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Executive Summary

After mathematically analyzing the aircraft boarding problem, our modeling
group would like to present our conclusions, strategies, and recommendations
to the airline industry.

We examined the mathematical effects of waiting in line to board, sending in
different groupings of seat assignments, and the interaction between various
components of the boarding process to determine the time required to board an
aircraft. We developed a detailed simulation methodology to test our ideas and
to quantify the differences between boarding strategies. Our simulation models
all of the critical factors at play in a boarding scenario, and is easily modified
to support different plane dimensions and interior configurations as well any as-
sortment of passenger characteristics depending on average demographics and
other statistics. We believe that further collaboration with your company and
access to your internal business data would provide us with the capability to
more accurately determine results and to tune our parameters specific to your
airline.

Our analysis began by determining what factors impact boarding speed the
most across all boarding algorithms. Our conclusions are presented in the list
below along with strategies that can be implemented to mitigate their impact:

e Passenger entry speed: The faster passengers enter the plane, the faster
it boards. This means flight check-in procedure (ticket checking) should be
optimized to ensure the correct number of gate agents are present. This is
particularly important on large planes with multiple aisles or levels. Flight
attendants should be stationed at critical junctions (such as entrances to
aisles in a multi-aisle plane) to direct each passenger to the correct row
and thereby maintain throughput.

e Baggage stowage time: The faster passengers put their bags away and
sit down, the faster the plane boards. The impact of storage time can be
mitigated by changing or enforcing carry-on baggage limits and by having
flight attendants assist passengers with particularly large bags that they
cannot easily lift. Another possibility to consider is a redesign of the
overhead bins to make them more easy to load.

For airlines interested in further decreasing average boarding time we have fur-
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ther analyzed the merits of different boarding algorithms. Through our simula-
tions we have developed a generic classification of boarding methods:

e Best No assigned seats
e Better Outside in boarding
e Mediocre Back to front

We understand that the proposition of no assigned seats may be problematic
from a customer service perspective. If this is the case outside in boarding (win-
dow seats first, in towards the aisle) provides significant advantages over back
to front, particularly when our previously mentioned optimizations are incorpo-
rated into the system. The exact numbers depend on the aircraft dimensions
and other factors, but in general outside in boarding provides a 10-30% advan-
tage over back to front. Similarly, foregoing assigned seats results in a 10-30%
advantage over outside in. We know that for many routes, this magnitude of
improvement could provide the margin necessary for an extra run in the course
of a day, resulting in additional revenue. However, our analysis does not stop
at determining mere speed increases; we also analyzed the reliability of each
boarding method in order to determine the deviation between the longest and
shortest possible delays for each boarding algorithm. In order to schedule an
extra flight, you have to be sure the tightened timetable will always be met, not
just most of the time. We found that the faster methods are also considerably
more reliable: outside in has a time deviation range 50% smaller than back to
front. For more specific numbers, examples on varying sizes of planes, and in
general a more complete description of our work, please refer to our in-depth re-
port, attached. With our insights and your business expertise, we can cooperate
to benefit the customer, your business, and your shareholders.
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1 Introduction

Short of a single minor detail the airplane boarding problem would be easily
solved using a very simple algorithm. Given his performance in the summer
“blockbuster” Snakes on a Plane we know Samuel L. Jackson is an optimal
de-boarder of snakes from planes [1]. Assuming that he maintains equal effec-
tiveness with people, simply invert his role and you have an optimal passenger
boarding algorithm. We could then simply model people as snakes and play the
film in reverse and determine the effective boarding time. The only potential
challenge would be scaling our results from the Boeing 747 used in the movie
to planes of varying sizes.

Ignoring the only detail that there is only one Samuel L. Jackson (maybe cloning
could help here), the idea of an airplane boarding problem is still an ambiguous
concept. After all, people want to board the plane quickly and the geometry of
the plane is fixed. How much is there to modify that could potentially lead to
any speedup in boarding time?

Upon first observation, it is not obvious the true multitude of factors that mesh
to determine airplane boarding time. However, after a closer look the true num-
ber of degrees of freedom appear. Then the problem becomes one of determining
which factors significantly contribute to the problem. The complexity required
for this analysis is daunting and in many cases the problem would be relegated
into the category of “not worth the time.”

However, like many problems orphaned into this category, it is often the market
economy that comes to the rescue. The competitive nature of the marketplace
continually redefines the differential that determines what is within the bounds
of a marginal gain. For the airlines this marginal difference of even a few minutes
per flight can represent millions of dollars in revenue over a fiscal year. Consid-
ering the number of airlines currently operating under bankruptcy protection
with federal subsidies, this is no small matter. It is this demand for revenue
that has thrust the airplane boarding problem into the forefront of modern in-
dustrial problem capable of being solved with mathematics. With this in mind
we embark on our journey to tackle the airplane boarding problem with Samuel
L. Jackson as our inspiration.

2 Problem Restatement

We start our journey by concretely stating what we wish to examine. We would
like to finish by having an efficient method for boarding a commercial airplane
that accommodates for unpredictable human behavior and a framework that
allows us to compare and contrast between different procedures. In the process,
we would like to gain a “deeper” understanding into the fundamental issues of
airline boarding, both to understand the reasons why certain procedures behave
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differently, but also to make well-informed and theoretically-justified recommen-
dations to our industry patrons.

We approached the problem by first mathematically analyzing different factors
that contribute to delays in airplane boarding. Mathematical analysis of blocks
which prohibit smooth flow was carried out using techniques from stochastic
processes.

We also developed a computer simulation which modeled the airplane boarding
process while accounting for different boarding methods and individual variation
of passengers. We also used our simulation to learn an ideal boarding proce-
dure, which we refer to as Parabola for the parabola-like zone assignments that
it uses. We then pitted our boarding scheme against other standard boarding
schemes to see how it fared.

3 Conventions

This section defines the basic terms used in this paper.

3.1 Terminology

e Passenger: A passenger is an individual traveling on the plane who is
not part of the crew.

e Boarding Scheme: A boarding scheme refers to an assignments of zones
or groups according to which passengers board the plane. Depending on
the modeling assumptions, it could be exactly deterministic or the general
assignment before random mixings.

e Interference: An interference is an event in which a passenger cannot
progress towards their seat because of another passenger blocking their
way.

3.2 Variables

We will define the following variables here as they are used widely throughout
our paper. Additional variables may be defined later, but will be confined to a
particular section.

e ( refers to the number of columns in the plane which is also the number
of seats in a row.

e R refers to the number of rows in the plane. For the most part we ignore
or treat in a different manner distinctions between classes, for details see
section 4.
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4

B refers to the time it takes for a person to stow their baggage into the
overhead bin. B is assumed to be constant for our preliminary mathemat-
ical analysis; it is allowed to change in the simulation. Refer to section
7.5 for more information about variation of B.

v refers to the walking speed of the passengers. It is assumed to be constant
throughout the model. See section 4 for an explanation.

s refers to the time it takes for an already seated passenger to get up and
get out to let another passenger pass. It is assumed to be constant for
mathematical analysis but is allowed to vary in the simulation.

A refers to the rate at which people enter the plane through the main door.
This value is assumed to be constant as any deviations in time between
passengers is mitigated by walking down the jet-bridge to the plane.

Assumptions

We make the following assumptions about airplane boarding process in this
paper.

Passengers with physical limitations, families with infants, and passengers
extremely advanced in years board the plane before other passengers for
their own safety and comfort. We assume that these passengers might
need the plane to be relatively empty to successfully reach their seat,
perhaps with the assistance of flight attendants. The time taken for this
pre-boarding is assumed to be a constant overhead that airlines cannot
avoid.

First class passengers are boarded separately. The existence of a first class
in our view means that they require first class treatment: a first class
section where passengers have to fight through the proletarian masses is
antithetical to the very idea of a “first” class. We can either assume a
single-class plane, or model the first class separately (see section 11).

All passengers boarding the plane during general boarding walk at ap-
proximately the same speed. Since we assume passengers of extremely
limited mobility are already aboard the plane, this is plausible. Further-
more, the walking speed is limited more by the environment (aisle size,
people in the way) than the person’s innate maximum physical capacity.
Passengers board independently and walk independently, that is, we have
no groups waiting for each other or slowing in line. For families we might
assume that they are assigned seats next to each other, which satisfies
their bonding and closeness desires.

We confine our analysis to the interior of the plane. That is, we ignore ter-
minal effects (anything outside the plane door)) beyond requiring that the
gate agents can supply us with passengers at a certain (typically constant)
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rate. If the plane cannot “process” them quickly enough, they queue in
the jet-bridge without adverse effects. Additionally, the interior of our
planes are generally assumed to be regular and symmetric with all rows
equally-sized.

e All planes fly at maximum capacity and all passengers are present at the
time their respective zone is called, which they follow obediently. Empty
seats would only speed up the process. Late passengers or disobedient
passengers can be thought of as equivalent and at worst can be accounted
for by adding a time overhead once they board the plane.

e We confine our recommendations and analysis to methods that do not
overly alter the status quo. Change is bad, particularly for the airline
industry in this already turmoil-laden time. We will analyze ticketless
methods for comparison but seek to find the best boarding method for tick-
eted contexts, since this will be useful for the many airlines that refuse to
abandon assigned seats. We further will only consider zone-based board-
ing calls, assuming that is too heavy-handed and logistically impossible to
require passengers to line up in any verifiable order.

Additional assumptions are made to simplify analysis for individual sections.
These assumptions will be discussed at the appropriate locations.

5 Motivation and Subproblems

With the large number of complexities involved in the airplane boarding pro-
cess, we begin by analyzing the problem in small, idealized parts. We begin
by examining an ideal, best case algorithm that simplifies many issues in its
analysis. By looking at the simplifications necessary to make this analysis, we
get a better idea of the underlying problems or key issues in the process. In the
second and third sections we rigorously analyze facets of the boarding process to
gain insights into the nature of the problem. Ultimately the knowledge we gain
will motivate the set of boarding schemes best suited to solving the airplane
boarding problem and the factors we will compare in our simulation model.

5.1 Best-Case Boarding Algorithm

Consider for a moment the case in which all possible variables involving pas-
senger boarding could be controlled. Under these circumstances how would it
be possible to schedule the boarding of the plane in an optimal manner? After
consideration we determined that the best way of boarding a plane with these
conditions would be to use a modified version of outside to inside method. Pas-
senger are first ordered by the following set of criteria in descending order of
priority:

e Individual location in row: Window has highest priority, aisle has least
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e Side of plane: left side of plane has priority over right side
e Row number: Rows in back have priority over those in front

After ordering passengers in this manner the following algorithm could be ap-
plied to board the plane optimally: While the ideal boarding algorithm may
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Figure 1: This figure demonstrates the operation of the ideal airplane boarding algorithm.
Each group of R people is represented by a number corresponding to the order that groups
enter. Each group proceeds down the aisle until each person reaches their row (since people
are in order they all reach their row simultaneously). They step into the first seat in their row
and then begin storing their carry-on baggage. During this time the next group commences
walking down the aisle (they won’t be getting married though). Notice the only time when a
group might stall in the aisle is if B is larger than 2% in which case every other group must
walit in the aisle for B—2% seconds. This accounts for the additional term in the second part

of equation (5.1).

seem an enticing solution to the passenger boarding problem it is far from prac-
tical as it is unreasonable to expect people to perfectly order themselves and
follow strict commands on what actions to perform in the plane (unless of course
you're boarding a company of United State Marines). Instead we will utilize the
the ideal boarding algorithm to place a lower bound on the minimum amount
of time required to board an airplane of a given size and shape. The formula



Team 2053 8 of 30

for computing this time is:

CE+B

5.1 Ideal Boarding Time =
(5.1) cal Boarding Lime {c§+B+(%—1)(B—2R)

In addition to using the lower bound generated by the ideal boarding algorithm
we will also utilize it to recognize several key insights into the problem of passen-
ger boarding. The following are two key concepts to note about the operation
of the algorithm:

e The main aisle is kept continuously busy unless passengers have to wait
for people in their row to finish placing their baggage up.

e Passengers are “pipelined” to minimize the blocking effect of placing any
luggage in the overhead bins

In essence, these two properties of the algorithm are solutions that arise in
response to two of the fundamental problems in the passenger boarding problem.
These problems only manifest themselves whenever some order of randomness is
introduced into the process; that is, when passengers are not perfectly ordered.
The introduction of randomness also ultimately leads to the downfall of the
ideal algorithm. The fact that randomness, that is, imperfect ordering, is an
inherent property of the airline boarding problem (see section 4) forces us to
consider the following when determining the best airline boarding algorithm:

¢ Random Orderings: How out-of-order are people and how does this
impact other dependencies in boarding?

e Flow Rates: How long does it take people to enter the plane and walk
down the aisle without blocking the aisle?

e Baggage: How large is their baggage and how long does it take to place
in the overhead bins?

An important observation to be made concerning the above conditions is that
they all represent means of introducing dependencies into the system. Random-
ness prevents us from determining the occurrence or duration of these depen-
dencies and therefore forces us to design boarding schemes capable of tolerating
their effects. One potential solution would be to remove dependencies by forcing
people to continue moving as far back in the plane and over in a row as long as
they don’t get blocked. We will return to this “Random Greedy” approach later
as it represents the intuitive motivation for our best airplane boarding scheme.
However, before introducing any additional schemes, we will determine the ex-
act mathematical impact of several different algorithm design parameters. By
determining these effects, we can then use them to guide our choice of boarding
schemes for testing.
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5.2 Predicting Bottlenecks with Queuing Theory

One intuition for modeling the airplane boarding problem is to think of it as a
stochastic process. A stochastic process is a collection of random variables that
must take on a value at every state, where states are indexed by some parameter
(in our case time) [2]. A simple example of using a stochastic process to model
the airline boarding problem would be if we considered each entering passen-
ger to be associated with a random variable that described their assigned seat.
Although this may seem simplistic, it is conceivable to assign every potential
parameter in the airplane boarding process a random variable that is associated
with time. We determined that this level of detail was prohibitive based on the
amount of computation that would be required even for just a few variables.
Despite this, we can still use several tools associated with stochastic processes
to learn about the plane boarding problem.

To analyze this stochastic process formulation, we use queuing theory. Queu-
ing theory deals with analyzing the way that random variables in stochastic
processes interact. Traditionally queuing theory is utilized for determining the
average throughput of a system. While the airplane boarding problem does
not possess a quantity directly corresponding to throughput, we will show that
we can gain a better understanding of bottlenecks and their effects using this
approach.

The first step in our analysis is to partition the airplane into a series of queues.
We place a “processor” at each row. This processor corresponds to each passen-
ger making a decision at this point either to keep walking or to stop and enter
their row. Each processor has a queue that stores passengers. Queues have a
size of 1 and will stop the processor feeding them if they are full. This would
represent people backing up if someone stops in the aisle. A diagram for this
layout can be seen in figure 2.

p_3 _
@ (o eoo

p_0 p_2 p_2(n-1)

Figure 2: A Queuing Theory Model of an Airplane
In the above diagram wuj represents the processing rate of the “processor”. We
can choose this variable to directly correspond to the average walking speed of
people. Each pj represents some probability at which passengers are diverted
into the their rows or continue walking in the aisle. In some cases people will
take longer to get into their rows depending upon how long it takes for them
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to put their baggage up. The processor associated with that row will then take
longer to process that job, causing the flow of people through the aisle to stall.
One downfall of this particular model is that all passengers must leave the sys-
tem and it doesn’t always accurately reflect that each row should only ever hold
C passengers. It was this fact that ultimately led us to drop the queuing theory
model as our main model. However, we will see that we can gain some useful
knowledge concerning bottlenecks in the aisle.

In order to convert the open system shown in figure 2 to a closed form system
that can be solved by Queuing theory we use Jackson’s Theorem [6]. Jackson’s
Theorem notes that an open system can be represented with a feedback loop if
the rate of processing at each processor is augmented proportional to the rate
of flow prior to that processor. Using this theorem we can redraw our airplane
model as seen in figure 3'. This closed form now allows us to solve this queuing

u_Op_0O u_1p_0/p_2 u_2p_0/p_4 u_(n-1)p_0/p_2(n

MAFOAFOAIRCO- o

Figure 3: A Closed Form Queuing Model of an Airplane

model to determine the probability of having a given number of passengers at
a specific node at a given time. We assume a solution of p(kg, k1, /ldots, k1)
where p is a function that computes the probability of having k; people in the i
position in the aisle. Conceptually this implies that we have an n dimensional
state-space since the number of passengers at each node is potentially different.
We can now write down some conditions that p must satisfy and use these con-
ditions to find an actual equation for p.

The first condition that we know p must satisfy is that it must maintain flow

of passengers into and out of a given state in state-space. This ensures that
passengers are never “lost” in the system. This equation can be stated as

n—1
A+ "y | plko ke, k) =
7=0
Ap(ko = 1k, k1) + tn1p(Koy -+ Kn—o, ko1 + 1) +

n—2
(5.2) > ol ki Lk =1,
=0

IThe fact that all rates are dependent upon pg stems from the fact that the rate into the
next queue is dependent upon the output of the previous processor and terms cancel under
our assumptions for the value of any p;.

10
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We also need to define the boundary states of the state-space. These equations
must ensure that no state can run into conditions where it has a negative number
of passengers at a particular processor. These equations can then be defined as

(110 + M) p(ko,0,0,...,0) = jip(ko,1,0,...,0) +
(5.3) (ko —1,0,0,...,0) ko >0
(1 +N)p(0,0, ... kn 1) = pn_2p(0,0,..., 1k, 1 —1)+
(5.4) tn—1p(0,0,... k1 +1) kn_1>0
(5.5) Ap(0,0,...,0) = pop(L,0,...,0)

Lastly, we must have that all probabilities sum to 1, so we must have

(56) Z Z Z p(ko,kl,...,kn_l) =1

knleO kanZO kOZO

We can then extend the solution presented in [2] from a two processor chain
and see that that p has the following form

n—1
k-
(5.7) plko k1, knr) = [T (1 = pi)p;’
j=0
Where each p; takes the following form
A
5.8 pi=—
58) T

and p; is the rate of processing for the j processor which is seen in Figure 3.
From [2] we know that the bottleneck of the system occurs at the processor
with the largest value of p;. We now consider a random ordering of people
entering the plane. This implies that people turn off at any given row with
probability % and continue walking with probability an We can then conclude
that the rate that they turn off at any row is proportional to % as well. We
assume that in the original system uwg = u; = ... = u,—1 and therefore all
nodes in the closed system must have a rate of p; = W for all j. This
implies that pg is the largest in the system and is therefore the bottleneck of the
system. If we recursively apply this for an airplane with n — 1 rows then we see
that bottleneck will always be the first processor. We can then recognize three
important properties of airline boarding:

e The critical bottleneck for boarding people on the plane will
always be the first row in the plane.

e The criticality of the main bottleneck is linearly proportional to
the number of rows in the plane.

e The farther back a row is in an airplane, the less it contributes
to the bottlenecking effect.

11
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Although the queuing model of an airplane is not the best model of an airplane,
we will show that the above three principles are very important in determining
an airplane boarding scheme. In the next section we will investigate the airplane
boarding problem at a finer granularity by examining the effects of row and
column collisions.

5.3 Effects of Row and Column Interferences

The boarding process gets more complicated when people board the plane out
of order within their zone. Boarding out of order leads to row interference
and column interferences which hold up traffic down the aisle. Here we use
probabilistic estimation to assess zone configurations which are least affected
by shuffling among passengers in a given zone. For the sake of simplicity we
present this analysis for a plane in which each row has 6 seats, but it can be
easily generalized to planes with longer or shorter rows. We develop some lem-
mas before we proceed to the actual analysis.

Row interferences occur when a passenger sitting in an aisle or middle seat
has to get up to let the person from the window seat or the middle seat in. We
will calculate the expected number of times a passenger will have to get up if
the passengers sitting in a row of k seats board the plane out of order.

Lemma 1. The expected number of seating interferences in a row of k people
k(k—1)
-

is
Proof: We refer to the seats in a row by A;, As, ..., A with A; representing

the window seat while Ay, representing the aisle seat. The k passengers sitting in

these k seats can board the plane in k! different orders. The expected number

of interferences is an average of the number of seating interferences over all

permutations of 1,2,...,k. This can also be represented as the sum over all 4

of the expected number of times the passenger in seat A; has to get up. Let x;;

be an indicator variable defined as follows.

(5.9)

- {1 if passenger in seat A; has to get up to let passenger from seat A; pass
] —

0 otherwise
Passenger in seat A; would have to get up to let passenger from seat A; pass

only if ¢ > j and the passenger from seat i comes in before passenger from seat
7. Thus,

1/2 ifi>j
5.10 E(z;;) =
( ) (i) {O otherwise
Then,
(5.11) E(passenger i has to get up) = ZE(I”) =1i/2
j=1

12
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So,

k
(5.12) E(row interferences) = Z E(passenger i has to get up) = k(k —1)/4
i=1

Thus in particular the expected number of interferences for 3 seats in a row is %

Our second lemma reasons about the chance of passengers getting held up in
the aisles. A passenger often waits in the aisle in front of his seat to stow his
hand luggage in the overhead bin. The passengers behind this passenger then
have to wait till the passenger finishes stowing his baggage and proceeds to the
seat. We use techniques from probability to reason about the number of hold-
ups that might occur when people distributed over a number of rows board the
plane in random order. We assume that a passenger can go to his row and stow
his luggage as long as he is not blocked by some passenger stowing his luggage.
The lemma finds the longest sequence of passengers that can be stowing their
luggage at once. If the rows are numbered in increasing order from the back of
the plane to the front, the problem can be reduced to finding a largest increasing
subsequence of row assignments among the passengers, as these passengers then
can proceed to their seat and stow their bag.

Lemma 2. The expected length of longest increasing subsequence in a permu-
tation of {1,2,...,k} is (asymptotically) of size 2Vk. [3]

The proof of this lemma is quite involved and we will not discuss it here. The
lemma tells us that if & passengers sitting in different rows board the plane at
once, then 2v/k of them would be able to proceed to their seat and stow their
luggage without encountering an interference. Now if we have m people spread
over k rows, then it will take them |m/(2v/k)|B time to stow their luggage.

Now we use these lemmas to estimate the boarding time for a group of pas-
sengers to be seated in different configurations.

Configuration 1: Dense Distribution over Rows

This configuration refers to the situation when the zone is composed of m pas-
sengers spread densely over k row. Dense distribution assumes that we have all
6 passengers from a given row in the same zone. The expected number of row
interferences for this configuration is % - 2k. Then the boarding time for this
zone is approximately:

_m_
Wk

where B represents the bag stowage time and s represents the time it takes for
a passenger to get out of their seat to allow a fellow passenger to pass and sit

(5.13) T =|——|B + 3ks

13
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down again. The time it takes for people to walk down the aisle can be ignored
in this case as it is overshadowed by bag stowage and reseating.

Configuration 2: Sparse Distribution over Rows

This configuration refers to a zone that is composed of m passengers sparsely
distributed over k rows. Sparse distribution assumes at most two passengers
from a given row mostly on different sides with respect to the aisle. Having
a sparse distribution totally eliminates the effect of reseating time, but results
in walking time becoming the critical factor in determining seating time. The
walk time for this configuration is roughly kv where v is the time it takes to
walk from one row to next. Thus total time for boarding this group will be,

m

(5.14) =l

|B+ kv

where B is bag stowage time.

In order to illustrate the effects of both of these configurations consider the
following two examples. In the first example we have 6k passengers spread
over k rows in the dense distribution configuration. In the second example, we
again have 6k passengers but this time they are spread out over 6k rows in the
sparse distribution configuration. The boarding time for the first configuration
is |3v/k| B + 3ks and for the second configuration is |v/6k/2]| B + kv. Reseating
takes longer than walking and the boarding time for first configuration is much
larger than the boarding time for the second configuration. From this we can
draw several important conclusions:

e Boarding passengers in close spatial proximity results in a high
rate of interferences that severely impedes boarding time

e Boarding passengers across several (even just a few) rows signif-
icantly reduces the rate of interferences and improves boarding
time over row-by-row boarding

e A strong boarding scheme must include some form of sparse
distribution boarding in order to be competitive

We’ve now seen some of the underlying components that make the airline board-
ing problem difficult. Having identified the characteristics of a strong boarding
scheme we are now ready to investigate current boarding schemes, as well as a
few of our own design to determine their effectiveness at attacking the airline
boarding problem.

6 Assorted Boarding Schemes

The mathematical intuition presented in the last section shines light on different
factors that must be considered while developing a boarding scheme. Here we

14
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take a look at the different boarding systems already in place.

Back to Front: Back to Front is the most widely used boarding scheme among
airlines. Its users include Air Canada, Alaska, American, British Airways, Con-
tinental, Frontier, Midwest, Spirit, Virgin Atlantic to name a few [5]. In this
scheme passengers are divided into zones and are boarded from the front door
in a back to front order.

Outside In: This boarding scheme is used by Delta and United Airlines. Pas-
sengers are boarded windows first, followed by the middle seats with aisle seats
boarding last.

Reverse Pyramid: This recently introduced system is currently used by US
Airways on some of their routes. This scheme boards people in a V-like manner
with rear middle and windows boarding first, followed by rear aisles and front
aisle.

No assigned Seats: Ostensibly the fastest of all the boarding schemes, it
is used by Southwest Airlines. Passengers are not assigned seats and are al-
lowed to sit anywhere in the plane. This scheme has not been widely copied
by other airlines as it does not lead to high customer satisfaction and is often
likened to a cattle car.

For a visual comparison, we load these seating assignments into our simula-
tion engine (for details, see section 7) in a hypothetical plane configuration and
output them graphically (figure 4). The seats are colored according to the order
in which they are filled, with red being earlier and green being later. The entry
door is at the top of the grids with the bottom being the back row. We include
an ordering named “Parabolas” that we will introduce in a later section, for now
we leave it as an exercise to the reader to determine its theoretical origins.

7 Simulation Design and Details

In this section we introduce our simulation engine and its details. In earlier
sections we analyzed subproblems and made simplifying assumptions to get a
handle on the issues at hand. However, determining realistic numbers should
include more information and take into account the many details that occur in
an actual plane boarding situation. To model this we produced a comprehensive,
flexible boarding simulator that we use as a vehicle to compare different boarding
algorithms and the effect of various situations. Our simulation techniques were
inspired by Stochastic Petri Nets, Finite Time Step simulations, and cellular
automatal4].
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Back to Front  Alt. Rows Outside In Pyramid Paraﬂ)olas

Figure 4: Ticket Assignment Schemes

7.1 Process

Our simulation model runs through time in small intervals. At each interval it
moves each participant in the simulation according to certain rules defined by
the input parameters. Certain events take extra time and create blocks for other
participants in the model. For example, a passenger putting their baggage in
the overhead compartment might block the aisle for a certain amount of time.

7.2 Plane

The plane exists as a variably-sized rectangular grid of seats. There is a single
aisle for passenger movement in the center of the columns and a single door for
passenger entry at the beginning of the aisle. The space between rows (pitch in
industry terms) and between columns is adjustable. See section 11 for strategies
that extend this model in a simple manner to planes of varying, more complex
configurations.

7.3 Behavior Modeling

Our simulated passengers can board in two different contexts: assigned and
unassigned seats.

e Assigned seats means that particular seat assignments are given to pas-
sengers before entering the plane in a one-to-one mapping. Passengers
move to their seats as fast as their walking speed allows them, waiting as
necessary for obstacles in front of them to clear. They make no mistakes
in moving to their assigned seat, that is, they don’t overshoot it or go to
an incorrect location.

e Unassigned seats means that each passenger is free to sit anywhere they
like. Our passengers have an equal preference for each seat in the airplane.
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Furthermore, they sit down as soon as possible: if the aisle is blocked, they
will sit down in the current row to avoid waiting standing up. However,
if there is no block then they will walk as far as possible before sitting.
When they sit, they are generous and move all the way over to save future
passengers time.

Passengers each have an associated delay time for moving into their row which
corresponds to the time required to stow their carry-on in the overhead com-
partment, wait for already-seated passengers to move out of the way, move in
themselves, and get settled and ready for flight. The seating delay required
to sit in a row rises as more people sit in it, reflecting the decreasing amount
of space in the overhead compartment and the accompanyingly longer time re-
quired to find adequate space for a bag (which increases faster with smaller
baggage compartments or people with larger luggage).

When a person blocks the aisle loading their baggage and someone else comes
up behind them, there is a certain pass percentage representing the chances
that the blocked person can pass by them and proceed on their way to a seat
farther along the plane. This (typically small) percentage reflects the chances
that a person loading their bag might be able to stand in the space of an unoc-
cupied aisle seat to load their bag, might be considerate and allow someone to
pass, or might be unexpectedly skinny.

7.4 Parameters

The simulation is run with a passenger input rate based on the rate at which
passengers enter the plane. This is affected by the gate check-in speed, that is,
how fast passengers are processed in the terminal. Passengers have a constant
walking speed which dictates how fast they can move when not blocked.

When seats are assigned, the passengers are typically called in groups where
each group is some approximately contiguous segment of seats (for example,
several adjacent rows or all the window seats in some segment). This group
number is variable, and passengers within each group are randomly ordered.
Groups themselves satisfy certain ticket assignment schemes, for example
ordering groups back to front.

7.5 Parameter Estimation

For our simulation trials, we use the following default values and distributions.
Estimated values were based on critical thinking and will be varied and ana-
lyzed in following sections to determine the relative impact of their estimations.
Parameters dependent on the specific plane will be specified later.
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e Walking Speed = 140 cm/sec
This varies based (at least) on the age and gender distribution of the pas-
sengers. We used the FAA evacuation simulation requirements that call
for a simulated plane’s population to be at least 40% female, at least 35%
over age 50, and at least 15% both. Our average distribution is balanced
male and female with 40% over age 50. We referenced the average com-
fortable walking speed based on age and gender from [8].
Affected by: Passenger demographics, aisle width and ceiling height, num-
ber and size of bags per person

e Seating Delay = U[10,20] + P. + P, sec
The seating delay is uniformly distributed and includes P,, the compartment-
filling penalty and P, the row-out-of-order penalty.
Affected by: Other penalties, and row spacing, baggage size and number,
compartment size and layout, passenger demographics

e Compartment Penalty = 3.0p sec
The compartment penalty is proportional to p, the number of people al-
ready seated in your row.
Affected by: Size and layout of overhead compartment, baggage size and
number

e Pass Rate = 0.05
The default pass rate of 1 in 20 is an estimation.
Affected by: Aisle width, passenger demographics, baggage size and num-
ber

e Row Out-of-Order Penalty = 15.0p sec
The row exchange penalty is proportional to how many people have to
move to let you in your seat, p.
Affected by: Row spacing, passenger demographics, aisle width

e Entry Delay = 5.0 sec
The number of seconds between passengers entering the plane, an estima-
tion.
Affected by: Check-in procedure, flight attendant behavior, baggage size
and number, out-of-plane characteristics

7.6 Summary

To summarize, our simulation model is configurable and allows us to approxi-
mate many aspects of the airline boarding process. We will use it to test different
strategies and measure the effects of certain changes on the process. We can:

e Model different types and sizes of planes with varying interior configura-
tions (aisle width, seat spacing, overhead compartment size)

e Model passengers with and without assigned seats in many arrangements
and zone groupings

18



Team 2053 19 of 30

e Model the effects of baggage count, baggage size, compartment size, and
stowing speed

e Model the effects of the gate check-in process speed

8 Deriving a New Scheme

It is generally observed that random boarding with unassigned seats tends to
be the fastest boarding scheme [5]. Despite this many airlines do not adopt it
because it often leads to low customer satisfaction. We now derive a new seating
assignment pattern inspired by the seating patterns of passengers in a random,
assignment-less environment.

From the mathematical analysis presented earlier, we see that the best strategy
for an efficient boarding scheme would be to move passengers as far to the back
as possible and also to ensure that passengers boarding a plane within a block
are spread out over several rows. We used this intuition to develop heuristics
for our learning simulation.

This data was then used to assign zones to seats. Seats that were always the
first ones to be filled were assigned the first zone. The next group of seats to
get filled were assigned to the second zone, and so on. To observe this, exam-
ine figure 5. This zone assignment gave us a boarding scheme for passengers
with assigned seats and since in the learning simulation these passengers had
minimal interference with each other, we hoped that similar results would occur
even with shuffling within zones.

We observed that the zones returned by our learning algorithm resembled parabo-
las, hence we defined the zones as seats highlighted by different parabolas cen-
tered near the far end of plane and the center of the rows, superimposed on the
seating chart. The parabolas get steeper for higher zones as we are boarding
aisles at that time.

We then wrote a computer program to compute these parabolas for planes of
arbitrary size. This program is then adaptable to any plane and will designate
seating groupings of appropriate size. We will refer to this method of assigned
seat grouping as the Parabola boarding method. Recall that this arrangement
was shown on figure 4 earlier.

9 Relative Effect of Parameters

In this section we vary the various input parameters for our simulation to de-
termine the effect and relative impact of environmental choices in the boarding
process. We will use these results to shape our recommendations to the air-
line industry to suggest the order in which they should examine their particular
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Figure 5: Results of No Assignment seating simulation. Blue green corresponds
to passengers that sit down first and orange red corresponds to passengers that
are seated last. Observe the fact that traces of equal height take the shape of
parabolas.

boarding processes to obtain the maximum improvements. Also, we will observe
the relative speeds of the algorithms throughout the analysis in order to make
conclusions about which we should recommend and under what circumstances.
We perform these simulations using the default parameters from above and the
plane layout of a Boeing 757-200 (39 rows, 6 columns).

9.1 Walking Speed

First, we analyze the effect of passenger walking speed in figure 6. We vary
it from the approximate comfortable walking speed of 70 year-old female to the
approximate maximum walking speed of an 70 year-old male [8]. In general,
loading time is not always lowered by increasing walking speed (except in the
back-to-front scheme). This reflects our key insight from queuing theory analysis
that the entry rate is a more critical bottleneck. From this analysis we conclude
that ensuring high walking speed is not critical.

9.2 Baggage Stowage Time

Next we analyze the effect of changing the baggage stowage time in figure 7.
Specifically, we change the average value of the uniform distribution we select
passenger stowage time from in the simulation. We see that it has a large
effect on the overall loading time. This follows our insight that keeping the
aisle full or “pipelined” is important: if we slow the process at this pipeline,
overall performance directly and immediately suffers. We therefore conclude
that ensuring a quick baggage stowage time is critical.
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Figure 6: Plane Loading Time as a Function of Walking Speed (v)

9.3 Plane Entrance Rate

We analyze the effect of changing the plane entrance rate in figure 8. In-
creasing the delay between successive plane entries (that is, lowering the rate of
incoming passengers) immediately and strongly increases the time required to
board the plane. At a certain value, all seat assignment methods become equal.
This presumably results because no bottlenecks form since passengers enter so
slowly (effectively each passenger enters independently, one-at-a-time, without
conflicts) and so queuing and overflow effects do not emerge. From this analysis
we conclude that ensuring adequate plane boarding speed is critical.

9.4 Intra-Row Movement Time

We look at the effects of changing the time required to shuffle in and out of a
row to let in a fellow passenger in figure 9. Increasing the row movement time
raises the boarding time marginally for back-to-front and alternating rows, but
not for the other algorithms. However, this is to be expected: the other methods
are designed to specifically avoid these row conflicts: passengers almost always
arrive in outside-in order. So we decide that decreasing row movement
time is not critical particularly because we can completely avoid its effects
with certain algorithms.
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Figure 7: Plane Loading Time as a Function of Baggage Stowage Time (B)

9.5 Aisle Pass Rate

Finally we analyze the effects of changing the aisle pass rate. The more often
passengers can pass each other in the row, the less often incorrect row orderings
and blocks in the aisle occur. So, loading times clearly decrease for all algorithms
as this rate increases: all algorithms have to deal with these conflicts. Affecting
this rate would be difficult in practice, but might occur while trying to obtain
some of the other critical goals we have selected. That is, we can imagine that
widening the aisle in a plane is quite difficult (directly trying to raise this rate),
but lowering average passenger carry-on size and amount might also raise it
(indirectly). So, since we can affect this rate only indirectly, we decide that
ensuring a high aisle pass rate, while beneficial, is not critical.

9.6 Summary

We have analyzed the relative impact of the parameters of our model for a
representative airplane. To review, we determined that two factors are of key
importance in ensuring a speedy boarding process: average baggage stowage
time and plane entrance rate. Synthesizing the results with the aim of
ranking the various strategies in terms of speed produces a clear and consistent
ordering:

e Outstanding: No seating assignments
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Figure 8: Plane Boarding Time as a Function of Plane Entrance Rate (\)

e Meritorious: Outside in, pyramid, parabola
e Honorable Mention: Alternating Rows
e Limited Success: Back to front

Analysis of the average order of passenger seatings after mixing within groups
compared to the average seating order without ticket assignments provides some
insight into this ranking. Figure 11 shows this for each boarding algorithm:
Pyramid and Parabolas most closely approximate the order achieved by the
fast no-assignments model. We conclude that Outside In captures most of the
key benefits, since in general it is as fast as the other two while being a less-close
approximation of the random greedy model.

10 Strategy Robustness and Dependability

Average boarding speed is not the only measure of success for a boarding proce-
dure. Fast boarding times are useful inasmuch as they allow for extra flights to
be scheduled in a day [5] to produce more revenue for an airline. A fast boarding
method does no good if once a week it takes twice as long as its average: airlines
need to depend on a consistent time to produce achievable and reliable sched-
ules. Therefore, we prefer boarding methods that vary little between worst and
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Intra-Row Movement Speed vs. Loading Time
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Figure 9: Plane Boarding Time as a Function of Intra-row conflicts

best cases over many repetitions. To analyze this we plot histograms of board-
ing times for our various schemes over 500 trials. We would prefer the method
with the “tightest” distribution in order to produce a schedule. See figure 12 to
compare.

| Algorithm | Time Range (min) |

No Assignments 0.7
Outside In 2.6
Parabola 2.8
Pyramid 3.1
Alternating Rows 4.6
Back to Front 6.2

From this we can see that plane loading time has the smallest deviation between
longest and shortest load times for the No Assignments boarding scheme. In-
terestingly, we can see a direct correlation between the amount of time that it
takes to board and the variability in boarding time. The Outside In, Pyramid,
and Parabola Methods all have similar boarding times and distributions. Simi-
larly Back to Front and Alternating Rows take the longest and have the largest
deviation. To some extent this suggests that a faster boarding algorithm is also
more dependable, however this may not be true for all cases.
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Figure 10: Plane Boarding Time as a Function of Aisle Pass Rate

11 Model Generalization

Our simulation assumes that the plane is boarded from one end of the seating
area with passengers walking down aisles at the center of the rows. But many
commercial planes have several aisles or passengers boarding on different levels.
Our model can be easily generalized to accommodate for different plane designs
and layouts:

e First Class: For most commercial airlines, first class passengers board
the plane independently before economy class passengers. As we noted
earlier, first class boarding can be simulated using our model by reducing
the number of rows and columns. This means the whole plane can be
divided into two smaller simulated planes and the total boarding time will
be obtained by addition.

e Multi-Door: At some airports, passengers board the aircraft through
multiple doors. Boarding through two doors can be modeled by dividing
the plane into two halves with front seats in first half and back seats in
second half. The simulation can then be used to board each half individ-
ually. The fact that passengers leave the terminal through same gate can
be easily factored in this simulation by adjusting the passenger entry rate.
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Figure 11: Average Seating Order with Group Mixing

e Multi-Aisle: Airplanes like the Boeing 747 or Airbus 300 generally allow
double aisle access to the boarding deck. On these planes passengers are
directed to the appropriate aisle as they enter the aircraft. Boarding for
multi-aisle aircraft can be modeled in our simulation by splitting the air-
craft into two vertical sections in the middle of the row. Boarding for each
section can then be simulated individually. Since passengers from the two
sections are not separated until they enter the aircraft, some adjustments
should be made to the entry delay constant in the simulation, reflecting
the time necessary for the flight attendants to direct them correctly.

e Multi-Level: The Airbus 380 is the only available commercial aircraft
with multilevel economy class. Boarding these multi-level economy class
aircrafts can be modeled by treating the two decks as two separate planes.
The plane can be boarded with jet-bridges extended to both levels or to a
single level then using a staircase inside the plane. The same philosophy as
before applies: each subsection will be modeled as its own plane with entry
rates changed appropriately. Depending on if the execution (boarding) of
subsections occurs in parallel or serially the times should be added or
compared (and the maximum taken).

12 Specific Results

We apply our model to various real-world planes of different sizes to compare
the speed of the boarding processes. As we noticed in a previous section, Out-
side In, Pyramid, and Parabola are all quite similar in timing: therefore here
Outside In serves as a representative for those related techniques. We applied
our generalization techniques to model multi-aisle, -class, and -level planes with
given configurations found at [9] [10].
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Figure 12: Loading time distributions for different boarding schemes
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| Plane | Passengers | Unassigned | Back to Front | Outside In |
DC 9-40 125 11.7 16.9 13.7
Airbus A320 164 14.3 20.5 16.9
Boeing 757-200 234 19.7 26.4 22.6
Boeing 747-400 313 30.6 30.6 32.1
Airbus A380 555 34.7 35.4 35.7

These numbers support our previous conclusions. In several cases Back to
Front is quite close to Outside In, here we hypothesize that the plane entry
rate was not adequate so the algorithms beaome equal (see parameter variation
analysis for entry rate). This is noticeable on planes where the loading rate
drops because of multiple aisles, levels, or classes.

13 Conclusion

While our approaches and models were effective and produced results, there
remain several types of model weaknesses:

e A class of weaknesses arise concerning our assumptions and the situations
that our model fails to accurately approximate if they don’t hold. This
includes having independent, perfect-knowledge, infallible passengers who
always put their luggage directly above themselves, as well as having too-
perfect scenarios (planes of equally-sized rows, jet-bridges of constant flow
instead of the stairs or buses that bring passengers to planes in some
airports).

e There are several areas of the problem we left untested because they
seemed, at least on the surface, to be of secondary importance; for exam-
ple, varying the number of zones called. An astute reader can probably
think of many more.

e Our comparative analysis of boarding algorithms was simulation-based
and therefore by nature not exhaustive. There hypothetically could exist
some better algorithms that we did not derive or test. Some already exist
in the real world that we did not test because of time constraints, including
single-zone random boarding and rotating row group zones.

e We stayed within the current boarding paradigm as an effort to not pro-
duce too much “uncomfortable change” for the air-traveling public. How-
ever, greater improvements might be available if a wider range of choices
were available in order to “change the game”: a simple example might be
assigning passengers only to a row and letting them choose their column,
or hiding money under one seat to encourage speedy boarding.

Overall, we believe the strengths inherent in our approach overcome many of
the weaknesses and allow us to make meaningful recommendations and leverage
our analysis nevertheless. Here we present our model strengths:
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e Our multilayered approach to the problem allowed us to produce key in-
sights as we attacked it with differing degrees of detail and differing as-
sumptions.

e Our flexible simulation model can be extended to test new algorithms and
situations with minimal changes. This can be used to address several of
the weaknesses listed above.

e We provide the airline industry with a relative ranking of factors affecting
boarding speed, not just a ranked list of algorithms they should employ.
This allows our report to be more useful: an airline can still make im-
provements if they don’t want to switch their process, or if they already
have a fast process.

13.1 Summary

We began our analysis of the aircraft boarding problem by mathematically in-
vestigating several key subproblems. Through this analysis we were able to gain
detailed insight that enabled us to propose a new boarding procedure. The key
observations that we made were

e The aisle is the main bottleneck of the system, especially near the entrance,
and it is necessary to “pipeline” passengers in order to maintain a high
throughput.

e The rate of passengers entering the plane is also critical as it determines
the maximum rate at which passengers can proceed down the aisle and be
seated.

e Sending in passengers with closely-situated seating assignments in short
time intervals results in numerous interferences and increases boarding
time. Instead, passengers should be sent in by zones that distribute seats
over several rows.

We next developed a detailed simulation engine to perform simulations. Our
simulations allowed us to quantify the differences between the various boarding
algorithms as well as the impact of environmental changes on simulated boarding
times. From our simulations we were able to confirm the above insights and
show empirically that boarding schedules that followed these rules performed
better in terms of both speed and reliability. In conclusion we offer the following
recommendations to airlines to improve their boarding time, turnaround time,
and ultimately their bottom line:

e Do everything possible to ensure that passengers enter the plane as quickly
as possible.

e Do everything possible to facilitate, encourage, or require that passengers
spend as little time in the aisle as possible.
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e Switch from Back to Front to another boarding algorithm.

Thank you for flying with us and Samuel L. Jackson!
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