
MATH 340 – SPRING 2026 – HOMEWORK 4

Due Thursday, February 5, 2026 at 8am on Gradescope. You must justify all of your answers for
full credit.

You are encouraged to collaborate with other students, but you must write up your solutions
individually, without reference to notes from the collaboration. You may not search the internet or
ask AI for solutions to the homework problems.

Problem 1. In a certain community (which I make no claim actually exists, or corresponds to any
real community), families desire to have as few children as possible, but they want to have at least
one female child. Let us assume that there are no multiple births, and that each child is assigned
either male or female at birth, with equal probability, and that the sexes assigned to all births are
independent. Each family has children until a girl is born, and then stops.

(a) What is the expected number of male and female children in each family? How does this
reproduction strategy affect the balance of males to females in the community?

(b) Conditional on the total number of children in a family being n, what is the conditional
distribution of the number of boys in the family?

In a different community, after having each child, families decide to keep having children with
probability p ∈ (0, 1), independent of everything else (i.e. they flip an unfair coin after each birth).

(c) Conditional on the total number of children in a family being n, what is the conditional
distribution of the number of boys in the family?

(d) What is the expected number of male and female children in each family? How does this
reproduction strategy affect the balance of males to females in the community? [Hint :
if N is the total number of children and M is the number of boys, start by computing
E[M | N = n].]

Let’s now generalize the previous examples. Suppose in another community, there is some repro-
duction strategy that we do not know. All we know is that this community does not practice
sex-selective abortion, so after having each child, parents decide whether or not to (try to) have
another child without knowing what the gender of that child would be. We can model this situation
as follows. Let N be the total number of children that the family has. Assume that N ≤ 20 almost
surely. Let ξi be the indicator of the event that the ith child would be female if that child were
actually born, so ξ1, . . . , ξ20 are independent.

(e) Explain why, based on the description given, we should make the modeling assumption that,
for each i, the random variables 1{N ≥ i}, ξi, ξi+1, . . . , ξ20 are independent. Also, explain
why the total number of girls that the family has is

G :=

20∑
i=1

1{N ≥ i}ξi

and the total number of boys that the family has is

B :=

20∑
i=1

1{N ≥ i}(1− ξi).

(f) Compute E[G − B]. How does the strategy affect the balance of males to females in the
community?

Solution.
1
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(a) The expected number of female children in each family is 1, since each family has exactly one
girl. If B denotes the number of male children, then B+1 ∼ Geom(1/2), so E[B+1] = 2, so
E[B] = 1. Thus the expected numbers of boys and girls born in the community are equal.

(b) Conditional on the total number of children N being n, there are always exactly n− 1 boys,
so P (B = k | N = n) = 1k=n−1.

(c) Let Bk be the number of boys in the first k (hypothetical) children. (I say “hypothetical”
since we include boys who weren’t actually born.) Then Bk ∼ Bin(k, 1/2) is independent of
the number of children N who were actually born. So we have

P (B = m | N = n) =
P (B = m and N = n)

P (N = n)
=

P (Bn = m and N = n)

P (N = n)

=
P (Bn = m)P (N = n)

P (N = n)
= P (Bn = m) =

(
n

m

)
2−n.

(d) Since, conditional on N = n, the distribution of B is Bin(n, 1/2), we have E[B | N = n] =
n/2, so E[B | N ] = N/2. Also, we have E[N ] = 2 since N ∼ Geom(1/2). Therefore, we
have

E[B] = E[E[B | N ]] = E [N/2] = 1.

By the same logic, E[G] = 1 where G is the number of girls born. So again the expected
numbers of boys and girls are the same.

(e) The event {N ≥ i} is the event that the parents decided to continue having children after
child i − 1 was born, and they had to make this determination without knowing the sexes
of the children after i. Since the sexes of the children after i are independent of each other
and of the sexes of the previous children, it makes sense that we should model them as
independent from 1{N ≥ i}. The formula for G is just the sums of the indicators that each
child is a girl, but multiplied the indicator of the event that that child is actually born. The
formula for B is obtained similarly.

(f) We have

E[G−B] = E

[
20∑
i=1

1{N ≥ i}(1− 2ξi)

]
=

20∑
i=1

E [1{N ≥ i}(1− 2ξi)]

=

20∑
i=1

E[1{N ≥ i}]E [1− 2ξi] =

20∑
i=1

E[1{N ≥ i}] (1− 2E[ξi]) = 0

since 1 − 2E[ξi] = 1 − 2 · (1/2) = 0. So the expected numbers of girls and boys in the
community are still equal regardless of the strategy.

Problem 2 (Airplane problem again). Recall again the chaotic airplane passengers of Homework
1, Problem 3. Compute the expected number of people who sit in their assigned seats. [Hint : use
linearity of expectation and don’t work too hard.]

Solution. Let ξi be the indicator of the event that person i sits in seat i. Then E[ξi] is the
probability that person i sits in seat i, which is (n−1)!

n! = 1
n since there are (n − 1)! configurations

in which person i sits in the correct seat and n! total configurations, all with the same probability.
So the expected number of people who sit in their assigned seats is

E

[
n∑

i=1

ξi

]
=

n∑
i=1

E[ξi] =
n∑

i=1

1

n
= 1.
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Problem 3. Let ξ1, . . . , ξn be i.i.d. Rademacher random variables. Compute

Rn := E

( n∑
i=1

ξi

)4
 .

Find an α such that Rn/n
α approaches a finite limit as n → ∞. [Hint : expand the sum as

(
∑n

i=1 ξi)
4 =

∑n
i1,i2,i3,i4=1 ξi1ξi2ξi3ξi4 , and then separate the right hand side into different parts

depending on which of the ijs are the same or different.]

Proof. We start by writing

E

( n∑
i=1

ξi

)4
 =

n∑
i1,i2,i3,i4=1

E [ξi1ξi2ξi3ξi4 ] .

There are a total of n4 terms in this sum. We collect them into several different categories:
• If i1 = i2 = i3 = i4 (n terms), then E [ξi1ξi2ξi3ξi4 ] = E[1] = 1.
• If i1 = i2 and i3 = i4, but i2 ̸= i3 (n(n− 1) terms), then E [ξi1ξi2ξi3ξi4 ] = E[1] = 1.
• Similarly, if i1 = i3 ̸= i2 = i4 (n(n − 1) terms) or i1 = i4 ̸= i3 = i3 (n(n − 1) terms), then
E [ξi1ξi2ξi3ξi4 ] = 1.

• Otherwise, there is an ij that is not equal to any of the other iks, and then the expectation
is 0 by independence since E[ξij ] = 0.

So altogether the expectation is Rn = n+ 3n(n− 1), and we can choose α = 2 so that Rn/n
2 → 3

as n → ∞. □

Problem 4 (second moment method). Suppose that X is a random variable such that X ≥ 0
almost surely. Show that

P (X = 0) ≤ Var(X)

(E[X])2
.

[Hint : start with the inequality P (X = 0) ≤ P (|X − E[X]| ≥ E[X]).]

Solution. If X = 0, then certainly |X − E[X]| = |E[X]| ≤ E[X], so we have

P (X = 0) ≤ P (|X − E[X]| ≥ E[X]) ≤ Var(X)

(E[X])2

by Chebyshev’s inequality.

Problem 5. A graph consists of a set V of vertices and a set of edges E ⊆
(
V
2

)
(so an edge is an

ordered pair of distinct vertices). We think of the edge set as the set of vertices that are “adjacent”
to each other in the graph. For n ∈ N, let G be a random graph with vertex set V = {1, . . . , n} and
each edge present independently with probability p. For i ̸= j ∈ V, let ξi,j denote the indicator of the
event that {i, j} ∈ E, i.e. that i and j are adjacent. This means that the family (ξi,j){i,j}∈({1,...,n}

2 )
is a family of

(
n
2

)
independent Ber(p) random variables.

(a) Compute E|E|, the expected number of edges in the graph, in terms of n and p.
(b) A triangle in a graph is a set of distinct vertices i, j, k ∈ V such that {i, j}, {j, k}, {i, k} ∈ V

(i.e. all three vertices are connected). Let T be the number of triangles in G. Compute E[T ].
[Hint : for i, j, k, let ηi,j,k be the indicator of the event that i, j, k form a triangle, and start
by computing E[ηi,j,k].]

(c) Suppose that p = pn is such that npn → 0 as n → ∞. Show that the probability that
G contains at least one triangle goes to 0 as n → ∞. [Hint : previous part and Markov’s
inequality.]

(d) Compute Var(T ). [Hint : this is somewhat similar to Problem 3. The ηi,j,ks are not all
independent, but many of them are.]
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(e) Suppose that p = pn is such that npn → ∞ as n → ∞. Show that the probability that G
contains at least one triangle goes to 1 as n → ∞. [Hint : use Problems 4, 5(b), and 5(d).]

Solution.
(a) We have

E|E| = E

 ∑
{i,j}∈(V2)

ξi,j

 =
∑

{i,j}∈(V2)

E[ξi,j ] = p

(
|V|
2

)
= p

(
n

2

)
.

(b) We have ηijk = ξijξjkξik, so

E[ηijk] = E[ξijξjkξik] = E[ξij ]E[ξjk]E[ξik] = p3.

Therefore, we have

E[T ] = E

 ∑
{i,j,k}∈(V3)

ηijk

 =
∑

{i,j,k}∈(V3)

E[ηijk] = p3
(
n

3

)
.

(c) We have by Markov’s inequality that

P (T ≥ 1) ≤ E[T ] = p3n

(
n

3

)
=

p3nn(n− 1)(n− 2)

6
=

(npn)
3(1− 1/n)(1− 2/n)

6
→ 0

as n → ∞ since npn → 0 and 1− 1/n, 1− 2/n → 1.
(d) We can compute

E[T 2] = E


 ∑

{i,j,k}∈(V3)

ηijk


2 =

∑
{i,j,k}∈(V3)

∑
{i′,j′,k′}∈(V3)

E[ηijkηi′j′k′ ].

Now we again break up the sum into different pieces:
• If {i, j, k} = {i′, j′, k′} (

(
n
3

)
= 1

6n(n−1)(n−2) terms), then E[ηijkηi′j′k′ ] = E[ηijk] = p3.
• If {i, j, k} and {i′, j′, k′} have two elements in common, then E[ηijkηi′j′k′ ] = p5 since

five edges need to be present for both triangles to be present. The number of such
terms is the number of ways of picking the two common elements times the number of
ways of picking the other element of {i, j, k} times the number of ways of picking the
other element of {i′, j′, k′} which is

(
n
2

)
(n− 2)(n− 3) = 1

2n(n− 1)(n− 2)(n− 3).
• If {i, j, k} and {i′, j′, k′} have one or zero elements in common, then E[ηijkηi′j′k′ ] = p6

since six edges need to be present for both triangles to be present. The number of such
terms with one element in common is the number of ways of picking the common element
times the number of ways of choosing the other two elements of {i, j, k} times the
number of ways of choosing the other two elements of {i′, j′, k′}, which is n

(
n−1
2

)(
n−3
2

)
=

1
4n(n−1)(n−2)(n−3)(n−4). The number of such terms with no elements in common
is
(
n
3

)(
n−3
3

)
= 1

36n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5).
Adding up all of these contributions, we get

E[T 2] =
p3

6
n(n− 1)(n− 2) +

p5

2
n(n− 1)(n− 2)(n− 3)

+ p6
[
1

4
n(n− 1)(n− 2)(n− 3)(n− 4) +

1

36
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

]
,
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so

Var(T ) = E[T 2]− (E[T ])2

=
p3

6
n(n− 1)(n− 2) +

p5

2
n(n− 1)(n− 2)(n− 3)

+
p6

4
n(n− 1)(n− 2)(n− 3)(n− 4)

+
p6

36

{
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)− n2(n− 1)2(n− 2)2

}
=

p3

6
n(n− 1)(n− 2) +

p5

2
n(n− 1)(n− 2)(n− 3) +

p6

4
n(n− 1)(n− 2)(n− 3)(n− 4)

+
p6

36
n(n− 1)(n− 2) {(n− 3)(n− 4)(n− 5)− n(n− 1)(n− 2)}

(e) We have

Var(T )

(E[T ])2
=

p3

6 n(n− 1)(n− 2)
p6

36n
2(n− 1)2(n− 2)2

+
p5

2 n(n− 1)(n− 2)(n− 3)
p6

36n
2(n− 1)2(n− 2)2

+
p6

4 n(n− 1)(n− 2)(n− 3)(n− 4)
p6

36n
2(n− 1)2(n− 2)2

+
p6

36n(n− 1)(n− 2) {(n− 3)(n− 4)(n− 5)− n(n− 1)(n− 2)}
p6

36n
2(n− 1)2(n− 2)2

=
1

p3

6 n(n− 1)(n− 2)
+

n− 3
p
18n(n− 1)(n− 2)

+
9(n− 3)(n− 4)

n(n− 1)(n− 2)

+
(n− 3)(n− 4)(n− 5)− n(n− 1)(n− 2)

n(n− 1)(n− 2)

∼ 6

p3n3
+

18

pn2
+

9

n
+

(n− 3)(n− 4)(n− 5)− n(n− 1)(n− 2)

n3
.

Now as n → ∞, p3n3 = (pn)3 → ∞ by assumption, so the first term goes to 0. Similarly,
pn2 = (np)n → ∞, so the second term goes to 0. The third term clearly goes to 0 and the
fourth term goes to 0 because the highest power of n in the numerator is n2 (since the n3

terms cancel). Therefore, we have

P (T = 0) ≤ Var(T )

(E[T ])2
→ 0

by the second moment method, so P (T ≥ 1) → 1.


