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1 Introduction

This paper examines the price process assumption of the Black-Scholes equa-
tion for pricing options on an empirical and analytical level. The material
is organized into six primary sections. The first section presents several key
results in probability theory, including (most importantly) Itô’s Lemma,
which is used in the derivation of Black-Scholes. In the second section,
we derive the Black-Scholes equation and discuss its assumptions and uses.
For the sake of simplicity, we restrict our attention to the case of a Euro-
pean call option, but the analyses herein can be extended to other types of
derivatives as well. In the section following this, we examine the assump-
tion made in the Black-Scholes methodology that security prices follow a
geometric Brownian motion and discuss empirical evidence to the contrary.
Next, we present several analytically useful alternatives for the price process,
including alternative diffusions, jump processes, and a few models suggested
by the empirical literature. In this section, several processes are described
precisely but never explicitly used to obtain option pricing formulas; these
problems will hopefully be the focus of future research. The final major sec-
tion discusses the general theory of option pricing for alternative stochastic
processes and applies this theory to some of the candidate processes that
have been proposed in the literature. The last section concludes.

2 Probability Background and Ito’s Lemma

This section is meant as a refresher and an overview of concepts in proba-
bility theory that are related to several of the topics discussed in this paper.
As such, most of the results are presented very suffinctly, and the initiated
reader can skip directly to section 3. Unless otherwise stated, the material
discussed in this section is drawn from Probability by Breiman (1968).

2.1 Stochastic Processes, the Markov Property, and Diffu-
sions

Following Lawler (1995), a stochastic process is a random process evolv-
ing with time. In particular, a stochastic process is a collection of random
variables X(t) indexed by time. In this paper, time is always a subset of
[0,∞), the nonnegative real numbers. Thus, all stochastic processes consid-
ered herein are “continuous time” stochastic processes. The random variable
X(t) takes values in a set called the state space, which in this paper is usu-
ally the continuous space of prices or returns. The space of prices is the
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nonnegative real numbers, and the space of returns is the real line. A large
class of stochastic processes have the property that the change at time t
is determined by the value of the process at time t and not by the values
at times before t. Such processes are known as Markov processes (Lawler,
1995). When the transition probabilities for a Markov process do not depend
on time, we refer to the process as a time-homogeneous Markov process. All
processes considered in this paper are of this form. Throughout, we use the
term “diffusion” to denote a continous time, continuous state space, Markov
process whose sample paths are continuous. Not all the processes discussed
are diffusions, however; we also use Poisson processes, which are continuous
time, continuous state space Markov processes with discontinuous sample
paths.

2.2 Convergence in Distribution

Definition 2.1. We say that Xn converges to X in distribution, denoted
Xn

D→ X, if Fn(x) → F (x) at every point x ∈ C(F ), the set of continuity
points of F. We also write in this case Fn

D→ F.

2.3 Characteristic Functions

Definition 2.2. Given a distribution function F (x), its characteristic func-
tion φ(u) is a complex-valued function defined on <1 by

φ(u) =
∫

eiuxF (dx).

If F is the distribution function of the random variable X, then equivalently,

φ(u) = E(eiuX).

Any characteristic function φ(u) has the following properties:

(i) φ(0) = 1,
(ii) |φ(u)| ≤ 1,
(iii) φ(u) is uniformly continuous on <1,
(iv) φ(−u) = φ̄(u).

The following important theorem deals with convergence in distribution.

Theorem 2.3. (The Continuity Theorem). If Fn are distribution functions
with characteristic functions φn(u) such that

(a) limn→∞ φn(u) exists for every u
(b) limn→∞ φn(u) = φ(u) is continuous at u = 0,
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then there exists a distribution function F such that Fn
D→ F and φ(u) is

the characteristic function of F .

The next statement is an immediate consequence of this result:

Corollary 2.4. Let Fn be distribution functions with characteristic func-
tions φn. If there is a distribution function F with characteristic function φ
such that

limn→∞φn(u) = φ(u)

for every u, then
Fn

D→ F.

Every characteristic function corresponds to a unique distribution func-
tion. Sometimes it is useful to know how, given a characteristic function,
to find the corresponding distribution function. While most important facts
about characteristic functions do not depend on knowing how to perform
the following inversion, we include it nevertheless.

Theorem 2.5. Let φ(u) be the characteristic function of a distribution func-
tion F (x) such that ∫

|φ(u)|du < ∞.

Then F (x) has a bounded continuous density f(x) with respect to Lebesgue
measure given by

f(x) =
1
2π

∫
e−iuxφ(u)du.

2.4 The Normal Distribution

Definition 2.6. The normal distribution with mean µ and variance σ2,
denoted N(µ, σ), is the distribution of the random variable σX + µ, where

P (X < x) =
1√
2π

∫ x

−∞
e−t2/2dt.

The normal, or Gaussian, distribution plays a significant role of prob-
ability theory because it is the limiting distribution of suitably normalized
sums of independent, identically distributed random variables with a finite
second moment (variance). The formal statement of this fact is termed the
central limit theorem:
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Theorem 2.7. The Central Limit Theorem. Let X1, X2, . . . be independent,
identically distributed random variables with E(X1) = 0 and V ar(X1) =
σ2 < ∞. Then

X1 + · · ·+ Xn

σ
√

n

D→ N(0, 1).

2.5 Brownian Motion

As Lawler (1995) notes, Brownian motion is a stochastic process that models
random continuous motion, and is an example of a stochastic process with
both continuous time and a continuous state space. The terms “Brownian
motion” and “Wiener process” are similar, although the second is more gen-
eral. In particular, a Brownian motion is a Wiener process with a constant
variance parameter σ2. Formally, we define Brownian motion as follows.

Definition 2.8. A Brownian motion, or a Wiener process with variance
parameter σ2 and mean parameter µ, is a stochastic process X(t) taking
values in the real numbers satisfying

(i) X(0) = 0.
(ii) For any tn > tn−1 > · · · > t0 ≥ 0, the random variables Xtk −Xtk−1

,
k = 1, . . . , n are independent.

(iii) For any τ > 0 and t ≥ 0, the random variable X(t + τ)−X(t) has
a normal distribution with mean µτ and variance τσ2.

(iv) The paths are continuous, i.e., the function t 7→ Xt is a continuous
function of t.

Standard Brownain motion is a Brownian motion with σ2 = 1. We can
also speak of a Brownian motion starting at x; this is a process satisfying
conditions (i) through (iv) and the initial condition X(0) = x (Lawler,
1995). Without going into further detail, it is possible to construct Brownian
motion as the continuous limit of a random walk in discrete time and discrete
state space.

2.6 Poisson Random Variables

Definition 2.9. A random variable X taking values in {0, a, 2a, 3a, . . . } is
said to have a Poisson distribution with parameter λ ≥ 0 and jump size a if

P (X = ak) =
λk

k!
e−λ.

Page 5 of 44



S. Malone

Equivalently, X has the same distribution if its characteristic function takes
the form

φ(u) = exp [λ(eiua − 1)].

2.7 The Poisson Process

The Poisson process is the simplest of the processes with stationary, indepen-
dent increments. Brownian motion shares these properties with the Poisson
process, but unlike Brownian motion, the Poisson process is discontinuous.
We say it is the simplest such process because its sample paths are constant
except for upward jumps. In particular,

Theorem 2.10. A process X(t) with stationary, independent increments
has a version with all sample paths constant except for upward jumps of
length one if and only if there is a parameter λ ≥ 0 such that

E
(
eiuX(t)

)
= eλt(eiu−1).

By expanding, we find that X(t) has the Poisson distribution

P (X(t) = n) =
(λt)n

n!
e−λt.

2.8 Geometric Brownian Motion

Geometric Brownian motion is the stochastic process used in the Black-
Scholes methodology to model the evolution of prices in time. Following Ross
(1999), we define geometric Brownian motion as follows. Let the present
time be time 0, and let S(y) denote the price of the security at a time y
from the present. We say that the collection of prices S(y), 0 ≤ y < ∞,
follow a geometric Brownian motion with drift parameter µ and volatility
parameter σ if, for all nonnegative values of y and t, the random variable

S(t + y)
S(y)

is independent of all prices up to time y; and if, in addition,

log
(

S(t + y)
S(y)

)

is a normal random variable with mean µt and variance tσ2. That is, the
series of prices will be a geometric Brownian motion if the ratio of the price
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a time t in the future to the present price will, independent of the past
price history, have a lognormal distribution with parameters µt and tσ2.
The independence assumption is what makes geometric Brownian motion a
Markov process.

To put this more directly, we say that S(t) follows a geometric Brownian
motion if log S(t) follows a Brownian motion. In other words, geometric
Brownian motion is the exponential of Brownian motion.

If S(0) is the initial price at time 0, then it turns out that the expected
value of the price at time t depends on both the mean and variance param-
eters of the geometric Brownian motion governing the price evolution. In
particular, we have

E[S(t)] = S(0)et(µ+σ2/2).

The expected price grows exponentially at the rate µ + σ2/2.

2.9 Itô’s Lemma

As Hull (2000) remarks, the price of a stock option is a function of the
underlying stock’s price and time. Moreover, the price of any derivative
is a function of the stochastic variables underlying the derivative and time
(Hull). Itô’s Lemma, a result discovered by the mathematician K. Itô in
1951 (Hull), provides a fundamental insight into the behavior of functions
of diffusion processes.

Suppose that the value of a variable x follows an Ito process:

dx = a(x, t)dt + b(x, t)dz

where dz is a standard Brownian motion (Wiener process with µ = 0 and
σ2 = 1) and a and b are functions of x and t. The variable x has a drift rate
of a and a variance rate of b2. Itô’s lemma shows that a function, G, of x
and t follows the process

dG =
(

∂G

∂x
a +

∂G

∂t
+

1
2

∂2G

∂x2
b2

)
dt +

∂G

∂x
bdz

where dz is the same Wiener process governing the behavior of dx. The
notable feature of this result is that G also follows an Itô process. It has a
drift rate of

∂G

∂x
a +

∂G

∂t
+

1
2

∂2G

∂x2
b2

and a variance rate of (
∂G

∂x

)2

b2
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The notation used above to denote the Wiener process, dz, and the Itô
process, dx, requires clarification. The term dz denotes a normal distribution
with mean 0 and variance dt. This definition becomes precise by considering
discrete time intervals ∆t and passing to the limit. In particular, we use
the random process ∆z = ε

√
∆t based on the random variable ε, which

has mean zero and variance one. Likewise, the process dx is obtained by
considering the discrete process just described and passing to the limit as
∆t → 0.

We will use Itô’s lemma without providing a complete proof of the result,
which can be viewed as an extension of results in differential calculus to
functions of stochastic variables.

3 The Black-Scholes Equation

3.1 Background

The Black-Scholes differential equation must be satisfied by the price, f of
any derivative dependent on a non-dividend-paying stock (Hull). The main
economic principles used to formulate the differential equation, no-arbitrage
and the creation of a riskless portfolio, are simple yet powerful.

The principle of no-arbitrage holds that in a perfectly competitive, liquid
market there exist no opportunities to earn a risk-free profit. Stated another
way, any portfolio of financial instruments that is perfectly insured against
price risk must earn the risk-free interest rate, r.

In order to use the principle of no-arbitrage to value a portfolio, we must
first construct a portfolio that is insured against price-risk. The risk that a
stock price will change over time will be formulated rigorously in a moment,
but the general idea is that at any time, t, the proportion of each instrument
in the portfolio must be set so that the net effect of a small change in the
price of the underlying asset on the value of the portfolio is zero.

If this condition is satisfied, then it follows that the value of the portfolio
at the end of a “short” period of time is known with certainty. Using the
principle of no-arbitrage allows us to value a risk-less portfolio over this
“short” time interval by setting the percentage return of the portfolio equal
to the risk-free interest rate.

3.2 Methodology and Assumptions

The way the no-arbitrage principle is used in the derivation of the Black-
Scholes differential equation depends on a couple of assumptions about the
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market. First, it must be possible to buy or sell any finite quantity of the
underlying security at any time. This is what is meant by “perfect liquidity.”
Second, security trading is continuous in time. In all cases, the full use of the
proceeds from buying or short selling securities is permitted. Formally, the
set of assumptions used to derive the Black-Scholes equation are as follows
(Hull):

Assumptions

1. The stock price follows a geometric Brownian motion with µ and σ
constant.

2. The short selling of securities with the full use of proceeds is permitted.

3. There are no transactions costs or taxes.

4. All securities are perfectly divisible.

5. There are no dividends during the life of the derivative.

6. There are no riskless arbitrage opportunities (the no-arbitrage princi-
ple).

7. Security trading is continuous.

8. The risk-free rate of interest, r, is constant and the same for all matu-
rities.

Any of these assumptions may be relaxed in order to improve upon the
original Black-Scholes model, but some assumptions are more essential than
others. While it is relatively easy to incorporate the payment of dividends
on the stock into the option pricing methodology, for instance, relaxing the
no-arbitrage assumption would be very difficult. This paper is concerned
primarily with relaxing the first assumption, and to this end, we present
several alternatives to geometric Brownian motion for modeling the price
process, as well as several stochastic models for the variance σ2. First, we
present a derivation of the original Black-Scholes equation for a European
call option.

3.3 Derivation

The European Call Option: Definition and Discussion
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A European call option with strike price K and maturity T gives the
buyer the right, but not the obligation, to purchase the underlying stock for
$K on the maturity date (or expiry) T. We will use f(S, t) to denote the
price of the option when the underlying stock is trading at price S at time
t.

Thus, in the case of the European call option, f(S, T ) = max(S −K, 0).
This boundary condition follows from the fact that, at time t = T, the call
option is worth the difference between the stock price and the strike price if
the stock price is greater. If the strike price is greater, it is worth nothing
at all. In the former instance, the option holder would simply exercise the
option to purchase the stock for $K and simultaneously sell the stock in the
market for $S for a net profit of $(S −K). This fact will be instrumental in
obtaining a closed form solution for the price f of the option as a function
of the stock price and time.

The Price Process
Having specified the nature of the derivative contract and determined its

boundary condition at time T, the next step is to construct a portfolio con-
sisting of a certain proportion of shares and options that is instantaneously
riskless. In order to do this, we must first specify a stochastic process for
the stock price. In their landmark paper, Black and Scholes assumed that
the stock price follows a geometric Brownian motion:

dS = µSdt + σSdz (1)

This can be rewritten as

dS/S = µdt + σdz (2)

which illustrates that the instantaneous distribution of returns, dS/S, follows
a Brownian motion with drift µ and variance σ2. One attractive feature of
geometric Brownian motion is that the stock price S never falls below 0,
which accords with the limited liability feature of equity.

It is possible, using Itô’s lemma, to consider more general diffusion pro-
cesses and even some processes with jumps, but we leave that discussion for
later.

The Option Price Diffusion
For now, using the assumption that the stock price follows a geometric

Brownian motion, and letting f(S, t) denote the price of the option, we
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invoke Itô’s lemma to conclude that the option must follow the diffusion

df =
(

∂f

∂S
µS +

∂f

∂t
+

1
2

∂2f

∂S2
σ2S2

)
dt +

∂f

∂S
σSdz (3)

The discrete versions of equations 1 and 3 are

∆S = µS∆t + σS∆z (4)

and

∆f =
(

∂f

∂S
µS +

∂f

∂t
+

1
2

∂2f

∂S2
σ2S2

)
∆t +

∂f

∂S
σS∆z (5)

where ∆S and ∆f are the changes in f and S over the small time interval
∆t.

The Riskless Portfolio
To eliminate the Wiener process ∆z, we purchase a portfolio consisting

of −1 derivative contracts and ∂f
∂S shares of the underlying stock. In other

words, the holder of this portfolio is short one derivative and long an amount
∂f
∂S of shares. Define Π as the value of this portfolio. By definition,

Π = −f +
∂f

∂S
S (6)

The change ∆Π in the value of the portfolio over the time interval ∆t is
given by

∆Π = −∆f +
∂f

∂S
∆S (7)

assuming that ∂f
∂S is constant over the time period ∆t. Substituting equations

4 and 5 into equation 7 and cancelling out the Wiener term yields

∆Π =
(
−∂f

∂t
− 1

2
∂2f

∂S2
σ2S2

)
∆t (8)

Applying the No-arbitrage Assumption
If all the assumptions we have made are correct, the above equation does

not contain a stochastic term and the portfolio must be riskless during the
time interval ∆t. Therefore, according to the principle of no-arbitrage, the
portfolio’s return must be equal to the risk-free rate of interest, r. If the
return of the portfolio were greater than r, then arbitrageurs could make
a risk free profit by shorting risk-free bonds that earn return r and using
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the proceeds to buy the portfolio. If the portfolio earned a return less than
r, arbitrageurs could short the portfolio and buy risk-free bonds. The no-
arbitrage argument implies that the percentage return of the portfolio over
the time interval ∆t should equal r :

∆Π = rΠ∆t

By substituting equation 6 for the value of the portfolio and equation 7 for
the change in the portfolio into the above equation, we obtain

(
−∂f

∂t
− 1

2
∂2f

∂S2
σ2S2

)
∆t = r

(
−f +

∂f

∂S
S

)
∆t

Rearraging yields the famous Black-Scholes differential equation:

∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2S2 ∂2f

∂S2
= rf (9)

This differential equation has many solutions; obtaining the correct solution
for a given financial derivative depends on specifying the correct boundary
condition. For the European call option, we showed previously that the
correct boundary condition is f = max(S −K, 0) at time t = T.

Obtaining a Closed Form Solution
As Black and Scholes note in their original paper, there is only one for-

mula f(S, t) that satisfies the differential equation 9 subject to the boundary
condition f(S, T ) = max(S −K, 0). This formula must be the option valua-
tion formula.

To solve the differential equation 9, we make the following substitution:

f(S, t) = er(t−T )g [A(S, t), B(S, t)]

where A(S, t) = (2/σ2)(r − 1
2σ2)[ln(S/K)− (r − 1

2σ2)(t− T )]

and B(S, t) = −(2/σ2)(r − 1
2σ2)2(t− T )

With this substitution, the Black-Scholes differential equation simplifies to

∂g

∂b
=

∂2g

∂a2
(10)

and the boundary condition becomes:

g(a, 0) = K
[
ea( 1

2
σ2)/(r− 1

2
σ2) − 1

]
if a ≥ 0

= 0 if a < 0
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The differential equation 10 is the heat-transfer equation of physics, and its
solution is given by Churchill (1963, p.155). By putting the solution into
our notation and substituting the resulting function g(a, b) into equation 3.3
and simplifying, we obtain:

f(S, t) = SN(d1)−Ker(t−T )N(d2)

where d1 = ln(S/K)+(r+ 1
2
σ2)T

σ
√

T

d2 = ln(S/K)+(r− 1
2
σ2)T

σ
√

T

and N(x) stands for the cumulative probability distribution function for a
variable that is normally distributed with a mean of zero and a standard
deviation of 1. As specified previously, S is the stock price at the present
time (t = 0), K is the strike price, r is the continuously compounded risk-
free interest rate, σ is the stock price volatility, and T is the time to maturity
of the option.

3.4 Properties of the Call Option Formula

We can gain intuition about the call option formula given by the Black-
Scholes equation by considering what happens when the parameters take
extreme values. For instance, when the stock price S becomes much larger
than the strike price K, the probability that the option will be exercised
becomes very close to unity. As Hull (2000) notes, the call option becomes
very similar to a forward contract (the obligation to pay a certain price at
a certain time in the future for delivery of the stock on that date) with
delivery price K, which has price

S −Ke−rT

In fact, as S →∞ we have N(d1) → 1 and N(d2) → 1, so that the call price
f approaches the expected price S −Ke−rT . Note that if we let the strike
price K approach zero for a fixed stock price S, we obtain the same formula.
This makes sense, because these parameters appear in the formulas d1 and
d2 only in the ratio S/K.

When the volatility σ approaches zero, the stock becomes almost riskless.
In this case, we expect it to behave much like a risk-free bond, whose price
grows at the rate r. Thus, at time T, the payoff of the call option for the
(riskless) stock is

max(SerT −K, 0)
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The present discounted value of the call today is

e−rT max(SerT −K, 0) = max(S −Ke−rT ), 0

To show that the Black-Scholes formula is consistent with this prediction, we
must consider two cases. First, assume that S > Ke−rT . This inequality can
be rewritten as ln(S/K)+ rT > 0. From the equations for d1 and d2, we see
that when σ → 0, d1 → ∞ and d2 → ∞. Thus N(d1) → 1 and N(d2) → 1,
and we obtain f = S −Ke−rT in the limit. When S < Ke−rT , we find that
as σ → 0, d1 → −∞ and d2 → −∞. Thus N(d1) and N(d2) tend to zero,
and in the limit we obtain f = 0 for the call price. This confirms that when
σ tends to zero, we obtain a call price of max(S −Ke−rT , 0).

Let us now examine the case when σ → ∞. From the formulas for d1

and d2, it is easy to determine that in the limit as σ → ∞, d1 → ∞ and
d2 → −∞. This implies that N(d1) → 1 and N(d2) → 0, so in the limit we
obtain a call price of f = S. In other words, in a world of wildly uncertain
stock prices, the strike price is relatively unimportant; to acquire the right
to purchase a stock tomorrow for a strike price K, one would just as soon
pay the current stock price S.

3.5 Concluding Comment

Having presented a careful derivation of the famous Black-Scholes result and
examined the properties of the resulting formula for the price of a European
call, we turn a critical eye to one of Black-Scholes’ most basic assumptions:
the price process.

4 Relaxing the Price Process Assumption

4.1 Motivation

Geometric Brownian motion is the original model for the stock price diffusion
on which the Black-Scholes equation is based. While this model is very
good as a first approximation for price changes, it can be improved upon
substantially. In the past three decades, there have been several theoretical
and empirical papers that address this issue. Nevertheless, the price process
problem is far from solved: as Robert Almgren noted recently in the January
2002 issue of The American Mathematical Monthly, “constructing improved
models for asset price motion and for option pricing is a subject of active
research.”
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Cox and Ross (1976) pointed out 26 years earlier that the critical factor
in the original Black-Scholes analysis and in any contingent claims valua-
tion model is the precise description of the stochastic process governing the
behavior of the basic asset. In particular, it is “the characteristics of this
process that determine the exact nature of the equivalence between pack-
ages of claims” (Cox and Ross, 1976). As Merton (1973) concurs, the critical
assumptions in the Black-Scholes derivation is that trading takes place con-
tinuously in time and that the price dynamics of the stock have a continuous
sample path with probability one.

Both Cox and Ross (1976) and Merton (1976) provide a highly useful ex-
amination of the option pricing problem for alternative stochastic processes.
Other works that treat this issue from an analytical standpoint are Rubin-
stein (1983), Madan and Seneta (1990), Madan et. al (1998), and Bakshi et
al. (1997).

Generally speaking, there are two paths to take for relaxing the assump-
tion that stock prices follow a geometric Brownian motion. First, one may
specify an alternative stochastic process for the price and use arguments
similar to those used by Black and Scholes (1973) to arrive at the appropri-
ate differential equation, which may be solved using the boundary condition
given by the option. There is no guarantee, of course, that the differential
equation obtained by this procedure will allow a closed form solution. In
difficult cases, numerical procedures may be used along with techniques such
as a change of variables to generate solutions for the option price. Alter-
nately, one may use the Fokker-Planck forward equations for the risk-neutral
probability functions obtained from the price process to arrive at the appro-
priate differential equation (as in Bakshi et al., 1997). Although risk-neutral
pricing is a useful technique, a lengthy discussion of it is beyond the scope
of this paper.

The second path for relaxing the geometric Brownian motion assumption
is to specify a stochastic model for the stock price volatility, σ(S, t). This
method has been used extensively in the literature, and is powerful. A
lengthy discussion of it is beyond the scope of this paper, although some
of the descriptive empirical models mentioned in the following pages make
provisions for non-contant volatility.

Naturally, the paths of changing the price process assumption explicitly
and relaxing the assumption of constant volatility are related, and it is
possible to accomplish both at the same time. Bakshi et al. (1997) provides
a probing empirical study of practically relevant option pricing issues that
are related to a number of hybrid stochastic models for volatility and returns.

After discussing the rationale for using geometric Brownian motion in
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the first place, we review findings in the empirical literature about the ac-
tual distribution of returns. We then present several alternative models to
geometric Brownian motion that have particular theoretical and analytical
strengths. This models include alternative diffusion processes, jump pro-
cesses, and mixed processes. Technical descriptions of each of the models
mentioned in the empirical discussion are included in the latter subsection
as well. In the final section of the paper, “Pricing Options for Alternative
Stochastic Processes,” we discuss the general theory of pricing options for
alternative prices processes and apply this methodology to several of the
processes mentioned here.

4.2 Why Geometric Brownian Motion?

In section 3.3, we gave the following stochastic process for prices, which was
used to derive the Black-Scholes differential equation for options:

dS/S = µdt + σdz

This is the differential form for writing geometric Brownian motion, which
is a reasonable “first guess” to use as a model for the price process for sev-
eral reasons. First, as the above equation indicates, the percentage change
in price, or return, equals a drift term (expected return) plus a normally
distributed term. This seems more reasonable than the original Brownian
motion model for prices proposed by Bachelier (1900),

dS = µdt + σdz

which assumes that the magnitude of price variations is unrelated to the
stock price. Intuitively, we would expect the magnitude of price variation to
increase with increasing stock price, and geometric Brownian motion takes
this feature into account. Also, if the stock has no risk (σ = 0), then the
stock price will grow in time just like a risk-free bond with instantaneous
rate of return µ. Naturally, in a world of no-arbitrage, we would have µ = r
in this case. By contrast, for Brownian motion, σ = 0 implies that S = µt,
which does not accord with the growth formula for a risk-free bond. Finally,
geometric Brownian motion is a Markov process with an easily computable
law, which makes it very attractive from an analytical point of view.

Empirically, we find that geometric Brownian motion provides a much
better fit to the distribution of actual stock price changes than Brownian
motion. Also, by using geometric Brownian motion, the form we obtain
for the Black-Scholes differential equation can be transformed to the heat
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equation of physics and solved in closed form. Deriving the Black-Scholes so-
lution using risk-neutral pricing also illustrates the tractability of geometric
Brownian motion.

Nevertheless, geometric Brownian motion is not the most accurate model
that could be used for the evolution of stock prices. Other diffusion pro-
cesses besides either Brownian motion or geometric Brownian motion may
by used to model stock price evolution. More significantly, the sample paths
of stock price evolution may not be continuous, and jump processes can be
used to address this discrepancy. On an empirical level, several alterna-
tive distributions to simple geometric Brownian motion have been shown to
describe the distribution of share price changes with greater accuracy.

4.3 Empirical Evidence on the Return Distribution: An
Overview

There have been several papers investigating the statistical qualities of share
market returns. Among the most important are: Mandelbrot (1963), Fama
(1965), Press (1967), Officer (1972), Praetz (1972), Kon (1984), and Madan
and Seneta (1990). Also, there has been a recent trend in the applied physics
literature of examining the statistical distibution of prices, in particular the
tails. Plerou et al. (1999) is a typical example of such research.

Several of these papers also include new analytical models for stock price
changes that are relevant for the option pricing problem. The Madan and
Seneta (1990) paper, for instance, presents a Variance Gamma (V.G) model
and contains a section on the empirical relevance of the V.G. model for stock
market returns. The empirical research in the applied physics literature on
stock price time series has led to the proposal of a truncated Levy distri-
bution in order to reproduce the properties of stock prices on different time
scales. One of the earliest viable alternatives to the normal distribution for
the description of price changes was proposed by Mandelbrot (1963), and in
fact, the recently proposed truncated Levy distribution is closely related to
this work.

4.4 The Stable Paretian Distribution

In his 1963 paper “The Variation of Certain Speculative Prices,” Benoit
Mandelbrot pointed out that “the empirical distributions of price changes
are usually too ’peaked’ to be relative to samples from Gaussian popula-
tions.” The tails of the distributions of price changes, Mandelbrot claims,
are “so extraordinarily long that the second moments typically vary in an
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erratic fashion.” In light of these features, Mandelbrot proposed the stable
Paretian distribution as an alternative to the Gaussian. It is important to
note that Mandelbrot’s initial study examined the distribution of changes
in cotton and wool prices, rather than stocks. Nevertheless, the stable Pare-
tian distribution he proposed has been tested as a possible model for the
distribuion of stock prices.

The next major work to examine the random nature of price changes, in
particular of stocks, was Fama’s 1963 paper “The Behavior of Stock-Market
Prices.” In this piece, Fama concurs with Mandelbrot that the empirical
distributions of price changes are leptokurtic (have fat tails), and rejects the
hypothesis that price changes can be described by a normal distribution. In
particular, his results indicate that the daily changes in log price of stocks
of large mature companies follow stable Paretian distributions with charac-
teristic exponents close to 2, but nevertheless less than 2. In other words,
Fama claims, “the Mandelbrot hypothesis seems to fit the data better than
the Gaussian hypothesis.”

The other half of Fama’s study was devoted to examining the indepen-
dence of successive price changes. His conclusion, which falls unambiguously
in favor of the random walk hypothesis, is that successive price changes ap-
pear to be independent. This supports the hypothesis that the central limit
theorem should apply, after some (perhaps lengthy) time scale, to either the
price change distribution or the return distribution. However, the distri-
bution of price differences, or log price differences, might not be identical
for successive price changes. The distribution of price changes may, for in-
stance, have a volatility that is a function of the stock price–as in geometric
Brownian motion. Throughout this paper, we defer to the empirical evi-
dence of Fama and others in support of the independence of successive price
change distributions, and concentrate instead on examining the form of the
distributions.

4.5 The Compound Events Model

In 1967, Press proposed the “compound events model.” The model assumes
that log price changes follow a distribution that is a Poisson mixture of
normal distributions. Such a distribution, Press comments, is in general
skewed, leptokurtic, more peaked at its mean than the distribution of a
comparable normal distribution, and has greater probability mass in its
tails than a comparable normal distribution. The results of Mandelbrot
(1963) and Fama (1963) show that these general properties characterize the
distribution of price changes (for both commodities and stocks). However,
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as Press notes, “there is no need to conclude, on the basis of this evidence,
that the variance is infinite, but only that, because of non-zero higher order
cumulants, observations will be found further from the mean and that the
model ordinate will be higher than would be expected on the basis of normal
theory.”

Press tests his compound events model graphically on the price change
distributions of several well-known stocks as follows. First, he computes and
graphs the cumulative distribution function of actual stock price changes.
Second, he estimates the parameters of his model. Finally, he plots the
“estimated” theoretical cumulative distribution function on the same graph
as the actual c.d.f. by plugging in the estimated parameter values. The
agreement between the c.d.f.’s is not always good, as he notes, although the
fit is excellent for some stocks. Press attributes the divergence between the
theoretical and empirical distributions to a small sample size of stock data.
In general, the compound events model of Press possesses the right general
properties, but must be calibrated with greater accuracy if it is to provide
a workable model for option pricing. In contrast to the stable Paretian
distribution, it possesses the significant theoretical advantage of having a
finite second moment, which allows the use of standard statistical theory.

4.6 The Statistical Study of Officer (1972)

In 1972, five years after Press published his compound events model for stock
returns, R.R. Officer wrote a paper, “The Distribution of Stock Returns,”
that took issue with some but not all of the conclusions of Mandelbrot and
Fama. Like the previous studies, Officer found that the distribution of stock
returns is “fat-tailed” relative to a normal distribution. However, he also
observed characteristics that were inconsistent with a stable non-normal
generating process. In particular, Officer presents evidence illustrating a
tendency for longitudinal sume of daily stock returns to become “thinner-
tailed” for larger sums, but not to the extent that a normal distribution
approximates the distribution. Also, the standard deviation as a measure
of scale appears to be well-behaved.

To test the stability hypothesis for both monthly and daily return data,
Officer computes the characteristic exponent α and observes its changes over
the sample. For monthly returns, the behavior of α is somewhat inconsistent
with both the stable Paretian hypothesis, which predicts a smaller measured
α over larger time intervals, and the compound events model of Press, which
predicts an increase in the measured α to 2.0, which is characteristic of the
normal distribution. In other words, for monthly returns, α appeared to be
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approximately constant. On balance, this provides evidence that not much
is lost by assuming that the distribution of monthly returns is stable.

For daily returns, however, Officer finds a slight increase in the α param-
eter, which suggests that a “modified model with a finite second moment”
for the return distribution might be appropriate. This provides solid sup-
port for the compound events model of Press. Further support is provided
for the compound events model by the fact that, according to Officer, the
standard deviation of the daily sums of returns seems to be well-behaved.
The findings on daily returns are probably more important to the portfolio
manager, who is likely to rehedge more frequently than once a month, if not
daily. Consequently, it is the distribution of daily returns that is important
from the perspective of option pricing.

4.7 The t-disribution for Returns

One class of “fat-tailed” distributions with finite second moments and the
potential to give a better approximation to the distribution of stock returns
is the t-distribution proposed by Praetz (1972). Officer references this paper,
which was published earlier in the same year, at the end of his own work.
Although the framework provided by Praetz may be used to analyze the
distribution of individual share returns or the distribution of the returns on
stock indices, Praetz conducts his empirical work solely on stock indices.

Using data from 17 indices on the Australian stock market, Praetz con-
ducted a Chi-squared goodness of fit test for the scaled t-distribution, the
normal distribution, the compound events distribution, and the stable Pare-
tian distribution. Using a 1% leve of significance, Praetz concludes, “the
results are almost unanimous as all the indices are well-fitted by the scaled
t-distribution, whereas the other distributions are rejected in all cases except
four.” However, he continues, “even in these cases, the scaled t-distribution
has a far better fit.” For individual share prices, Praetz notes, the situa-
tion is not as hopeful due to the discrete nature of the price changes and,
in particular, to the large number of zero price changes that always seem
to occur. This difficulty cited by Praetz might be remedied by examining
data for stocks of large, frequently traded companies. In addition, with the
growth of the equities market and of data recording facilities, a much greater
volume of data is now available on price changes of individual companies.
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4.8 The Discrete Mixture of Normal Distributions

In his 1984 paper “Models of Stock Returns–A Comparison,” Stanley Kon
proposed a discrete mixture of normal distributions to explain the observed
significant kurtosis and “significant positive skewness” in the distribution
of daily rates of returns for a sample of common stock and indexes. Sta-
tionarity tests on the parameter estimates of this discrete mixture of nor-
mal distributions model, Kon claims, revealed significant differences in the
mean estimates that can explain the observed skewness and significant dif-
ferences in the variance estimates that can explain the observed kurtosis.
Kon compares the discrete mixture of normal distributions model with the
t-distribution model of Praetz, and concludes that the discrete mixture of
normal distributions model has “substantially more descriptive validity.”

4.9 The Variance Gamma Model for Stock Market Returns

Madan and Seneta (1990) propose a stochastic process called the Variance
Gamma (V.G.) model of returns. We will describe the mechanics of the
model in more detail later, but essentially, the model stipulates that the unit
period distribution is normal conditional on a variance that is distributed
as a gamma variate. Empirically, the authors claim, the V.G. model is
a good contender for describing daily stock market returns. Madan and
Seneta (1990) compare the V.G. model with the normal, the stable Paretian,
and the Press compound events model using a Chi-squared goodness-of-fit
statistic on seven class intervals for unit sample variance data on 19 stocks
quoted on the Sydney stock exchange. For 12 of the 19 stocks studied,
minimum chi-squared was attained by the V.G. model. The remaining 7
cases were best characterized by the Press compound events model for five
cases, the stable for two cases, and none for the normal distribution.

4.10 Summary of Empirical Findings

Of the models for stock returns and price changes examined in the empirical
literature, the ones that best fit the data seem to be the Variance Gamma
model of Madan and Seneta (1990) and the Discrete Mixture of Normal
Distributions model of Kon (1984). The compound events model of Press
(1967) is also a possible contender.

The evidence of slow convergence to a Gaussian behavior over large time
scales indicates that the stable Paretian distribution is probably not the
best descriptive model for price changes. Nevertheless, modifications of the
stable distribution are possible that may provide a better description of the
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slow convergence to Gaussian behavior. Mantegna and Stanley (1994) have
proposed such a process, termed the Truncated Levy Flight, which we will
examine later.

Overall, the distribution of stock returns has the following characteris-
tics, which any descriptive model should attempt to take into account: (1)
fat-tails and a peaked center relative to the normal distribution; (2) slow
convergence to Gaussian behavior for sums of daily returns expressed as log
price differences; (3) non-constant variance and mean over time.

Various subsets of the models discussed have been tested against each
other using different data sets, but no comprehensive empirical study has
been completed so far as we are aware. Ultimately, more empirical work
must be done to systematically compare the descriptive performance of the
models discussed here on returns for prominent US stocks and US stock
indices.

5 Development of Alternative Processes

In presenting candidate processes to replace geometric Brownian motion,
we do not strictly follow the order of the processes mentioned in the pre-
vious section on empirical findings. Rather, we present the processes first
that have been developed the most analytically: alternative diffusions, jump
processes, mixed jump diffusion processes, and the variance gamma model.
After these, we follow with comparatively brief expositions of the stable
Paretian distribution, the compound events model, the t-distribution, the
discrete mixture of normal distributions, and the truncated Levy flight.

5.1 Alternative Diffusion Processes

Any Wiener diffusion process may be considered as the limiting case of a
general jump process, which we will discuss momentarily. For the time
being, consider the general Wiener process

dS = µ(S, t)Sdt + σ(S, t)Sdz (11)

with drift µ(S, t) and variance σ2(S, t). The original reasoning of Black and
Scholes leads to the following differential equation, which is a generalization
of equation 9:

∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2(S, t)

∂2f

∂S2
= rf (12)
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Note that the above differential equation does not depend on µ(S, t). The
solution obtained from equation 12 does depend explicitly on the form chosen
for σ(S, t), and we address this problem explicitly in section 5.

The Constant Elasticity of Variance Model
It is useful for the time being to mention a particular class of choices

for σ(S, t), suggested originally by Cox and Ross and referred to as the
“Constant Elasticity of Variance Model” by Hull (2000). In differential
notation, the model for the stock price S is

dS = µSdt + σS1−αdz (13)

In this model, σ(S, t) = σS1−α for some α with 0 ≤ α ≤ 1. Setting α = 0
gives geometric Brownian motion.

Two other processes of note, which are discussed by Cox and Ross (1976),
are special cases of the Constant Elasticity of Variance Model:

1. Linear Price Variance Process
dS = µSdt + σ

√
Sdz

2. Constant Price Variance Process
dS = µSdt + σdz

The Linear Price Variance Process can be considered as a description of a
situation in which changes in state are small and in which the variance of
price changes increase with the stock price, but more slowly that in geometric
Brownian motion so that the variance of the rate of return decreases rather
than remaining constant (Cox and Ross, 1976). Cox and Ross go on to
note that, considered in this way, the process can certainly not be rejected
on an a priori basis, and may in many situations be preferable to geometric
Brownian motion. Unlike geometric Brownian motion, moreover, the Linear
Price Variance Process does permit S = 0, that is, bankruptcy, to occur with
positive probability.

The Constant Price Variance Process would characterize a firm whose
price changes have constant variance (independent of the stock price and
time). To impose a limited liability constraint, Cox and Ross note, we would
let the origin be an absorbing barrier, and consider the equation above as
governing the stock price only as long as this point is not reached. With this
modification, there would be a positive probability of bankruptcy during any
period.

As it turns out, both the Linear Price Variance Process and the Constant
Price Variance Process are the diffusion limits of certain jump processes. Cox
and Ross (1976) discuss these jump processes in detail.
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5.2 Jump Processes

The basic idea behind the use of jump processes to describe the movement of
stock prices is that information arrives in chunks, rather than as a continuous
stream with no short term surprises. If we let x denote the current state of
the world, then the general Markov jump process is of the form

dS = µ(x)dt + dq (14)

where the pure jump process is given by

dq =
{

k(x)− 1 with probability λ(x)dt
0 with probability 1− λ(x)dt

In the definition of the jump process, k(x) has a distribution dependent on
the current world state, x. Note that the above definition is shorthand for
a more precise formulation: in particular, in a short time interval ∆t, the
process will jump zero times with probability 1−λ(x)∆t+ o(∆t), once with
probability λ(x)∆t + o(∆t), and more than once with probability o(∆t).
Here the function o(∆t) satisfies

lim
∆t→0

o(∆t)
∆t

= 0

which ensures that o(∆t) is much smaller than ∆t for ∆t small. As in Cox
and Ross (1976), we will assume that x = S to indicate the belief that
all state information is contained in the current stock value, S. A Wiener
diffusion term, σ(x)dz, could be added to equation 5.2 to obtain a more
general form, but we refrain from doing so because the Wiener diffusion can
be arrived at by taking the limit of the jump process.

We will now describe the particular jump processes, which are are special
cases of equation 5.2, that in the limit become the Linear Price Variance
Process and the Constant Price Variance Process, respectively.

First, let the intensity λ(S) = λS and let the drift µ(S) = µS. This
encodes the assumption that the drift in the rate of return dS/S is constant
and the assumption that information tends to arrive more frequently when
the stock price is higher. Additionally, chose the distribution for the jump
in prices to be independent of price. Thus the distribution for the jump
component is given by

dq =
{

k − 1 with probability λSdt
0 with probability 1− λSdt
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so that we have the stochastic process

dS = µSdt + dq (15)

for price changes. As Cox and Ross (1976) note, equation 15 is a generaliza-
tion of a class of stochastic processes known as birth and death processes.
The local mean and variance of 15 are given by

E[dS] = (µ + λE[k − 1])Sdt

and
V ar[dS] = λE[(k − 1)2]Sdt

To construct a pure birth and death process we ignore the drift in equation
15 and let the random variable k take on two values, k+ > 1 and k− < 1 with
respective conditional probabilities π+ and π−. This gives us the stochastic
process

dS =





k+ − 1 with probability π+λSdt
k− − 1 with probability π−λSdt

0 with probability 1− λSdt

Equation 5.2 is an example of a simple birth and death process for a popula-
tion (Cox and Ross, 1976). Following Cox and Ross (1976), imagine a firm
made up of individual units whose sum value (population size) is S. If these
units are stochastically independent of each other, we can let λdt represent
the probability of an event occurring for any one unit. An event is, with
probability π+, the ’birth’ of k+−1 additional units and with probability π−

the ’death’ of 1− k− units. For the whole firm, then, equation 5.2 describes
its local movement.

By taking the limit of equation 5.2 as k+ → 1 and k− → 1 and λ →∞
in a particular manner, we obtain the Linear Price Variance Process,

dS = µSdt + σ
√

Sdz

Note that in the above equation, µ is not the same as the drift in equation
15. Instead, the µ and σ in the Linear Price Variance equation are given by

µ = λE[k − 1]

and
σ =

√
λE[(k − 1)2]

As noted in the previous section, this process does allow the stock price to
reach zero with positive probability.
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Another specialization of the general Markov jump process 5.2 can be
used to obtain the Constant Price Variance Process. To accomplish this,
suppose the firm is composed of dependent units, so that the intensity λ is
constant, and let the value increment also be constant as in the last process.
Then we have the stochastic process

dS = µSdt + dq,

with jump component

dq =





k+ − 1 with probability π+λdt
k− − 1 with probability π−λdt

0 with probability 1− λdt

Cox and Ross (1976) call this the absolute process. This is a case where value
grows endogenously at the exponential rate µ and where lump exogenous
changes to value of size k − 1 occur with intensity λ.

The local mean and variance of the absolute process are given by

E[dS] = (µS + λ[π+(k+ − 1) + π−(k− − 1)])dt

and
V ar[dS] = λ[π+(k+ − 1)2 + π−(k− − 1)2]dt

If π− = 0 then the process has limited liability, but if π− > 0 there is a
positive probability that the stock price will reach zero. To preserve limited
liability, Cox and Ross (1976) note, we would have to specify a non-negative
lower barrier for S and treat S = 0 as an absorbing boundary. Taking the
diffusion limit of the absolute process 5.2, we obtain the diffusion

dS = µSdt + σ̄dz

which is the Constant Price Variance Process. The drift µ is the same as
the drift in the absolute process, and the standard deviation σ is given by

σ =
√

λ[π+(k+ − 1)2 + π−(k− − 1)2]

There is a subtlety here: in taking the limit of the jump process to obtain
the diffusion, we do so in a way that maintains the instantaneous mean
and variance, and we set the mean of the jump process to zero so that the
resulting Wiener process dz has mean zero. As with the absolute process, the
Constant Price Variance Process has a positive probability of bankruptcy
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in any period, and to impose limited liability we would set the origin as an
absorbing boundary.

A natural question to ask at this point is, “which jump process has geo-
metric Brownian motion as its limit?” The answer is the following process,
which is similar to the processes discussed above:

dS/S = µdt + dq (16)

where the pure jump component is given by

dq =
{

k − 1 with probability λdt
0 with probability 1− λdt

In geometric Brownian motion, the variance of the price changes is propor-
tional to a constant (σ2) times the square of the stock price. We obtain this
limiting behavior because in the above process, the units of value comprising
S are completely dependent. This is reflected by the fact that the intensity
λ is independent of the stock price S. Thus when a new chunk of informa-
tion arrive, it affects each unit of the stock price equally. The dependence
of events is also characteristic of the absolute process. The difference be-
tween the jump processes, which leads to the significant difference between
the limiting diffusions, is fact that in the jump process leading to geometric
Brownian motion, the jump size is proportional to the stock price S.

To conclude, we note a useful formula by Merton (1976) for the price of
a stock that undergoes jumps. Merton considers the stochastic process with
a Wiener component as well as a jump component, written

dS/S = (µ− λk)dt + σdz + dq (17)

where the pure jump process is given by

dq =
{

Y − 1 with probability λdt
0 with probability 1− λdt

In the above equation for dS/S, µ is the instantaneous expected return on
the stock; σ2 is the instantaneous variance of the return conditional on the
Poisson event not having occured; dz is a standard Wiener process; dq and
dz are assumed to be independent; λ is the mean number of arrivals per
unit time (the intensity); k = E[Y −1] is defined as the expected percentage
change in the stock price if the Poisson event occurs; and E[] is the expec-
tation operator over the random variable Y. Note that Y − 1 is an impulse
function producing a finite jump in S to SY. The resulting sample path for
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S(t), Merton notes, will be continuous most of the time with finite jumps of
differing signs and amplitudes occuring at discrete points in time. If µ, λ, k,
and σ are constants then the random variable ratio of the stock price at time
t to the stock price at time zero (conditional on S(0) = S can be written as

S(t)/S = exp[(µ− σ2/2− λk)t + σz(t)]Y (n) (18)

where z(t) is a Gaussian random variable with a zero mean and variance
equal to t; Y (n) = 1 if n = 0; Y (n) =

∏n
j=1 Yj for n ≥ 1 where the Yj

are independently and identically distributed and n is Poisson distributed
with parameter λt. Equation 18 gives a useful picture of the dynamics of
the stock price evolution over time.

5.3 The Variance Gamma Process

One of the more recent models for stock price dynamics that has been pro-
posed is the Variance Gamma (V.G.) model (Madan and Seneta, 1990). The
V.G. model satisfies several practical and empirically relevant properties:

1. Long tailedness relative to the normal for daily returns, with returns
over longer periods approaching normality (Fama, 1965).

2. Finite moments for at least the lower powers of returns.

3. Consistency with an underlying, continuous-time stochastic process,
with independent, stationary increments, and with the distribution of
any increment belonging to the same simple family of distributions
irrespective of the length of time to which the increment corresponds
(thereby permitting sampling and analysis through time in a straight-
forward fashion).

4. Extension to multivariate processes with elliptical multivariate dis-
tributions that thereby maintain validity of the capital asset pricing
model (Owen and Rabinovitch, 1983).

We have discussed already the Brownian motion and geometric Brownian
motion models for stock price dynamics, as well as several jump processes
that can be used in conjunction with geometric Brownian motion (or any
other diffusion) or on their own. The literature on market returns contains
other models besides these and the one currently under discussion. These
models include the symmetric stable distribution proposed by Mandelbrot
(1963), the compound events model combining normally distributed jumps
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at Poisson jump times proposed by Press (1972), the t-distribution suggested
by Praetz, and the generalized Beta distribution suggested by Bookstaber
and McDonald (1987).

As Madan and Seneta (1990) discuss, Brownian motion fails property 1.
The symmetric stable fails on properties 2 and 3. The Praetz t-distribution
fails on property 3 because it is not possible to construct a stochastic process
with the property 3 and distributions of any increment being a t-distribution
irrespective of length of time interval considered since the sum of indepen-
dent t-variables is not a t-variable.

Though the compound events model of Press possesses all the four prop-
erties described above, the authors claims, the proposed V.G. model has
a further advantage in being a pure jump process of, in the main, a large
number of small jumps. In fact, Madan and Seneta (1990) show that the
V.G. model is a limit of a particular sequence of compound events models
in which the arrival rate of jumps approaches infinity, while the magnitudes
of the jumps are progressively concentrated near the origin.

The Variance Gamma model can be stated formally as follows. Let R(t)
be the return over a unit time period. That is, R(t) = S(t + 1)/S(t), where
S(t) is the stock price at time t. Suppose that ln(R(t)) is normally distributed
with mean µ and a random variance σ2V, where µ and σ2 are known con-
stants. The distribution of V is taken to be gamma, with parameters c, γ,
and density g(ν) given by

g(ν) =
cγνγ−1e−cν

Γ(γ)
, (19)

where Γ is the gamma function. If X = ln(R)−µ (dropping the t dependence
for notational convenience), then the density of X, f(x) is given by

f(x) =
∫ ∞

0

e−x2/(2σ2ν)

σ
√

2πν
g(ν)dν (20)

which has no closed-form expression. However, the characteristic function
for X, φX(u), has a closed-form expression obtained easily by conditioning
on V,

φX(u) = [1 + (σ2v/m)(u2/2)]−m2/v, (21)

where m = γ/c is the mean of the gamma density g(ν) and v = γ/c2 is its
variance. Since σ2 serves as the scale parameter for the variance, we can
take the mean of V to be m = 1.

Madan and Seneta (1990) show that the variable V can be viewed as a
random time change and this setting of m = 1 is consistent with supposing
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that the expected random time change is unity for the unit period return.
The characteristic function of the unit return distribution therefore is

φX(u) = [1 + σ2vu2/2]−1/v (22)

The continuous-time stochastic process Y (t), which is consistent with the
V.G. model as the distribution for the unit period motion Y (t + 1)− Y (t),
is given by Brownian motion applied to random time change:

Y (t) = b(G(t)), (23)

where G(t) is the process of i.i.d. gamma increments with mean τ and
variance vτ over intervals of length τ, and b(t) is an independent Brownian
motion of zero drift and variance rate σ2.

5.4 The Stable Paretian Distribution

Mandelbrot (1963) presents several properties of the Levy stable distribution
discovered by Paul Levy, and suggests this distribution as a potential model
for returns. The first noteworthy fact about the stable distributions is that
they are the general class of distributions that satisfy the relation

a1U + a2U
D= aU

where U represents a random variable, a1 and a2 represent scale factors,
and a is a function of a1 and a2. The normal distribution satisfies the above
relation, as does the well-known Cauchy distribution. The normal distri-
bution is the only stable distribution with a finite variance. The Cauchy
distribution, on the other hand, has an infinite second moment but a finite
expectation. In fact, all stable distributions with a finite expectation can
be thought of as lying on a continuum between the Cauchy distribution and
the Gaussian.

The general characteristic function for the stable distribution is given by
the following theorem:

Theorem 5.1. φ(u) = eψ(u) is the characteristic function of a stable law of
exponent α, 0 < α < 1, and 1 < α < 2 if and only if it has the form

ψ(u) = iuc− d|u|α(1 + iθ
u

|u| tan(
π

2
α)),

where c is real, d is real and positive, and θ is real with |θ| ≤ 1. For α = 1,
the form of the characteristic function is given by

ψ(u) = iuc− d|u|(1 + iθ
u

|u|
2
π

ln(|u|)),
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where c, d, and θ are as above.

The parameters c, d, and θ are unique, and have useful interpretations.
Let us use the notation X

D= Sα(σ, θ, c) to mean that X is a stable random
variable with exponent α and parameters d = σα, θ, and c. The parameter c

is a shift parameter, which can be seen from the fact that if X
D= Sα(σ, θ, c),

then X + a
D= Sα(σ, θ, c+ a). To explain the parameter σ, we write σ = d1/α

for a stable distribution with exponent α. Then σ is said to be a scale
parameter because

kX
D= Sα(|k|σ, sign(k)θ, kc) if α 6= 1

kX
D= S1(|k|σ, sign(k)θ, kc− 2

πk(ln |k|)σθ) if α = 1.

Lastly, θ is said to be a skewness paramater, because X
D= Sα(σ, θ, c) is

symmetric if and only if θ = 0 and c = 0. Moreover, X is symmetric about
c if and only if θ = 0.

Mandelbrot originally proposed the stable distribution to model log price
changes of the form

L(t, 1) = ln(S(t + 1))− ln(S(t))

for a unit time difference. His initial motivation for this choice was the
fact that, if the second moment of log price changes diverges but the first
moment is well behaved, then the density (call it p(u) for the moment) must
decrease faster than u−2 but slower than u−3. This requirement is significant
because all stable distributions follow the law of Pareto, which states that,
for a stable random variable X

P (X > q) ∼ Kq−α,

where K is a constant determined by the parameters of the distribution X.
A similar relationship holds for the lower probability tail. This relationship
is why Mandelbrot uses the term “stable Paretian” to describe Levy stable
distributions in the context of price changes. For reference, the Gaussian
corresponds to the case α = 2 and the Cauchy distribution corresponds to
the case α = 1 and β = 0. The applied physics literature refers to this
phenomenon as “power law scaling” (see, for ex., Gopikrishnan et al., 1998).
The Paretian feature of stable distributions provides a very direct basis for
empirical testing. Gopikrishnan et al. (1998), for instance, claim that the
distribution of stock price changes obeys an approximately inverse cubic law,
which is outside the Levy stable regime (0 < α < 2).
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5.5 The Compound Events Model

The compound events model of Press (1967) involves a Poisson process with
Gaussian jump sizes. To be precise, The compound events model states that

ln(S(t))− ln(S(0)) =
N(t)∑

k=1

Yk + X(t) (24)

where S(t) is a process of stationary, independent increments; S(0) is as-
sumed known; (Y1, Y2, . . . , Yk, . . . ) is a sequence of mutually independent
random variables each drawn from a normal distribution with mean θ and
variance σ2

2; N(t) is a Poisson process with parameter λt, which represents
the number of event occuring in time t; {N(t), t ≥ 0} is independent of
the Yk; and {X(t), t ≥ 0} is a Wiener process independent of N(t) and of
(Y1, Y2, . . . ), and X(t) is drawn from a normal distribution with mean 0 and
variance σ2

1t.
Let Z(t) = ln(S(t)) − ln(S(0)) and let φ(u) = E[eiuZ(t)] be the char-

acteristic function of Z(t). Then, following Press (1967), the characteristic
function is given by

lnφ(u) = iCu− tσ2
1u

2

2
+ λt[eiθu−(σ2

2u2/2) − 1]

Now, let φ∗(u) denote the characteristic function of the one-step price change
∆Z(t) = Z(t)−Z(t− 1). The characteristic function of ∆Z(t) has the form

ln φ∗(u) = −σ2
1u

2

2
+ λ[eiθu−(σ2

2u2/2) − 1]

As Press explains, the degree to which φ∗(u) departs from normality depends
on the magnitude of the coefficients of the terms in the series expansion of
the above formula that are higher than quadratic in u. Thus, for λ very
small, φ∗(u) is approximately normally distributed. For λ large, however, the
higher order terms produce a substantial departure from normality (Press,
1967). For comparison to some of the previously mentioned jump processes,
the means and variances for ∆Z(t) are

E[∆Z(t)] = θλ

and
V ar[∆Z(t)] = σ2

1 + λ(θ2 + σ2
2)

It can be shown analytically that the distribution of ∆Z(t) is leptokurtic
and that, when θ is small, the probability in the extreme tails of the distri-
bution of ∆Z(t) exceeds that of a comparably normally distributed random
variable.
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5.6 The t-distribution

Praetz (1972) begins by defining the variable of log share price changes
Y = ln(P (t+τ))−ln(P (t)). The work of Osborne (1959), which he references,
shows that prices can be interpreted as an ensemble of decisions in statistical
equilibrium, with properties resembling an ensemble of particles in statistical
mechanics. The equilibrium distribution of Y is given by

f(y) =
e−y2/(2σ2τ)

√
2πσ2τ

where σ2 is the variance of Y over unit time intervals. This distribution is
the same as that of a particle in Brownian motion, and thus the price P (t)
is shown to follow a geometric Brownian motion in this case.

The contribution of Praetz is the proposal of a distribution for the volatil-
ity parameter σ2. This is one of the earliest works that proposes a stochastic
volatility framework, although the potential significance for option pricing
was not clear at the time, since Black and Scholes has not yet published
their landmark 1973 paper.

In particular, Praetz proposed that Osborne’s formula for the p.d.f. of
Y be conditioned on the value of σ2, that a unit time interval be considered
for simplicity, and that Y should have a non-zero drift µ. This changes
Osborne’s formula to

f(y|σ2) =
e−(y−µ)2/(2σ2)

√
2πσ2

If we denote by h(y) the distribution of Y that takes into account the dis-
tribution of σ2, then h(y) can be computed by

h(y) =
∫ ∞

0
f(y|σ2)g(σ2)dσ2

with 0 ≤ σ < ∞. An acceptable solution for the distribution of σ2, Praetz
claims, is

g(σ2) = σ̄2m(m− 1)mσ−2(m+1)e−(m−1)σ̄2/σ2
/Γ(m)

Here, σ̄2 = E[σ2] and the variance of σ2 is σ̄4/(m− 2). This is known as an
inverted gamma distribution. When g(σ2) is substituted in the equation for
h(y) we obtain h(y) by integration as

h(y) = [1 + (y − µ)2/σ̄2(2m− 2)]−m−1/2Γ(m)[(2m− 2)π]1/2σ̄ (25)
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This is a t-distribution of 2m = n degrees of freedom, except for a scale
factor [n/(n− 2)]

1
2 . The distribution of (Y − µ)/σ̄, therefore, would be that

of a scaled t-distribution. Significantly, we can obtain the distribution of
P (t), the price of a share at time t, from Y = ln(P (t))− ln(P (0)). We will
not reproduce the formula here, but it can be found in Praetz (1972).

5.7 The Discrete Mixture of Normal Distributions

Kon (1984) argues that the true distribution of stock returns may be normal,
but its paramaters shift among a finite set of values. There are time-ordered
shifts associated with capital structure changes, acquisitions, stock splits, or
exogenous market events. There are also cyclical shifts between sets of pa-
rameters, as in the day of the week effect or the seasonal announcements
of firm earnings and dividends. A model specification intended to represent
the true mixture process, therefore, must be able to accomodate both cycli-
cal and structural (time-ordered) shifts in the two parameters of a normal
distribution.

The model proposed by Kon assumes that each return observation is
a drawing from one of N sets of parameter values. As long as we refer
to subsets of the data whose observations are not necessarily consecutive
in time, Kon claims, then both the structural and cyclical type parameter
shifts can be accomodated.

The generalized discrete mixture of normal distributions model views
each return observation on a stock, r(t), as having been generated by one of
the following N distinct equations:

r(t) = µ1 + U1 if t ∈ I1

r(t) = µ2 + U2 if t ∈ I2
...

...
r(t) = µN + UN if t ∈ IN

where Ii, i = 1, 2, . . . , N are the homogeneous information sets with Ti ob-
servations in each set. Thus,

∑N
t=1 Ti = T. The random variables Ui are

independent and each normally distributed with a mean of zero and vari-
ances of σ2

i , i = 1, 2, . . . , N respectively.
Define λi = Ti/T as the proportion of observations associated with

information set Ii. Then, for a given N, the parameter vector θ =
{µ1, µ2, · · · , µN , σ2

1, σ
2
2, · · · , σ2

N , λ1, λ2, · · · , λN} can be estimated by max-
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imizing the likelihood function

l(θ|r) =
T∏

t=1

[
N∑

i=1

λip(r(t)|γi)

]

where r = (r1, r2, · · · , rT )′, γi = (µi, σ
2
i ), and p(r(t)|γi) is a normal prob-

ability density function with mean µi and variance σ2
i . The details of the

estimation procedure and the generality of model specification are discussed
in the Appendix of Kon’s paper.

5.8 The Truncated Levy Flight

Somewhat recently, Mantegna and Stanley (1994) proposed a stochastic pro-
cess known as the truncated Levy flight, which exhibits a slow convergence
to Gaussian behavior. Given the empirical evidence presented up to this
point, this process clearly has applications to stock price time series. The
truncated Levy flight is constructed as follows. First, consider the sum

Zn =
n∑

i=1

Xi

of n i.i.d. random variables Xi with finite variance. The central limit theo-
rem states that as n →∞, the random variable Zn will converge to a normal
distribution. The rate of convergence to the normal distribution, however, is
not specified by the central limit theorem, and depends on the distribution
of the Xi. Suppose each of the random variables Xi shares the same distri-
bution as the random variable X. Then the Truncated Levy Flight (TLF)
is characterized by the following probability distribution for X :

T (x) =





0 if x > l
c1L(x) if − l ≤ x ≤ l
0 if x < −l

where
L(x) =

1
π

∫ ∞

0
exp(−γqα)cos(qx)dq

is the symmetrical Levy stable distribution of index α (0 < α ≤ 2) and scale
factor γ > 0, c1 is a normalizing constant, and l is the cutoff length. For
the sake of simplicity, Mantegna and Stanley (1994) set γ = 1. While their
paper presents a method for quantifying the time until the TLF converges
to Gaussian behavior, we omit this discussion here. It suffices to say that,
for appropriate values of the parameters for L(x) and the cutoff length l,
the TLF may provide a reasonable empirical fit to daily log price data.
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6 Pricing Options for Alternative Stochastic Pro-
cesses

We begin by offering a few comments on option valuation theory, and follow
with a concise exposition of option pricing results for alternative diffusion
processes, jump processes, and mixed processes. We conlude this section
with suggestions for future research on pricing options for processes adapted
from the empirical literature.

6.1 A Few Comments on Option Valuation Theory

There are several approaches to option valuation theory, but one of the
best frameworks is presented by Cox and Ross (1976), who illustrate the
structure of hedging arguments to obtain valuation formulas for options in
a fairly general setting. The procedure can be summarized as follows:

1. First, choose a particular stochastic process to govern the price move-
ment of the underlying asset, say a stock with price S.

2. Next, take an instrument whose value is dependent on S, say an op-
tion written on the stock, and assume that a sufficiently regular price
function f(S, t) exists.

3. Given that the price process and the option price function f(S, t) are
sufficiently well behaved, derive the process for the differential move-
ment in the option value, df.

4. Keep in mind that the drift and variance parameters of the option
price drift df depend on the unknown function f(S, t) and the known
values of S and t.

5. Assume the existence of short-selling and a third riskless asset that
earns an instantaneous interest rate r. Assume no-arbitrage.

6. For Poisson stock price processes, Cox and Ross assume the jump
amplitude is a non-random function at a jump to ensure tractability.

7. Use the fundamental option valuation equation given in Cox and Ross
(1976) to forumlate a differential-difference equation for the option
price.

8. Use the terms of the option to set boundary conditions for this
differential-difference equation and apply known techniques to solve
it.
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To flesh out the above framework, we need to mention a couple of things.
The random differential movement of S is written as

dS = µ(S, t)dt + σ(S, t)dx

where µ(S, t) and σ(S, t) are taken to be function of the current state of the
world, which for simplicity is supposed to be summarized by S and t alone.
The option process df can be expressed as

df = µ(f, t)dt + σ(f, t)dx

Cox and Ross use a few equations to obtain their fundamental formula for
option valuation. First, they use the existence of a hedge portfolio of the
stock, S, and the option, f(S, t), to write down the relationship

αSσ(S)(dx/S) + αfσ(f)(dx/f) = 0

where the dependence on t is dropped for simplicity. This simplifies to

αS(σ(S)/S) + αf (σ(f)/f) = 0

where αS and αf are the portfolio weights in the stock and the option,
respectively. Next, since the hedge portfolio is riskless, it must have a rate
of return

αS(µ(S)/S) + αf (µ(f)/f) = (αS + αf )r

From these two equations, we obtain the fundamental option valuation equa-
tion

(µf − rf)
σf

=
(µS − rS)

σS

which states simply that the risk premium divided by the scale of risk has to
be the same for the stock and the option. To clarify, we derived the equations
leading to the fundamental option valuation equation by seperating out the
risky and riskless components of the the essential relation

αS

(
dS

S

)
+ αf

(
df

f

)
= (αS + αf )r

which encodes the idea that the total return for the stock holdings plus the
total return from the option holdings must equal the risk-free return on a
sum equal to the dollar amount of stock holdings plus the dollar amount of
option holdings.
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We will not delve into the details here, but it can be argued that the
uniqueness of the solution f(S, t) and the independence of the hedging argu-
ment from any presumption about the risk-preferences of investors implies
that that risk-neutrality can be assumed in computing the option price func-
tion. This implies that the expected return on the stock and the option can
be set equal to the risk free interest rate r. The option price, then, would
be computed by discounting the expected value of the terminal option price
distribution. Sometimes, this procedure yields solutions more easily than
the procedure of formulating the differential-difference equation and solv-
ing it via standard transformation and series techniques. However, the two
approaches can be shown to be equivalent.

6.2 Alternative Diffusion Results

The original argument of Black-Scholes yields the following differential equa-
tion for the option price, which was stated earlier:

∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2(S, t)

∂2f

∂S2
= rf (26)

For the Linear Price Variance Process, this differential equation becomes

∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2S

∂2f

∂S2
= rf (27)

Because the density of the limiting diffusion for birth and death processes in
known (Feller, 1951), we can apply the risk-neutral technique and take the
expectation of max(S(T )−K, 0) discounted to time t to obtain the valuation
formula

f(S, t) = S
∑∞

n=0
(n+1)e−yynG(n+2,θK)

Γ[n+2]

−Ke−r(T−t)
∑∞

n=0
e−yyn+1G(n+1,θK)

Γ[n+2]

where
θ = 2r

σ2[er(T−t)−1]

y = θSe(T−t)

G(m,x) = [Γ(m)]−1
∫∞
x e−zzm−1dz

The value of an option at S = 0 is implied by the description of the process
and no additional restrictions need to be made (Cox and Ross, 1976). For
a process with an absorbing barrier at zero we will have f(0, t) = 0. Note
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again that the above formula could have been obtained by using standard
series techniques on the differential equation.

We turn to the Constant Price Variance Process. The differential equa-
tion for the option price becomes

∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2 ∂2f

∂S2
= rf (28)

Here, we impose an absorbing barrier at zero. As with the previous process,
the density of the diffusion is known, so (either by transformation to the heat
equation or by risk-neutral expectation) we obtain the valuation formula

f(S, t) = (S −Ke−r(T−t))N(y1)

+(S + Ke−r(T−t))N(y2)

+v[n(y1)− n(y2)]

where N() is the cumulative unit normal distribution function, n() is the
unit normal density function, and

v = σ
(

1−e−2r(T−t)

2r

)1/2

y1 = S−Ke−r(T−t)

v

y2 = −S−Ke−r(T−t)

v

We turn now to the valuation of options on jump processes.

6.3 Results for Jump Processes

As throughout this paper, our problem is to value a European call option
with an expiration date T on which the holder receives max(S(T ) −K, 0).
For a stock whose local return is given by equation 5.2, the option follows
the perfectly dependent process

df =
{

f(S + k − 1, t)− f(S, t) with probability λSdt
∂f
∂t dt + µ ∂f

∂S dt with probability 1− λSdt

where λ is an arbitrary function. By constructing the fundamental option
valuation equation for this option process, Cox and Ross (1976) obtain the
following difference-differential equation:

µ
∂f

∂S
+

[
µ− rS

1− k

]
f(S + k − 1, t) +

[
r[k − 1 + S]− µ

1− k

]
f(S, t) +

∂f

∂t
= 0
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where µ and k are functions of S and t. Note that the above equation is
independent of the process intensity λ. When the hedge position depends
only on the jump size, in fact, the intensity plays no role in the valuation.
The above equation can be used to examine a variety of jump processes. We
will not go into the details here, but the formula for pricing a pure birth
process without drift is contained in Cox and Ross (1976). In addition, Cox
and Ross examine the pricing problem for a pure jump process augmented
by a proportional drift term µS. Unfortunately, this problem has no closed
form solution.

6.4 Merton’s Mixed Process

Merton (1976), like Cox and Ross (1976), examines a jump process with a
drift term. Although he does not find a closed form solution either, his for-
mulation of the problem is a bit more compact and his underlying stochastic
process is stated in terms of the return dS/S rather that the price increment
dS. To review, the return process used by Merton is

dS/S = (µ− λk)dt + σdz + dq (29)

where the pure jump process is given by

dq =
{

Y − 1 with probability λdt
0 with probability 1− λdt

Using his variation of the fundamental option pricing equation, Merton ar-
rives at the following difference-differential equation for the option price
f(S, t) :

∂f

∂t
+ (r − λk)S

∂f

∂S
+

1
2
σ2S2 ∂2f

∂S2
+ λε{f(SY, t)− f(S, t)} = rf (30)

subject to the boundary conditions

f(0, t) = 0

and
f(S, T ) = max(S −K, 0)

While a complete closed form solution to equation 30 cannot be written down
without a further specification for the distribution of Y, a partial solution
that is in reasonable form for computation can be. Define W (S, t; K, r, σ2)
to be the Black-Scholes option pricing formula for the no-jump case given be
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equation 3.3. Define the random variable, Xn to have the same distribution
as the product of n i.i.d. random variables, each identically distributed to
the random variable Y, where it is understood that X0 = 1. Define εn to be
the expectation operator over the distribution of Xn. Then the solution to
equation 30 when the current stock price is S can be written as

f(S, t) =
∞∑

n=0

e−λ(T−t)λn(T − t)n

n!
[εn{W (SXne−λk(T−t), t; K, σ2, r)}]

While not a closed form solution, this equation is useful for computational
purposes provided that the density function for Y is not too complicated.

6.5 Pricing Options for Processes Suggested by the Empiri-
cal Literature

The above option pricing theory and applications, hopefully, can be adapted
to price options on price processes suggested by the empirical literature. The
mixed normal distribution of Kon (1984), for instance, might be formulated
as a stochastic process whose drift parameter and volatility are time depen-
dent and shift among a finite number of values to be determined from real
data. Once the process is specified, the Black-Scholes argument could be
adapted to price the option. We conjecture that the correct option pricing
formula in this case would be the expected value of the standard Black-
Scholes formula conditioned on the distribution of the volatility parameter.
This solution, if correct, would be computationally tractable because the
values for σ2 would be drawn from a discrete set.

Similarly, risk-neutral pricing methods might be used to compute the
appropriate price of an option on an index or stock with returns that follow
a t-distribution by discounting the expected value of the terminal option
price. Options on stocks with returns governed by a truncated Levy flight
might be treated in the same manner. Although we have omitted discussion
here, Madan et al. (1998) treats the problem of pricing options when stocks
follow a Variance Gamma process.

7 Conclusion

In this paper, we have given a careful proof of the Black-Scholes differential
equation for pricing options, followed by a discussion of alternative can-
didates for the stochastic process of returns. Of the alternative processes
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discussed in the empirical literature, the discrete mixture of normal distri-
butions model of Kon (1984) and the Variance Gamma (V.G.) model of
Madan and Seneta (1990) seem quite promising. The option pricing prob-
lem for European options has been solved for the latter process, but to our
knowledge no one has tackled the problem for the discrete mixture of nor-
mal distributions model. In addition, we are unaware of the existence of
solutions to the option pricing problem for processes based on the scaled
t-distribution for returns or the truncated Levy flight.

Besides adapting the method for pricing options to the alternative
stochastic price processes mentioned above, this paper has several other
empirical and theoretical extensions. First, no systematic study has been
completed that compares the descriptive performance of the all the models
for return distribution presented herein on a large sample of prominent US
stocks and stock indices for recent data. A paper of this sort could help
identify prominent candidates for replacing geomertic Brownian motion in
a “bottom-up” fashion.

Second, a theoretically interesting extension of this work would be the
examination of the effect of rate of convergence to Gaussian behavior (rather,
to GBM) on the properties of option prices for suitable price processes. A
variant of the truncated Levy flight might be adapted for this purpose.
This project might yield insight, on a practical level, into the option pricing
problem for stock options with long maturities, for which the convergence
of the return distribution is a possibility.

Naturally, any price process suggested for replacing geometric Brownian
motion must result in a formula that is comprehensible to option traders.
Otherwise, they will not use it. Contingent upon developing option pricing
formulas for some of the alternative processes mentioned in this paper, and
in particular for the diffusion and jump processes that already allow closed
form solutions, much work needs to be done to assess the success of these
models in practical tasks such as delta hedging and minimizing transactions
costs.

To do justice to the problem of alternative price processes, and in fleshing
out the exposition in this paper, future additions to this particular work must
include a more in-depth discussion of the theory of risk-neutral pricing, a
treatment of the mathematics of diffusion processes and partial differential
equations, and applications of the option pricing theory herein to some of
the alternative candidates mentioned. Also, computational investigation of
the properties of the option price distributions obtained from these processes
would be very enlightening, as would further empirical investigation of the
type mentioned above.
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