MATH 340 — SPRING 2026 - HOMEWORK 2

Due Thursday, January 22, 2026 at 8am on Gradescope. You must justify all of your answers for
full credit.

You are encouraged to collaborate with other students, but you must write up your solutions
individually, without reference to notes from the collaboration. You may not search the internet or
ask Al for solutions to the homework problems. Exception: it is fine to use Al to “vibe-code” the
programming questions if you want, but make sure you understand what the code is doing and how
to modify it.

Problem 1 (based on Meester, Exercise 1.7.14). There is a single-elimination tennis tournament
where each of the 2™ players is seeded at random. Assume that all of the players are evenly matched
and the games are independent (and independent of the seedings as well), so each player wins each
game with probability 1/2. Given two players in the tournament, what is the probability that they
play one another? Justify your answer.

Solution. We condition on how far apart the players are in the starting bracket. Given one
player (call him Cole), the probability of the event Ej, of another randomly seeded player (call him
Chiranjib) first possibly playing Cole in the kth round is given by (2% —2¥=1)/(2" — 1), since there
are 2" — 1 possible positions for Chiranjib in the bracket and 2¥ — 2¥=1 players in Cole’s depth-
k subbracket who are not in Cole’s depth-(k — 1) subbracket. Conditional on the event E}, the
probability that they actually play one another is given by the probability that they both win the
k — 1 games necessary to reach the kth round, which has probability 272(*=1)_ So the probability
that Cole and Chiranjib play each other is
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Problem 2. Recall the hat game discussed in the lecture of January 13 (or see Example 1.4.5

in Meester). The purpose of this problem is to show that no deterministic strategy can win with

probability greater than 3/4. So let us fix some (unspecified) deterministic strategy. (A deterministic

strategy is one where the players’ guesses depend only on the hats that they see, not on any other

pieces of information or randomness.)

(a) Let Ya,Yn, Yc be the events that A, B, C make correct guesses, respectively. Similarly, let

Na, N, Nc be the events that A, B, C make incorrect guesses, respectively. Argue that
P(Yx) = P(Nx) for each X € {A,B, C}.

Recall that the players win if at least one of them makes a correct guess, and none of them makes

an incorrect guess, i.e. on the event W =Y, UYg U Yc \ (Na U N U Ng).

(b) Show that if there is some X € {A, B, C} such that P(Yx) > 1/4, then P(W) < 3/4.
1
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(c) Show that if, on the other hand, there is no X € {A,B,C} such that P(Yx) > 1/4, then

P(W) < 3/4 as well.
Solution.

(a) Let’s consider the case X = A; the other cases are similar. Since A’s guess depends only
on the hats of B and C, there are disjoint Eyed, Eblue; Epass € € = {red, blue}? such that
Ereq U Eplye U Epass = ' and A guesses “red”, “blue”, and “pass” on the events {red, blue} x
FEied, {red,blue} X Eyjue, and {red,blue} X Epag, respectively. This means that Yy =
({red} X Eyeq) U ({blue} X Epjye) and Ny = ({blue} x Eleq) U ({red} X Epjye), and so

P(Ya) = P ({red} x Eieq) + P ({blue} X Epye)
= P ({blue} x Eyeq) + P ({red} X Eplye)
= P(Ny)

since the coin tosses are independent.
(b) In this case we have

P(W) :P(YAUYBUYC\(NAUNBUNc))

S P(Q\Na)=1-P(Na)=1-P(Ya) <

)

o

where we used that P(Ny) = P(Ya) by the previous part.
(c¢) In this case we have

PW)=PYaUYgUYc\ (NaUNpUNQg))

< P(YAUYgUYc) < P(Ya)+ P(Ys) + P(Yo) <

>~ w

Problem 3.

(a) Suppose that Aj, Ag, ... is a family of events such that A; is independent of A;, N---N A4,
whenever 1 < j; < -+ < jp < i. Show that the family Ay, Ao, ... is independent.
(b) Suppose that the family of events Ay,..., A, is independent. Fix j € {1,...,n} and let

A, i=j.
Show that Bi,..., B, is an independent family of events as well.
(¢) Suppose that the family of events Ay, ..., A, is independent. Let K C {1,...,n} and define
Af, e K.
Show that By, ..., B, is an independent family of events as well.

Solution.
(a) We need to prove that for any finite subset J C N, we have P (mjeJ Aj> = [Ljes P(4)).
We will show this by induction on |J|. The base case |J| = 0 is trivial. So we can assume

that the statement holds for |J| = k and we need to prove it for |J| = k& + 1. Enumerate
J ={j1 <+ <jrs1}. Then we have

k+1 k k kil
P ﬂAj =P ﬂAj NAg1 | =P ﬂAj P(Ak+1) = HP(Aj)
j=1 j=1 J=1 =1

where the second identity is by the assumption in the problem and the third is by the
inductive hypothesis. This completes the proof by induction.
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(b) Consider some 1 <i; < --- < iy <n. We claim that

V4 V4
P (ﬂ Bik> - HP(Bik).
k=1 k=1

In the case that none of the ;s is equal to j, then this identity follows immediately from the
independence of the A;s. So consider the case when there is a k. such that ix, = j. Then

we have
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which is what we needed to show.

(c) We use induction on |K|. The case |K| = 0 is obvious, so let’s assume that the statement
holds whenever |K| = k and try to prove it for |K| = k + 1. Write K = Ky U {j} with
|Ko| = k. Then the conclusion follows from part (b) where the A;s in part (b) are taken to
be the B;s in this part with K replaced by K.

Problem 4. Exhibit events A, As, and Az such that P(A; N Ay N Ag) = P(A;)P(A2)P(As) but
Aq, Ag, Ag are not independent.

Full credit will be awarded for any correct example and justification. But in fact there is a very
simple example, which only really relies on a particular (some would say “trivial”) choice of A;.

Proof. Take A} = @ and Ay and As to be any two events that are not independent. Then P(A; N
Ay N As) =0 = P(A1)P(A2)P(As), but Ay, As, A3 are not independent since As and As are not
independent. O

Problem 5. Answer Meester, exercise 1.7.24 (Simpson’s paradox). Come up with another real-
world situation in which you think this paradox might arise.

Solution. I find answer (2) to be more convincing. Drug I is better in both women and men. The
problem is that the disease appears to be harder to cure in women than in men, and drug I was
tested more in women while drug I was tested more in men than in women, so drug Il was in some
sense given the easier task, which makes it look better. Given a task of the same difficulty, drug
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I appears to perform better. Essentially, sex was a confounding variable in the experiment which
skewed the outcome. (This assumes that all other factors are equal between the trials. If there
were big differences in, say, age between the different samples, this could further affect which drug
is better.)

Your examples of another situation in which Simpson’s paradox might apply will of course vary.
One example that comes to mind is comparing GPAs between a college focused on engineering and
a college focused on liberal arts. The engineering college could have more grade inflation in both
engineering and liberal arts classes, but appear to have less grade inflation overall because more
students there are enrolled in engineering classes which tend to have lower grades.

Problem 6 (a more precise explanation of what was going on with the islanders). I have n + 1
balls. I paint each one red with probability p and blue with probability 1 — p, independently. Then
I put all of the balls in an urn and mix them up well.

(a) I draw one ball from the urn, observe that it is red, and put it back in the urn. For each
k €{0,...,n}, compute the probability that there are k + 1 red balls in the urn. [Hint: let
E}. be the event that there are k + 1 red balls in the urn, and let A be the event that the
ball you draw is red. You are trying to compute P(Ej | A), which you can do using Bayes’s
rule.|

(b) Now I again draw a ball from the urn, observe that it again red, and put it back into the urn.
For each k € {0,...,n}, again compute the probability that there are k 4+ 1 red balls in the
urn. Does it match the probability in part (a)? Explain why this problem is analogous to
the one involving the murder on the island discussed in class (Example 1.5.14 in Meester).
If you like, you may consider only the case n = 2 for this part. The case of general n is
extra credit (conceptually, it is the same, but you have to figure out how to compute some
sums involving binomial coefficients).

(c¢) Taking p = 0.6 and n = 2, perform a computer experiment to obtain numerical approxima-
tions for parts (a) and (b). Try running 1000 or 10000 trials for each part. If, when you
draw a ball, the ball is not the color that we postulated observing (i.e. not red), then you
should start that trial over from the beginning — this is a way to simulate the conditioning.
Check that your results are close to what you computed theoretically. Attach your code and
results to your submission.

Solution.
(a) We have P(A | Ej) = XL since conditional on there being k + 1 red balls, the event A

happens when one of k rrll red balls is drawn uniformly from among n + 1 balls. Also, we
have P(A) = p since we could think of not revealing the colors of the balls until after one is
drawn, at which point the drawn ball would be colored red with probability p. Finally, we
have P(Ey) = (Zﬂ)pk“(l — p)"* according to the binomial distribution. Therefore, by
Bayes’ Rule we have

P(A) p k
This makes sense because the colors of the balls remaining in the urn are independent of
the ones we drew, and so the probability of finding k£ red balls among the n remaining balls
is distributed according to Bin(n, p).
(b) Let B be the event that the second drawn ball is red. We are now trying to compute

2
P(Ey | AN B), and we will again use Bayes’ Rule. We have P(AN B | Ey) = (Z—ﬂ) since
given that there are k+ 1 red balls, the two draws are independent. To compute P(ANB) is
a bit harder. Let’s describe two ways of doing it. First, let C' be the event that the two balls

drawn are in fact the same ball, so we have P(C) = n_lﬂ. Then we have P(ANB |C) =p
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and P(AN B | C°) = p2. Then we can compute
P(ANB)=P(ANB|C)P(C)+ P(ANB | C%)P(C)
_p»  p’n_p(d+pn)
n+1 n+1 n+1 °
Alternatively, we could condition on which of the Ejs occurs, and write

& " k+1N\? [n+1 k _
P(ANB)=Y P(ANB|E,)P(E,) = . (1 —p)nF,
kzo BT kz()(n—{—l) <k+1>p P

which gives the same answer after computing the sum (although this is a bit annoying to
prove which is why I didn’t ask you to do it). Then we can conclude by writing

2
P(ANB| Ey)P(Ey) (55)" Gt —p)nt

P(Ey | ANB) = P(ANB) - P(lilin)
_ G)ELDHA-p" (k) ()PP —p)n
(I+pn)(n+1) N 1+pn '

This is not the same as the answer computed in part (a). It’s the same problem as the
problem of John and the islanders in that conditioning on the first ball drawn is being red
is like knowing that the murderer has the DNA profile, which conditions the situation on at
least one of the islanders having the DNA profile, and then conditioning on the second ball
being red is like conditioning on John having that same DNA profile.

(c) (code omitted from solutions)



