the boarding queue followed by the boarding time
simulation.
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Figure 10: A random seat arrangement

Figure 10 demonstrates this boarding pattern. The figure is di-
vided into a thirty by six grid, where the rows represent the aisle
number of the plane and the columns represent the seat designation
from A through F. The aisle of the plane is between the third and
fourth columns (seats C and D) of the grid. Black tiles represent
the earliest passengers to enter the plane and the white tiles repre-
sent the later passengers. The darkness of each tile decreases with
increasing passenger numbers in the boarding queue.

4.2 Window to Aisle Boarding Process

The window to aisle boarding process involves filling up all the win-
dow seats, followed by the middle seats, and then the aisle seats
(figure 11). This 'Outside in’ method eliminates all seat collisions
from the boarding process by requiring that every window seat (col-
umn A and F) passenger board before any middle seat (column B
and E) passenger and every middle seat passenger board before any
aisle seat (column C and D) passenger. The sequence of window seat
passengers is random. Likewise, the order of passengers with middle
and aisle seats are each independently random. Thus, this boarding
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Figure 11: Window to aisle arrangement

pattern still demonstrates significant baggage collisions from pas-
sengers interfering with each others passage to their seat row.

4.3 Alternating Half-Rows Boarding Process

In this boarding pattern, the plane is split into two halves along
the aisle and one half is filled before the other half starts boarding.
Each half is filled by loading every third row starting from the back
row. Omnce we reach the front, the process is repeated from the
second to last row followed by the third to last row (figure 12). The
rows are filled in a random order, thus indicating that there may be
significant seat collisions. Each row must be filled before the next
row can start loading. Once passengers in one half of the plane have
all boarded, the second half begins boarding with the same process.

4.4 Zone Boarding Process

In this boarding pattern, the plane is split into contiguous and evenly
divided zones based on row number. The passengers in each zone
are then randomly assigned to a seat in each zone. The zone furthest
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Figure 13: Zone seating arrangement
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Figure 14: Reverse Pyramid arrangement

back in the plane boards first, followed by the next furthest, and so
on till we reach the front of the plane (figure 13). Passengers in a
particular zone must board the plane before passengers in the next
zone can begin boarding.

4.5 Reverse Pyramid Process

The reverse pyramid boarding pattern involves filling rows from back
to front in an alternating fashion. Thus, the seats in the back row
are filled first, followed by the seats in then front row, the seats in
the second to last row, and so on till we reach the middle rows of
the plane (figure 14). The seats in each row are assigned randomly
and the passengers of a row must board before the passengers in the
next row being loaded are allowed to board.

5 Results

The efficiency of each seating pattern was evaluated by consideration
of the average waiting time over 1050 trial runs of the simulation.
This average was computed by considering the average of 30 runs
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Algorithm Time Taken
Random 1
Window to Aisle 0.64
Alternate Half-Rows 0.73
Back to Front 1.10
Reverse Pyramid 1.71
Southwest Model 1.09
Genetic Algorithm 0.81
Seeded Genetic Algorithm 0.67
Deplaning 0.48

Figure 15: Relative time taken, normalized to random, for tested board-
ing/deplaning systems.

of each simulation with 35 trials per simulation. Each simulation
run used a randomly generated seating arrangement within the con-
straints of the pattern. The waiting times were then normalized to
the average waiting time of a randomly generated seating arrange-
ment for easier comparison. The normalization value was derived
from analysis of 50 different random patterns.

5.1 Window to Aisle

It was found that the window to aisle seating arrangement was the
most efficient boarding process with a waiting time that was on
average 36% better than a random boarding process (normalized
results can be seen in figure 15). The efficiency of this process is
intuitive as it eliminates the delays due to seat collisions by loading
passengers on the window seats first, followed by the middle seats,
and finally the aisle seats. However, we note that the column ar-
rangement of passengers is a randomized process and may result in
baggage collisions from passenger interactions in the aisle.

5.2 Alternate Half-Rows

Loading passengers in alternating rows one half of the plane at a
time was found to be the next most efficient boarding pattern. The
simulation predicted a 27% decrease in boarding time for this ar-
rangement compared to a random boarding process. The efficiency
of this pattern may be attributed to the minimization of spatial
overlap between alternating groups of 3 passengers. Though each
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half-row was not organized from window to aisle, the number of col-
lisions between passengers of different half-rows is minimized. This
is true because any collision of passengers within a half-row is not
large enough (in a spatial sense) to extend to the half-row following
it. For example, if the half-row 30A-C boards the plane followed
by 27A-C, even if the row 30 passengers enter in the order aisle,
middle, window, the collision will be resolved far before any other
passengers attempt to move to the back several rows of the plane.

However, this localized congestion also explains why alternate half-
rows is slower than window to aisle. When the half-row closest to
the front of the plane is boarding, there is the potential that, like in
the example above, a significant amount of collision time will occur.
This will hold up passengers attempting to walk to the back of the
plane to their seats. It is possible that the amount of time wasted in
this scenario is overstated from real life, as three passengers walking
to a half-row may self organize, and prevent collisions.

5.3 Back to Front

The most common boarding technique in modern aircraft was found
to perform surprisingly poorly. The 5-zone back to front order re-
sulted in a 10% greater boarding time than random. As discussed in
the Experimental section, our model originally allowed queues for a
given row to be arbitrarily long. It is interesting to note that in this
instance, back to front performed significantly better than random,
and almost as well as window to aisle. This suggests that the reason
for back to front’s poor loading times is due to local congestion. In
the case that queues can be any length, many passengers can be
waiting for a single row (processor) while the row (processor) be-
hind them is clear. This allows the passengers in the back to queue
while taking up no space, so that the middle passengers can still
reach their seats. This is not realistic, as passengers waiting in line
take up space. Hence, we changed our final parameters so that a
maximum of two passengers can wait in any queue. This caused the
local congestion caused by the back to front method to spread to
the rest of the plane, and resulted in extremely poor performance.
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Figure 16: Southwest passenger preference simulation

5.4 Reverse Pyramid

The least effective configuration we tested was the reverse pyramid.
Compared to a random boarding process, the reverse pyramid took
70% more time to complete boarding. This result is not surprising,
for the reverse pyramid presents collisions of the same sort as alter-
nate half-rows. However, while the collisions in the half-row system
are of only 3 passengers, and there are a total of 6 of them, the
reverse pyramid generates 15 such collisions, each of which involves
6 people. This results in subpar performance.

5.5 Southwest Passenger Preference

The simulation for our Southwest Airlines passenger preference model
indicates a 9% decrease in efficiency of the boarding process when
compared to a random process. This result is not surprising since
passengers share a preference for seats closest to the exit, which may
increase queuing early in the plane and may result in increased col-
lisions. Additionally, most passengers prefer aisle seats over middle
seats, which increases seat collisions, subsequently increasing board-
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Figure 17: Genetic algorithm applied to a random seating arrangement

ing times.

Figure 16 provides a visual display of seating arrangements using
this model. There are obvious darker regions in the window seats
(outside columns) and the aisle seats (middle columns), thus indi-
cating that the earliest passengers chose to sit in those seats. Fur-
thermore, we see that the rows at the back of the plane (first few
rows in the figure) are significantly lighter than the rows at the front
of the plane (bottom rows in the figure), which demonstrates a pref-
erence for passengers to sit in the front. One of the reasons for this
phenomenon is that, as passengers are waiting for the opportunity
to move forward, they have multiple chances to decide to sit in the
current row. This improves boarding time, as passenger preference
relieves congestion. We find that this pattern of boarding based on
passenger preference does not perform as well as the window to aisle
and the alternating row patterns of boarding.
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Seat Designation Description Column Total

A Window 2170
B Middle 2433
C Aisle 3091
D Aisle 2990
E Middle 3305
F Window 2301

Figure 18: Table of the summation of passenger indices in each column of the
plane grid for a genetic arrangement, where 1 represents the first passenger to
enter and 180 represents the last.

5.6 Genetic Algorithm Applied to a Random Seating Ar-
rangement

A steady state solution was reached for the genetic algorithm opti-
mization, which was most likely a local minima for waiting times.
We display one such result, however the simulation was run multiple
times and the results displayed similar properties. The genetic algo-
rithm optimization of a random seating arrangement showed a 19%
increase in efficiency compared to the random seating arrangement.
Figure 17 displays one optimized seating system using the genetic
algorithm simulation.

We observe distinct blocks of black in the window columns, indi-
cating that passengers at the front of the boarding queue should
be seated at the windows. These blocks demonstrate that the opti-
mization technique has produced a level of order greater than that
observed for a completely random process. Moreover, the pattern
shows that on average the shade of black gets lighter from window
to aisle, which is consistent with the extra efficiency of our window
to aisle boarding pattern. This pattern that arises from the genetic
algorithm optimization can be observed by ranking the color gradi-
ent from darkest to lightest and adding the scores for each column.
The tiles are ranked from 1 to 180 for each seat, where 1 is the dark-
est tile and represents the first passenger to board the plane (Figure
18). These values indicate that the earliest passengers tend to sit at
the window and later passengers tend to sit in the aisle; a pattern
that optimizes the boarding process by minimizing the level of seat
collisions.
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We may also observe that the lightest bands are generally closer
to the front, possibly indicating that the waiting times are mini-
mized when the passengers at the beginning of the boarding queue
move towards the back of the plane. This pattern of arrangement
may serve to minimize waiting time by dampening baggage collisions
and inhibiting the buildup of queues at the front of the plane.

5.7 Seeded Genetic Algorithm

The application of the genetic algorithm to a mixed gene pool demon-
strated a 33% increase in efficiency compared to a random seating
arrangement. This is in between the efficiencies of the window to
aisle and alternating half-row boarding patterns. We notice window
seats fill up first, followed by the middle seats, and then the aisle
seats. However, on one side of the grid, there are distinct alternating
bands every third row. The algorithm shows a distinct window to
aisle and alternating half-row hybrid boarding process (Figure 19),
demonstrating that this hybrid forms a strong local optimum. We
observe that the minimum obtained by this hybrid is quasistable.
We do not notice any influence from the reverse pyramid or back to
front boarding patterns on this seating arrangement, thus indicating
that these populations were not as ’fit’ as the former two and were
eliminated from the gene pool.

This pattern of boarding is particularly interesting because it al-
lows for the consideration of small families who would like to board
the plane together (alternating rows) along with individual passen-
gers. The simulation confirms that a local minimum can be achieved
if there are small groups or families in the boarding queue.

5.8 Deplaning

We observe that the deplaning process takes approximately 48%
of the time to board an airplane using a random arrangement of
passengers. This process is 25% faster than the window to aisle
boarding process, which is the fastest observed boarding process.
Thus, we note that deplaning is significantly less useful to optimize
due to its small waiting times.
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Figure 19: Seeded genetic algorithm

5.9 Sensitivity and Robustness Testing

The robustness of our model is a measure of how it performs in ex-
treme cases. A robust model is one that does not break down in
such cases. The sensitivity of our model is a measure of the effect of
small parameter changes. A good model should show small changes
in response to small parameter changes.

Our model is well behaved; that is, it does not exhibit chaotic be-
havior. Small changes in our parameters demonstrate small changes
in our results, demonstrating good sensitivity.

The following parameters were tested for robustness.

5.9.1 Baggage

To test the robustness of this parameter we eliminated the delay
that arises from processing baggage. This eliminates a key factor
responsible for aisle collisions. Therefore, we would expect that in
this case the window to aisle seating arrangement would benefit
more in terms of waiting time than would then alternate half-rows
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seating arrangement. We observe a 26% increase in efficiency for
the window to aisle arrangement and a 16% increase in efficiency in
the alternating half-row arrangement, which is consistent with our
prediction. We also expect a significant improvement in the reverse
pyramid and back to front boarding patterns sine aisle collisions at
the front of the plane or each block will be reduced.

5.9.2 Seat collisions

To test the robustness of our seat collisions parameter, we eliminated
the time delays due to seat collisions. We would expect that in
this case the random seating arrangement would perform just as
well as the window to aisle seating arrangement since the primary
contribution to delay time will be aisle collisions. Our simulation
performs as expected, demonstrating a 2.3% difference in waiting
times between random seating arrangements and window to aisle
arrangements under these conditions.

5.9.3 Queuing

The robustness of the queuing parameter was tested by allowing the
formation of an infinitely sized queue for each processor. Under such
conditions, we would expect the elimination of local congestion and
would expect significant increases in efficiency for the zone boarding
procedure. With infinite queues, our model suggests that in this case
the zone boarding process is more efficient than a random process
with a 25% improvement in waiting time relative to the random
process. Moreover, we see that this is much more efficient than the
10% decrease in efficiency for the zone boarding process under our
normal model parameters. These results are consistent with our
prediction.

6 Discussion and Conclusions

6.1 Executive Summary

The primary focus of the team was developing more efficient board-
ing sequences that consider practicality of implementation, aircraft
turnaround time, customer waiting time and resilience to stochastic
variability. These sequences promise a two-fold benefit to airlines
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— enhanced aircraft productivity and greater customer satisfaction.
Successful implementation will therefore offer airlines not only the
opportunity to improve service quality but more importantly, the op-
portunity to generate greater revenue by operating a tighter flight
schedule. The impact of new boarding sequences is dependent as
much on robust optimization techniques as it is on successful im-
plementation processes. Thus, in this executive summary, the team
will not only focus on better operational practices and their results
but also on crucial concepts in organizational change management
and customer relationship management. The former is intended to
address airline employees, to train them so that they can execute
new sequences effectively. The latter is intended to address airline
customers, to communicate the rationale behind changes in opera-
tional practices and to highlight customer benefits.

6.1.1 Boarding Sequences and Results

To identify better boarding techniques, the team employed a simu-
lative model based on a stochastic agent-based approach. Different
boarding sequences with embedded stochastic variability, including
aisle and row congestion, were simulated and their results recorded.

The window to aisle technique involves boarding passengers assigned
window seats followed by passengers assigned middle seats and fi-
nally by passengers assigned aisle seats. Through simulation, the
team found that this sequence was the most efficient configuration
with a waiting time that was on average 36% shorter than a ran-
dom boarding process. The efficiency of the window to aisle board-
ing sequence is achieved through the elimination of seat collisions.
However, aisle congestion remains significant due to the random se-
quencing of passengers within the same boarding group. This in
turn contributes to substantial delays due to the stowing of luggage.

The alternate half-row sequence involves splitting the seats into two
halves along the aisle and boarding one half at a time. Each half is
filled by boarding every third row starting from the back row to the
front of the aircraft. The process is then repeated for the second to
last row and the third to last row until the entire half is filled. The
other half of the plane is then boarded using the same procedure.
Through simulation, the team found that this sequence was the next
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most efficient configuration with a waiting time that was on average
27% shorter than a random process. The efficiency of the alternate
half-row boarding sequence is achieved through the minimization of
aisle congestion. Unlike the window to aisle boarding sequence, the
alternate half-row configuration did not eliminate seat collisions be-
cause the sequence of passengers within each half-row is random.

While it is possible to eliminate seat collisions and minimize aisle
congestion by specifying the sequence of each passenger in the board-
ing queue, such boarding sequences will not be practical to imple-
ment. They require all passengers to arrive at the gate punctually.
In addition, they require gate agents organize all passengers into a
specific boarding order.

In general, the simulations found that seat collisions were had less
impact on prolonging boarding time towards the end of boarding
because the time taken to stow luggage had increased markedly as
available storage space decreased. This highlights a shift in the bot-
tleneck from seat collisions to the stowing of luggage.

6.1.2 Further Optimization

The use of simulation techniques to quantify the efficiency of dif-
ferent boarding sequences called for the application of search algo-
rithms to achieve further optimization. Using these algorithms, the
team was able to identify quasistable sequences, representing local
optimal solutions that minimize boarding time. In addition to al-
ternate half-row and window to aisle, the hybrid between both these
boarding sequences was also found to be a local optimal solution.
The hybrid had a waiting time that was approximately 32% shorter
than a random process; this result was between that of the parent
sequences.

The team recommends a hybrid sequence because it offers the ver-
satility of both group and individual boarding. With this solution,
the first boarding call is for families and window passengers. As
families board in groups of three (or more), they will often take an
entire half-row. Families, due to their cooperative nature, will self
organize, minimizing collisions. The team expects a hybrid sequence
to be more efficient in practice because seat collisions will actually
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be markedly lower than the number predicted by simulation. Un-
der this sequence, each half-row will comprise a family unit whose
members are less likely to demand their assigned seat.

6.1.3 Organizational Change Management and Customer Relation-
ship Management

To enhance the success rate of new boarding sequences, the team re-
alizes the importance of implementing measures that facilitate tran-
sition to the new boarding framework. These measures can be sepa-
rated into two categories: Organizational Change Management and
Customer Relationship Management. The former which addresses
airline employees entails the implementation of new tools - such as
color-coded boarding passes and seats - as well as training programs
that enhance employees’ understanding of new boarding sequences
- the benefits as well as the processes of seating individuals and
families differently. In terms of customer relationship management,
airlines need to communicate the benefits of new boarding sequences
to customers. Only through effective communication can airlines ex-
pect to improve customer receptivity to the proposed changes.

6.2 Strengths and Weaknesses

Strengths

e Processor-based model has few input parameters, leading to
good robustness and sensitivity.

e Genetic Algorithm explores and optimizes known configura-
tions.

e Variety of boarding patterns explored, including planned lay-
outs, genetic optimization and passenger preference

e Accounts for all major factors involved in plane boarding.
e Simulates both boarding and deplaning processes.

e Uses a variety of modeling techniques in an integrated, holistic
model.
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Weaknesses
e Parameters have to be derived from physical occurrences.

e Genetic algorithm has high computational requirements, and
cannot identify global optimum.

e Does not account for non-uniform preferences among passen-
gers.
6.3 Future Work

e Identify which rows bottlenecks occur at for any given time
point.

o Investigate efficient deplaning algorithms.

e Better quantify passenger seating preferences.
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7 Appendices

7.1 Appendix A: Past Work

Further Discussion of Simulation Studies

This Appendix continues the description of the paper ’A simula-
tion study of Passenger Boarding Times in Airplanes’ by H. Van
Landeghem

The Boarding Process Due to the narrow aisles, disruption in the
smooth flow of passengers causes passengers to queue, resulting in
row congestion. The model includes causes of row congestions.

Passenger storing of carry-on luggage in the overhead compartment.
As plane occupancy increases, the time passengers take to find a
suitable location for luggage increases. Ultimately, passengers will
have to move to other rows to find suitable storage space. This sit-
uation is exacerbated by passengers with multiple pieces of luggage.
In the model, 60%, 30% and 10% of the passengers are randomly
assigned 1, 2 and 3 pieces of luggage respectively.

Seated passenger blocking a free seat in the same row. This passen-
ger has to leave the row and make way for the other passenger to
take the inner seat, prolonging the time taken for a passenger to be
seated.

Passenger taking a wrong seat. This passenger will be bumped
when the right passenger arrives. If the mistaken passenger has to
take a seat towards the front of the plane, he/she will have to wait
for the aisle to clear.

Call-Off Systems To influence the boarding sequence of passengers,
airlines use a call-off system. The model that Landeghem uses is
based on sequence control at the gate entrance where gate agents
inform the passengers allowed to board via the Public Address Sys-
tem. The different Classes of boarding sequences are:

Random: All passengers are called together. By Block: A block
is a number of contiguous full rows. By Half Block: Same mecha-
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nism as ‘By Block’ but a half block spans only the port (seats DEF)
or starboard (seats ABC) side of a row. By Row: A full row of 6
seats. By Half Row: Same mechanism as ‘By Row’ but a half-row
contains either seats ABC or DEF. By Letter: All seats with the
same label A to F. By Seat: Each passenger is called individually
by row and seat number.

Simulation Results 5 replications were performed for each of the
47 sequences.

For Total Boarding Time, the best result of 10.4 minutes is reached
by the Class 'By Seat’ for the sequence with descending rows then
by descending letters (23A, 22A, ... 1A / 23B, 22B, ... 1B / 23C,
22C, ... 1C / ... / 22F, 21F, ... 1F). An almost equally good result
of 10.6 minutes is reached by the Class ‘By Seat’ for the sequence
with descending row order and outside-in seat order (23A, 23F, 22A
22F, ... 1A, 1F / 23B, 23E, 22B, 22E, ... 1B, 1E / ... / 23C, 23D,
22C, 22D, ... 1C, 1D). The best method outside the 'By Seat’ Class
is the "By half-row’ Class for the sequence which alternates between
half rows 2 rows apart (23, 20, 17, ... 2, 22, 19, 16, ... 1, 21, 18,
15, ... 3 for seats ABC then repeat row sequence for seats DEF).
Interestingly, the random method performs better than most other
Classes. Only 9 out of the 46 sequences do better than random.
The conclusion is that in taking a structured approach to boarding,
boarding times may increase. The variance of Total Boarding Time
within a sequence is rather limited which according to Landeghem,
reinforces the conclusions.
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7.2 Appendix B: Preliminary Model

The preliminary model is a simple simulation involving a minimal
level of detail. The plane is represented as a space P = [1,7] C R,
where 7 is the number of rows in the plane. At each integer distance
along the plane (e.g., at points 1, 2, 3) are seats.

The plane’s passengers are each simulated as an agent. An agent
is an autonomous unit in a simulation. An agent contains its own
properties, and, based on them, interacts with the simulation en-
vironment. In this stage of the model, the agents are extremely
simple. Each agent has a velocity v, the rate at which he moves
through the plane. He also has a location, d, his destination row.

During each step of the simulation, each agent moves towards his
assigned row in the plane. When a distance of length 1 is free at
the front of the plane, the next agent in line enters the plane. The
order of agents in line is random. The rate at which an agent moves
is limited to the rate of the slowest agent in front of him. That is,

Vactuar(@;) = minv(ag), k € P, dy > d;

When an agent reaches his row, we remove him from the line.

The preliminary model is extremely simple, and has limited practi-
cal use. The importance of this model is its framework; the limit
case of our next model resembles this model. While creating the
basic model, the preliminary model was used as a reference. The
results of the preliminary model represent a physical situation with
no baggage, where each seat is directly attached to the aisle. The
model essentially simulates the amount of time it takes for all pas-
sengers to walk from the front of the plane to their seats. It provides
an excellent baseline check, for any additional parameters we add to
the model will result in the boarding process taking a longer period
of time.



Team 2056 Page 48 of 50

7.3 Appendix C: Definitions and Computations
Reducibility

Two states ¢ and j of a Markov Chain communicate with each other
(1 > j) if there exist m, n > 0 such that p,,(¢, 7) > 0 and p,(7,7) > 0.
Two states communicate if and only if each state has a positive
probability of eventually being reached by a chain starting in the
other state. «<» is an equivalence relation on the state space, i.e., it
is: reflexive, ¢ < i; symmetric, ¢ < j implies j < ; and transitive,
1 <> 7 and j < k imply ¢ < k. This equivalence relation partitions
the state space into disjoint sets called communication classes. If
there is only one communication class, i.e. if for all ¢, j there exists
n = n(i,j) with p,(i,5) > 0 then the chain is irreducible.

Periodicity

Let P be the matrix for an irreducible Markov chain. The period of
a state i, d = d(i), is defined to be the greatest common divisor of

Ji:={n>0:p,(i,i) > 0}

In other words, let d be the greatest common divisor of the elements
of J. Then J C {0,d,2d,...}. Moreover, it can be shown that .J
must contain all but a finite number of the elements of {0, d, 2d, ...},
i.e., there is some M such that md € J for all m > M. Hence J;
contains md for all m greater than some M = M;. If j is another
state and m, n are such that p,,(i,7) > 0, pn(j,i) > 0, then m+n =
kd for some integer k. Also, if [ € J;, then

pm+n+l(i7i) Z pm(laj)pl(]aj)pn(j’ Z) > 07

and so d divides [. Therefore, if d divides every element of J; then
it divides every element of J;. All states thus have the same period
if P is irreducible. An irreducible matrix P is aperiodic if d = 1.

Irreducible, aperiodic chains

If P is irreducible and aperiodic, then there exists an M > 0 such
that for all n > M, P™ has all entries strictly positive. Since P
is irreducible there exists some m(i,j) such that pyqj)(é,5) > 0.
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Moreover, since P is aperiodic, there exists some M (i) such that for
all n > M (i), pn(i,i) > 0. Hence for all n > M(i),

pn+m(i,j)(iaj) > pn(iai)pm(i,j)(iaj) > 0.

Let M be the maximum value of M (i) + m(i, j) over all pairs (i, 7).
Then p,(i,7) > 0 for all n > M and all 4, j.

Perron-Frobenius Theorem

If P is a stochastic matrix such that all the entries are strictly posi-
tive, then the Perron-Frobenius Theorem implies that: 1 is a simple
eigenvalue for P; the left eigenvector of 1 can be chosen to have all
positive entries (and hence can be made into a probability vector by
normalizing so that the sum of the vector elements is 1); and all the
other eigenvalues have absolute value strictly less than 1. Therefore,
there exists a unique invariant probability vector 7 satisfying

P =

;] |

If ¢ is any initial probability vector,
lim ¢P" = 7.

n—oo

Moreover, 7(i) > 0 for each i.

Calculation of Stationary Distribution

For an irreducible, aperiodic Markov Chain represented by transi-
tion matrix P, diagonalize P so that

P =QDQ"!

where the columns of Q are right eigenvectors of P, the rows of Q!
are left eigenvectors of P and D is a diagonal matrix whose diagonal
entries are the eigenvalues corresponding to the eigenvectors of P.
By the Perron-Frobenius Theorem, 1 is a simple eigenvalue for P
and all the other eigenvalues have absolute value strictly less than
1. D therefore can be written as:

10 ... 0
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where M"™ — 0 as n — 0.

10 0 T

0 T
lim P" = lim QD"Q'=Q | . 0 Q'=

0 T

where 7 is the stationary distribution.



