
MATH 340 – SPRING 2026 – HOMEWORK 3

Due Thursday, January 29, 2026 at 8am on Gradescope. You must justify all of your answers for
full credit.

You are encouraged to collaborate with other students, but you must write up your solutions
individually, without reference to notes from the collaboration. You may not search the internet or
ask AI for solutions to the homework problems. Exception: it is fine to use AI to “vibe-code” the
programming questions if you want, but make sure you understand what the code is doing and how
to modify it.

Problem 1.

(a) Suppose that Ω = Ω1 × · · · × Ωn and p(ω1, . . . , ωn) = p1(ω1) · · · pn(ωn). Let Xi(ω) = fi(ωi)
for some function fi. Prove that X1, . . . , Xn are independent random variables.

(b) Let X1, X2, X3 be independent random variables, and let g : R2 → R and h : R → R be
functions. Show that g(X1, X2) and h(X3) are independent. State and prove a generalization
of this result.

Solution.

(a) Let x1, . . . , xn ∈ R. Then we have

P (X1 ≤ x1, . . . , Xn ≤ xn) = P ({(ω1, . . . , ωn) ∈ Ω : fi(ωi) ≤ xi for each i})

= P

(
n

×
i=1

{ωi ∈ Ωi : fi(ωi) ≤ xi}

)

=
∑

ω1∈Ωn

· · ·
∑

ωn∈Ωn

n∏
i=1

(pi(ωi)1{fi(ωi) ≤ xi})

=
n∏

i=1

∑
ωi∈Ωn

pi(ωi)1{fi(ωi) ≤ xi}

=

n∏
i=1

P (Xi ≤ xi),

which means that X1, . . . , Xn are independent.
(b) A generalization of this could be that if X1,1, . . . , X1,n1 , X2,1, . . . , X2,n2 , . . . , Xm,1, . . . , Xm,nm

are independent random variables, and gi : Rni → R are functions, then

g1(X1,1, . . . , X1,n1), . . . , gm(Xm,1, . . . , Xm,nm)
1
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are also independent random variables. To prove this, we write

P (g1(X1,1, . . . , X1,n1) = x1, . . . , gm(Xm,1, . . . , Xm,nm) = xm)

=
∑

x1,1,...,x1,n1

· · ·
∑

xm,1,...,xm,nm

P (Xi,j = xij for all i, j)
m∏
i=1

1 {gi(xi,1, . . . , xi,ni) = xi}

=
∑

x1,1,...,x1,n1

· · ·
∑

xm,1,...,xm,nm

∏
i,j

P (Xi,j = xi,j)

 m∏
i=1

1 {gi(xi,1, . . . , xi,ni) = xi}

=
∑

x1,1,...,x1,n1

· · ·
∑

xm,1,...,xm,nm

m∏
i=1

 ni∏
j=1

P (Xi,j = xi,j)

1 {gi(xi,1, . . . , xi,ni) = xi}

=
∑

x1,1,...,x1,n1

· · ·
∑

xm,1,...,xm,nm

m∏
i=1

(P (Xi,j = xi,j for all j = 1, . . . , ni)1 {gi(xi,1, . . . , xi,ni) = xi})

=

m∏
i=1

P (gi(Xi,1, . . . , Xi,ni) = xi),

which is what we needed to show.

Problem 2. Let Ω = {0, 1, 2, 3} be a sample space equipped with probability measure given by
p(0) = 1/2, p(1) = 1/6, p(2) = 1/6, p(3) = 1/6.

(a) Exhibit two random variables X and Y defined with respect to the sample space Ω such
that X ∼ Ber(1/3) and Y ∼ Ber(1/3) but X and Y are not the same random variable.

(b) Show that there is no random variable X defined on Ω such that X ∼ Bin(2, 1/2).
(c) Show that if three random variables X,Y, Z on Ω are independent, then there must be some

x ∈ R such that either P (X = x) = 1, P (Y = x) = 1, or P (Z = x) = 1.

Solution.
(a) We could take X(0) = X(1) = 0 and X(2) = X(3) = 1, and Y (0) = Y (2) = 0 and

Y (3) = Y (4) = 1. Then it’s easy to check the desired conditions.
(b) To have X ∼ Bin(2, 1/2), we must have P (X = 0) = 1/4. But no subset of Ω has probably

1/4, as all possible probabilities are multiples of 1/6.
(c) If not, then there must be x1, x2, y1, y2, z1, z2 ∈ R such that P (X = x1), P (X = x2), P (Y =

y1), P (Y = y2), P (Z = z1), P (Z = z2) > 0. By independence, this must mean that for any
(a, b, c) ∈ {x1, x2} × {y1, y2} × {z1, z2}, we have P (X = a, Y = b, Z = c) > 0. This means
that there must be at least eight possible outcomes of the experiment because there are at
least eight possible values of the random variables, but Ω only has four elements.

Problem 3. Recall the airplane problem from Homework 1, Problem 3. Let Xn be the number
of passengers who sit in their assigned seat. For each k ≥ 0, compute limn→∞ pXn(k). [Hint : if
exactly k people sit in their assigned seats, then none of the remaining n−k people can be sitting in
their assigned seats, so you can use the result of Homework 1, Problem 3 with n replaced by n− k.]

Solution. Let σi be the seat of the ith passenger. We have

P (Xn = k) =
∑

{ℓ1,...,ℓk}∈({1,...,n}
k )

P (σj = j for j ∈ {ℓ1, . . . , ℓk} and σj ̸= j for j ̸∈ {ℓ1, . . . , ℓk})

=
∑

{ℓ1,...,ℓk}∈({1,...,n}
k )

(n− k)!

n!
· P (σj ̸= j for j ̸∈ {ℓ1, . . . , ℓk} | σj = j for j ∈ {ℓ1, . . . , ℓk}) .
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The last probability is equal to the probability that no one on a plane with n− k passengers sits in
their assigned seat, which we computed before is 1−

∑n−k
ℓ=1

(−1)ℓ+1

ℓ! =
∑n−k

ℓ=0
(−1)ℓ

ℓ! . So we get

P (Xn = k) =

(
n

k

)
(n− k)!

n!

n−k∑
ℓ=0

(−1)ℓ

ℓ!
=

1

k!

n−k∑
ℓ=0

(−1)ℓ

ℓ!
.

As n → ∞, this quantity approaches e−1/k!, which is the pmf of a Poisson(1) random variable.

Problem 4. Suppose that X ∼ Bin(n, p) and Y ∼ Bin(m, p) are independent. Compute (with
proof) the pmf of the random variable X + Y .

Proof. We can realize X and Y on a single sample space Ω by letting Ω = {0, 1}m+n with probability
measure p(ω) = pω1+···+ωn+m(1 − p)n−(ω1+···+ωn+m), and then setting X(ω) = ω1 + · · · + ωn and
Y (ω) = ωn+1 + · · ·+ ωm+n. Then (X + Y )(ω) = ω1 + · · ·+ ωm+n and so X + Y ∼ Bin(m+ n, p).
Hence we have pX+Y (k) =

(
m+n
k

)
pk(1− p)m+n−k for k = 0, . . . ,m+ n. □

Problem 5 (some problems about the geometric distribution).
(a) Let X ∼ Geom(p). Prove that P (X = m + k | X > m) = P (X = k). Explain why this is

called the memoryless property of the geometric distribution.
(b) Let X1, . . . , Xr ∼ Geom(p) be independent. Show that X1+· · ·+Xr has a negative binomial

distribution with parameters (p, r).

Proof.
(a) We have that

P (X > m) =

∞∑
k=m+1

p(1− p)k−1 = p · (1− p)m

1− (1− p)
= (1− p)m,

and hence that

P (X = m+ k | X > m) =
P (X = m+ k)

P (X > m)
=

p(1− p)m+k−1

(1− p)m
= p(1− p)k−1 = P (X = k).

This is called the memoryless property because, given that a failure hasn’t happened yet
by time m, the distribution of the additional time you will have to wait is the same as the
distribution of the waiting time from the start. So the system doesn’t “remember” that you
have already waited for time m.

(b) We argue by induction on r. For r = 1, we simply observe that the formulas for the pmfs
match. So suppose the statement is true for r, and we’ll try to prove it for r + 1. Let X
be a Geom(p) random variable, let Y be an independent negative binomial random variable
with parameters (p, r), and let Z = X + Y . Then we have

P (Z = z) =
∑
x

P (X = x, Y = z − x)

=
∑
x

P (X = x)P (Y = z − x)

=

z−r∑
x=1

p(1− p)x−1

(
z − x− 1

r − 1

)
pr(1− p)z−x−r

= pr+1(1− p)z−r−1
z−r∑
x=1

(
z − x− 1

r − 1

)
.

To compute the last sum, we count the number of ways of picking r elements out of z − 1
elements in two different ways. The first is to simply write it as

(
z−1
r

)
. The second is to
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condition on the first element that is chosen, which we call x. The first element can be any
of the first z− r elements, and once we have chosen that element to be x, there are

(
z−x−1
r−1

)
choices of the remaining r− 1 elements. So we get

(
z−1
r

)
=
∑z−r

x=1

(
z−x−1
r−1

)
. Using this in the

above, we get P (Z = z) =
(
z−1
r

)
pr+1(1− p)z−r−1, which is what we needed to show.

□

Problem 6. Let s > 1. Let X be a random variable such that pX(k) = k−s/ζ(s) for k = 1, 2, 3, . . .
and pX(x) = 0 for other x ∈ R. Here the normalizing factor is

ζ(s) :=
∞∑
k=1

k−s.

This function is also known as the Riemann zeta function and it is very important in number theory.
For each prime number q, let Yq be the random variable such that the prime factorization of X
(which is unique) can be written as

X =
∏

q prime

qYq .

(a) Show that Yq + 1 ∼ Geom(pq) and compute pq.
(b) Show that the family {Yq}q prime is an independent family of random variables. [Hint : it

suffices to show that for any distinct prime numbers q1, . . . , qn and any nonnegative integers
m1, . . . ,mn, the events {Yq1 ≥ m1}, . . . , {Yqn ≥ mn} are independent.]

(c) By using the last two parts, along with a limit lemma proved in class, show that
1

ζ(s)
= P (X = 1) =

∏
q prime

(1− q−s).

This is the famous Euler product formula for the Riemann zeta function.

Solution.
(a) We can write, for a natural number k ≥ 1,

P (Yq + 1 ≥ k) = P (Yq ≥ k − 1) =
1

ζ(s)

∞∑
ℓ=1

(ℓqk−1)−s = (q−s)k−1,

so, for natural numbers k ≥ 1, we have

P (Yq + 1 = k) = P (Yq + 1 ≥ k)− P (Yq + 1 ≥ k + 1)

= (q−s)k−1 − (q−s)k = (q−s)k−1(1− q−s).

This is the pmf of a geometric distribution with parameter pq = 1− q−s.
(b) We have Yq1 ≥ m1, . . . , Yqn ≥ mn if and only if X is divisible by qm1

1 · · · qmn
n . Therefore, we

have

P (Yq1 ≥ m1, . . . , Yqn ≥ mn) =
1

ζ(s)

∞∑
ℓ=1

(ℓqm1
1 · · · qmn

n )−s =
(qm1

1 · · · qmn
n )−s

ζ(s)

∞∑
ℓ=1

ℓ−s

= (qm1
1 · · · qmn

n )−s = P (Yq1 ≥ m1) · · ·P (Yqn ≥ mn),

so the Yqis are independent.
(c) That 1

ζ(s) = P (X = 1) is clear from the pmf of X. On the other hand, we can write

{X = 1} =
⋂

q prime

{Yq = 0} =

∞⋂
n=1

 ⋂
q prime,q≤n

{Yq = 0}

 .
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The sequence
(⋂

q prime,r≤n{Yq = 0}
)
n

is a decreasing sequence of events, so by the lemma
proved in class, we have

P (X = 1) = lim
n→∞

P

 ⋂
q prime,q≤n

{Yq = 0}


= lim

n→∞

∏
q prime,q≤n

P (Yq = 0)

= lim
n→∞

∏
q prime,q≤n

(1− q−s)

=
∏

q prime

(1− q−s),

as claimed.


