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1 Motivation, examples, and phenomenology

This minicourse will concern the analysis of semilinear stochastic heat equations, which is to say
equations taking the form

dut(x) =
1

2
∆ut(x)dt+ σ(ut(x))dWt(x). (1)

Here, t ∈ R, x ∈ Rd or (R/Z)d for some d ∈ N, σ : R → R is a nonlinearity, and dWt(x) is a(n
approximation of a) Gaussian space-time white noise, i.e. dWt(x) is mean-zero Gaussian and we
have

E
[
dWt(x)dWt′(x

′)
]
= δ(t− t′)R(x− x′),

with R(x) ≈ δ(x). It turns out that when d > 1, it is often difficult to make sense of the equation
with R(x) = δ(x), and so we consider a regularization. More on this later!

1.1 Examples

Semilinear stochastic heat equations often arise in the modeling of stochastic systems. Here are
some popular examples of choices of σ that can arise in applications:

Edwards–Wilkinson When σ ≡ 1, we have the additive stochastic heat equation or Edwards–
Wilkinson equation. This equation has Gaussian solutions so the analysis is in some sense trivial.
However, it arises as the scaling limit of many stochastic systems in which the interaction is weak
enough that the limit doesn’t see any interaction beyond the Laplacian and the Gaussian noise.
We will discuss the Edwards–Wilkinson equation later in this lecture; the book [9] has a lot of
interesting background.

Multiplicative stochastic heat equation and directed polymers When σ(u) = βu, we have
the multiplicative stochastic heat equation. This equation is linear in the initial condition, but not in
the noise. Because of this, if R is spatially smooth, it can be solved via the Feynman–Kac formula:

ut(x) = Et,x exp

{
β

∫ t

0
dWs(Xs) ds−

1

2
β2

∫ t

0
d[W (0)]s

}
= Et,x exp

{
β

∫ t

0
dWs(Xs) ds−

1

2
β2R(0)t

}
. (2)
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(See [2], and also [1] for the R = δ case.) Here, under the measure Et,x on C([0, t]), the process
(Xs)s∈[0,t] is a backward-in-time Brownian motion with Xt = x. We note that we use lightface E
for the expectation over the Brownian motion, as opposed to the boldface E for expectation over
the noise.

The Feynman–Kac formula (2) is the key to the relationship between the multiplicative stochastic
heat equation and directed polymer models. In a directed polymer model, we introduce a random
measure P̂t,x on C([0, t]) that is absolutely continuous with respect to Pt,x with Radon–Nikodym
derivative

dP̂t,x

dPt,x
(Y ) =

exp
{
β
∫ t
0 ξs(Ys) ds−

1
2β

2R(0)t
}

Et,x exp
{
β
∫ t
0 ξs(Xs) ds− 1

2β
2R(0)t

} . (3)

The denominator in (3) is present to ensure that

Et,x

[
dP̂t,x

dPt,x
(X)

]
= 1 a.s.,

so P̂t,x is almost surely a probability measure. Under the measure P̂t,x, the path X tends to favor
regions of space-time in which the noise takes larger values. The directed polymer model has been
studied extensively; some entry points to the literature are [5, 14].

Super-Brownian motion When σ(u) =
√
u, the super-Brownian motion process solves the

SPDE (1) in a certain sense (that of the martingale problem). What this means, since in this case
σ is non-Lipschitz, is beyond the scope of these notes; we refer to [8, 11, 13]. This process arises as
the scaling limit of the empirical particle density of a branching Brownian motion with appropriate
critical scaling. The square-root nonlinearity, roughly speaking, comes about because since each
particle branches and dies independently, the variance of the change in the number of particles is
proportional to the local number of particles.

Voter model When σ(u) =
√
u(1− u), the SPDE (1) can in some regimes be related to the voter

model. This has been done in [10] for a long-range version of the voter model in d = 1. Informally
speaking, this choice of nonlinearity comes about because, in the voter model, the variance of the
change in the number of “yes” voters is proportional to the local number of disagreements, which is
u(1− u) if u is the number of “yes” voters.

1.2 Phenomenology of the Edwards–Wilkinson equation

In the case when σ ≡ 1, the solution u to (1) is Gaussian and, in principle, everything is easy to
understand. However, we’ll work things out in some detail, because it helps motivate the cases that
arise in the study of the nonlinear problems. It turns out that the phenomenology of the solution
depends significantly on the spatial dimension d, and the relevant cases are d = 1, d = 2, and d ≥ 3.

Let

Gt(x) =
1

(2πt)d/2
exp

{
−|x|2

2t

}
denote the standard heat kernel. By the Duhamel formula, we have

ut(x) = Gt ∗ u0(x) +
∫ t

0
Gt−s ∗ dWs(x).
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For simplicity, for now let’s assume that u0 ≡ 0, so we have

ut(x) =

∫ t

0
Gt−s ∗ dWs(x).

This is a Gaussian process and we can compute the covariance: for t′ > t, we have

E[ut(x)ut′(x′)] =
∫ t

0

∫∫
Gt−s(x− y)R(y − y′)Gt′−s(y

′ − x′) dy dy′ ds =

∫ t

0
Gt+t′−2s ∗R(x− x′) ds.

In particular, if R = δ, we get

E
[
ut(x)

2
]
=

∫ t

0
G2(t−s)(0) ds =

∫ t

0

ds

(4π(t− s))d/2
,

which is finite only when d < 2. This implies:

Lemma 1.1. The Edwards–Wilkinson equation has function-valued solutions only when d = 1. In
higher-dimensions, it has distribution-valued solutions.

What about at large times? Let

Qt(x) = E[ut(x)ut(0)] =
∫ t

0
G2(t−s) ∗R(x) ds =

∫ t

0
G2s ∗R(x) ds.

We note (somewhat formally) that

∆Qt(x) =

∫ t

0
∆G2s ∗R(x) ds = −

∫ t

0

d

ds
G2s ∗R(x) ds = R(x)−G2t ∗R(x) → R(x) as t → ∞.

The problem
∆Qt(x) = R(x)

has bounded solutions if and only if d > 2. This suggests the following (which is true):

Lemma 1.2. If d > 2, then the Edwards–Wilkinson equation has invariant measures which are
given by R convolved with the law of a Gaussian free field. (If you don’t know what the Gaussian
free field is, this is a reasonable definition.)

Thus we have a sort of dichotomy: if d < 2, then the Edwards–Wilkinson equation is “nice”
locally (has function-valued solutions), while if d > 2, then the Edwards–Wilkinson equation is
“nice” globally (has invariant measures).

1.3 The Edwards–Wilkinson equation in d = 2

In d = 2, neither of the above situations is the case: the equation has “problems” both “locally” and
“globally.” In fact, this makes a lot of sense, because of the following proposition.

Proposition 1.3. Let d = 2 and let ut(x) solve the Edwards–Wilkinson equation with u0 ≡ 0
and R = δ. Let κ ∈ (0,∞) be a deterministic constant and let uκs (y) = uκ−2s(κ

−1y). Then
Law(uκ) = Law(u).
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Proof. We just have to compare the covariances. We have

E[uκt (x)uκt′(x
′)] = E[uκ−2t(κ

−1x)uκ−2t′(κ
−1x′)]

=

∫ κ−2t

0
Gκ−2(t+t′)−2s(κ

−1[x− x′]) ds

= κ−2

∫ t

0
Gκ−2(t+t′−2s)(κ

−1[x− x′]) ds

=

∫ t

0
Gt+t′−2s(x− x′) ds

= E[ut(x)ut′(x′)],

where we used the fact that, in d = 2,

κ−2Gκ−2t(κ
−1x) = κ−2 · 1

2πκ−2t
exp

{
−|κ−1x|2

2κ−2t

}
= Gt(x).

The last proposition means that the two-dimensional Edwards–Wilkinson equation has a scale-
invariant character. The major question that we will answer in this minicourse is, “how can we
study scale-invariant semilinear stochastic heat equations?”

The Edwards–Wilkinson equation with R = δ has distribution-valued solutions in d = 2. Hence,
if we consider a more general semilinear SHE in d = 2, we wouldn’t expect it to have function-valued
solutions either. Since we can’t apply a general nonlinearity σ to a distribution, this means that we
do not know how to interpret the nonlinear problem (1) when d = 2 and R = δ.

To rectify this, let’s fix a small parameter ε > 0 and let R = Rε = 1
log ε−1Gε2 . (Actually, we

should replace Gε2 by a general mollifier at scale ε, but this choice simplifies the calculations and
doesn’t really lose anything.) This means that we are mollifying the noise, so the equation will be
well-posed, but also attenuating the noise, so it becomes weaker as ε → 0. If uε is the solution to
the equation with this choice of ε and uε0 ≡ 0 (here we abuse notation since this is not the same
definition as uκ above), then we have

E[ut(x)2] =
1

log ε−1

∫ t

0
G2(t−s) ∗Gε2(0) ds =

1

2 log ε−1

∫ t+2ε2

2ε2
Gs(0) ds =

1

2 log ε−1

∫ t+2ε2

2ε2

1

2πs
ds

=
1

4π
logε−1

t+ 2ε2

2ε2
. (4)

If t is fixed and ε → 0, then the right side converges to 1
2π , i.e. an order-1 variance. So with this

setup, we get pointwise convergence of the random fields as ε → 0. This is a nice scaling regime
because it allows us to consider the same problem with a nonlinearity.

1.3.1 Fluctuation scales

We note that, in this scaling regime, for x ̸= x′, we have

E[uεt (x)uεt (x′)] =
1

2 log ε−1

∫ t+2ε2

2ε2
Gs(x− x′) ds → 0 as ε → 0.

That is, distinct points are completely decorrelating as ε → 0, and the resulting random field is
trivial. To see nontrivial correlations between points, we should look, for α ∈ (0, 1] and fixed y ̸= 0,
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at

E[uεt (x)uεt (x+ εαy)] =
1

2 log ε−1

∫ t+2ε2

2ε2
Gs(ε

αy) ds =
ε2α

2 log ε−1

∫ t+2ε2

2ε2
Gε2αs(y) ds

=
1

2 log ε−1

∫ ε−2αt+2ε2(1−α)

2ε2(1−α)

Gs(y) ds ∼
1

2 log ε−1

∫ ε−2αt

1

1

2πs
ds → α

2π
(5)

as ε → 0. The “∼” holds because the contribution of s ≲ |y|2 ∼ 1 is negligible.
A special case is when α = 1, i.e., we look at two points that are separated by a distance of

order ε. In this case, (4) and (5) yield

E
[
(uεt (x)− uεt (x+ εy))2

]
= 2E

[
uεt (x)

2
]
− 2E [uεt (x)u

ε
t (x+ εy)] → 0 as ε → 0. (6)

Altogether, this means that the solutions to the Edwards–Wilkinson equation with this scaling are
microscopically constant in the sense that the fluctuations on the “microscopic scale” ε are actually
going to zero. To see nontrivial fluctuations, we have to compare two points at a “mesoscopic scale”
εα.

2 Semilinear stochastic heat equations in d = 2

Having explored the behavior of the critical-dimension Edwards–Wilkinson equation, let’s now try
to add a nonlinearity. It turns out that a similar story to the Edwards–Wilkinson case can be
obtained by considering the semilinear equation

duεt (x) =
1

2
∆uεt (x)dt+

1

log ε−1
σ(uεt (x))dW

ε
t (x), t > 0, x ∈ R2 (7)

and taking the limit as ε → 0. Here we use the notation (dW ε
t (x))t,x for a Gaussian noise that is

white in time and has spatial covariance kernel Gε2 , as above. Our first goal is to show that, for
fixed t > 0 and x ∈ R2, the random variable uεt (x) converges in law as ε → 0 to a nontrivial limiting
random variable. In fact, we will be able to give a strong characterization of this random variable,
depending on the nonlinearity σ.

A little bit of background: this problem was first studied in the linear case σ(u) = βu by Bertini
and Cancrini [3], and the pointwise statistics were studied in this case by Caravenna, Sun, and
Zygouras [4]. They proved the following theorem.

Theorem 2.1 ([4]). Suppose that σ(u) = βu for some β ∈ (0,
√
2π), and uε0(x) ≡ 1. Then, for any

fixed t > 0, x ∈ R2, we have

uεt (x)
law−−→
ε↓0

exp

{
Zβ − 1

2
Var(Zβ)

}
as ε ↓ 0, (8)

where
Zβ ∼ N

(
0, (1− β2/(2π))−1

)
. (9)

On the other hand, in the same setting with β ≥
√
2π, we have

uεt (x)
law−−→
ε↓0

0 as ε ↓ 0.
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The methods of [4] are quite interesting and are based on the polynomial chaos expansion. The
details of this are beyond the scope of this course, but essentially it involves expanding the equation

duεt (x) =
1

2
∆uεt (x)dt+

1

(log ε−1)1/2
uεt (x)dW

ε
t (x)

in powers of the noise. Specifically, one writes

uε;0t (x) = 1

and then
duε;kt (x) =

1

2
∆uε;kt (x)dt+

1

log ε−1
uε;k−1
t (x)dW ε

t (x)

for each k ≥ 1, and then takes the limit as k → ∞. The point is that each one of the uε;ks lives in
a finite Wiener chaos. It turns out that this expansion yields a series that can be re-summed in a
useful way to see the log-normal limit (8) and the limiting variance (7).

In the nonlinear setting, these tools are not available, and in fact we do not expect a log-normal
random variable in the limit either. (Indeed, that cannot hold for a general nonlinearity, since we
have already seen that for the Edwards–Wilkinson equation we get Gaussian limits). However, the
fact that there is a phase transition at β =

√
2π is illuminating. Thus, for a while, we will assume

that σ is Lipschitz and impose the condition

Lip(σ) <
√
2π, (10)

which will be in force until further notice. All of our methods will be based on the mild solu-
tion/Duhamel formula for (7), namely

uεt (x) = Gt ∗ uε0(x) +
1

(log ε−1)1/2

∫ t

0
Gt−s ∗ σ(uεs) dW ε

s . (11)

2.1 Moment bound

The first step in our approach will be to prove a one-point moment bound on the solution, which
will play a critical role in almost every step of the argument.

Proposition 2.2. For each T ∈ (0,∞), there are constants ℓ > 2 and C < ∞, depending only on
σ, T , and uε0, such that

sup
t∈[0,T ],x∈R2

E[|uεt (x)|ℓ] ≤ C.

Proof. We will prove this for ℓ = 2, which is much simpler than for ℓ > 2. We will also assume that
σ(0) = 0. For the proof for some ℓ > 2 and for general σ, see the proof of [6, Proposition 4.4].

We will use the notation
~f~ := sup

x∈R2

(
E|f(x)|2

)1/2
.

From (11) we can write by the Itô isometry that

E[uεt (x)2] = E[(Gt ∗ uε0(x))2]

+
1

log ε−1

∫ t

0

∫∫
Gt−s(x− y1)Gt−s(x− y2)E [σ(uεs(y1))σ(u

ε
s(y2))]Gε2(y1 − y2) dy1 dy2 ds.

(12)
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Now we can estimate

E [σ(uεs(y1))σ(u
ε
s(y2))] ≤

1

2
E
[
σ2(uεs(y1))

]
+

1

2
E
[
σ2(uεs(y1))

]
≤ Lip(σ)2~uεs~2

and use this in (12) (and also use the fact that y1 and y2 play symmetric roles) to get

E[uεt (x)2] = E[(Gt ∗ uε0(x))2]

+
Lip(σ)2

log ε−1

∫ t

0
~uεs~2

∫∫
Gt−s(x− y1)Gt−s(x− y2)Gε2(y1 − y2) dy1 dy2 ds

= E[(Gt ∗ uε0(x))2] +
Lip(σ)2

2π log ε−1

∫ t

0

~uεs~2

2(t− s) + ε2
ds. (13)

Since the right side does not depend on x, we in fact get

~uεt~2 ≤ ~u0~2 +
Lip(σ)2

2π log ε−1

∫ t

0

~uεs~2

2(t− s) + ε2
ds.

Iterating this inequality, we get

~uεt~2 ≤ ~u0~2
∞∑
k=0

(
Lip(σ)2

2π log ε−1

)k ∫∫
0≤s1≤···≤sk≤sk+1=t

k∏
i=1

1

2(si+1 − si) + ε2
ds

≤ ~u0~2
∞∑
k=0

(
Lip(σ)2

2π log ε−1

∫ t

0

1

2s+ ε2
ds

)k

= ~u0~2

(
Lip(σ)2

4π
logε−1(1 + 2tε−2)

)k

=
~u0~2

1− Lip(σ)2

4π logε−1(1 + 2tε−2)

→ ~u0~2

1− Lip(σ)2

2π

as long as Lip(σ) <
√
2π.

Remark 2.3. The above proof only requires that 0 ≤ σ(u) ≤ β|u| for some β <
√
2π, rather than

the Lipschitz condition.

2.2 The martingale

Now we see that our one-point fluctuations are tight. We’ll now begin the process of trying to
characterize the limiting law more precisely. We begin by fixing some T ∈ (0,∞) and defining

UT ;ε
t (x) = GT−t ∗ uεt (x). (14)

We record the following fact.

Lemma 2.4. For fixed T ∈ (0,∞) and X ∈ R2, the process (UT ;ε
t (X))t∈[0,T ] is a martingale.
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Proof. Combining (11) and (14), we have

UT ;ε
t (x) = GT ∗ uε0(x) +

1

(log ε−1)1/2

∫ t

0
GT−s ∗ σ(uεs) dW ε

s .

The first term on the right side does not depend on t, and the integrand in the stochastic integral
on the right side does not depend on t. Thus, it is at least a local martingale in t; it is not difficult
to use the moment bound proved in Proposition 2.2 to see that its quadratic variation is bounded
in L2 and hence it’s a martingale.

Of course, whenever we have a martingale, we like to look at the quadratic variation. Actually,
this was mentioned implicitly in the previous proof, but we note precisely that

d[UT ;ε(x)]t =
1

log ε−1

∫
GT−t(x− y1)GT−t(x− y2)σ(u

ε
t (y1))σ(u

ε
t (y2))Gε−2(y1 − y2) dy1 dy2. (15)

Remark 2.5. Let’s return briefly to the Edwards–Wilkinson setting. In that case, we have σ(u) = β2,
so this becomes

d[UT ;ε(x)]t =
β2

2π(2(T − t) + ε2) log ε−1
. (16)

Thus, in this case, the martingale (UT ;ε
t (x))t is a time-changed Brownian motion, and we recover

the Gaussian statistics as before. The variance at time T is in fact given by

[UT ;ε(x)]T =
β2

2π log ε−1

∫ T

0

dt

2(T − t) + ε2
=

β2

4π
logε−1(1 + 2ε−2T ) → β2

2π

as above.

In the nonlinear setting, the quadratic variation (15) depends on the field uεt . Ideally, we would
write the right side of (15) as a function of UT ;ε

t : then, UT ;ε
t would solve an SDE. However, the right

side of (15) depends on not just the spatial average of uεt but the average of the nonlinearity applied
to uεt . Thus it is not clear how we could derive a closed equation from (15). However, we will see
later that the self-similar structure of the equation indeed allows us to derive such an equation,
approximately.

2.3 Temporal discretization

It turns out to be helpful to discretize the time parameter t. We’ll follow the discretization scheme
given in [7, §6.1]. (For a continuous-time approach, see [6].) However, this discretization should of
course be done according to the logarithmic time scale, such that on each discrete time step, the
contribution of (16) is roughly the same. It is straightforward to see that this time scale is

t = T − εq, q ∈ (0, 2). (17)

(The reason for the cutoff at q = 2 is the “+ε2” appearing in (16). Then we can choose a parameter
δε such that

(log ε−1)−1 ≪ δ2ε ≪ 1,

which means that we have both

δε → 0 and εδε → 0 as ε → 0.
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2.4 Turning off the noise

A key tool in our analysis will be an approximation scheme called turning off the noise. To carry
this out, we first define another parameter γε such that

(log ε−1)−1 ≪ γε ≪ δ2ε ≪ 1.

Then we define

sm = εmδε , s′m = εmδε+γε , tm = T − sm, tm′ = T − s′m.

We will consider an approximation of the Markov chain (U ε;T
tm )δ

−1
ε
m=1 and study its increments. To do

this, we will consider the problem with the noise “turned off” on each interval [tm, t′m].
Let’s first describe the intuition for this choice. As observed above in (17), the noise contributes

on the scale T − εq. We have discretized q into O(δ−1
ε ) chunks of length δε. Since γε ≪ δε, we

are turning off the noise only for a small chunk of time in terms of the q scale. On the other
hand, when we consider the solution at time t′m after the noise has just been turned off for time
t′m − tm = sm − s′m = εmδε(1− εγε) ≈ εmδε , the solution is actually smooth at spatial scale εmδε/2.
(Recall that the scaling is parabolic so the spatial scale is the square root of the temporal scale.)
Since the time remaining is only T − t′m = s′m = εmδε+γε ≪ εmδε , the solution at the final time T
only effectively sees the solution at time t′m via a constant. This gives us hope that we can reduce
the problem down to a one-dimensional one.

Let’s now an estimate about turning off the noise. From now on, let’s drop the subscript ε on
uεt to save chalk.

Proposition 2.6 (See [7, Proposition 4.1] for a more general statement). Let 0 ≤ τ1 ≤ τ2 ≤ T .
There is a constant C such that the following holds. Suppose that ut satisfies (7) and ũt satisfies
(7) for t ∈ [0,∞) \ [τ1, τ2] and just the ordinary heat equation

∂tũt(x) =
1

2
∆ũt(x) for t ∈ [τ1, τ2].

Then we have, for t ≥ τ2,

E (ut(x)− ũt(x))
2 ≤ C

log ε−1

(
1 + log

t− τ1 + ε2/2

t− τ2 + ε2/2

)
. (18)

Proof. We note that ut = ũt whenever t ≤ τ1. Therefore, if we subtract two copies of the mild
solution formula, we get

ut(x)− ũt(x) =
1

(log ε−1)1/2

∫ τ2

τ1

∫
Gt−s(x− y)σ(us(y)) dW

ε
s (y)

+
1

(log ε−1)1/2

∫ t

τ2

∫
Gt−s(x− y) (σ(us(y))− σ(ũs(y))) dW

ε
s (y).
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Then we can use the Itô isometry to write

E[ut(x)− ũt(x)]
2

=
1

log ε−1

∫ τ2

τ1

∫
Gt−s(x− y1)Gt−s(x− y2)E[σ(us(y1))σ(us(y2))]Gε2(y1 − y2) dy1 dy2 ds

+
1

log ε−1

∫ t

τ2

∫
Gt−s(x− y1)Gt−s(x− y2)E

[
2∏

i=1

(σ(us(yi))− σ(ũs(yi)))

]
Gε2(y1 − y2) dy1 dy2 ds

≤ Lip(σ)2

log ε−1

∫ τ2

τ1

~us~G2(t−s)+ε2(0) ds+
Lip(σ)2

log ε−1

∫ t

τ2

~us − ũs~G2(t−s)+ε2(0) ds

=
Lip(σ)2

4π log ε−1

∫ τ2

τ1

~us~

t− s+ ε2/2
ds+

Lip(σ)2

4π log ε−1

∫ t

τ2

~us − ũs~

t− s+ ε2/2
ds.

By Proposition 2.2, we can bound the first term by

C

log ε−1

∫ τ2

τ1

ds

t− s+ ε2/2
=

C

log ε−1
log

t− τ1 + ε2/2

t− τ2 + ε2/2
.

Altogether, this means that if we define

f(t) := ~ut − ũt~,

then for t ∈ [τ2, T ], we have,

f(t) ≤ C

log ε−1
log

t− τ1 + ε2/2

t− τ2 + ε2/2
+

Lip(σ)2

4π log ε−1

∫ t

τ2

f(s)

t− s+ ε2/2
ds. (19)

Now by a version of Grönwall’s inequality (see [7, Lemma 4.3]), this implies (18). We note that
again the condition Lip(σ) <

√
2π is key so that an infinite series is summable.

Remark 2.7. We note that this bound works well in the case when τ1 = tm, τ2 = t′m, and t ≥ tm+1.
For in that case, the right side of (18) is

C

log ε−1

(
1 + log

εmδε −O(ε(m+1)δε) + ε2/2

εmδε+γε −O(ε(m+1)δε) + ε2/2

)
≈ C

log ε−1
log ε−γε = Cγε → 0 as ε → 0.

In fact, since γ
1/2
ε ≪ δε, we can iterate the bound to turn off the noise on each of the intervals

[tm, t′m].

Remark 2.8. We will actually need a slightly stronger version of this lemma, where we allow for the
noise to have already been turned off on some intervals (on both ut and ũt). See [7, Proposition
4.1]. The proof is exactly the same; we omit the precise statement for notational simplicity.

2.5 Replacing the smoothed field with a constant

We now want to show that, if we turn off the noise on [τ1, τ2], then we can replace the solution at
time τ2 by a constant equal to its value at some X ∈ R2 and again not change the solution at a later
too much as long as we only consider the solution close to the point X. Applying this iteratively
will allow us to replace the martingale by a one-dimensional Markov chain.
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Proposition 2.9. Fix X ∈ R2 and T < ∞. There is a constant C = C(σ, u0, T ) < ∞ such that
the following holds. Suppose that (ũt(x)) is as in Proposition 2.6 and ut(x) solves (7) for t ∈ [τ2, T ]
with initial condition

uτ2(x) = ũτ2(X),

so it has spatially constant initial condition at time τ2. Then we have, for all t ∈ [τ2, T ], that

E[(ut − ũt)(x)
2] ≤ C · t− τ2 + |x−X|2

τ2 − τ1
. (20)

Proof. We have

ũτ2(X) =

∫
Gτ2−τ1(X − y)ũτ1(y) dy,

since (ũt) solves the deterministic heat equation on [τ1, τ2] by construction. Therefore, for any
t > τ2, we have

(ut − ũt)(x) =

∫
[Gτ2−τ1(X − y)−Gt−τ1(x− y)] ũτ1(y) dy

+
1√

log ε−1

∫ t

τ2

∫
Gt−s(x− y)[σ(us(y))− σ(ũs(y))] dW

ε
s (y).

We can take the second moment to obtain

E[(ut − ũt)(x)
2]

≤
∫∫

E

[
2∏

i=1

([Gτ2−τ1(X − yi)−Gt−τ1(x− yi)] ũτ1(y))

]
dy1 dy2

+
β2

log ε−1

∫ t

τ2

∫∫
Gε2(y1 − y2)E

[
2∏

i=1

(Gt−s(x− yi)|us(yi)− ũs(yi)|)

]
dy1 dy2 ds

=: I1 + I2. (21)

For I1, we use the Cauchy–Schwarz inequality on the probability space to write

I1 ≤

(∫ 2∏
i=1

(
[Gτ2−τ1(X − yi)−Gt−τ1(x− yi)]

(
Eũτ1(y)2

)1/2)
dy

)

≤ C∥Gτ2−τ1(X − ·)−Gt−τ1(x− ·)∥2L1(R2) ≤ C
t− τ2 + |X − x|2

τ2 − τ1
,

where we used the moment bound (Proposition 2.2), and then Pinsker’s inequality; see [7, (5.8)] for
details.

For I2, we write using Young’s inequality |ab| ≤ 1
2(a

2 + b2) that

I2 ≤
β2

2 log ε−1

2∑
j=1

∫ t

τ2

∫∫
Gε2(y1 − y2)E|us(yj)− ũs(yj)|2

2∏
i=1

Gt−s(x− yi) dy1 dy2 ds

≤ β2

log ε−1

∫ t

τ2

∫
Gt−s+ε2(x− y)Gt−s(x− y)E|us(y)− ũs(y)|2 dy ds

=
β2

4π log ε−1

∫ t

τ2

1

t− s+ ε2/2

∫
G (t−s)(t−s+ε2)

2(t−s)+ε2

(x− y)E|us(y)− ũs(y)|2 dy ds.

11



Now we use the last two inequalities in (21) to get, if we define

ft(x) = E[(ut − ũt)(x)
2],

that

ft(x) ≤ C
t− τ2 + |X − x|2

τ2 − τ1
+

β2

4π log ε−1

∫ t

τ2

1

t− s+ ε2/2

∫
G (t−s)(t−s+ε2)

2(t−s)+ε2

(x− y)fs(y) dy ds.

From this we use a Grönwall-type argument to derive (20).

Remark 2.10. Again, this bound works well when τ1 = tm, τ2 = t′m, t ≥ tm+1, and |x−X| ≪ T−tm.
In this setting, the right side of (20) becomes

C · ε
mδε+γε + |x−X|2

εmδε − εmδε+γε
= C · ε

γε + ε−mδε |x−X|2

1− εγε
,

and this is small for small ε.

Remark 2.11. Similarly to the situation described in Remark 2.8, we will need a slightly stronger
variant of this lemma that allows the noise to have also been turned off at certain points in the past.

2.6 Defining the Markov chain

Fix T > 0 and X ∈ R2. Choose some ζε such that

(log ε−1)−1 ≪ ζε ≪ 1

and then define

M1 := ⌈δ−1
ε logε T ⌉ − 1;

M2 := ⌈δ−1
ε (2− ζε)⌉,

which will be the starting and ending points of the Markov chain. If T is order 1, we have

M1 ∈ {−1, 0} for sufficiently small ε,

and we note that
M2 ≈ 2δ−1

ε for small ε.

We now define a Markov chain (Ym)M2
m=M1

. We give an informal description of it as follows.
First, we define a process (wt(x))t∈[0,T ],x∈R2 which satisfies (7), except that on intervals of the form
[tm, t′m] it instead satisfies the ordinary heat equation, and at each time t′m the solution is replaced
by the spatially-constant value wt′m(X).

Lemma 2.12. We have
lim
ε→0

E|YM2 − uT (X)|2 = 0.

The proof of this lemma is essentially an inductive application of Propositions 2.6 and 2.9, noting
that the right sides are small by Remarks 2.7 and 2.10. The details take some time to work out, so
we won’t discuss them here and refer the reader to [7, Proposition 7.1].

Lemma 2.13. The process (Ym)M2
m=M1

is a Markov chain and also a (discrete) martingale.

12



This follows essentially from the definition and the fact that the evolution preserves the mean.
We have now discretized the problem and reduced it to studying a one-dimensional martingale.

What remains is to determine the statistics of the increments of this martingale.
We define

Jε(q, a) =
1

2
√
π

(
E[σ2(uε2−q(0)) | u0 ≡ a]

)2
.

Lemma 2.14. The function Jε : [0, 2] × R → R is equicontinuous on compact sets. Therefore, for
any sequence εk ↓ 0, there is a subsequence εkn ↓ 0 and a continuous function J : [0, 2] × R → R
such that Jε → J uniformly on compact sets.

We note that

Ym+1 = Ym +
1√

log ε−1

∫ tm

t′m

∫
Gt′m+1−t′m

(X − y)σ(ws(y)) dW
ε
s (y), (22)

where (wt(x)) satisfies (7) with initial condition

wt′m(x) = Ym.

Then we can compute from (22) that

E[Y 2
m+1 | Ym = a]

=
1

log ε−1

∫ tm+1

t′m

∫
Gt′m+1−s(X − y1)Gt′m+1−s(X − y2)Gε2(y1 − y2)

× E [σ(ws(y1))σ(ws(y2))] dy1 dy2 ds

≈ 1

log ε−1

∫ tm+1

t′m

J(2− logε(tm+1 − s), a)

∫
Gt′m+1−s(X − y)2 dy ds

≈ J(2−mδε, a)

log ε−1

∫ tm+1

t′m

∫
Gt′m+1−s(X − y)2 dy ds

≈ δεJ
2
ε (2−mδε, a). (23)

(For details on the approximations, see [7, Proposition 7.3].) We used in particular the equicontinuity
of Jε here.

Now, it is a consequence of Lemma 2.14 and (23) as well as [12, §11.2] then the process
(Y⌈δ−1

ε q)q∈[0,2] is approaching the solution to the SDE

dX(q) = J(2− q,X(q))dB(q);

X(0) = a

along the subsequence εk ↓ 0. (Recall that, at this point, J depends on the subsequence!)
At this point, we would really like to characterize the limiting object J , and in particular to show

that it is unique and thus the convergence Jε → J holds in reality, not simply along subsequences.
But at this stage, we have not shown anything about this convergence. It is time to (finally) use
the self-similarity of the problem!
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