
7.11 Appendix: Index theory in two dimensions

The index of a closed curve Γ relative to a C1 vector field F : U → R
2 is a useful

construct for the purpose of analyzing global behavior of planar systems. In this
section, f and g will denote the components of F, and we shall analyze systems of
the form

x� = f(x, y) and y� = g(x, y). (7.110)

Recall from Section 7.1 that a Jordan curve is a simple, closed35 curve. Much of
the theory in this section relies upon a famous result regarding Jordan curves in the
plane:

Theorem 7.11.1. (Jordan Curve Theorem): Every Jordan curve Γ in the plane
separates R

2 into two disjoint, open, connected sets, both of which have Γ as their

boundary. One region is bounded and simply connected, while the other is neither
bounded nor simply connected.

The Jordan Curve Theorem seems rather intuitive for the closed curves that
spring immediately to one’s mind, like the circle or C1 deformations of it. However,

Jordan curves can be incredibly intricate creatures, making it rather difficult to prove
Theorem 7.11.1 rigorously. For sketches of complicated Jordan curves and a “mod-

ern” proof of the Jordan Curve Theorem, we refer you to the article, “The Jordan
Curve Theorem, Formally and Informally”, by T. C. Hales, American Mathematical

Monthly, Volume 114 (2007), pp. 882–894.

7.11.1 The index of a curve

Suppose that F is defined in some neighborhood of a Jordan curve Γ, and that there
are no zeros of F on Γ. The index of Γ relative to F is an integer IF(Γ) that measures

the winding of the vector field F as Γ is traversed exactly once in the counterclockwise
direction. More explicitly (see Figure 7.22), for (x, y) ∈ Γ, let

Θ(x, y) = arctan

�

g(x, y)

f(x, y)

�

(7.111)

be the angle formed by the vector F(x, y) and the positive x-axis. Since tan(φ+kπ) =
tan(φ) for any real φ and for any integer k, the inverse tangent function is multi-

valued. Often, arctan is made single-valued by defining a principal value, but this is
not the usage intended in (7.111). Rather, we choose a point (x0, y0) ∈ Γ and require

35Phrased more technically, a Jordan curve in the plane is the image of a one-to-one, continuous

map of the unit circle into the plane.
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that arctan is continuous as (x, y) varies over Γ ∼ {(x0, y0)}. For example, suppose

�

f(x, y)
g(x, y)

�

=

�

x
y

�

(7.112)

and Γ is the unit circle {x2 + y2 = 1}, and let (x0, y0) = (1/
√

2, 1/
√

2). We may
parametrize Γ by the function

γ(t) = (cos(t+ π/4), sin(t+ π/4)), 0 ≤ t < 2π.

If we define Θ(1/
√

2, 1/
√

2) as a principal value, then at any point γ(t) ∈ Γ,

Θ(γ(t)) = t+ π/4.

Note that y/x is undefined at the two points (0,±1) on Γ—i.e., at t = π/4 and 5π/4,

but arctan(y/x) is nonsingular there.

Since lim
t→2π−

Θ(t) �= Θ(0), the function Θ is not continuous on Γ. In words, the

discontinuity ΔΘ = Θ(2π−)−Θ(0+) equals the net change in the argument of F(x, y)
over one counterclockwise cycle of Γ. The index of Γ relative to F is defined in terms

of this discontinuity:

IF(Γ) =
ΔΘ

2π
. (7.113)

Thus, the index of the unit circle with respect to the vector field F(x, y) = (x, y)

equals +1.

More generally, let ΔΘ denote the net change in Θ, defined by (7.111), over one

counterclockwise cycle of a Jordan curve Γ. The index IF(Γ) is defined by (7.113).
Figure 7.22 illustrates this concept, by showing vectors F(x, y) (normalized for conve-

nience) at 12 different chronologically-labeled points during a single counterclockwise
trip around Γ. Relocating the numbered vectors so that they are all anchored at the

origin (right panel of figure) makes it easier to observe that the vectors complete two
clockwise cycles as we follow them in increasing order. Thus, in this case, ΔΘ = −4π,

and IF(Γ) = ΔΘ/(2π) = −2.

Issues of multiple-valued functions may be avoided by calculating the index of Γ

analytically as follows:

Lemma 7.11.2. Let Γ be a C1 Jordan curve contained in an open set U , and let
F : U → R

2 be a C1 vector field. Then the index of Γ relative to the vector field F is
given by

IF(Γ) =
ΔΘ

2π
=

1

2π

�

Γ

fdg − gdf

f 2 + g2
. (7.114)
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Figure 7.22: A Jordan curve Γ in a smooth vector field F(x, y). The angle Θ

formed by F(x, y) relative to the positive x-axis varies continuously as Γ is traversed.
Following the vectors 1 through 12 in increasing order, these vectors complete two
clockwise cycles during one counterclockwise cycle along Γ. Hence, ΔΘ = −4π and

the curve Γ has index −2.

Proof. Using (7.111),

ΔΘ =

�

Γ

dΘ =

�

Γ

d arctan

�

g(x, y)

f(x, y)

�

=

�

Γ

fdg − gdf

f 2 + g2
.

Remark: This Lemma is easily extended to the case in which Γ is piecewise C1.

It is illuminating to test out Lemma 7.11.2 on vector fields F associated with the

linear systems covered in Chapter 2. For instance, let’s use the lemma to recompute
the index of the unit circle relative to the vector field (7.112) considered above. Let

Γ be the unit circle parametrized by γ(t) = (cos 2πt, sin 2πt), a Jordan curve which
is traversed once in the counterclockwise direction as t increases from 0 to 1. By
Lemma 7.11.2, the index of Γ relative to this vector field is

1

2π

�

Γ

xdy − ydx

x2 + y2
=

1

2π

� 1

0

2π cos2(2πt) + 2π sin2(2πt)

cos2(2πt) + sin2(2πt)
dt = 1,

in agreement with our earlier calculation.

Reversing the direction of all vectors in a field F does not affect the index of Γ.
If Γ denotes the unit circle as in the above example, then

• If F(x, y) = (−x,−y), then IF(Γ) = 1. The origin is a global attractor for the
system (7.110).

• If F(x, y) = (−y, x), then IF(Γ) = 1 once again. The origin is stable but not
attracting, and Γ happens to correspond to a periodic orbit.
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• If F(x, y) = (−x, y), then IF(Γ) = −1. The origin is a saddle for the system

(7.110).

• If

F(x, y) =

�

α −β
β α

� �

x

y

�

=

�

αx− βy

βx+ αy

�

,

with β �= 0, then the origin is either a stable focus (if α < 0), center (if α = 0),
or an unstable focus (if α > 0) for the system (7.110). In any case, IF(Γ) = 1.

The values of IF(Γ) computed in the above example would have been the same
regardless of the radius of the circle Γ. In fact, the index would remain unchanged

even if Γ were continuously deformed into any other Jordan curve enclosing the origin.
These statements are made more precise by the following series of propositions which,

in turn, offer considerable information regarding global behavior of (7.110).

Proposition 7.11.3. Let F be a C1 vector field in the plane36 and let Γ be a piecewise

smooth Jordan curve. If there are no zeros of F on Γ or in its interior, then IF(Γ) =
0.

Proof. By Lemma 7.11.2 (see also the Remark that follows that Lemma),

IF(Γ) =
1

2π

�

Γ

fdg − gdf

f 2 + g2
=

1

2π

�

Γ

fgx − gfx

f 2 + g2
dx +

fgy − gfy

f 2 + g2
dy.

By our hypotheses, f 2 + g2 �= 0 on or inside Γ, so we may apply Green’s Theorem

to obtain

IF(Γ) =
1

2π

��

Int(Γ)

∂

∂x

�

fgy − gfy

f 2 + g2

�

− ∂

∂y

�

fgx − gfx

f 2 + g2

�

dA. (7.115)

The integrand actually reduces to 0 after the tedious process of computing the partial
derivatives.

Proposition 7.11.4. Suppose F is a C1 vector field in the plane, and that Γ1 and Γ2

are Jordan curves. If Γ1 can be continuously deformed to Γ2 without passing through

any zeros of F, then IF(Γ1) = IF(Γ2).

Proof. Referring to Lemma 7.11.2, the index varies continuously as Γ1 is continuously
deformed to Γ2. Since the index is integer-valued, the only way the index could vary

continuously is if its value remains constant, implying that Γ1 and Γ2 have the same
index.

36More generally, this Proposition holds if F : U → R
2 is C1 on an open, simply connected domain

U that contains Γ.

4



Proposition 7.11.5. If Γ happens to be the orbit of a periodic solution of x� = F(x),

then IF(Γ) = 1.

The validity of the Proposition can be argued heuristically as follows: At any
point x on Γ, the vector F(x) is tangent to the graph of Γ. Therefore, during one

counterclockwise trip around Γ, the vector F(x) must spin once counterclockwise,
so that ΔΘ = 2π and IF(Γ) = 1. Here is a technical proof, originally given by
H. Hopf37.

Proof. Suppose that Γ as described in the hypothesis of the Proposition. By trans-
lating and rotating coordinates as needed, we may arrange that Γ is contained within
the first quadrant of the xy plane and is tangent to the x-axis at some point x0 (see

Figure 7.23a). Let x(t) be the solution of x� = F(x) with initial conditions x(0) = x0.
Re-parametrize x(t) by arc length s, using the counterclockwise orientation, P as the

initial point (i.e., when s = 0), and scaling length so that s = 1 corresponds to one
complete trip around the curve. Let

T = {(s1, s2) : 0 ≤ s1 ≤ s2 ≤ 1}

denote the closed, triangular domain shown in Figure 7.23b, and define a vector field
G on T as follows. First, if (s1, s2) �= (0, 1) and 0 ≤ s1 < s2 ≤ 1, define

G(s1, s2) =
x(s2)− x(s1)

|x(s2)− x(s1)|
,

a normalized version of the vector depicted in Figure 7.23a. Next, along the diagonal
0 ≤ s1 = s2 ≤ 1, define

G(s1, s1) =
F(x(s1))

|F(x(s1))|
,

the unit tangent vector to the curve at the point x(s1). Finally, at the point (s1, s2) =

(0, 1), define

G(0, 1) = − F(x0)

|F(x0)|
.

As an exercise, we ask you to verify that G is continuous and non-zero on T . By
Proposition 7.11.3, ∂T forms a curve whose index relative to G is zero. Now ex-

amine the angular variation of G along each of the three edges of ∂T during one
counterclockwise circuit. Let Θ(s1, s2) denote the angle of G(s1, s2) relative to the

positive x-axis, and observe that Θ(0, 0) = 0 by our choice of x0. Assuming that Γ
is oriented counterclockwise, then

37Not to be confused with E. Hopf, who is associated with the bifurcation phenomena discussed in

Sections 8.7-8.8 of our text.
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Figure 7.23: Users guide to the proof of Proposition 7.11.5. (a) Parametrizing a

periodic orbit Γ by arc length s and illustrating the definition of the vector field G in
the proof. (b) The triangular domain T over which the vector field G is defined.

• Along the diagonal edge, Θ(1, 1) − Θ(0, 0) = 2πIF(Γ), recalling our earlier
remark about G representing the unit tangent vector along that edge.

• Continuing right-to-left along the top edge, Θ(0, 1) − Θ(1, 1) = −π, by con-
struction.

• Finally, moving top-to-bottom along the left edge, Θ(0, 0) − Θ(0, 1) = −π as

well.

Thus, 2πIF(Γ)− π− π = 0, from which the Proposition follows. A similar argument
holds if Γ is oriented clockwise.

Here is an immediate consequence of Proposition 7.11.5, a stronger version of

which appears later in this section:

Corollary 7.11.6. If Γ is the orbit of a periodic solution of x� = F(x), then Γ

encloses at least one equilibrium point in its interior.

Proof. Combine Propositions 7.11.3 and 7.11.5.

7.11.2 The index of an equilibrium

If x∗ is an isolated equilibrium of x� = F(x), the index IF(x∗) is defined as IF(Γ),

where Γ is any Jordan curve such that (i) x∗ is interior to Γ and (ii) there are
no other equilibria on or inside Γ. Recall our above example with the vector field

F(x, y) = (x, y), whose only zero is at the origin. If Γ is any circle centered at the
origin, then IF(Γ) = 1, and therefore we may write IF(0) = 1.
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If an isolated equilibrium x∗ is non-degenerate in the sense that 0 is not an

eigenvalue of DF(x∗), then the index of x∗ is not affected by linearizing the system.
Assuming without loss of generality that x∗ = 0, let us write F(x) = Ax + r(x),

where A = DF(0) has non-zero determinant and r(x) = o(|x|) as |x| → 0 (see
also the proof of Theorem 6.1.1). Let L(x) = Ax be the vector field defined by the

linearization of F.

Proposition 7.11.7. Under the above hypotheses, IF(0) = IL(0).

Proof. It suffices to prove that if δ > 0 is sufficiently small, then the [nonzero]

vectors F(x) and L(x) never have opposite direction at any point x on the circle
|x| = δ. (After all, this would assure that the vectors F and L could not “wind
around” a different number of times during one counterclockwise trip around this

circle.) Our proof is indirect: Suppose that F(x) and L(x) have opposite direction
at some point x0 on the circle |x| = δ. Then there exists a constant c > 0 such that

F(x0) = −cL(x0), and therefore

|r(x0)|2 = |F(x0)− L(x0)|2 = | − cL(x0)− L(x0)|2 = (1 + c)2|L(x0)|2.

Because det(A) �= 0, the linear mapping L(x) = Ax has only one zero, namely
x = 0. The mapping is also continuous, implying that

m = min
|x|=1

|L(x)|

exists and is positive. Linearity of the mapping then guarantees that the bound

|L(x)| ≥ mδ holds for each x on the circle |x| = δ.

Combining this lower bound on |L(x)| with our earlier expression for |r(x0)|,

|r(x0)|2 ≥ (1 + c)2m2δ2 > m2δ2,

and therefore
|r(x0)|

δ
≥ m > 0.

This contradicts our assumption that |r(x0)| = o(δ), because m does not depend on
δ.

The next Proposition states that the index of a non-degenerate equilibrium is −1

if the equilibrium is saddle or +1 otherwise.

Proposition 7.11.8. Under the same hypotheses that precede Proposition 7.11.7,

IF(0) = sign(detA).
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Proof. By Proposition 7.11.7, it suffices to compute the index of the origin for the

linearized vector field L(x) = Ax; we will write

A =

�

a b

c d

�

for later convenience. To this end, IL(0) = IL(Γ), where Γ is the unit circle

parametrized by x(t) = cos t, y(t) = sin t, 0 ≤ t ≤ 2π. By Lemma 7.11.2,

IL(Γ) =
1

2π

�

Γ

d arctan

�

cx(t) + dy(t)

ax(t) + by(t)

�

(7.116)

=
detA

2π

� 2π

0

1

(a cos t+ b sin t)2 + (c cos t+ d sin t)2
dt.

Rarely is it productive to attempt direct evaluation of such integrals and, for that
reason, we’ll take a different tack. The RHS of (7.116) varies continuously with

respect to a, b, c, d so long as detA = ad − bc �= 0. Moreover, since the index is
integer-valued, continuity requires that its value remain constant if a, b, c, d are varied

while preserving detA �= 0. If detA > 0 and ad > 0, then letting a→ d and b, c→ 0
preserves the sign of the determinant and facilitates computation of (7.116)—the
result is IL(Γ) = +1. If detA > 0 and ad ≤ 0 (which forces bc < 0), the sign of the

determinant is preserved if we increase ad until it becomes positive, after which the
previous case can be recycled to establish that IL(Γ) = +1. The case detA < 0 is

handled similarly and is left as an exercise.

We remark that an isolated equilibrium still has an index, even if the equilib-
rium is degenerate. Suppose that F is a smooth vector field with an isolated, non-

degenerate zero at the origin, and let G be the vector field obtained by multiplying
both components of F by (x2 + y2). Then it is easy to check that the origin is an

isolated, degenerate zero of G, and IF(0) = IG(0).

As an application of Proposition 7.11.8, recall the scaled Lotka-Volterra equa-

tions (1.39). There are two [non-degenerate] equilibria: the origin is a saddle and,
less transparently, (1, 1) is a center (see Exercise 3 in Chapter 1 of our book). By

the proposition, the origin has index −1 and (1, 1) has index +1. If you’re scratching
your head as to why such information might be beneficial, fear not—an important

theorem is coming at the beginning of the next subsection. One last stepping stone
remains: describing the index of a curve that encloses multiple isolated equilibria.

Proposition 7.11.9. Suppose x1,x2, . . .xn are isolated equilibria associated with a

C1 vector field F in the plane. If Γ is a Jordan curve containing these equilibria in
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its interior, then

IF(Γ) =
n

�

i=1

IF(xi).

Proof. We sketch the proof for the special case of n = 2 equilibria, from which

the general case follows immediately. Because the two equilibria are isolated and
contained on the interior of Γ, it is possible to construct two disjoint circles centered

at the equilibria and contained inside Γ (see Figure 7.24). Cut the Jordan curve Γ
into two piecewise smooth Jordan curves along the dashed lines and circles, resulting
in two piecewise smooth Jordan curves as illustrated in the figure. Let Jupper =

Γu∪Au∪ · · · ∪Eu, denote the Jordan curve in the “upper half” of the figure, and let
Jlower (defined analogously) denote the Jordan curve in the lower half of the figure.

By Proposition 7.11.3, both Jupper and Jlower have index zero because they enclose no
equilibria. The indices of Jupper and Jlower are also equal to the sum of the changes

in the angle Θ over each of the smooth arcs whose unions form those curves:

ΔΘ(Jupper) = ΔΘ(Γu) + ΔΘ(Au) + ΔΘ(Bu) + ΔΘ(Cu) + ΔΘ(Du) + ΔΘ(Eu) = 0

ΔΘ(Jlower) = ΔΘ(Γl) + ΔΘ(Al) + ΔΘ(Bl) + ΔΘ(Cl) + ΔΘ(Dl) + ΔΘ(El) = 0.

Now convince yourself of each of the following:

• ΔΘ(Γ) = ΔΘ(Jupper) + ΔΘ(Jlower);

• ΔΘ(Au) = −ΔΘ(Al) and similarly for the pairs Cu, Cl and Eu, El;

• Combining the preceding facts, the change in Θ during one trip around Γ must
equal the negative of the change in Θ around the circular arcs formed by Bu,

Bl, Du, and Dl. The circles formed by Bu, Bl and by Du, Dl are oriented
clockwise and, as we complete one clockwise trip around each circle, ΔΘ/2π
measures the negative of the index of the equilibrium enclosed by the circle.

• Piecing everything together, the index of Γ must be the sum of the indices of
the two equilibria.

7.11.3 Main Result

It’s finally time to weave the above formalism into a rather powerful theorem that
helps characterize two-dimensional flows, a generalization of Corollary 7.11.6:

Theorem 7.11.10. Consider a planar system x� = F(x) such that (i) F : U → R
2

is C1 on the open, simply connected set U and (ii) any equilibria are isolated. If

γ(t) is a periodic solution of the system, then the interior of its orbit Γ must contain
equilibria whose indices sum to 1.

9



AU

BU

CU

DU
EU

A L C L

D L

ΓU

E L

B L

Γ L

Γ

Figure 7.24: Illustrating the proof of Proposition 7.11.9. Cut the Jordan curve Γ

along the dashed lines to get the (U)pper and (L)ower pieces.

Proof. Combine Propositions 7.11.5 and 7.11.9.

Theorem 7.11.10 has a host of consequences. A periodic orbit Γ must enclose at
least one equilibrium and, if the interior of Γ contains exactly one equilibrium, it

cannot be a saddle (index −1). A periodic orbit cannot enclose an even number of
hyperbolic equilibria.

Let us apply Theorem 7.11.10 to prove non-existence of periodic orbits in the

system
x� = αx− γxy, y� = βy − γxy, (7.117)

where α, β, and γ are positive parameters. The system (7.117) can be interpreted

as a crude model for population of two species in competition for the same food
source. If species x is absent, then y grows exponentially with growth constant β,

and if y = 0 then x grows exponentially with growth constant α. Both species are
penalized equally by the term γxy, which is proportional to the product of the two

populations. There are four nullclines in the phase plane: x = 0, x = β/γ, y = 0,
and y = α/γ, and two equilibria, the origin and (x∗, y∗) = (β/γ, α/γ). The Jacobian
matrices associated with these equilibria are

DF(0, 0) =

�

α 0
0 β

�

, DF(x∗, y∗) =

�

0 −β
−α 0

�

.

The origin is an unstable node since both eigenvalues of DF(0, 0) are real and pos-
itive, and (x∗, y∗) is a saddle because detDF(x∗, y∗) = −αβ < 0. It follows that

IF(0, 0) = 1 and IF(x∗, y∗) = −1. If a periodic orbit (call it Γ) exists, Theo-
rem 7.11.10 implies that Γ must enclose equilibria whose indices sum to 1, and the

only way this is possible is if Γ encloses the origin but not (x∗, y∗). Certainly, such
Γ would fail to be biologically relevant since it would include points with negative x
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and y coordinates. In fact, we claim that there can be no periodic orbits even if we

allow the possibility that x < 0 or y < 0. Any trajectory Γ enclosing the origin would
cross both coordinate axes, violating the existence and uniqueness theorem because

the axes themselves form solution trajectories. It follows that (7.117) cannot have
periodic solutions.
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