
MATH 340 – SPRING 2026 – HOMEWORK 1

Due Thursday, January 15, 2026 at 8am on Gradescope.
You are encouraged to collaborate with other students, but you must write up your solutions

individually, without reference to notes from the collaboration. You may not search the internet or
ask AI for solutions to the homework problems. Exception: it is fine to use AI to “vibe-code” the
programming questions if you want, but make sure you understand what the code is doing and how
to modify it.

Problem 1 (Inclusion–exclusion principle). Let A1, A2, . . . ⊆ Ω be events. Let’s try to prove by
induction that, for each k ≥ 1,

(1) P (A1 ∪ · · · ∪Ak) =

k∑
ℓ=1

(−1)ℓ+1
∑

1≤j1<···<jℓ≤k

P (Aj1 ∩ · · · ∩Ajℓ) .

(a) Write down (1) for k = 1 and observe that it is trivial. Write down (1) for k = 2 and observe
that it is equivalent to a result stated in class. Give a direct proof of this result for k = 2.
Write down (1) for k = 3 and draw a picture to illustrate why it should hold in this case.
(You don’t need to give a formal argument for k = 3.)

(b) Suppose that (1) holds for some k ≥ 1. Prove that it holds for k + 1 as well. [Hint : write

P

k+1⋃
j=1

Aj

 = P

 k⋃
j=1

Aj

 ∪Ak+1


and use the result for k = 2. At some point, you will want to break the sum

∑
1≤j1<···<jℓ≤k+1

into the case when jℓ = k + 1 and the case when jℓ ̸= k + 1.]
(c) Conclude by induction that (1) holds for all k.

Solution.
(a) For k = 1, (1) becomes P (A1) = P (A1), which is of course trivial. For k = 2, (1) is

P (A1∪A2) = P (A1)+P (A2)−P (A1∩A2), which we stated in class. To prove it, note that
P (A1 ∪A2) = P (A1 ∪ (A2 \A1)) = P (A1) + P (A2 \A1) since A1 and A2 \A1 are disjoint.
Next, note that P (A2) = P (A1∩A2)+P (A2 \A1) since A2 = (A1∩A2)∪ (A2 \A1) and the
sets A1∩A2 and A2 \A1 are disjoint. Combining the last two identities of probabilities gives
us P (A1 ∪A2) = P (A1) +P (A2)−P (A1 ∩A2). For k = 3, (1) becomes P (A1 ∪A2 ∪A3) =
P (A1) + P (A2) + P (A3)− P (A1 ∩A2)− P (A1 ∩A3)− P (A2 ∩A3) + P (A1 ∩A2 ∩A3).

(b) We have

P

k+1⋃
j=1

Aj

 = P

 k⋃
j=1

Aj

 ∪Ak+1


= P

 k⋃
j=1

Aj

+ P (Ak+1)− P

 k⋃
j=1

Aj

 ∩Ak+1


= P

 k⋃
j=1

Aj

+ P (Ak+1)− P

 k⋃
j=1

(Aj ∩Ak+1)


1
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by the k = 2 case and de Morgan’s laws. Then we use the inductive hypothesis to write this
as

P

k+1⋃
j=1

Aj

 =
k∑

ℓ=1

(−1)ℓ+1
∑

1≤j1<···<jℓ≤k

P (Aj1 ∩ · · · ∩Ajℓ)

+ P (Ak+1)

−
k∑

ℓ=1

(−1)ℓ+1
∑

1≤j1<···<jℓ≤k

P ((Aj1 ∩Ak+1) ∩ · · · ∩ (Ajℓ ∩Ak+1))

=
k∑

ℓ=1

(−1)ℓ+1
∑

1≤j1<···<jℓ≤k

P (Aj1 ∩ · · · ∩Ajℓ)

+ P (Ak+1)

−
k∑

ℓ=1

(−1)ℓ+1
∑

1≤j1<···<jℓ≤k

P (Aj1 ∩ · · · ∩Ajℓ ∩Ak+1) .

On the other hand, we can write

k+1∑
ℓ=1

(−1)ℓ+1
∑

1≤j1<···<jℓ≤k+1

P (Aj1 ∩ · · · ∩Ajℓ)

=

k+1∑
ℓ=1

(−1)ℓ+1

 ∑
1≤j1<···<jℓ≤k+1

jℓ=k+1

P (Aj1 ∩ · · · ∩Ajℓ) +
∑

1≤j1<···<jℓ≤k+1
jℓ≤k

P (Aj1 ∩ · · · ∩Ajℓ)


=

k+1∑
ℓ=1

(−1)ℓ+1

 ∑
1≤j1<···<jℓ−1≤k

P
(
Aj1 ∩ · · · ∩Ajℓ−1

∩Ak+1

)
+

∑
1≤j1<···<jℓ≤k

P (Aj1 ∩ · · · ∩Ajℓ)


=

k∑
ℓ=0

(−1)ℓ
∑

1≤j1<···<jℓ≤k

P (Aj1 ∩ · · · ∩Ajℓ ∩Ak+1) +

k+1∑
ℓ=1

(−1)ℓ+1
∑

1≤j1<···<jℓ≤k

P (Aj1 ∩ · · · ∩Ajℓ)

= P (Ak+1)−
k∑

ℓ=1

(−1)ℓ+1
∑

1≤j1<···<jℓ≤k

P (Aj1 ∩ · · · ∩Ajℓ ∩Ak+1)

+

k∑
ℓ=1

(−1)ℓ+1
∑

1≤j1<···<jℓ≤k

P (Aj1 ∩ · · · ∩Ajℓ) .

In the first identity we use that any tuple (j1, . . . , jℓ) with 1 ≤ j1 < · · · < jℓ ≤ k + 1 either
has jℓ = k + 1 or jℓ ≤ k. In the last identity we used that in the last sum on the r.h.s.,
the term ℓ = k + 1 does not contribute because there are no tuples (j1, . . . , jk+1) such that
1 ≤ j1 < j2 < · · · < jk+1 ≤ k. The last terms in the last two displays match, and so we
conclude (1) for k + 1.

(c) We proved the base case k = 1 in part (a) and the inductive step in part (b). Therefore,
the conclusion holds by induction.

Problem 2.
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(a) Prove, using mathematical induction, that if E1, E2, . . . , En are events, then

(2) P
( n⋂

j=1

Ej

)
≥

n∑
j=1

P(Ej)− (n− 1).

(b) State and prove a (nontrivial) condition on the events E1, . . . , En for equality to hold in (2).

Solution.
(a) The base case n = 1 is trivial. Now suppose that (2) holds for n = k, i.e. that P

(⋂k
j=1Ej

)
≥∑k

j=1 P(Ej) − (k − 1), and we’ll try to prove that it holds for n = k + 1. For this we can
write

P

k+1⋂
j=1

Ej

 = 1− P

k+1⋂
j=1

Ej

c = 1− P

k+1⋃
j=1

Ec
j

 = 1− P

 k⋃
j=1

Ec
j

 ∪ Ec
k+1


= 1− P

 k⋃
j=1

Ec
j

− P(Ec
k+1) + P

 k⋃
j=1

Ec
j

 ∩ Ec
k+1


= 1− P

 k⋂
j=1

Ej

c− (1− P(Ek+1)) + P

 k⋃
j=1

Ec
j

 ∩ Ec
k+1


= P

 k⋂
j=1

Ej

+ P(Ek+1)− 1 + P

 k⋃
j=1

Ec
j

 ∩ Ec
k+1


≥

k∑
j=1

P(Ej)− (k − 1) + P(Ek+1)− 1

=
k+1∑
j=1

P(Ej)− ((k + 1)− 1),

where we used de Morgan’s laws in the identities, and then in the inequality we used the
inductive hypothesis and the fact that P

((⋃k
j=1E

c
j

)
∩ Ec

k+1

)
≥ 0. This is what we needed

to show.
(b) Equality holds if Ei ∪ Ej = Ω for each i, j. We can prove this again by induction in a very

similar way. The base case n = 1 is again trivial. For the inductive step, we again write as
above

P

k+1⋂
j=1

Ej

 = P

 k⋂
j=1

Ej

+ P(Ek+1)− 1 + P

 k⋃
j=1

Ec
j

 ∩ Ec
k+1

 .

We can write the last probability as P
((⋃k

j=1E
c
j

)
∩ Ec

k+1

)
= P

(⋃k
j=1(E

c
j ∩ Ec

k+1)
)

=

P
(⋃k

j=1(Ej ∪ Ek+1)
c
)
= P

(⋃k
j=1Ω

c
)
= ∅, and hence the last probability in this case is 0.

So we can write using the inductive hypothesis that

P

k+1⋂
j=1

Ej

 = P

 k⋂
j=1

Ej

+P(Ek+1)−1 =

k∑
j=1

P(Ej)−(k−1)+P(Ek+1)−1 =

k+1∑
j=1

P(Ej)−((k+1)−1)

and this completes the proof.



MATH 340 – SPRING 2026 – HOMEWORK 1 4

Problem 3. Suppose that n people are getting on an airplane, but everyone is feeling rather
chaotic and sits in a uniformly random unoccupied seat (as opposed to sitting in their assigned seat,
although they may happen to sit in their assigned seat). The point of this problem is to compute
the probability that no one sits in their assigned seat.

(a) Let Ej be the event that the jth person sits in their own seat. For j1 < j2 < · · · < jℓ,
compute P (Ej1 ∩ · · · ∩ Ejℓ).

(b) Use the previous part and (1) to compute P (E1 ∪ · · · ∪ En) as a sum of n terms.
(c) Compute

lim
n→∞

(1− P (E1 ∪ · · · ∪ En)) .

[Hint : recognize the sum you computed in the previous part as a Taylor series.]
(d) Write a simulation code to run many (try 10000 or 100000) trials of this experiment for

reasonably large n (try n = 100 or n = 1000) and compute the fraction of the trials in which
no one ends up in their assigned seat. [If you use Python, the random.shuffle function will
give you a uniform random permutation. It is also fine to “vibe-code” this part if you are
not comfortable with programming.] Is the number you get close to the limit you computed
in the previous part? [It should be reasonably close if you choose n large enough and run
enough trials.] Attach your code and results to your submission.

Solution.
(a) Since the labeling of the seats is irrelevant, we see that every permutation of {1, . . . , n} is

equally likely, i.e. the assignment of people to seats is distributed uniformly on the set of
all n! permutations of {1, . . . , n}. The number of such permutations such that any given ℓ
people are sitting in the correct seat is the number of ways of assigning all of the remaining
n− ℓ people to arbitary seats, i.e. (n− ℓ)!. So the probability of this event is (n− ℓ)!/n!.

(b) By Problem 1, we have

P (E1 ∪ · · · ∪ En) =

n∑
ℓ=1

(−1)ℓ+1
∑

1≤j1<···<jℓ≤n

P (Ej1 ∩ · · · ∩ Ejℓ)

=

n∑
ℓ=1

(−1)ℓ+1
∑

1≤j1<···<jℓ≤n

(n− ℓ)!

n!
.

Since there are
(
n
ℓ

)
ways of selecting an increasing sequence 1 ≤ j1 < · · · < jℓ ≤ n, this

becomes

P (E1 ∪ · · · ∪ En) =

n∑
ℓ=1

(−1)ℓ+1

(
n

ℓ

)
(n− ℓ)!

n!
=

n∑
ℓ=1

(−1)ℓ+1

ℓ!
.

(c) We can write

1− P (E1 ∪ · · · ∪ En) =

n∑
ℓ=0

(−1)ℓ

ℓ!
−−−→
n→∞

∞∑
ℓ=0

(−1)ℓ

ℓ!
= e−1.


