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1 Introduction

In our paper, we construct several models to examine the effect of different
overbooking policies on airline revenue and costs in light of the current state
of the industry. During the past several months, airlines have experienced
a decrease in their flight volume, an increase in security on their premises,
heightened passenger fear, and billions of dollars worth of financial loss. We
refer to these four influences as the “complicating factors.” After presenting
some basic terms and our most important assumptions, we begin our analysis
with a discussion of the qualitative effects the aforementioned factors are
likely to have on airline revenue and auxillary factors that affect it.

The costs that airlines have to pay to passengers who are bumped off of
flights for which they have already purchased tickets affect revenue substan-
tially. At the same time, airlines stand to increase their revenue by filling
their flights closer to capacity. When passengers get bumped as a result of
overbooking, they can either choose or refuse to negotiate with the airlines
for compensation. These choices pose different two diffent types of costs to
the airline.

In the case where ticketholders are bumped involuntarily, the Depart-
ment of Transportation specifies a set of guidelines for mandatory compen-
sation. The compensation formulas given, however, depend nonlinearly on
both the ticket price and the time a bumped passenger must wait to catch
the next flight to his or her destination. Using a plausible value for average
ticket price based on our research, we present a model for the waiting time
distribution that allows us to estimate the average cost per involuntarily
bumped passenger.

In the case where ticketholders are willing to be bumped voluntarily, the
interaction between the airline and ticketholders takes the form of a least
bid auction in which winners receive compensation for forgoing their flights.
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We discuss the precedent for this type of auction and introduce a highly
similar continuous auction model. This continuous auction model allows
us to calculate a novel formula for the expected amount of compensation
required by a given group of voluntarily bumped passengers.

All bumped passengers are either bumped voluntarily or involuntarily,
and our analysis of the expected costs involved in these two instances, along
with research into the relative frequency of these alternatives, leads us to a
good understanding of the costs associated with bumped passengers.

To more fully develop an understanding for the relationship between the
complicating factors mentioned above and the optimal overbooking policy,
we developed two very different but complimentary models: The One Plane
Model and The Interactive Simulation Model.

The One Plane Model models expected revenue as a function of over-
booking policy in the one plane case. Using this framework, we examined the
relationship between the optimal (revenue maximizing) overbooking strat-
egy and the arrival probablity of ticketholders. We then extended the one
plane model to consider multiple fare classes. This analysis revealed, among
other things, that the inclusion of multiple fare classes does not significantly
alter optimal overbooking policy. Drawing on our preliminary analysis of
the complicating factors, we assessed the likely changes that would occur
in arrival probability of ticketholders and demonstrated the possible effects
these would have on optimal booking.

The Interactive Simulation Model is our most comprehensive model,
which takes into account, among other things, our estimates for average
compensation costs. In particular, this model simulates the interaction be-
tween 10 major US airlines with a market base of 10,000 people, factoring in
passenger arrival probability, flight frequency, compensation for voluntary
bumping, compensation for involuntary bumping, and the behavior of rivals
in terms of altered overbooking policy. We use this model to estimate opti-
mal booking policy in a competitive environment, which has the significant
advantage of factoring in passenger switching between airlines. We ran a
large simulation of our Interactive Model with what we surmised, based on
our previous analysis, were likely parameter values before and after Septem-
ber 11 (which exacerbated the problems of the airlines through all of the
complicating factors). Both simulations contained many trials and gave ro-
bust results that corroborated with our conclusions based on the One Plane
Model and the Involuntary and Voluntary Compensation Cost Models.

Overall, we conclude that airlines should keep their current levels of
overbooking or decrease them.
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2 Terms

e Ticketholders: people who have purchased a ticket and whose indi-
vidual ticket revenue the airline has already received.

e Contenders: ticketholders who arrive at the terminal in time to board
the flight for which they have purchased a ticket.

e Boarded Passengers: contenders who are able to board their flight
successfully.

e Bumped Passengers: contenders who are not given seating on their
flight.

e Voluntarily Bumped Passengers: bumped passengers who opt out
of their seating in exchange for some sort of compensation (usually
monetary) by the airline.

e Involuntarily Bumped Passengers: bumped passengers who are
denied boarding against their will.

e Compensation Costs: the total value of money and other incentives
given to bumped passengers by airlines.

e Flight Capacity: the total number of seats on a given flight.

e Overbooking: the practice of selling a number of tickets for a flight
that is greater than the flight capacity.

e Waiting Time: the time a bumped passenger would have to wait to
catch the next flight to his or her destination.

e Load Factor: the ratio of the number of seats filled to the capacity.

3 Assumptions and Hypotheses

e Flights are domestic, direct, and one-way.

e The waiting time between flights equals the amount of time until the
scheduled departure time of the next available flight to a given desti-
nation.

e The ticket price is $140 [ATA website, www.air-transport.org], except
when we consider multiple fares in Section 6 (777).

Page 3 of 77



Team 180

e The ticket price is independent of the time at which the ticket is
bought.

e Pre-September 11, the average probability of a ticketholder actually
checking in for his flight (and thus becoming a contender) was 85%
[Smith et. al, 9].

e The pre-September 11 average load factor was 72% [Bureau of Trans-
portation Statistics wesite, www.bts.gov].

4 Preliminary Discussion of the Complicating Fac-
tors

Each of our models attempts to take into account the current situation
facing airlines. We will refer collectively to the four issues mentioned in the
problem statement as the “complicating factors.” Individually, they will be
referred to as

e The Traffic Factor
There are, on average, fewer flights by airlines between any given lo-
cations throughout the day and night.

e The Security Factor
Security in and around airports has been heightened in the wake of
September 11th.

e The Fear Factor
Passengers are more wary of the dangers of air travel, such as possible
terrorist attacks, plane crashes, and security breaches at airports.

e The Financial Loss Factor
Airlines have lost billions of dollars in revenue during the past sev-
eral months due to decreased demand for air travel, increased security
costs, and increased industry risks.

Before presenting our models and the modifications we have made to handle
effects due to these factors, we begin with a preliminary analysis of the
implications of each.
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The Traffic Factor

Because there are fewer flights between any two locations on average, it is
likely that—all other things being equal- the demand for any given flight
will increase. In keeping with this trend, flights are likely to be fuller than
before, and the average waiting time between flights to a given destination
is likely to increase. Because the average waiting time between flights is
likely to increase, it is reasonble to expect that when bumped, passengers
will demand a higher level of compensation for their troubles.

In the case of passengers who choose to accept some sort of compensa-
tion for being bumped, the average requested price for acquiescing is likely to
be higher. For involuntarily bumped passengers, the Department of Trans-
portation specifies guidelines for compensation that depend on ticket price
and the amount of time the passenger must wait for the next available flight.
These fees are also likely to be higher, for two reasons. First, assuming the
supply of flights falls more than the decrease in demand for flights to all des-
tinations, the price of tickets is likely to rise. Second, the increase in average
waiting time in likely to make involuntary compensation more costly for the
airlines. We analyze the cases of voluntarily and involuntarily bumped pas-
sengers in detail using auction models, the structure of DOT regulations,
and a model of the waiting time distribution.

In light of the traffic factor effects just mentioned, it is possible that
of the contenders for an overbooked flight, fewer will voluntarily give up
their seats. If true, this would imply an increase in the cost of involuntary
compensation.

The Security Factor

The increase in the level of security in and around airports will likely lead
to an increase in the number of ticketholders who arrive at the airport but,
due to security delays, are unable to arrive at their departure gates in time.
This effect will lead to a decrease in the probability p that an individual
ticketholder will show up for his or her flight. We address the implications
of this fact in our discussion of the One Plane Model and the Interactive
Simulation Model.

Additionally, successful implementation of security measures may lead
to an improvement in the public perception of the airline industry and an
increase in the demand for air travel.
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The Fear Factor

The fear factor works, in part, to offset the effects of the security factor.
On one hand, increased fear of flying leads to a decrease in the demand
for air travel and a decrease in the market size. If fewer people decide to
fly, then security delays may not be as serious. On the other hand, if a
higher percentage of ticketholders are flying for reasons of necessity, then
the probability that a ticketholder will become a contender may increase
because of a decrease in cancellations and no-shows.

In terms of its effect on the behavior of bumped passengers, the fear
factor implies that, because a higher portion of passengers are flying out
of necessity, fewer will agree to be bumped voluntarily at any price. Thus,
the percentage of involuntarily bumped passengers may increase. Along
with this, the average level of compensation required by voluntarily bumped
passengers will probably increase.

The Financial Loss Factor

Because companies may be seeking to increase short-term profits in the face
of recent losses, it is possible that some airlines may decide to implement
more aggressive overbooking policies. Should such a situation occur, it might
induce an overbooking war between airlines if increased overbooking leads
to higher revenue from planes being filled closer to capacity. Other have
also suggested this idea [Suzuki, 148]. Airlines who had not implemented
these policies would have a short term incentive to follow suit to match
their competitors. The likely increase in the number of bumped passen-
gers, of course, would lead to a rise in compensation costs that would offset
the increased revenue. If airlines uniformly decide to implement aggressive
overbooking policies, the net result would probably hurt most or all of the
airlines through higher compensation costs.

If airlines are less myopic, they will also take into account the effect that
their public image has on demand for air travel. In particular, decreasing the
number of bumped passengers would help improve their image and might
spur demand, which would bolster their future revenue stream. In practice,
it is important for individual airlines to assess the relative importance of
these effects when setting their overbooking policy.
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5 One Plane Model

Introduction and Motivation

We first consider the optimal overbooking strategy for a single flight, inde-
pendent of all other flights. This is a substantial simplification of the main
overbooking problem. The primary reason we build the One Plane model
is as a first step towards the much larger Interactive Simulation Model we
present later. That being said, the One Plane Model is itself useful for several
reasons. First, it serves to develop intuition about the general overbooking
problem. Second, it considers a nontrivial case which is still very tractable,
and thus allows for a great deal of analysis. Finally, we will see later that its
results are a good approximation to the results of the full-fledged Interaction
Simulation Model.

Development

We model the expected revenue as a function of the overbooking strategy
for the single plane, and find the revenue-maximizing strategy.

We assume that the plane has capacity of C identical seats. This as-
sumption is relaxed later, when we consider a multi-fare model. We assume
also that a ticket costs T' = $140 independent of the time at which it is
bought. Finally, we assume that the airline’s overbooking strategy is to sell
up to B tickets, if possible (B > C).

We analyze this strategy in the case where the flight sells out completely
(i.e. all B tickets are sold). Analyzing this case is one of the most direct
ways to gauge the effectiveness of the company’s overbooking strategy.

We model the number of contenders for the flight with a binomial dis-
tribution, where a ticketholder becomes a contender with probablity p. Ac-
cording to Smith et al., the average p value for flights from the ten leading
US carriers is p = 0.85. Note however, that the p value for a particular flight
depends on a host of factors - for example, flight time, length, destination,
and whether it is a holiday season. Because of the potential p variation from
flight to flight, we carry out our analysis for a range of possible p values.
However, a real airline company has, or could easily obtain, an empirical
value of p for any particular flight (e.g. the noon New York to Boston flight
in August). An airline can use its empirically determined p in the models
we are about to develop.

With our binomial model, the probablity that there are exactly ¢ con-
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tenders among the B ticket-holders is

<f)pi(1 -p)"

Next, we model compensation costs. We assume that each bumped
passenger is paid a constant compensation cost of (k+1)T = 140(k+1), for
some positive constant k. Translated into everyday terms, this means that a
bumped passenger receives compensation equal to his ticket price and then
some additional compensation k71" > 0. The assumption that compensation
cost is constant for each bumped passenger is relaxed later, when we consider
involuntary versus voluntary bumping.

We define the compensation cost function F'(i,C) to be the total com-
pensation the airline must pay if there are exactly ¢ contenders for a flight
with seating capacity C:

| 0 i<C
F(”C):{ k+ TG —C) i>C

With the results we have so far, we now calculate expected revenue, R,
as a function of the overbooking strategy B:

B
rp) = 3 (7 )pa-nmr - puo) (1)

=1

B
1408 — 140(k + 1) > <?>pi(1 —-p)PTi—-C) (2

i=C+1

Thus, for given C, p, and k, it is possible to determine the overbooking
strategy B,y which maximizes R(B). We do this with a computer program
for various C, p, and k. On the other hand, it is possible to produce a close
analytic approximation to this data. Our program now is first to derive this
approximation, and then to interpret the computer-obtained data.

We begin by noting that the revenue for a bumped passenger, T — (k +
1)T = —kT, has magnitude k times that for a boarded passenger, T'. Thus,
it was hypothesized that the optimal overbooking strategy should be chosen
such that the distribution of contenders is in some sense “balanced,” with
1/(k+1) of its area corresponding to bumped passengers and the remaining
k/(k + 1) corresponding to boarded passengers.

We approximate the binomial distribution of contenders with a standard
normal distribution so that we may make use of the function
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T
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which we may write since ® is one-to-one. Clearing denominators and solv-
ing the resulting quadratic in v B gives

)7

/ —
opt —

(—@—%il) p(l—p)+ \/<I>—1(ki+1)2p(1 —p)+ 4p0>2 )
2p

as an our analytic approximation to B,,. Note that for k = 1, this gives
B(/)pt = O/p

Results and Interpretation

Utilizing a simple computer program, we solved Equation (2) for the optimal
overbooking strategy B for certain k, C, and p. See the appendix for full
results and code. In Table 3 we present the results for plane capacity C' =
150, as compared with the formula (3).

P k Bopt B(/)pt
0.80 | 1| 189 | 188
0.85 | 1| 177 | 176
0.90 | 1| 167 | 167
0.80 | 2 | 186 | 185
0.85 |2 | 175 | 174
0.90 | 2 | 165 | 165
0.80 | 3| 184 | 183
0.85 |3 | 173 | 173
0.90 | 3 | 164 | 164

Table 1: Optimal overbooking strategy versus the mathematical approxi-

mation By, for selected arrival probabilities and compensation constants

Note that in real life & will almost never exceed 3. That is, bumped
passengers will almost never be compensated by k-+1 = 4 times their original
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ticket price. A more likely compensation cost (c.f. our dicussion in Section
7) corresponds to k = 1 or 2. Note also that, as mentioned earlier, the
average p for all US carriers is about p = 0.85. These realistic values of p
and k are considered in Table 1, and for them, formula (3) yields suggested
overbooking rates very close to, though somewhat more conservative than
the true, computer-determined optimal values. Thus this formula may be
considered as a reasonable approximation to the true Bp;.

We now analyze the computer-generated data for the optimal overbook-
ing strategy in further detail. Note that for a given flight, C' and T are
obviously known, and that, as explained earlier, the airline should be able
to obtain very good approximations to p and k empirically. Thus, an airline
can take our computer program, insert its data for C, T', p, and k, and ob-
tain the optimal overbooking strategy B,,:. Figure 1 plots expected revenue
R(B) versus overbooking strategy B according to Equation (2) for C' = 150,
k=1,p=0.85 and T = 140.

At the optimal overbooking strategy of B = 177, the airline can ex-
pect to make revenue R(177) = $24,200, which is more than 15% in excess
of the expected revenue R(150) = $21,000 resulting from a policy of no
over-booking whatsoever. This shows the obvious advantages to airlines of
overbooking.

More importantly, however, operating at a less-than-optimal overbook-
ing strategy can have serious consequences for an airline’s revenue. For
example, American Airlines has an annual revenue of approximately $20
billion [AMR Corp. website, www.amrcorp.com]. A quick calculation using
our model shows that an overbooking policy B outside the range of [173, 183]
implies an expected loss of more than one billion dollars over a 5-year period
from the expected revenue at B,y = 177. This shows the financial impact
of choosing optimal or near-optimal overbooking strategies as opposed to
less optimal ones.

Limitations of the Basic One Plane Model

The single-plane model developed so far is admittedly somewhat simplis-
tic. Its most obvious limitation is failing to account for bumped passengers’
general dissatisfaction and propensity to switch airlines. Also, the model as-
sumes a simple constant-cost compensation function for bumped passengers.
Along similar lines, the model ignores the distinction between voluntary and
involuntary bumping. Additionally, the basic model assumes that all tickets
are identical - that is, everyone flies coach. Also, the model assumes that
all B tickets the airline is willing to sell are actually sold, which is not the
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Revenue vs. Tickets Sold
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Figure 1: Revenue R versus overbooking strategy B for C' = 150, k = 1,
p=0.85, and T = $140

case for every flight.

Even so, the model developed thus far does successfully analyze some
of the most important variables in the overbooking problem - revenue as
a function of overbooking strategy when the plane capacity, the probablity
that ticket-holders become contenders, and the compensation cost function
vary. Later, we develop a much more complete model which fully incorpo-
rates many of the variables the basic model ignores.

The Complicating Factors

First though, we utilize the basic model to make preliminary predictions
for the optimal overbooking strategy in light of market changes due to the
complicating factors post-September 11. Later we will use the Interactive
Simulation Model to make much more extensive predictions.
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Of the four complicating factors, only two are directly relevant to this
model: the security factor and the fear factor. According to our analysis in
the preliminary discussion section, the primary effect of the security factor
is to decrease the probability p of a ticketholder reaching the gate on time
and becoming a contender. On the other hand, the primary effect of the fear
factor is that a greater proportion of those who fly do so out of necessity.
Since such passengers are more likely to arrive for their flights than more
casual flyers, the fear factor tends to increase p.

Figure 2 plots the optimal overbooking strategy By, versus p (for fixed
k =1 and C' = 150) as produced by our model.

Optimal Ticket Sales vs. Show-up Probability

180 1

B_optimal 170+

160 1

150 1

0.8 0.85 0.9 0.95 1
Probability (p)

Figure 2: Optimal overbooking strategy versus arrival probability p

It is difficult for us to assess the precise change in p resulting from the
security and fear factors. However, airlines can determine this empirically
with relatively little difficulty by gathering statistics on their own flights.
Then they can use our graph or computer program to determine their new
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optimal overbooking strategy according to the One Plane Model.

Conclusion

The One Plane Model provides a definitive answer for the revenue-
maximizing overbooking strategy in certain scenarios. In particular, it pro-
duces the value B,y for the maximum number of tickets the airline should
sell for a particular flight. The model can obtain this answer under varying
conditions of plane size C', arrival probability p, and compensation cost con-
stant k. For example, under similar-to-life conditions of p = 0.85 and k = 1,
the Model suggests selling up to 177 tickets for a 150-seat plane in order to
maximize revenue. Additionally, we produced a formula which furnishes a
good approximation to the true computer-generated Byp;.

The Model is useful because it allows for a great deal of reasonably accu-
rate analysis in an important subcase of the general overbooking problem.
However, the Model does not address situations involving multiple flights or
multiple airlines. The Interactive Simulation Model which we present later
does consider these factors.

6 One Plane Model: Multi-Fare Extension

Introduction and Motivation

Most airlines sell tickets in different fare classes, which are most commonly
first class and coach. In this section, we extend the basic One Plane Model,
which considered a flight with only one fare class, to account for mutiple
fare classes. One important goal of this section is to assess the importance
of including multiple fare classes in the Interactive Simulation Model which
we build later.

Development

For simplicity, we consider a two-fare system, with first class and coach
tickets for a single plane. The plane has C] first class seats and Cs coach
seats. We assume that a first class ticket costs 77 = $280 and that a coach
ticket costs Tp = $140. We consider an overbooking strategy of selling up
to Bj first class tickets and up to Bs coach tickets, where the two types of
sales are made independently of one another.

Similar to before, we assume that a first class ticketholder becomes a first
class contender with probability p; and that a coach ticketholder becomes a
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coach contender with probability ps. We use two independent binomial dis-
tributions as our model. First class ticketholders are more likely to become
contenders than coach passengers since they have made a larger monetary
investment in their tickets. That is, p1 > po.

Thus, the probability that there are exactly ¢ first class contenders is

By —i
( z'1>p1(1 —r)”

and the probablity that there are exactly j coach contenders is
B\ W
< J >p%(1 —pa)P .

We model compensation costs as constant per bumped passenger but
dependent on fare class, with (k1 + 1)7 as compensation for a bumped first
class passenger and (ke + 1)T5 for a bumped coach passenger, for some posi-
tive k1 and k2. Next, we define the compensation cost function F(i, j, C1, Cs)
to be the total compensation cost the airline pays if there are ¢ first class
and j coach contenders for a plane with C; first class and Cy coach seats:

0 i <Ch, j <0y
Ti(ky +1)(i — Cy) 1> Ch, j <0y
maX{Tg(kQ + 1)((] — CQ) — (Z — 01)),0} 1 < Ch, j> Cy
Ti(k1+1)(i —C1) + Ta(ke +1)(j —C2) i>C4,j>Co

F(i,7,C,C2) =

The justification for the third case is that an excess of coach contenders
is allowed to spill over into any available first class seats. Note on the other
hand that excess first class contenders cannot be seated in any available
coach seats; this is reflected in the second case.

We can now model expected revenue, R, as a function of the overbooking
strategy (B, B2).

B1 Bs
R(Bl,BQ) = ZZ <Bl> <B.2>pi1(1 _pl)B1fip]2'(1 _p2)Bgfj .
(B1T1 + BoTy — F(i,3,C1,C9))

Results and Interpretation

For fixed Cj, T;, pi, and k; (i = 1,2), we can find (By opt, B2,opt) for which
R(By, B2) is maximal by adapting the computer program used to solve the

Page 14 of 77



Team 180

one-fare case. Note that for a given flight, the C; and T; are obviously
known, and moreover that the airline can obtain values of the p; and k;
empirically (c.f. the discussion in section 5.3).

For example, for a plane with C'; = 20 first class seats, Co = 130 coach
seats, ticket costs of 77 = $280 and 75 = $140, and compensation constants
k1 = ko = 1, we obtain the optimal overbooking strategies listed in Table 2.

p1 P2 | Biopt | B2,opt
0.85 | 0.80 23 165
0.90 | 0.80 22 165
0.95 | 0.80 20 166
0.85 | 0.85 23 155
0.90 | 0.85 22 155
0.95 | 0.85 20 155
0.90 | 0.90 22 146
0.95 | 0.90 21 145

Table 2: Two-fare optimal overbooking strategies for selected arrival prob-
abilities

The optimal strategy involves relatively little overbooking of first class
passengers. This is a reasonable result since there is a much higher compen-
sation cost for bumping first class passengers versus bumping coach passen-
gers.

How Important is Modeling Multiple Fare Classes?

We note that, for constant po, the total number of overbooked passengers
Bi opt + Ba opt in the optimal strategy is not perturbed much by the specific
value of p;. This fact is shown in the Table 3. It compares the total number
of overbooked passengers Bi oy + B2 opt in the optimal two-fare strategy
for arrival probabilities (p1,p2) with the number of overbooked passengers
B,y in the optimal one-fare strategy for arrival probability p = p>. That is,
the arrival probability for the one-fare case is set equal to the coach arrival
probability for the corresponding two-fare case.

Table 3 clearly shows that By oyt + B2 opt is equal to or very nearly equal
to Bopt in all cases. The upshot is that the effect of multiple fare classes on
the optimal overbooking strategy is not very significant. As a result, when
we construct our more general model later, we do not take into account
multiple fares.
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b1 D2 Bl,opt + B2,opt Bopt for p = po
0.85 | 0.80 188 189
0.90 | 0.80 187 189
0.95 | 0.80 186 189
0.85 | 0.85 178 177
0.90 | 0.85 177 177
0.95 | 0.85 175 177
0.90 | 0.90 168 167
0.95 | 0.90 166 167

Table 3: Total number overbooked in optimal two-fare versus one-fare strate-
gies

Conclusion

The Extended One Plane Model successfully extends the basic One Plane
Model to account for multiple fare classes. The results of the Extended
Model are very reasonable; it suggests relatively little overbooking of first-
class passengers and much more extensive overbooking in coach. Finally,
based on the results of the Extended One Plane Model, specifically Table
4, we decide not to model multiple fare classes later, in the Interactive
Simulation Model.

7 Analysis of Compensation Costs

In this section, we analyze the cost to airlines of compensating bumped
passengers. There are many schemes for dealing with passengers who are
in danger of being bumped from a flight for which that have purchased
a ticket. The key element that seperates different schemes is the degree of
choice involved for the passenger. In the event that a passenger is completely
unwilling to relinquish the right to his or her seat on an overbooked flight,
the airline may have to forcefully suspend the use of the passenger’s ticket.
In such events, the passenger has little choice in the amount of compensation
he or she is entitled to receive, but guidelines for handling this situation have
been established by the Department of Transportation.

On the other hand, a passeger may agree to compromise with the airline
in the hope of extracting a price for his or her troubles. This way of deal-
ing with being bumped involves a great deal more choice than the former
scenario, and often can lead to a favorable compromise. To accomplish this,
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airlines often hold auctions for contenders in which the lowest bids are first
to be bought off of a flight.

In this section, we divide our analysis of bumping costs into two parts.
First, we construct a model for involuntary bumping costs based on DOT
regulations, which takes into account the waiting time distribution for
flights. After this, we discuss auction methods for voluntary bumping and
derive novel results for expected compensation cost for a continuous auction
that matches actual ticket auctions fairly well.

Our purpose in analyzing both the voluntary and involuntary aspects of
bumping—via regulation schemes and auctions—is to build useful and accu-
rate models of the costs of bumping passengers. We use results from both
compensation cost models in our Interactive Simulation Model to help pro-
duce informative data on the effect of the complicating factors on optimal
bumping policy.

Involuntary Bumping: DOT Regulations

The Department of Transportation (DOT) requires each airline to give all
passengers who are bumped involuntarily a written statement describing
their rights and explaining how the airline decides who gets on an overbooked
flight and who does not [DOT Website, www.dot.gov]. Those travellers who
do not get to fly are usually entitled to an “on-the-spot” payment of denied
boarding compensation. The amount depends on the price of their ticket
and the length of the delay in the following manner:

e Passengers who are bumped involuntarily for whom the airline ar-
ranges substitute transportation that is scheduled to get to their final
destination (including later connections) within one hour of their orig-
inal scheduled arrival time receive no compensation.

e If the airline arranges substitute transportation that is scheduled to
arrive at the destination between one and two hours after the original
arrival time, the airline must pay bumped passengers an amount equal
to their one-way fare, with a $200 maximum.

e [f the substitute transportation is scheduled to get to the destination
more than two hours later, or if the airline does not make any substi-
tute travel arrangements for the bumped passenger, the airline must
pay an amount equal to the smaller of 200% of the fare price and $400.

e Bumped passengers always get to keep their tickets and use them on

Page 17 of 77



Team 180

another flight. If they choose to make their own arrangements, they
are always entitled to an “involuntary refund” for their original ticket.

These conditions apply only to domestic flights, and do not apply to
planes that hold 60 or fewer passengers. There are a few other minor ex-
ceptions, but they are not important for our purposes. By aggregating the
above information, we find that the function representing the compensation
cost for an involuntarily bumped passenger is

0 fo<T <1
O(T,F) = { min (2F,F +200) if1<T <2
min (3F, F +400) if2<T

where T is waiting time and F' is the fare price. As stated before, we
assume that all flights to a given location are direct and have the same flight
durations. Thus, the waiting time between flights equals the difference in
departure times, and the waiting time 7" is understood to be the time until
the next flight to a given destination departs. In formulating the above
equation, we assume that involuntary passengers always ask for a refund of
their fare.

Involuntary Bumping: The Waiting Time Model and Ex-
pected Cost

In order to use the compensation cost function above to determine the av-
erage compensation (per involuntarily bumped passenger), we would need
to know the joint distribution of fare prices and waiting times. Because this
information would be extremely difficult to obtain with full accuracy for a
particular airline during a given day or month, we opt instead to make a
couple of practical compromises:

1. First, we begin by restricting our attention to determing the expected
compensation cost for the average ticket price of $140. This figure
was obtained from Air-Transport data for the year 2000 [www.air-
transport.org].

2. Second, we specify a workable model for the distribution of waiting
times that allows us to calculate this cost directly.

Justification
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Our model for the distribution of waiting times will be the exponential
distribution. There are three primary reasons to recommend the use of this
model:

1. The exponential distribution often arises, in practice, as being the
distribution of the amount of time until some specific event occurs
[Ross, 217].

2. After looking up the flight schedules for several major airlines on the
internet and observing the distribution of flight times between several
large cities, the exponential distribution seemed to provide a tolerably
good fit.

3. If the waiting times between events are distributed according to an
exponential distribution with parameter A, the number of events that
occur within one time unit follows a Poisson process with parameter
A. Plane arrivals could be represented by such a process. The Poisson
process has the property that the sum of two Poisson processes with
parameters A1 and Ao, respectively, is a Poisson process with parame-
ter A1 + Ao. This property coincides more closely with what we might
expect from the distribution of plane arrivals than, say, a normal dis-
tribution, and further evidence is lent by the fact that the distributions
of plane arrivals on different days tend to be highly similar.

The Exponential Model
To state the exponential model formally, let T' be a random variable
representing waiting time between flights such that

Prob(T <t)=1—e .

By the properties of the exponential distribution, we know that E(T) =
7 = 1/A, where 7 is the mean waiting time for the next available flight.
In reality, 7 is a function of many factors, including the time of year and
the attractiveness of the destination. In particular, the amount of security
delays being experienced by the airport system (the security factor) and the
fact that, at the present time, the volume of flights has on average decreased
(the traffic factor) both work to increase T above previous levels.

Ezpected Cost

With this framework in place, we can compute the expected cost of
compensating an involuntarily bumped passenger.
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Proposition 7.1. Assuming that wait time T has an exponential distri-
bution with parameter X\, and that compensation cost is a function of fare
price and wait time given by C(F,T), the expected compensation cost to an
mvoluntarily bumped passenger who has purchased a ticket of price F = P
18

min(2P, P + 200)[e™* — e~ + min(3P, P + 400)[e ™).

Proof. An exponential random variable with parameter A has a probability
density function equal to Ae~**. Following from the definition of conditional
expectation and the definition of C'(F,t), we have

E[C(F,t)|JF=P] = /0 h e MC(P,t)dt

1
= / e M(0)dt
0
2

- / Ae M min(2P, P 4 200)dt
1

+ / e M min(3P, P 4 400)dt.
2

Evaluating the above integrals in ¢ yields the desired result. O

Having arrived at this result, we have a basis to estimate the average
compensation cost per involuntarily booked passenger.

Estimating T

The only task remaining is to estimate the average waiting time 7. Un-
fortunately, we were not able to locate any waiting time statistics that would
indicate a plausible value for 7. However, in the absence of such data, we
conducted several searches of online booking sites for flights between major
cities. By our informal calculations, a reasonable daytime value for 7 is
approximately 2.6 hours. This calculation omits the time between the last
flight of the day and the first flight of the next day to a particular destina-
tion. If we include these night-next-day waiting times in our calculations,
we obtain the value 7 &~ 4.8. In particular, this value for 7 corresponds to
the frequency of 5 flights per 24 hour period, which is fairly typical. Using
the smaller, strictly daytime value 7 = 2.6 hours, we obtain an expected
compensation cost of:

E[C(F,t)|F = 140] = $255
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Expected Compensation vs. Average Waiting Time
(F=$140)
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E[C(F,Tau)]
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Figure 3: Expected Involuntary Compensation Cost vs. Average Waiting
Time (F = $140)

This is the value for involuntary compensation cost that we use as an in-
put into our Interactive Simulation Model. Figure ?? displays the expected
compensation cost for several values of average waiting time. Our estimate
is at odds with another source in the literature, which quoted an average
compensation amount of $50 in 1997 dollars [Alstrup et al., 1986]. To illus-
trate the extent to which our estimates differ, assume that $50 is an accurate
figure; holding the average ticket price constant at $140, our expected com-
pensation cost model implies that the average waiting time would have to
be approximately 7 = 33 minutes. This waiting time obviously does not
reflect reality.

Evaluation and Commentary: Cost Implications

One possible conclusion is that our model does not provide the best fit
for the waiting time distribution. This is entirely possible, although our
informal examination of actual departure time data seemed to indicate that
it was a decent fit, and our other two reasons for using this distribution
carry some weight as well. Nevertheless, more work needs to be done to
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gain a full understanding of the waiting time distribution.

Another possible conclusion we might draw from this discrepancy is that
involuntary bumping regulations were changed or not enforced properly 15
years ago when Alstrup’s paper was written. By taking current regulations
into account, our model may more closely reflect the current cost of com-
pensating passengers.

Finally, the anticipated effects of the traffic factor and the safety fac-
tor on the average wait time 7 suggests that our value of 2.6 hours may
even be an underestimate for the present or the near future. If this is true,
it is clear that the cost of compensating involuntarily bumped passengers
may be higher than airlines realize, and what is more, may continue to in-
crease. To the extent that more aggressive overbooking policies are enacted
in an environment of higher waiting times between flights, the cost model
we have presented here indicates that any delays caused by the combina-
tion of higher security and fewer flights could lead directly to higher costs
via the implementation of the DOT compensation policy. With all of this
said, involuntarily bumped passengers comprise a minority of all bumped
passengers, even though the cost of handling them may be higher. In the
next section, we turn to an examination of voluntary bumping costs and of
possible mechanisms to deal with passengers who are willing to stand by for
a price.

Voluntary Bumping: The Auction Method

The difficulties arising from bumping unwilling passengers are hard to over-
look. The loss of customer goodwill and the inevitable decline in market
share is further exacerbated by legal difficulties and the possibility of law-
suits. In 1968, J.L. Simon proposed a solution to these problems based on an
auction. Each ticketed passenger contending for a spot on the plane would
submit a sealed envelope containing the smallest sum of money for which
he would give up his spot on this flight, and wait until the next available
one. If there were not seats for all the contenders, the airline could then
compensate the passengers who required the least money, and require that
they give up their tickets. Simon argued this would be better for passengers,
since they would never get bumped without suitable compensation, and it
would also be better for airlines since they could safely raise their overbook-
ing level much higher than they would otherwise be able to do. After Ralph
Nader successfully sued Allegheny Airlines for bumping him, variants on
this scheme have gradually become standard throughout the industry.
There are two reasonable ways to attempt an auction.
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1. The first, suggested by Simon, is to force every contender to choose a
priori a price for which they would give up their ticket. The airline
would then be able to arrange all bumpings immediately.

2. The second, which is actually practiced by most airlines, is to announce
possible compensation prices in discrete time intervals. Customers
could then accept any offer they wished to.

The first possibility is attractive because it runs instantly, and it al-
lows airlines to compensate each customer the absolute minimal amount of
money. The second possibility, on the other hand, can cause a delay lead-
ing to customer dissatisfaction, and airlines will always pay slightly more
than the minimal compensation to each bumped passenger (because only
a finite number of compensations are being offered). On the other hand,
an auction of the second type can be started well before a flight departs
and still have enough passengers present to obtain good results. Also, if
intervals are increased gradually enough, the difference in costs is negligible.
Thus, these methods should generate similar results, and for simplicity, we
will concentrate on the second one, although with continuous compensation
offerings.

Voluntary Bumping: Continuous Time Auction Results

We now give an in-depth analysis of the results from an auction with con-
tinuously increasing compensation. In the literature, it has been common to
assume that if m passengers are given compensation through an auction, the
total compensation cost for the airline should be linear in m, although some
authors, such as Smith et al. (1992), recognize that this function should be
non-linear and convex, but do not analyze it further. In fact, it is possible
to say a great deal more with only a few basic assumptions. Indeed, suppose

e n ticketholders check in for a flight with capacity C', where n > C
(thus, there are n contenders for C' seats).

e Each contender has some minimal compensation price for which he
will be willing to give up his ticket. Call this his limit price.

e An airline can always rebook a ticketholder on one of its own later
flights at 0 cost (i.e., it does not have to pay for a ticket on a rival
airline).
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In an ideal auction, the airline will offer successively higher compensation
prices, and whenever this exceeds a contender’s limit price, he will give up
his ticket voluntarily. To analyze this, we first suppose we have ticketholders
(I'y,Ty,...Ty,). For convenience, order these in such a way that I';’s limit
price is less than I';’s limit price if and only if ¢ < j. Define:

D(z) to be the probability that a randomly selected ticketholder will give
up his ticket for a price of x.

Y,, to be the amount of compensation the airline must pay to I';,, to make
him give up his ticket.

X, to be the total amount of compensation the airline must pay in order
to have m contenders give up their tickets.

Note that since we assume I';’s limit price is less than I';’s limit price if
and only if i < j, X, = >_.", Y;. Therefore, in order to determine E[X,,],
we need only determine E[Y;] for i < m. To do this, we need the following
result:

Proposition 7.2.

m—1 o . o
E[Y,,] = ; <Z>/0 (D(a:)) <1—D(a:)) dz

The proof of this is lengthy, and not immediately relevant, so it has been
placed in the appendix. Very little can be done beyond this point without
further knowledge about the nature of D(z). There is not much recent data
on this, but when airlines were first considering moving to an auction-based
system in 1978, K.V. Nagarajan polled airline passengers on their limit
price. Although he performed little analysis, we found that the cumulative
distribution function of this limit price fit very closely with exponential
curves of the form 1 — e~ for a fixed A (see Figure 4).

Although the precise figures found by Nagarajan are almost certainly
out-dated, this strongly justifies the assumption that D(z) = 1 — e~4% for
some A, chosen independently of x. After making this assumption, we can
in fact, compute E[X,,] exactly. The following proposition does precisely
that: (see the appendix for the proof)

Proposition 7.3. If D(z) = 1 — e~4% for some constant, A, then

1 1 1 1 1
E[Xm]:A(m_<n_m)(n+n—1+n—2+'”+n—m+1>>
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Figure 4: Polled distribution of ticketholder limit price, with best fit graphs
1—e%9467 for the 2-hour wait and 1—e%0175% for the 6-hour wait [Nagarajan,

113]

Using the approximation % + % + ...+ % ~ Inn, we reduce this to

E[Xy] ~ % (m - (n—m)In(-2-)). In doing so, we have taken a rather
complicated scenario and simplified the expected airline cost to a closed form
expression. This will prove invaluable when we construct our final model in

the next section.
It remains only to consider the value of A. Unfortunately, there is no

reason to believe this is constant across all scenarios. For example, con-
tenders will certainly accept a smaller compensation for their tickets if the
next flight is arriving soon. Moreover, the exact values generated by Nagara-
jan’s results are not very meaningful due to inflation and to the fact that
people will usually imagine themselves to be more flexible in a hypothetical
poll question than they would be in real life. This is certainly an area where
more research is necessary.

For the purpose of this study, however, we will assume A to be constant
over all situations, and we will estimate that on a flight with capacity C' =
150 and only a small number of overbooked passengers, I'y will have a limit

price of $100. Thus, we have % . ﬁ ~ $100, so A ~ 15%00.

In conclusion, we have shown that in an idealized auction with an expo-
nential demand function (as suggested by Nagarajan’s results), the expected
amount of compensation required to bump m out of n ticketholders is ap-
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proximately

$ n
15,300 <m_ (n—m)ln (n—m)>

Summary

A great deal of time and experience has suggested that auctioning, forced
bumping, and combinations thereof, are the most viable strategies for airline
companies. Indeed, if a passenger is to bumped involuntarily, there is no
reason to pay him much more than is absolutely necessary, since he will
probably be furious regardless. Similarly, if a passenger is to voluntarily
give up his ticket, the auction model will encourage him to do so at a price
very close to his limit. In both scenarios, there is also a great deal of room
for haggling, but without a great deal more data than is available to the
public, that is very difficult to model. Since no other plausible alternatives
have been suggested in the literature on this subject, it seems that these
two methods of auctioning and forced bumps are truly the best available for
airlines.

In this section, we have thus successfully modeled the direct compensa-
tion cost of both options. Indeed, we estimated that if m out of n contenders
are bought off through an auction, the expected cost to the airline will be:

$ n
15,(1)00 (m_ (n—m)ln <n—m>>

On the other hand, as argued by Simon, these customers will probably be
satisifed, and their business will probably not be lost. The expected cost to
an airline of forcefully bumping m out of n contenders will be:

$255 - m

Of course, a customer who is bumped forcefully will almost certainly be
very upset, and there is a very good chance that he will try to switch to a
competitor. In any case, the analysis we have done here will prove extremely
important when we construct our final model in the next section.
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8 Effects of Overbooking Policy on Airline Market
Share: The Interactive Simulation Model

Introduction

Even in an over-simplified one-plane scenario, we were unable to solve the
overbooking problem without computer assistance. When we add competi-
tion and the effects of different compensation schemes into our model, pure
mathematical analysis becomes completely intractable. In order to confront
this problem, we turn to a computer simulation of the airline industry and
its customers.

Constructing the Model

Introduction

We will focus on the ten largest US airlines, using recent statistics to
determine their flight frequency and market share. Flights will be modeled
as being identical in all respects except for market interest. The market will
be simulated as a group of initially 10,000 independent people, each loyal
to one airline. They will buy tickets to flights offered by their airline with
a fixed probability and they will meet reservations they have made with a
fixed probability. Each member of the market will independently choose to
stay with a company or relocate based on his treatment in each flight. To
begin with, we will only consider the market prior to the events of September
11.

It is in the nature of simulations that for each factor one models properly,
one has to add assumptions about a number of other smaller factors. This
case is no exception. Due to the complexity of our model, we have to make
a relatively large number of minor assumptions, which we now discuss:

The airline companies

Between them, the ten largest US airlines (Alaska, America West, Amer-
ican, Continental, Delta, Northwest, Southwest, Trans World, United, US
Air) account for more than 90 percent of the domestic market, so we will
focus on them. Each company will choose a number, r, specifying its over-
booking strategy. This will mean that on a flight of capacity, C, the company
will sell up to, but no more than, B = Cr tickets. See Table 4 for the data
used for each company’s flight frequency and initial market share.
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Airline Market share | Flights per year
Alaska 0.0172 29,205
America West 0.0386 50,250
American 0.1668 189,149
Continental 0.0815 111,064
Delta 0.1874 222,091
Northwest 0.0947 127,791
Southwest 0.0855 122,622
Trans World 0.0499 67,344
United 0.1492 168,899
US Air 0.1292 201,497

Table 4: 1988 - 1997 Airline Average Statistics [Suzuki, 141]

Flights

In each time period, we will assume precisely one type of flight is being
offered. The chance that a given airline will offer that flight is proportional
to the number of flights it offers per year (see Table 4). We also determine
a constant, k, indicating the world interest in this type of flight. Beyond
that, different types of flights are assumed to be identical. In particular,
each flight will have capacity C = 150 seats each sold at $140. We will
also assume that flights have only one type of fare. (See section 6.4 for a
justification of the fact that multiple fare classes will have negligible effect
upon the optimal overbooking strategy).

The market

The exact size of the market should have little effect on the result, so long
as we ensure that the average load factor is consistent with reality. Thus, we
will assume that the total market is initially made up of 10,000 independent
people, each loyal to one carrier. The relative sizes of the company market
shares will be initialized according to industry data prior to September 11
(see Table 4). We will also assume each person in the market will, on average,
fly the same number of times in a year.

Market interest in individual flights

If a company sets an upper limit of B = C'r tickets to be sold for a given
flight, there is certainly no guarantee that it will actually sell that many, as
we assumed would happen in the One Plane Model. Instead, we will assume
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here that each person in a company’s market has probability k of wanting
to buy a ticket for the flight (here, k refers to the world interest described
above). It thus remains only to determine k. We will use a normal distri-
bution, and we will fix its mean in such a way that the average load factor
on all flights is the industry average of 0.72 [BTS website, www.bts.gov/].

Single flight simulation

We used industry data from prior to September 11 to estimate that the
probability each ticketholder will check in for his flight is 0.85. If necessary,
each airline then bumps some passengers voluntarily and some involuntarily,
according to whatever strategy it is using. The immediate cost of bumpings
will be set to the values that we derived in the previous section. We estimate
that voluntarily bumped passengers will be relatively happy, and thus will
leave the airline with probability only 0.05, whereas involuntarily bumped
passengers will be furious, and will leave the airline with probability 0.8.

Market change

If a person leaves an airline, we assume he stays within the market
with probability 0.9 (or 0.95 if he was bumped voluntarily). In this case,
he simply switches to another company; otherwise, he leaves the market
altogether. Wo also assume that people trickle into the market fast enough
to compensate for the loss of people due to dissatisfication, thus allowing
the market to slowly grow.

Summary
We conclude with a quick overview of the simulation model:

e There are 10 airline carriers starting with a total of 10,000 customers

e Each time period, one flight type is available. The probability that
any given carrier will offer that flight is proportional to its real world
flight frequency.

e Each person in the company’s market decides independently whether
or not to buy a ticket for each flight.

e Each ticketholder checks in with probability 0.85.

e The airline compensates bumped passengers according to whatever
combination of voluntary and involuntary bumping it chooses.
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e Customers individually decide whether to remain with the current
airline after each flight, or whether to switch to a different airline or
out of the market altogether.

The source code for the simulation has been included in the appendix
for reference.

Simulation Results, pre-September 11

We first investigated the effect that different overbooking rates would have
on profit using our pre-September 11 model. Then, for each possible over-
booking rate that this one company could choose, we calculated its net profit
over 500 time periods (ensuring that the same random events occured re-
gardless of the strategy being tested). The strategy that maximized profit
for that time period was then determined and tabulated. This was repeated
40 times for each company.

This leaves open the question of what strategies the companies not be-
ing tested should use. To determine this, we first assumed each company
would overbook by 1.17 (as computed in the single-plane model), and then
ran the program to get a first estimate of what a good strategy might be.
Assuming that companies would tend to gravitate towards good strategies,
we then used the optimal results from that preliminary run to set the default
overbooking rates of each company in the final run. Finally, we used the
industry figure that 5% of all bumped passengers are bumped involuntarily
to set the company compensation strategies.

The results generated by the simulation are shown below in Figure 5,
and in more detail in Figure 6.

Analysis

Ideally, we might expect the optimal overbooking rate for each company
to either be constant, or perhaps to be distributed normally. Either way, for
the results of the simulation to be meaningful, it is extremely important that
the program generate similar answers each run. Looking at the histograms
shown in Figure 6, it is clear that this fails completely for Alaska. This is,
however, not unreasonable. We can check in Table 4 that Alaska has far
fewer passengers per flight than its competitors, and as a result, it rarely
fills any plane entirely. As such, its overbooking policy will have a neglible
effect on its overall profit. Thus, the simulation will almost certainly be too
coarse to generate useful data. For the other nine companies, however, the
simulation was extremely consistent.
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Ticketholders/Capacity Ratio

Airline

Figure 5: Simulation Results - The number of runs (out of 40) for which
each overbooking rate proved optimal

Airline Optimal overbooking rate over 40 runs
Alaska 1.319
America West 1.169
American 1.171
Continental 1.170
Delta 1.173
Northwest 1.174
Southwest 1.173
Trans World 1.176
United 1.168
US Air 1.165

Table 5: Compiled simulation results

Also, looking at the average results generated over all 40 runs for each
airline, we notice that the optimal overbooking rate for all companies other
than Alaska is between 1.165 and 1.176 (see Table 5), which is close to,

Page 31 of 77



Team 180

1l Policy Count

1l Policy Count

1l Policy Count

204

109

Alaska

104

11 12 .
Ticketholders/Capacity Ratio
American

[k

10

11 12 13
Ticketholders/Capacity Ratio
Delta

11 12 13
Ticketholders/Capacity Ratio

1l Policy Count
14 15

1l Policy Count
14 15

1l Policy Count
14 15

Page 32 of 77

254

204

159

109

America West

257

204

159

104

11 1.2 .
Ticketholders/Capacity Ratio
C

1.4 15

ontinental

257

204

159

10

11 1.2 .3
Ticketholders/Capacity Ratio
Northwesf

o

1.4 15

1.1

1.2 13 14 15

T\ckelholderslcapacliy Ratio



Team 180

204

1l Policy Count

109

Southwest

(

254

204

159

1l Policy Count

104

1l Policy Count

104

11 12 .
Ticketholders/Capacity Ratio
United

[k

Trans World

o

14 15 o

257

204

159

1l Policy Count

104

11 12 13
Ticketholders/Capacity Ratio

11 1.2 .
Ticketholders/Capacity Ratio
Us Air

1.4 15

[

14 15 o

11 1.2 13
Ticketholders/Capacity Ratio

1.4 15

Figure 6: Simulation Results - The number of runs (out of 40) for which
each overbooking rate proved optimal

although a little less than, our results from the One Plane model.

This

is reasonable, since the most significant improvement that this simulation
makes over the One Plane Model is the consideration of lost customers, an
effect which should slightly reduce the optimal overbooking rate. Thus, it
seems reasonable to assume that although the results for Alaska are unreli-
able, we have genuinely accurate data for the other nine carriers.
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Adjusting the Model due to September 11

We now set up another run of our Interactive Simulation Model to determine
optimal overbooking strategy for the post-September 11 state of affairs. To
do so, we estimate what effect the complicating factors will have on the
simulation parameters:

1.

Arrival Probablity p: increases from 0.85 to 0.90. The security factor
makes it difficult for passengers to arrive at their flights on time due to
long security checks. Because of the fear factor, however, a large pro-
portion of post-September 11 passengers fly only out of necessity, and
hence are much less likely to risk missing their flights. This suggests
a positive net change.

Flight Frequency: decreases by 20%. This is a direct consequence of
the traffic factor. Parker, a growth airline analyst at Raymond James,
estimates the decrease in flight frequency to be approximately 20%
[www.raymondjames.com].

Total Market Size: decreases by 15%. Total market size has almost
certainly decreased post-September 11 due to the fear factor. However,
fourth quarter data from 2001 is not yet available, so we are forced
to make an estimate. It has been our experience that flights are more
crowded now than they were, which suggests the percentage of market
size decrease has been smaller than the percentage of flight frequency
decrease. Thus, we estimate the market size has decreased by 15%.

Market Return Rate: doubles. The market size has decreased due to
the fear factor, but Parker [www.raymondjames.com| anticipates that
demand will return to pre-September 11 levels by mid-2002. Moreover,
public perception of airline safety is improving due to the security
factor. Thus, the market return rate should be substantially higher
than its pre-September 11 level.

Market Ezit Rate: decreases by 50%. As mentioned above, the market
composition is now more heavily weighted towards those who fly only
out of necessity. Such fliers are much less likely than casual fliers to
leave the market altogether after a bad bumping experience.

Percentage of Bumps which are Voluntary: decreases from 95% to 90%.
Due to the traffic factor, there are fewer flights, and hence the waiting
time between flights will increase. Moreover, since passengers are more
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likely to be flying of necessity, they will be much less interested in
giving up their ticket for financial compensation.

7. Compensation Cost of Voluntary Bumping: increases by 20%. As men-
tioned above, contenders will be less willing to give up their tickets,
and hence, will only do so if they receive a higher compensation.

8. Compensation Cost of Involuntary Bumping: increases by 20%. As
mentioned above, bumped passengers will face longer waiting times
before they can catch an alternate flight. By virtue of DOT regula-
tions, this means that involuntary compensation costs will rise.

9. Competitor Agression: increase in competitor overbooking levels from r
to r+0.02. Due to the financial loss factor, any given airline can expect
its competitors to focus more heavily on short-term profits than they
would have previously. Unless these airlines perform a very careful
analysis, they will probably assume this can be best accomplished by
choosing more aggressive overbooking stragies.

Simulation Results, post-September 11

Using the parameter changes outlined in the previous section, we ran the
simulation again to estimate the effect that the events of September 11 have
had on optimal overbooking strategies. The results are shown in Table 6.

Airline Pre-September 11 Post-September 11
optimal overbooking rate | optimal overbooking rate

Alaska 1.319 1.260
America West 1.169 1.094
American 1.171 1.094
Continental 1.170 1.096
Delta 1.173 1.095
Northwest 1.174 1.095
Southwest 1.173 1.095
Trans World 1.176 1.096
United 1.168 1.094
US Air 1.165 1.092

Table 6: Compiled simulation results
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Although we did not include it here due to space considerations, we can
construct histograms similar to those in Figure 6, and observe that once
again, the data is extremely consistent for all companies other than Alaska.
Moreover, there is again a strong correllation between the simulation results
for these parameters and the corresponding results from the One Flight
Model. This agreement reflects well on the analysis done with both.

Moreover, from Table 6, it is clear that the events of September 11 have
indeed had a significant effect on optimal overbooking rates. Indeed, for a
company the size of American Airlines, a 7% change in these rates could
easily lead to a difference in profits on the order of 1 billion dollars.

Thus, if our estimates of parameter changes due to September 11 were
reasonable, all major airlines should significantly decrease their overbooking
rates. In any case, any companies that have not seriously reevaluated their
overbooking policy to account for recent market changes should do so now,
possibly improving upon our own model by using the data they have that
we do not.

9 Conclusion

In this paper we developed several models to examine the effects of different
overbooking policies on airline revenue and costs in light of changes in the
state of the industry due to September 11. In the past several months,
airlines have experienced these four complicating factors: decreased flight
volume, increased security, heightened passenger fear, and billions of dollars
worth of financial loss. We modeled the situation both before and after
September 11 and were able to make policy suggestions based on our models.

We began by considering the single plane case of the overbooking prob-
lem with our One Plane Model. Although this model was somewhat simplis-
tic, it produced reasonable suggestions for overbooking policy. In particular,
our computer program was able to determine the optimal overbooking pol-
icy when the plane capacity, arrival probability of ticketholders, and the
compensation to bumped passengers were specified. We also used the One
Plane Model to make some prelimary predictions as to how airlines should
alter their overbooking policy in light of the recent industry changes.

The Extended One Plane Model considered the single plane case with
multiple fare classes: first-class and coach. Like the basic One Plane Model,
this model produced very reasonable suggestions for overbooking policy. We
analyzed the results of this model and determined that multiple fare classes
had little to no effect on the optimal overbooking policy. Thus, we chose
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not to consider multiple fares in our more complicated Interactive Simulation
Model.

Next, we considered alternative compensation schemes for dealing with
passengers who are bumped due to overbooking. Department of Transporta-
tion regulations require that passengers bumped involuntarily be compen-
sated according as to how long they must wait for the next available flight.
We modeled this using an exponential waiting time distribution, and found
the expected amount an airline should expect to have to pay to involuntar-
ily bumped passengers. We also extensively modeled compensation schemes
for voluntarily bumped passengers. In particular, we developed an auction
model which closely fits the real-world scheme airlines actually employ. As
for the question of the best compensation method, we conclude that it is a
combination of auctioning and forced bumps which we spelled out in detail.

The most important part of our paper was the Interactive Simulation
Model. In it, we expanded very substantially upon the One Plane Model. We
included a host of factors, including multiple flights over an extended time
period, multiple competing airlines each with different overbooking policy,
and individuals switching to competitors due to being bumped. We ran the
simulation for a large number of trials to obtain more reliable results. We
obtained optimal overbooking policy suggestions for each of the 10 largest
US carriers.

We carefully analyzed how the four complicating factors due to the
events of September 11 would change the inputs in our simulation. We then
changed these input parameters and re-ran the simulation in order to deter-
mine appropriate changes for airlines’ overbooking policies post-September
11. From the results of our simulation, we concluded that the optimal pol-
icy for airlines is to decrease their overbooking. Moreover, with certain
data that we lack but that airlines surely have, airlines can determine very
precisely what new their optimal overbooking policy should be.

We note that this problem is of great importance to airlines, since small
deviations from the optimal overbooking strategy can easily result in huge
financial losses in fairly short order, as our analysis shows. Airlines can
insert certain empirical data they have collected into our models in order to
make accurate determinations of optimal overbooking policy. In conclusion,
we recommend our models to airlines.
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10 Memorandum

Attn: Don Carty, CEO American Airlines
From: MCM Team 180
Subject: Overbooking Policy Assessment Results

We completed the preliminary assessment of overbooking policies that
you requested. There is a great deal of money at stake here, both from ticket
sales and also from compensation that must be given to bumped passengers.
Moreover, if too many passengers are bumped, then there will be a loss of
goodwill and many regular customers could be lost to rival airlines. In fact,
we found that the profit difference for American Airlines between a good
policy and a bad policy could easily be on the order of 1 billion dollars a
year.

Using a combination of mathematical models and computer simulations,
we considered a wide variety of possible strategies that could be tred to
confront this problem. We naturally considered different levels of overbook-
ing, but we also looked at different ways in which airlines could compensate
bumped passengers. In terms of the second question, we found that the
current scheme of auctioning off compensations for tickets, combined with
certain calculated forced bumpings, is still ideal, regardless of changes to the
market state.

Although we were forced to work without much recent data, we were also
able to achieve reliable and consistent results for the optimal overbooking
rate. In particular, we found that prior to September 11, American Airlines
stood to maximize profits by selling approximately 1.171 times as many
tickets as there were seats available.

We next considered how this number would likely be affected by the
current state of the market. In particular, we focused on four consequences
of the events on September 11: all airlines are offering less flights, there is
heightened security in and around airports, passengers are afraid to fly, and
the industry has already lost billions of dollars in revenue. Analyzing each
of these in turn, we found that they did indeed have a significant effect on
the market. In particular, American Airlines should lower its overbooking
rate to 1.094 tickets per available seat.

In conclusion, we found that there is indeed a tremendous need to reeval-
uate the current overbooking policy. According to our current data, we be-
lieve that the rate should be dropped significantly. It would be valuable,
however, to supplement our calculations with some of the confidential data
that American Airlines has access to, but that we do not.
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Appendix A: Proofs

Proposition 11.1. Consider the scenario presented in section 7.4. Then,

E[Y,,) = mz; (Z‘) /Ooo (D(x))m(l - D(a:))n_md:z
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Proof. Let Gy, () be the probability that precisely m contenders will give up
their tickets voluntarily for a compensation of z. Then, since the reactions
of the n contenders are all independent,

G () = <:L) (F(a:))m(l . F(x))nim

Let D,,(z) be the probability that I',, has a limit price less than = (ie.,
D, (z) is the probability that a ticketholder has a limit price less than x,
given that he has the m’th smallest limit price among all n ticketholders).
Since at least m contenders will give up their tickets voluntarily for a com-
pensation of z if and only if I';;,’s limit price is less than x, we have

_ Zzn;n <7Z> (D(x))i(l - D($))n_l
- =5 (1) (o) (1= p)

since 7, (") (D(a:))l(l —D(x))"_l - (D(x) +1 —D(x))n — 1. How-
ever, D,,(z) is, by definition, the cumulative distribution function for Y,,,
SO
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Proposition 11.2. Consider the scenario presemted in section 7.4. If
D(z) =1 — e 4% for some constant, A, then

E[Xm]:jl<m—(n—m)(1+ L +...+1)>

Proof. Letting u = D(z) = 1 — e~ 4%, we have

du
= - A —Ax
dzx ©

= A(l—u)

SO % = ﬁ. Substituting this into the result from proposition 7777, we

obtain

eyl - S (:‘) /Olum(l—u)”_m~A(11_u)du

1=0

m—1 n 1
- ( > / u™ (1 — u)"_m_ldu
B 1 0

1=

o=

Now, fol u™(1 —u)""™ lduy is a Beta function, and it is well-known that
this is equal to
illn—m—1)! 1
(n—m+i)!  (n—m)(")

m

Therefore,

ElYn] = % W.H (ZL)(ra—l)()
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Finally,
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