Combinatorial Spanning Tree Models for Knot Homologies

Adam Simon Levine

Brandeis University

Knots in Washington XXXIII

Joint work with John Baldwin (Princeton University)

Spanning tree models for knot polynomials

Given a diagram D for a knot or link $K \subset S^{3}$, form the Tait graph or black graph $B(D)$:

- Vertices correspond to black regions in checkerboard coloring of D.
- Edges between two vertices correspond to crossings incident to those regions.

Spanning tree models for knot polynomials

Given a diagram D for a knot or link $K \subset S^{3}$, form the Tait graph or black graph $B(D)$:

- Vertices correspond to black regions in checkerboard coloring of D.
- Edges between two vertices correspond to crossings incident to those regions.

Spanning tree models for knot polynomials

Given a diagram D for a knot or link $K \subset S^{3}$, form the Tait graph or black graph $B(D)$:

- Vertices correspond to black regions in checkerboard coloring of D.
- Edges between two vertices correspond to crossings incident to those regions.

A spanning tree is a connected, simply connected subgraph of $B(D)$ containing all the vertices.

Spanning tree models for knot polynomials

The Alexander polynomial and Jones polynomials of K can be computed as sums of monomials corresponding to spanning trees: e.g.,

$$
\Delta_{K}(t)=\sum_{s \in \operatorname{Trees}(B(D))}(-1)^{a(s)} t^{b(s)}
$$

where $a(s)$ and $b(s)$ are integers determined by s.

Knot Floer homology

Knot Floer homology (Ozsváth-Szabó, Rasmussen): for a link $K \subset S^{3}$, bigraded, finitely generated abelian group.

$$
\widehat{\mathrm{HFK}}(K)=\bigoplus_{a, m} \widehat{\operatorname{HFK}}_{m}(K, a)
$$

Knot Floer homology

Knot Floer homology (Ozsváth-Szabó, Rasmussen): for a link $K \subset S^{3}$, bigraded, finitely generated abelian group.

$$
\widehat{\mathrm{HFK}}(K)=\bigoplus_{a, m} \widehat{\mathrm{HFK}}_{m}(K, a)
$$

- Defined in terms of counts of holomorphic curves in a symmetric product of a Riemann surface.

Knot Floer homology

Knot Floer homology (Ozsváth-Szabó, Rasmussen): for a link $K \subset S^{3}$, bigraded, finitely generated abelian group.

$$
\widehat{\mathrm{HFK}}(K)=\bigoplus_{a, m} \widehat{\mathrm{HFK}}_{m}(K, a)
$$

- Defined in terms of counts of holomorphic curves in a symmetric product of a Riemann surface.
- Categorifies the Alexander polynomial:

$$
\Delta_{K}(t)=\sum_{a, m}(-1)^{m} t^{a} \operatorname{rank} \widehat{\mathrm{HFK}}_{m}(K, a)
$$

Knot Floer homology

Knot Floer homology (Ozsváth-Szabó, Rasmussen): for a link $K \subset S^{3}$, bigraded, finitely generated abelian group.

$$
\widehat{\mathrm{HFK}}(K)=\bigoplus_{a, m} \widehat{\mathrm{HFK}}_{m}(K, a)
$$

- Defined in terms of counts of holomorphic curves in a symmetric product of a Riemann surface.
- Categorifies the Alexander polynomial:

$$
\Delta_{K}(t)=\sum_{a, m}(-1)^{m} t^{a} \operatorname{rank} \widehat{\mathrm{HFK}}_{m}(K, a)
$$

- Detects the genus of the knot (Ozsváth-Szabó):

$$
g(K)=\max \left\{a \mid \widehat{\operatorname{HFK}}_{*}(K, a) \neq 0\right\}=-\min \left\{a \mid \widehat{\operatorname{HFK}}_{*}(K, a) \neq 0\right\}
$$

Knot Floer homology

Knot Floer homology (Ozsváth-Szabó, Rasmussen): for a link $K \subset S^{3}$, bigraded, finitely generated abelian group.

$$
\widehat{\mathrm{HFK}}(K)=\bigoplus_{a, m} \widehat{\mathrm{HFK}}_{m}(K, a)
$$

- Defined in terms of counts of holomorphic curves in a symmetric product of a Riemann surface.
- Categorifies the Alexander polynomial:

$$
\Delta_{K}(t)=\sum_{a, m}(-1)^{m} t^{a} \operatorname{rank} \widehat{\mathrm{HFK}}_{m}(K, a)
$$

- Detects the genus of the knot (Ozsváth-Szabó):
$g(K)=\max \left\{a \mid \widehat{\mathrm{HFK}}_{*}(K, a) \neq 0\right\}=-\min \left\{a \mid \widehat{\mathrm{HFK}}_{*}(K, a) \neq 0\right\}$
- Detects fiberedness: K is fibered if and only if $\widehat{\mathrm{HFK}}_{*}(K, g(K)) \cong \mathbb{Z}$.

Khovanov homology

Reduced Khovanov homology:

$$
\widetilde{\mathrm{Kh}}(K)=\bigoplus_{i, j} \widetilde{\mathrm{Kh}^{i, j}}(K)
$$

Khovanov homology

Reduced Khovanov homology:

$$
\widetilde{\mathrm{Kh}}(K)=\bigoplus_{i, j} \widetilde{\mathrm{Kh}^{i, j}}(K)
$$

- Categorifies the reduced Jones polynomial.

Khovanov homology

Reduced Khovanov homology:

$$
\widetilde{\mathrm{Kh}}(K)=\bigoplus_{i, j} \widetilde{\mathrm{Kh}^{i, j}}(K)
$$

- Categorifies the reduced Jones polynomial.
- Defined as the homology of a complex that is completely combinatorial in its definition, related to representation theory.

Khovanov homology

Reduced Khovanov homology:

$$
\widetilde{\mathrm{Kh}}(K)=\bigoplus_{i, j} \widetilde{\mathrm{Kh}^{i, j}}(K)
$$

- Categorifies the reduced Jones polynomial.
- Defined as the homology of a complex that is completely combinatorial in its definition, related to representation theory.
- (Ozsváth-Szabó) There is a spectral sequence whose E_{2} page is $\widetilde{\mathrm{Kh}}(\bar{K})$ and whose E_{∞} page is $\widehat{\mathrm{HF}}(\Sigma(K))$, the Heegaard Floer homology of the branched double cover of K. Hence $\operatorname{rank} \widehat{\mathrm{Kh}}(\bar{K}) \geq \operatorname{rank} \widehat{\mathrm{HF}}(\Sigma(K))$.

Khovanov homology

Reduced Khovanov homology:

$$
\widetilde{\mathrm{Kh}}(K)=\underset{i, j}{\bigoplus} \widetilde{\mathrm{Kh}^{i, j}}(K)
$$

- Categorifies the reduced Jones polynomial.
- Defined as the homology of a complex that is completely combinatorial in its definition, related to representation theory.
- (Ozsváth-Szabó) There is a spectral sequence whose E_{2} page is $\widetilde{\mathrm{Kh}}(\bar{K})$ and whose E_{∞} page is $\widehat{\mathrm{HF}}(\Sigma(K))$, the Heegaard Floer homology of the branched double cover of K. Hence rank $\widehat{K h}(\bar{K}) \geq \operatorname{rank} \widehat{\mathrm{HF}}(\Sigma(K))$.
- (Kronheimer-Mrowka) Similar spectral sequence from $\overline{\mathrm{Kh}}(K)$ to the instanton knot Floer homology of K, which detects the unknot. Hence $\mathrm{Kh}(K) \cong \mathbb{Z}$ iff K is the unknot.

The δ grading

Often, it's helpful to collapse the two gradings into one, called the δ grading.

$$
\widehat{\mathrm{HFK}}^{\delta}(K)=\bigoplus_{a-m=\delta} \widehat{\mathrm{HFK}}_{m}(K, a) \quad \widetilde{\mathrm{Kh}}_{\delta}(K)=\bigoplus_{i-2 j=\delta} \widetilde{\mathrm{Kh}}^{i, j}(K)
$$

The δ grading

Often, it's helpful to collapse the two gradings into one, called the δ grading.

$$
\widehat{\mathrm{HFK}}^{\delta}(K)=\bigoplus_{a-m=\delta} \widehat{\mathrm{HFK}}_{m}(K, a) \quad \widetilde{\mathrm{Kh}}_{\delta}(K)=\bigoplus_{i-2 j=\delta} \widetilde{\mathrm{Kh}}^{i, j}(K)
$$

Theorem (Manolescu-Ozsváth)

If K is a (quasi-) alternating link, then $\widehat{\mathrm{HFK}}(K ; \mathbb{F})$ and $\widetilde{\mathrm{Kh}}(K ; \mathbb{F})$ are both supported in a single δ grading, namely $\delta=-\sigma(K) / 2$, where $\mathbb{F}=\mathbb{Z} / 2 \mathbb{Z}$.

The δ grading

Often, it's helpful to collapse the two gradings into one, called the δ grading.

$$
\widehat{\mathrm{HFK}}^{\delta}(K)=\bigoplus_{a-m=\delta} \widehat{\mathrm{HFK}}_{m}(K, a) \quad \widetilde{\mathrm{Kh}}_{\delta}(K)=\bigoplus_{i-2 j=\delta} \widetilde{\mathrm{Kh}}^{i, j}(K)
$$

Theorem (Manolescu-Ozsváth)

If K is a (quasi-) alternating link, then $\widehat{\mathrm{HFK}}(K ; \mathbb{F})$ and $\widetilde{\mathrm{Kh}}(K ; \mathbb{F})$ are both supported in a single δ grading, namely $\delta=-\sigma(K) / 2$, where $\mathbb{F}=\mathbb{Z} / 2 \mathbb{Z}$.

Conjecture

For any ℓ-component link K,

$$
2^{\ell-1} \operatorname{rank} \widetilde{\mathrm{Kh}}_{\delta}(K ; \mathbb{F}) \geq \operatorname{rank} \widehat{\mathrm{HFK}}^{\delta}(K ; \mathbb{F})
$$

Can we find explicit spanning tree complexes for $\widehat{\operatorname{HFK}}(K)$ and $\widetilde{\mathrm{Kh}}(K)$? Specifically, want to find a complex C such that:

- Generators of C correspond to spanning trees of $B(D)$;
- The homology of C is $\widehat{\mathrm{HFK}}(K)$ or $\widetilde{\mathrm{Kh}}(K)$;
- The differential on C can be written down explicitly.

Spanning tree complexes

Can we find explicit spanning tree complexes for $\widehat{\mathrm{HFK}}(K)$ and $\widehat{K h}(K)$? Specifically, want to find a complex C such that:

- Generators of C correspond to spanning trees of $B(D)$;
- The homology of C is $\widehat{\mathrm{HFK}}(K)$ or $\widetilde{\mathrm{Kh}}(K)$;
- The differential on C can be written down explicitly.

Theorem (Baldwin-L., Roberts, Jaeger, Manion)

 Yes.
Earlier results

- Ozsváth and Szabó constructed a Heegaard diagram compatible with K, such that the generator of the knot Floer complex correspond to spanning trees, the differential depends on counting holomorphic disks, which is hard.

Earlier results

- Ozsváth and Szabó constructed a Heegaard diagram compatible with K, such that the generator of the knot Floer complex correspond to spanning trees, the differential depends on counting holomorphic disks, which is hard.
- Wehrli and Champarnerkar-Kofman showed that the standard Khovanov complex reduces to a complex generated by spanning trees, but they weren't able to describe the differential explicitly.

Cube of resolutions

Label the crossings c_{1}, \ldots, c_{n}. For $I=\left(i_{1}, \ldots, i_{n}\right) \in\{0,1\}^{n}$, let D_{l} be the diagram gotten by taking the i_{j}-resolution of c_{j} :

Cube of resolutions

Label the crossings c_{1}, \ldots, c_{n}. For $I=\left(i_{1}, \ldots, i_{n}\right) \in\{0,1\}^{n}$, let D_{l} be the diagram gotten by taking the i_{j}-resolution of c_{j} :

Let $|I|=i_{1}+\cdots+i_{n}$, and let $\ell_{I}=$ be the number of components of D_{l}.

Cube of resolutions

Resolutions correspond to spanning subgraphs of $B(D)$, and connected resolutions correspond to spanning trees.

Cube of resolutions

Resolutions correspond to spanning subgraphs of $B(D)$, and connected resolutions correspond to spanning trees.

Cube of resolutions

Resolutions correspond to spanning subgraphs of $B(D)$, and connected resolutions correspond to spanning trees.

Let $R(D)=\left\{I \in\{0,1\}^{n} \mid \ell_{I}=1\right\}$. For $I, I^{\prime} \in R(D)$, we say I^{\prime} is a double successor of l if l^{\prime} is gotten by changing two 0 s to 1 s .

Spanning tree model for HFK

- Let $\mathbb{F}(T)$ be the ring of rational functions in a formal variable T.
- Let $\mathbb{F}(T)$ be the ring of rational functions in a formal variable T.
- Label the edges of $D e_{1}, \ldots, e_{2 n}$. For each $I \in R(D)$, we define Y_{l} to be a vector space over $\mathbb{F}(T)$ with generators $y_{1}, \ldots, y_{2 n}$, satisfying a single linear relation whose coefficients are powers of T depending on the order in which $e_{1}, \ldots, e_{2 n}$ occur in D_{1}.
- Let $\mathbb{F}(T)$ be the ring of rational functions in a formal variable T.
- Label the edges of $D e_{1}, \ldots, e_{2 n}$. For each $I \in R(D)$, we define Y_{l} to be a vector space over $\mathbb{F}(T)$ with generators $y_{1}, \ldots, y_{2 n}$, satisfying a single linear relation whose coefficients are powers of T depending on the order in which $e_{1}, \ldots, e_{2 n}$ occur in D_{l}.
- Let

$$
C(D)=\bigoplus_{l \in R(D)} \Lambda^{*}\left(Y_{l}\right) .
$$

Declare the grading of $\Lambda^{*}\left(Y_{l}\right)$ to be $\frac{1}{2}\left(|I|-n_{-}(D)\right)$.

Spanning tree model for HFK

For each double successor pair, we define a linear map

$$
f_{l, I^{\prime}}: \Lambda^{*}\left(Y_{l}\right) \rightarrow \Lambda^{*}\left(Y_{l^{\prime}}\right)
$$

which is (almost always) a vector space isomorphism. Let

$$
\partial_{D}: C(D) \rightarrow C(D)
$$

be the sum of all the maps $f_{l, l^{\prime}}$.

Spanning tree model for HFK

For each double successor pair, we define a linear map

$$
f_{l, I^{\prime}}: \Lambda^{*}\left(Y_{l}\right) \rightarrow \Lambda^{*}\left(Y_{l^{\prime}}\right)
$$

which is (almost always) a vector space isomorphism. Let

$$
\partial_{D}: C(D) \rightarrow C(D)
$$

be the sum of all the maps $f_{l, l^{\prime}}$.

$$
\mathrm{gr}=-1 \quad \mathrm{gr}=0
$$

Spanning tree model for HFK

Theorem (Baldwin-L. 2011)

For any diagram D of an ℓ-component link $K,\left(C(D), \partial_{D}\right)$ is a chain complex, and

$$
H_{*}\left(C(D), \partial_{D}\right) \cong \widehat{\operatorname{HFK}}(K ; \mathbb{F}) \otimes \mathbb{F}(T)^{2 n-\ell}
$$

where $\widehat{\mathrm{HFK}}(K)$ is equipped with its δ grading.

Spanning tree model for Kh

- Roberts defined a complex consisting of a copy of $\mathbb{F}\left(X_{1}, \ldots, X_{2 n}\right)$ for each $I \in R(D)$, and a nonzero differential for each double successor pair I, I^{\prime}, which is multiplication by some element of the field determined by the two two-component resolutions in between I and I^{\prime}. The grading is the same as in our complex.

Spanning tree model for Kh

- Roberts defined a complex consisting of a copy of $\mathbb{F}\left(X_{1}, \ldots, X_{2 n}\right)$ for each $I \in R(D)$, and a nonzero differential for each double successor pair I, I^{\prime}, which is multiplication by some element of the field determined by the two two-component resolutions in between $/$ and I^{\prime}. The grading is the same as in our complex.
- Jaeger proved that when K is a knot, the homology of this complex is $\operatorname{Kh}(K ; \mathbb{F}) \otimes \mathbb{F}\left(X_{1}, \ldots, X_{2 n}\right)$, with its δ grading.

Spanning tree model for Kh

- Roberts defined a complex consisting of a copy of $\mathbb{F}\left(X_{1}, \ldots, X_{2 n}\right)$ for each $I \in R(D)$, and a nonzero differential for each double successor pair I, I^{\prime}, which is multiplication by some element of the field determined by the two two-component resolutions in between $/$ and I^{\prime}. The grading is the same as in our complex.
- Jaeger proved that when K is a knot, the homology of this complex is $\widehat{\mathrm{Kh}}(K ; \mathbb{F}) \otimes \mathbb{F}\left(X_{1}, \ldots, X_{2 n}\right)$, with its δ grading.
- Manion showed how to do this with coefficients in \mathbb{Z} rather than \mathbb{F}. The resulting homology theory is odd Khovanov homology.

Khovanov homology

Khovanov associates a vector space V_{I} of dimension $2^{\ell_{1}-1}$ to each resolution, and a map $d_{l, l \prime}: V_{l} \rightarrow V_{l}^{\prime}$ whenever l^{\prime} is an immediate successor of I. Let $\partial_{\text {Kh }}$ be the differential of this complex.

Khovanov homology

Khovanov associates a vector space V_{I} of dimension $2^{\ell_{1}-1}$ to each resolution, and a map $d_{l, l \prime}: V_{l} \rightarrow V_{l}^{\prime}$ whenever l^{\prime} is an immediate successor of I. Let $\partial_{\text {Kh }}$ be the differential of this complex.

$\widehat{K h}(K)$ is defined to be $H_{*}\left(\partial_{\mathrm{Kh}}\right)$.

Twisted Khovanov homology

Roberts: Let $\mathcal{F}=\mathbb{F}\left(X_{1}, \ldots, X_{2 n}\right)$, and let $\mathcal{V}_{l}=V_{l} \otimes \mathcal{F}$. Define an internal differential ∂_{l} on $\mathcal{V}_{\text {l }}$ such that

$$
H_{*}\left(\mathcal{V}_{l}, \partial_{l}\right)= \begin{cases}\mathcal{V}_{l} & \ell_{l}=1 \\ 0 & \ell_{l}>1 .\end{cases}
$$

Let $\partial_{V}=\sum_{l} \partial_{I}$. By choosing ∂_{l} carefully, we can arrange that $\partial_{V} \partial_{\mathrm{Kh}}=\partial_{\mathrm{Kh}} \partial_{V}$, so that $\left(\partial_{V}+\partial_{\mathrm{Kh}}\right)^{2}=0$.

Twisted Khovanov homology

Twisted Khovanov homology

The filtration by $|I|$ induces a spectral sequence.

Twisted Khovanov homology

The filtration by $|I|$ induces a spectral sequence.

- The d_{0} differential is ∂_{V}, which kills all \mathcal{V}_{l} with $\ell_{l}>1$, so the E_{1} page consists of a copy of \mathcal{F} for each spanning tree.

Twisted Khovanov homology

The filtration by $|I|$ induces a spectral sequence.

- The d_{0} differential is ∂_{V}, which kills all \mathcal{V}_{l} with $\ell_{1}>1$, so the E_{1} page consists of a copy of \mathcal{F} for each spanning tree.
- The d_{1} differential is zero, since no two connected resolutions are connected by an edge, so $E_{2}=E_{1}$.

Twisted Khovanov homology

The filtration by $|I|$ induces a spectral sequence.

- The d_{0} differential is ∂_{V}, which kills all \mathcal{V}_{l} with $\ell_{1}>1$, so the E_{1} page consists of a copy of \mathcal{F} for each spanning tree.
- The d_{1} differential is zero, since no two connected resolutions are connected by an edge, so $E_{2}=E_{1}$.
- The d_{2} differential has a nonzero component for every pair of double successors.

Twisted Khovanov homology

The filtration by $|I|$ induces a spectral sequence.

- The d_{0} differential is ∂_{V}, which kills all \mathcal{V}_{l} with $\ell_{1}>1$, so the E_{1} page consists of a copy of \mathcal{F} for each spanning tree.
- The d_{1} differential is zero, since no two connected resolutions are connected by an edge, so $E_{2}=E_{1}$.
- The d_{2} differential has a nonzero component for every pair of double successors.
- All higher differentials vanish for grading reasons, so $H_{*}\left(E_{2}, d_{2}\right) \cong E_{\infty}$.

Twisted Khovanov homology

The filtration by $|I|$ induces a spectral sequence.

- The d_{0} differential is ∂_{V}, which kills all \mathcal{V}_{l} with $\ell_{l}>1$, so the E_{1} page consists of a copy of \mathcal{F} for each spanning tree.
- The d_{1} differential is zero, since no two connected resolutions are connected by an edge, so $E_{2}=E_{1}$.
- The d_{2} differential has a nonzero component for every pair of double successors.
- All higher differentials vanish for grading reasons, so $H_{*}\left(E_{2}, d_{2}\right) \cong E_{\infty}$.
Roberts showed that the resulting homology is a link invariant. Jaeger showed that if K is a knot, this homology is isomorphic to $\widehat{\mathrm{Kh}}(K) \otimes \mathcal{F}$.

Twisted Khovanov homology

Twisted Khovanov homology

Cube of resolutions for HFK

Let V be a \mathbb{F}-vector space of rank 2. Manolescu showed that there is an unoriented skein sequence for $\widehat{\mathrm{HFK}}$:

Cube of resolutions for HFK

Let V be a \mathbb{F}-vector space of rank 2. Manolescu showed that there is an unoriented skein sequence for HFK:

Essentially, we need these extra powers of V because $\widehat{\text { HFK }}$ of a link is "too big." For example, $\widehat{\text { HFK }}$ of the Hopf link has rank 4, while both resolutions at a crossing are unknots, for which $\widehat{\mathrm{HFK}}$ has rank 1. This is the big difference between $\widehat{\mathrm{HFK}}$ and other invariants $(\widetilde{\mathrm{Kh}}(K), \widehat{\mathrm{HF}}(\Sigma(K))$, instanton knot Floer homology, etc.)

Cube of resolutions of HFK

Iterating this (à la Ozsváth-Szabó), we get a cube of resolutions for $\widehat{\mathrm{HFK}}$: a differential on

$$
\bigoplus_{l \in\{0,1\}^{n}} \widehat{\operatorname{HFK}}\left(K_{l}\right) \otimes V^{m-\ell_{l}}
$$

consisting of a sum of maps

$$
f_{l}: \widehat{\mathrm{HFK}}\left(K_{l}\right) \otimes V^{\otimes m-\ell_{l}} \rightarrow \widehat{\mathrm{HFK}}\left(K_{l^{\prime}}\right) \otimes V^{\otimes m-\ell^{\prime}}
$$

for every pair I, I^{\prime}, whose homology is $\widehat{\mathrm{HFK}}(K) \otimes V^{\otimes m-\ell}$.

Cube of resolutions of HFK

- The E_{1} page of the resulting spectral sequence can be described explicitly, but the homology is not an invariant of K.

Cube of resolutions of HFK

- The E_{1} page of the resulting spectral sequence can be described explicitly, but the homology is not an invariant of K.
- If we use twisted coefficients instead, with coefficients in $\mathbb{F}(T)$, we can arrange that $\operatorname{HFK}\left(K_{l}\right)=0$ whenever $\ell_{l}>0$. And then a similar analysis goes though as with Khovanov homology.

Cube of resolutions of HFK

- The E_{1} page of the resulting spectral sequence can be described explicitly, but the homology is not an invariant of K.
- If we use twisted coefficients instead, with coefficients in $\mathbb{F}(T)$, we can arrange that $\operatorname{HFK}\left(K_{l}\right)=0$ whenever $\ell_{l}>0$. And then a similar analysis goes though as with Khovanov homology.
- Can also do something similar for the spectral sequence from $\widehat{K h}(K)$ to $\widehat{\mathrm{HF}}(\Sigma(-K))$. The only problem is that we don't have the grading argument that would imply the spectral sequence collapses after E_{2}. But E_{3} is an invariant (Kriz-Kriz).

