GENETIC OPTIMIZATION
Carl A. Pearson

Acknowledgements

Research overseen by Dr. Robert G. Brown,
Duke University Physics Department
Supported by NSF VIGRE grant number DMS-9983320
Presentation generated by IXTEX

Title picture courtesy of Richard Dawkins’ The Blind Watchmaker



1 INTRODUCTION

1.1 What are Genetic Algorithms?
1.1.1 The Archetypal Simple Genetic Algorithm (SGA)

An SGA addresses a Problem Solution Space P with n dimensions in arbitrary other spaces
(Integer, Real, Complex, Alphabet, Colors, et cetera) by generating an initial population Py
such that Py C P. The SGA has a fitness function fsuch that f : x — R, where x € F,.
The next generation P, is created by assigning each x; € P, a probability of reproduction p;
such that

py = 1)

The reproducing members are then chosen randomly according to this probability, and the
new members of P are created by randomly pairing the reproducing members and exchanging
portions of their values.

BREEDING

POPULATION

NEW POPULATION

PROBLEM SOLUTION
SPACE
in n dimensions

MEMBERSIN SPACE LOOK LIKE
X = <X g Xq oo XN /\&x’ = <X - X Yier1 - W
Y=<Yq Y1 Vo Y =<V Yio Xerr o X
BREEDING



1.1.2 General Definition of GAs

The general definition of a GA is: the ordered application of a set of genetic operators
(breeding, mutation, and various extensions of them) in accordance with a fitness function
and in an iterative fashion upon an initial population subset of a problem solution space,
where genetic operators take n-members to m-members (breeding with n parents and m
offspring) in the problem space or take a member to another member in the space (mutation).
Alternately, one could think of a GA a function operating on a fitness function, a problem
space, and a number of iterations which evaluates to the best member (according to the
fitness function) in the problem space reached in the number of iterations given. Essentially,
a GA is an algorithm that given a problem solution space, generates a initial population
randomly, then successively produces new populations from samples of the previous one
based on the fitness of those being sampled. Like the SGA, fitness plays a strong role in
determining each successive generation, but not necessarily by flooding the population with
the strong.

1.2 What are some problems GA’s solve well?
1.2.1 General Problem Types

Generally speaking, GAs solve most problems equally well, so it is more informative to
ask what problems GAs solve better than other algorithms. Essentially, GAs maintain
the ability to sift problem spaces no matter what degree of complexity is associated with
those spaces, provided they have the adequate memory resources available to represent the
population. Furthermore, when convergence occurs, i.e. mutation becomes the dominant
factor in improving the solution, a GA has become a Simulated Annealing (SA) process on
the members of the population. Given that SA always converges to the optimal solution given
“enough” (though potentially infinite) time, we can say the same for GAs with a mutation
component. Obviously, GAs are going to be inferior to specific solving algorithms, since
those specific algorithms take into account information about the problem. Problems that
have no algorithmic solution (aside from enumerative searches) are the fare of GAs, especially
NP-complete problems; specific heuristics will typically outperform GAs in smaller n cases,
but once outside of their upper bounds the GAs continue to perform while the heuristics
become lost.

1.2.2 Specific Examples

A few classical examples of NP-complete problems that GAs move through significantly
faster than simple (or even heuristic) searches include the N-queens problem, the Traveling
Salesman Problem, Maximizing returns on Prisoners’ Dilemma over a large number of games,
and circuit design problems. Additionally, construction of neural networks is usually done
initially with a GA. Metastatistics on these problems indicate that the solutions obtained
are among a small top percentage of possible solutions, where how small “small” is depends
on the population size and generations, combined with what sort of breeding and mutation
algorithms are used. GAs are also capable at solving non-NP problems, though since an



optimum solution is not guaranteed for a given number of generations in any particular run,
GAs are used only in cases where an absolute optimum is not required and timeliness of
return is preferred.

An Unpleasant Surface

) ’0’.’
S i
\\\»‘:«:~:~:~‘.~.~W~’y¢.w

WY
AN

|
i

)

i

{

\
i

S

““ “““‘A‘A‘A‘“j /Y /
\’\‘:""‘“’é‘é"iﬁ "({0““""
Ll




2 WORK UNDER PRUV FELLOWSHIP

2.1 Problems with SGA

The primary problems with SGA are ones of convergence of the population; either the
algorithm is to slow to converge to a good solution or it converges too quickly before it can find
an optimal solution. These are the sort of problems found in real biological breeding program;
good traits are present in the fit as well as the weak, and a program that too ferverently
seeks to eliminate the weak will also lessen the chances that those good traits drift “up” into
the rest of the population. However, the limitation of the weak is key in allowing the strong
to maximally utilize resources (the GA analog being computational resources). The primary
problems with SGA are the strong bias against the weak members of the population (the
new population is choosen overwhelmingly from the strong via probability) and the action
of the search when the population becomes essentially uniform (works little better than an
extremely hampered SA with low energy corresponding with the low mutation rate). What
modifications could be made to the SGA (both in the abstract and in the implementation)
such that these problems can be addressed?

2.2 Possible Solutions - The Generalized GA (GGA) and Modu-
larity

2.2.1 The GGA as a Problem-Independent Solver

What is needed is a program that adequately fulfills the general definition of genetic al-
gorithms, but is also capable of very specific action, so as to take advantage of knowledge
about a given problem. I will refer to such a program as a GGA; its primary means of
operation, for the time being, is achieved by programming it in layers. A perl script is given
a information corresponding the disposition of the problem space in the form of a file; from
that, the script writes the appropriate h and c files for the member creation/copying/etc
functions. The script then compiles the necessary files and runs the program; optionally, the
script may take information about what sort of breeding/mutation/etc modules to link in as
well. This implementation allows for a user to enter nothing more than the bare boundaries
of the problem Given this basic premise and implementation for the GGA, let us consider
some interesting possible modules for coding and statistical analyzation.



BREEDING /
MUTATION

PROBLEM SOLUTION SPACE

X,y => Z2=<(Xx;0ry ), (X ory;)..(xorw)>
MEMBER BREEDING



2.2.2 Generation Modules

e Breeding Pools

Consider divided the population up into breeding pools; either by strictly sectionally
dividing them according to fitness of placing them probabilistically into the pools (i.e.
the fit members are most likely to fall into the “fittest” breeding category, but also
possess some chance to be placed in a lower pool, and the weak are affected in a parallel
fashion. These pools may then also have optional breeding sanctions; the strongest pool
perhaps has minimized reproductions, since the offspring there will likely survive to
repoduce without fail, while the weakest pool perhaps has high offspring and mutation
rate but those offspring are more aggressively elimated by the algorithm.

e Introducing notions of Age and Reproductive Vigor

While this could certainly fall to the higher-order traits section to come, it is discussed
equally appropriately here. If our GA maintains members of the population from
generation to generation, much like the biological world, then it would also be desirable
to elimanate them like biological systems do. The natural way to do so is to give
members an age attribute and have a probabilistic killing function that is incresingly
effective on members as they age, in addition to the normal probabilistic elimination
of the weak. Additionally, one might want to implement a function that limited a
member’s ability to reproduce as that member aged, or might allow them to have a
limited number of offspring much human females are only capable of having a limited
number of children.

2.2.3 Mutation Modules

e Differential Mutation

Differential mutation is designed to deal with the problems associated with GA search
once the population diversity becomes limited (ie convergence has occured); it does
this by making the mutation algorithm dependent on the standard deviation of the
population member or some other measure of sameness. Essentially, we initially desire
mutation to be capable of large jumps, but to occur with very small probability. As the
population becomes more uniform, namely when a desired solution is being honed in
on, we desire mutation to become more likely, but not to jump very far away from the
solution area. Differential mutation thus replicates the process of SA in GA endgame
searching. On an appropriately implemented GA, we duplicate SA in a parallel fashion,
which is desirable when we do not have a known superior algorithm when close to
optimal solutions (such as conjugate gradient search).

e Radiation Blast

As an alternative to Differential Mutation we may desire a stronger form of resampling
without taking an actual resampling of the space. To this end, we simply affect a
widespread mutation on a large portion of the population (between % 50 and % 75).
An adequate portion of the populace remains in place to return to the same maximum
fitness value, but likewise “good” portions of a solution are paired with, hopefully,
representation from totally new areas of the space. If stronger areas exist away from



the one the population had converged to, then it will be possible (though perhaps not
likely) that these areas will be reached. In the cases where better spaces exist over
relatively small leaps, it is likely that these will be reached and the development of the
population will continue.

2.2.4 Higher-Order Individual & Population Traits

e Sexual Differentiation - N-sexes

The differentiation of the sexes allows for an introduction of endless possibilities to the
algorithm; with a changing fitness function (co-adaptive with the population or other-
wise evolving), the notions of dominance and recession and pheno- vs genotypes allow
for the population to have enduring success when measured against the fitness func-
tion. Additionally, we may implementation different conditions for the sexes. Females
may be a stable portion of the population with a low mutation rate, while the males
can have high mutation rates and be produced abundantly only to be subject to very
harsh fitness standards. With N sexual reproduction, each sex may have something
special about it; the 3rd sex could have chromosome determining traits for example.

e Tribes

We may desire to subdivided the problem space into smaller ranges and assign these as
individual tribes; these tribes could easily be run on parallel processors with somekind
of “cultural” (war, trade, et cetera - whatever metaphor suits ones fancy) interface
every so many generations.

2.2.5 Self-Adaption

One distant goal of the GGA is to bring it to the point where it may perform self-tuning
in order to not only speed the process of finding optimal solutions, but also to establish
certain settings for various problem types which can be used effectively over again as initial
parameters.

2.3 Problem Suite
2.3.1 N-dimensional Random Number Guess

This is in and of itself an obvious toy problem; an algorithmic approach can solve this
problem in short spans of time by simply guessing above and below the number closer and
closer until reaches it. However, if we choose to link some of the values in even a very simple
fashion (say one pair want to get as far apart as possible) then the simple search will fail
where the GA still succeeds. Certainly we can reimplement a search which will look for
whatever it is we have programmed in, but the obvious trail we are heading down leads
toward a problem where we do not know what kind of connections against which we are
searching.



2.3.2 Linear System Solver

The Linear System Solver is a simple extension into an application of the random number
guesser; it takes as input an n by n matrix and n length vector solution and then generates n
length x-vector solutions. Solving Az = b via the simple classic LU-decomposition is O(n?)
operations. LU-decomposition, however, is very open to round-off error, and we prefer to use
either the Method of Partial Pivoting or PLU-solve which is also O(n?). Using PLU-solve
will prevent accumulation of error in all but the most sensitive linear systems; in such cases,
an algorithm called Complete or Maximal Pivoting is used. Complete Pivoting also completes
in O(n®) operations, however, its other terms are significant and this methodology takes
significantly longer for smaller n values. Since there are minimized divisions in Complete
Pivoting, it works exceptionally well in terms of handling round-off error. Additionally, there
are iterative methods for determining = that do so in O(n?), but which are based on removing
error each iteration rather than strictly solving for z.

The members of the population in this application of the GGA are possible x solutions;
to evaluate the fitness of a member, it is multiplied with A and then normed with 5. So
evaluating the fitness of each member is O(n?) operations. However, the algorithm does
this for each member of the population and for each generation, so if the algorithm reaches
an acceptable solution in g generations, the total operations are O(p * g * n?). Obviously,
for small n, the GA does not compare favorably except against Complete Pivoting with its
additional powers of n. For the GGA to outperform, strictly in terms of operations, the
other methods at any point, the following must be true:

p, g functions of n such that p(n) x g(n) < n, k < n for some k, where the population p has
its best member within € in g generations. This implies that p & ¢ are powers of n less
than 1 or converge to some constant values.

From statistics of natural systems, we are inclined to believe that this is the case for p;
namely, a very small portion of the total population can represent the entire population via
combination and crossover. Likewise, given n dimensions each with k possible values, we
require only & members minimally to represent n* possible members. Though the number of
individuals required to represent via random generation all the traits with a strong certainty
will no doubt be larger than k, it will also be less than n* as the natural systems indicate.



fitness

3 CONCLUSIONS

099

0.98 [~

0.97 [

096 [~

\\ﬁ\\\\\\ T Ll T L

0 100 200 300 400 500
generations



3.1 Engine Performance on Problem Suite

On the two problems addressed, we witness vastly different performance in the engines. The
random number guesser rapidly obtains a solution near the correct one and then spends
a relatively long time ironing out the exact value. Comparing this toy case application to
other search methods is not particularly relevant, since solid algorithms to solve this sort
of problem exist, but we can see the power of such a GGA versus other random search
algorithms and that simple extensions of the random number guess are not solvable by a
general algorithm.

The performance of the Linear System Solver version of the GGA was rather abysmal; the
population very rapidly converges to solutions that have good partial performance (about
half of the b values are close), but these values are typically wildly different than those needed
to obtain a solution where all b values are very close. The population can then not move
towards these correct solutions because the “genes” that make up those solutions have been
eliminated.



