Non-orientable Surfaces in 3- and 4-Manifolds

Adam Simon Levine

Princeton University
University of Virginia Colloquium
October 31, 2013

- Bredon-Wood (1969): Formula for the minimum genus of a non-orientable surface embedded in a lens space.
- Bredon-Wood (1969): Formula for the minimum genus of a non-orientable surface embedded in a lens space.
- Is it possible to do better in four dimensions? I.e., to find an embedding of a lower-genus non-orientable surface in $L(2 k, q) \times I$, representing the nontrivial \mathbb{Z}_{2} homology class?

Introduction

- Bredon-Wood (1969): Formula for the minimum genus of a non-orientable surface embedded in a lens space.
- Is it possible to do better in four dimensions? I.e., to find an embedding of a lower-genus non-orientable surface in $L(2 k, q) \times I$, representing the nontrivial \mathbb{Z}_{2} homology class?

Theorem (L.-Ruberman-Strle)

No.

Minimal genus problems

- If M is a smooth manifold of dimension $n=3$ or 4 , every class in $\mathrm{H}_{2}(M ; \mathbb{Z})$ can be represented by a smoothly embedded, closed, oriented surface.

Minimal genus problems

- If M is a smooth manifold of dimension $n=3$ or 4 , every class in $\mathrm{H}_{2}(M ; \mathbb{Z})$ can be represented by a smoothly embedded, closed, oriented surface.

Question

For each homology class in $x \in H_{2}(M ; \mathbb{Z})$, what is the minimal complexity of an embedded surface representing x ?

Minimal genus problems

- If M is a smooth manifold of dimension $n=3$ or 4 , every class in $\mathrm{H}_{2}(M ; \mathbb{Z})$ can be represented by a smoothly embedded, closed, oriented surface.

Question

For each homology class in $x \in H_{2}(M ; \mathbb{Z})$, what is the minimal complexity of an embedded surface representing x ?

- $n=4$: can always find connected surfaces, so complexity just means genus.

Minimal genus problems

- If M is a smooth manifold of dimension $n=3$ or 4 , every class in $\mathrm{H}_{2}(M ; \mathbb{Z})$ can be represented by a smoothly embedded, closed, oriented surface.

Question

For each homology class in $x \in H_{2}(M ; \mathbb{Z})$, what is the minimal complexity of an embedded surface representing x ?

- $n=4$: can always find connected surfaces, so complexity just means genus.
- $n=3$: have to be a bit careful about how to handle disconnected surfaces. Thurston semi-norm on $\mathrm{H}_{2}(M ; \mathbb{Q})$.

Minimal genus problems in three dimensions

- If $M=\Sigma_{g} \times S^{1}$, or more generally any Σ_{g} bundle over S^{1}, the homology class [$\left.\Sigma_{g} \times\{\mathrm{pt}\}\right]$ cannot be represented by a surface of lower genus. (Elementary algebraic topology.)

Minimal genus problems in three dimensions

- If $M=\Sigma_{g} \times S^{1}$, or more generally any Σ_{g} bundle over S^{1}, the homology class [$\Sigma_{g} \times\{\mathrm{pt}\}$] cannot be represented by a surface of lower genus. (Elementary algebraic topology.)
- If Σ is a leaf of a taut foliation on M, then Σ minimizes complexity in its homology class (Thurston, 1970s).

Minimal genus problems in three dimensions

- If $M=\Sigma_{g} \times S^{1}$, or more generally any Σ_{g} bundle over S^{1}, the homology class [$\left.\Sigma_{g} \times\{\mathrm{pt}\}\right]$ cannot be represented by a surface of lower genus. (Elementary algebraic topology.)
- If Σ is a leaf of a taut foliation on M, then Σ minimizes complexity in its homology class (Thurston, 1970s).
- If $\Sigma \subset M$ minimizes complexity in its homology class, then there exists a taut foliation on M of which Σ is a leaf (Gabai, 1980s).

Minimal genus problems in four dimensions

- In $\mathbb{C P}^{2}$, the solution set of a generic homogenous polynomial of degree d is a surface of genus $(d-1)(d-2) / 2$, representing d times a generator of $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$.

Minimal genus problems in four dimensions

- In $\mathbb{C} P^{2}$, the solution set of a generic homogenous polynomial of degree d is a surface of genus $(d-1)(d-2) / 2$, representing d times a generator of $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$.

Theorem (Thom conjecture: Kronheimer-Mrowka, 1994)

If $\Sigma \subset \mathbb{C} P^{2}$ is a surface of genus g representing d times a generator, then

$$
g \geq \frac{(d-1)(d-2)}{2}
$$

Minimal genus problems in four dimensions

- In $\mathbb{C} P^{2}$, the solution set of a generic homogenous polynomial of degree d is a surface of genus $(d-1)(d-2) / 2$, representing d times a generator of $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$.

Theorem (Thom conjecture: Kronheimer-Mrowka, 1994)

If $\Sigma \subset \mathbb{C} P^{2}$ is a surface of genus g representing d times a generator, then

$$
g \geq \frac{(d-1)(d-2)}{2}
$$

Theorem (Symplectic Thom conjecture: Ozsváth-Szabó, 2000)

If X is a symplectic 4-manifold, and $\Sigma \subset X$ is a symplectic surface, then Σ minimizes genus in its homology class.

Non-orientable surfaces

- Let

$$
F_{h}=\underbrace{\mathbb{R P}^{2} \# \cdots \# \mathbb{R P}^{2}}_{h \text { copies }}
$$

the non-orientable surface of genus h.

Non-orientable surfaces

- Let

$$
F_{h}=\underbrace{\mathbb{R P}^{2} \# \cdots \# \mathbb{R P}^{2}}_{h \text { copies }}
$$

the non-orientable surface of genus h.

- For any M of dimension 3 or 4, any class in $H_{2}\left(M ; \mathbb{Z}_{2}\right)$ can be represented by a non-orientable surface.

Non-orientable surfaces

- Let

$$
F_{h}=\underbrace{\mathbb{R P}^{2} \# \cdots \# \mathbb{R P}^{2}}_{h \text { copies }}
$$

the non-orientable surface of genus h.

- For any M of dimension 3 or 4, any class in $H_{2}\left(M ; \mathbb{Z}_{2}\right)$ can be represented by a non-orientable surface.
- An embedding $F_{h} \subset M^{3}$ must represent a nontrivial class in $H_{2}\left(M ; \mathbb{Z}_{2}\right)$. In particular, no F_{h} embeds in \mathbb{R}^{3}, but any F_{h} can be immersed in \mathbb{R}^{3}.

Non-orientable surfaces

- Any non-orientable surface can be embedded in \mathbb{R}^{4}. For instance, can embed $\mathbb{R} P^{2}$ as the union of a Möbius band in \mathbb{R}^{3} with a disk in \mathbb{R}_{+}^{4}.

Non-orientable surfaces

- Any non-orientable surface can be embedded in \mathbb{R}^{4}. For instance, can embed $\mathbb{R} P^{2}$ as the union of a Möbius band in \mathbb{R}^{3} with a disk in \mathbb{R}_{+}^{4}.
- Any embedding of F_{h} in a 4-manifold has a normal Euler number: the algebraic intersection number between F_{h} and a transverse pushoff. (Unlike for orientable surfaces, this isn't determined by the homology class of F_{h}.)

Non-orientable surfaces

- Any non-orientable surface can be embedded in \mathbb{R}^{4}. For instance, can embed $\mathbb{R} P^{2}$ as the union of a Möbius band in \mathbb{R}^{3} with a disk in \mathbb{R}_{+}^{4}.
- Any embedding of F_{h} in a 4-manifold has a normal Euler number: the algebraic intersection number between F_{h} and a transverse pushoff. (Unlike for orientable surfaces, this isn't determined by the homology class of F_{h}.)
- A standard $\mathbb{R} P^{2} \subset \mathbb{R}^{4}$ has Euler number ± 2. The connected sum of h of these has Euler number in

$$
\{-2 h,-2 h+4, \ldots, 2 h-4,2 h\} .
$$

Non-orientable surfaces

Theorem (Massey, 1969; conjectured by Whitney, 1940)
For any embedding of F_{h} in \mathbb{R}^{4} (or S^{4}, or any homology 4 -sphere) with normal Euler number e, we have

$$
|e| \leq 2 h \quad \text { and } \quad e \equiv 2 h \quad(\bmod 4) .
$$

Non-orientable surfaces in lens spaces

- For p, q relatively prime, the lens space $L(p, q)$ is the quotient of

$$
S^{3}=\left\{\left.(z, w) \in \mathbb{C}^{2}| | z\right|^{2}+|w|^{2}=1\right\}
$$

by the action of \mathbb{Z} / p generated by

$$
(z, w) \mapsto\left(e^{2 \pi i / p_{z}}, e^{2 \pi i q / p} w\right)
$$

Non-orientable surfaces in lens spaces

- For p, q relatively prime, the lens space $L(p, q)$ is the quotient of

$$
S^{3}=\left\{\left.(z, w) \in \mathbb{C}^{2}| | z\right|^{2}+|w|^{2}=1\right\}
$$

by the action of \mathbb{Z} / p generated by

$$
(z, w) \mapsto\left(e^{2 \pi i / p} z, e^{2 \pi i q / p} w\right)
$$

- Alternate description: glue together two copies of $S^{1} \times D^{2}$ via a gluing map that takes $\{\mathrm{pt}\} \times \partial D^{2}$ in one copy to a curve homologous to

$$
p\left[S^{1} \times\{\mathrm{pt}\}\right]+q\left[\{p \mathrm{pt}\} \times \partial D^{2}\right]
$$

in the other copy.

Non-orientable surfaces in lens spaces

Theorem (Bredon-Wood)

If F_{h} embeds in the lens space $L(2 k, q)$, then $h=N(2 k, q)+2 i$, where $i \geq 0$ and

- $N(2,1)=1$;
- $N(2 k, q)=N\left(2(k-q), q^{\prime}\right)+1$, where $q^{\prime} \in\{1, \ldots, k-q\}$, $q^{\prime} \equiv \pm q(\bmod 2)(k-q)$.
Moreover, all such values of h are realizable.

Non-orientable surfaces in lens spaces

It's quite easy to see the minimal genus surfaces. For instance, $N(8,3)=N(2,1)+1=2$.

Non-orientable surfaces in lens spaces

It's quite easy to see the minimal genus surfaces. For instance, $N(8,3)=N(2,1)+1=2$.

Non-orientable surfaces in lens spaces

It's quite easy to see the minimal genus surfaces. For instance, $N(8,3)=N(2,1)+1=2$.

Non-orientable surfaces in lens spaces

It's quite easy to see the minimal genus surfaces. For instance, $N(8,3)=N(2,1)+1=2$.

Non-orientable surfaces in lens spaces

It's quite easy to see the minimal genus surfaces. For instance, $N(8,3)=N(2,1)+1=2$.

Non-orientable surfaces in lens spaces

It's quite easy to see the minimal genus surfaces. For instance, $N(8,3)=N(2,1)+1=2$.

Non-orientable surfaces in lens spaces

It's quite easy to see the minimal genus surfaces. For instance, $N(8,3)=N(2,1)+1=2$.

Non-orientable surfaces in 3-manifolds

Question

Can we find a general framework for genus bounds for embeddings of non-orientable surfaces in other 3-manifolds?

- Heegaard Floer homology: a package of invariants for 3and 4- manifolds developed by Peter Ozsváth and Zoltán Szabó, using techniques coming from symplectic geometry.
- Heegaard Floer homology: a package of invariants for 3and 4- manifolds developed by Peter Ozsváth and Zoltán Szabó, using techniques coming from symplectic geometry.
- To any closed, oriented, connected 3-manifold M, associate a $\mathbb{Z}[U]$-module $\mathrm{HF}^{+}(M)$.

Heegaard Floer homology

- Heegaard Floer homology: a package of invariants for 3and 4- manifolds developed by Peter Ozsváth and Zoltán Szabó, using techniques coming from symplectic geometry.
- To any closed, oriented, connected 3-manifold M, associate a $\mathbb{Z}[U]$-module $\mathrm{HF}^{+}(M)$.
- $\mathrm{HF}^{+}(M)$ splits as a direct sum

$$
\mathrm{HF}^{+}(M)=\bigoplus_{\mathfrak{s} \in \operatorname{Spin}^{c}(M)} \mathrm{HF}^{+}(M, \mathfrak{s}) .
$$

corresponding to the set of spin${ }^{c}$ structures on M, which is an affine set for $H^{2}(M ; \mathbb{Z})$. All but finitely many summands are 0 .

Heegaard Floer homology

- Heegaard Floer homology: a package of invariants for 3and 4- manifolds developed by Peter Ozsváth and Zoltán Szabó, using techniques coming from symplectic geometry.
- To any closed, oriented, connected 3-manifold M, associate a $\mathbb{Z}[U]$-module $\mathrm{HF}^{+}(M)$.
- $\mathrm{HF}^{+}(M)$ splits as a direct sum

$$
\mathrm{HF}^{+}(M)=\bigoplus_{\mathfrak{s} \in \operatorname{Spin}^{c}(M)} \mathrm{HF}^{+}(M, \mathfrak{s}) .
$$

corresponding to the set of spin^{c} structures on M, which is an affine set for $H^{2}(M ; \mathbb{Z})$. All but finitely many summands are 0 .

- A cobordism W from M_{0} to M_{1}, equipped with a spin ${ }^{c}$ structure \mathfrak{t}, induces a map

$$
F_{W, \mathrm{t}}^{+}: \mathrm{HF}^{+}\left(M_{0},\left.\mathrm{t}\right|_{M_{0}}\right) \rightarrow \mathrm{HF}^{+}\left(M_{1}, \mathrm{t}_{M_{1}}\right) .
$$

Heegaard Floer homology

- When $H_{2}(M ; \mathbb{Z}) \neq 0$, the set of spin^{c} structures on M for which $\mathrm{HF}^{+}(M, \mathfrak{s}) \neq 0$ completely determines the Thurston norm of M, i.e., the minimal complexity of embedded surfaces representing any homology class in $\mathrm{H}_{2}(\mathrm{M} ; \mathbb{Z})$ (Ozsváth-Szabó 2004).

Heegaard Floer homology

- When $H_{2}(M ; \mathbb{Z}) \neq 0$, the set of spin^{c} structures on M for which $\mathrm{HF}^{+}(M, \mathfrak{s}) \neq 0$ completely determines the Thurston norm of M, i.e., the minimal complexity of embedded surfaces representing any homology class in $H_{2}(M ; \mathbb{Z})$ (Ozsváth-Szabó 2004).
- The groups $\mathrm{HF}^{+}(M, \mathfrak{s})$ also determine which homology classes in $H_{2}(M ; \mathbb{Z})$, if any, can be represented by the fiber of a fibration over S^{1}.
- If M is a rational homology sphere (i.e. $H_{1}(M ; \mathbb{Z})$ finite, $\left.H_{2}(M ; \mathbb{Z})=0\right)$, there are finitely many spin ${ }^{c}$ structures, and

$$
\mathrm{HF}^{+}(M, \mathfrak{s}) \cong \mathbb{Z}\left[U, U^{-1}\right] / \mathbb{Z}[U] \oplus \mathrm{f} . \text { g. abelian group }
$$

for each one. Can extract a rational number $d(M, \mathfrak{s})$, called the d-invariant or correction term.

- If M is a rational homology sphere (i.e. $H_{1}(M ; \mathbb{Z})$ finite, $H_{2}(M ; \mathbb{Z})=0$), there are finitely many spin ${ }^{c}$ structures, and

$$
\mathrm{HF}^{+}(M, \mathfrak{s}) \cong \mathbb{Z}\left[U, U^{-1}\right] / \mathbb{Z}[U] \oplus \mathrm{f} . \text { g. abelian group }
$$

for each one. Can extract a rational number $d(M, \mathfrak{s})$, called the d-invariant or correction term.

- M is called an L-space if $\mathrm{HF}^{+}(M)$ is as small as possible:

$$
\mathrm{HF}^{+}(M, \mathfrak{s}) \cong \mathbb{Z}\left[U, U^{-1}\right] / \mathbb{Z}[U]
$$

for each \mathfrak{s}.

Heegaard Floer homology

- If M is a rational homology sphere (i.e. $H_{1}(M ; \mathbb{Z})$ finite, $\left.H_{2}(M ; \mathbb{Z})=0\right)$, there are finitely many spin ${ }^{c}$ structures, and

$$
\mathrm{HF}^{+}(M, \mathfrak{s}) \cong \mathbb{Z}\left[U, U^{-1}\right] / \mathbb{Z}[U] \oplus \mathrm{f} . \mathrm{g} . \text { abelian group }
$$

for each one. Can extract a rational number $d(M, \mathfrak{s})$, called the d-invariant or correction term.

- M is called an L-space if $\mathrm{HF}^{+}(M)$ is as small as possible:

$$
\mathrm{HF}^{+}(M, \mathfrak{s}) \cong \mathbb{Z}\left[U, U^{-1}\right] / \mathbb{Z}[U]
$$

for each \mathfrak{s}.

- Examples: S^{3}, lens spaces, any M with finite π_{1}, branched double covers of (quasi)-alternating links in S^{3}.

Non-orientable surfaces in 3-manifolds

If M is a rational homology sphere, and $x \in H_{2}\left(M ; \mathbb{Z}_{2}\right)$:

- Let φ_{x} be the image of x under

$$
H_{2}\left(M ; \mathbb{Z}_{2}\right) \xrightarrow{\beta} H_{1}(M ; \mathbb{Z}) \xrightarrow{\mathrm{PD}} H^{2}(M ; \mathbb{Z}),
$$

where β is the Bockstein homomorphism. This is an element of order 2 (unless $x=0$).

Non-orientable surfaces in 3-manifolds

If M is a rational homology sphere, and $x \in H_{2}\left(M ; \mathbb{Z}_{2}\right)$:

- Let φ_{x} be the image of x under

$$
H_{2}\left(M ; \mathbb{Z}_{2}\right) \xrightarrow{\beta} H_{1}(M ; \mathbb{Z}) \xrightarrow{\mathrm{PD}} H^{2}(M ; \mathbb{Z}),
$$

where β is the Bockstein homomorphism. This is an element of order 2 (unless $x=0$).

- E.g., if $H_{1}(M ; \mathbb{Z}) \cong H^{2}(M ; \mathbb{Z}) \cong \mathbb{Z} / 2 k$, and x is the nonzero element of $H_{2}\left(M ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$, then $\varphi_{x}=k$.

Non-orientable surfaces in 3-manifolds

If M is a rational homology sphere, and $x \in H_{2}\left(M ; \mathbb{Z}_{2}\right)$:

- Let φ_{x} be the image of x under

$$
H_{2}\left(M ; \mathbb{Z}_{2}\right) \xrightarrow{\beta} H_{1}(M ; \mathbb{Z}) \xrightarrow{\mathrm{PD}} H^{2}(M ; \mathbb{Z}),
$$

where β is the Bockstein homomorphism. This is an element of order 2 (unless $x=0$).

- E.g., if $H_{1}(M ; \mathbb{Z}) \cong H^{2}(M ; \mathbb{Z}) \cong \mathbb{Z} / 2 k$, and x is the nonzero element of $H_{2}\left(M ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$, then $\varphi_{x}=k$.
- Let

$$
\Delta(M, x)=\max _{\mathfrak{s} \in \operatorname{Sin}^{c}(M)}\left(d\left(M, \mathfrak{s}+\varphi_{x}\right)-d(M, \mathfrak{s})\right) \in \frac{1}{2} \mathbb{Z}
$$

Non-orientable surfaces in 3-manifolds

Theorem (via Ni-Wu, 2012)

If M is a rational homology sphere with $H_{1}(M ; \mathbb{Z}) \cong H^{2}(M ; \mathbb{Z}) \cong \mathbb{Z} / 2 k$, and F_{h} embeds in M, then

$$
h \geq 2 \Delta\left(M,\left[F_{h}\right]\right)
$$

Furthermore, if M is an L-space and there is a Floer simple knot representing the class $k \in H_{1}(M ; \mathbb{Z})$, then there exists an embedding $F_{h} \hookrightarrow M$ yielding equality above.

Non-orientable surfaces in lens spaces

Corollary

For the lens space $L(2 k, q)$,

$$
N(2 k, q)=2 \Delta(L(2 k, q), x)
$$

Non-orientable surfaces in lens spaces

Corollary

For the lens space $L(2 k, q)$,

$$
N(2 k, q)=2 \Delta(L(2 k, q), x)
$$

(With Ira Gessel) Can show using Dedekind sums that the RHS satisfies the same recursion as $N(2 k, q)$, giving a new proof of Bredon-Wood.

Non-orientable surfaces in 4-manifolds

Question

Can we do better in 4 dimensions? For instance, can we find an embedding of F_{h} in $M \times I$ that's not allowed in M ?

Non-orientable surfaces in 4-manifolds

Question

Can we do better in 4 dimensions? For instance, can we find an embedding of F_{h} in $M \times I$ that's not allowed in M ?

- Since $\mathbb{R} \mathrm{P}^{2} \hookrightarrow \mathbb{R}^{4}$, we require embeddings carrying a nonzero homology class in $H_{2}\left(M \times I ; \mathbb{Z}_{2}\right)$.

Non-orientable surfaces in 4-manifolds

Question

Can we do better in 4 dimensions? For instance, can we find an embedding of F_{h} in $M \times I$ that's not allowed in M ?

- Since $\mathbb{R P}^{2} \hookrightarrow \mathbb{R}^{4}$, we require embeddings carrying a nonzero homology class in $H_{2}\left(M \times I ; \mathbb{Z}_{2}\right)$.
- More generally, can consider not just $M \times I$, but any homology cobordism between rational homology spheres M_{0} and M_{1} : a compact, oriented 4-manifold W with $\partial W=-M_{0} \sqcup M_{1}$, such that the inclusions $M_{i} \hookrightarrow W$ induce isomorphisms on homology.

Non-orientable surfaces in 4-manifolds

Question

Can we do better in 4 dimensions? For instance, can we find an embedding of F_{h} in $M \times I$ that's not allowed in M ?

- Since $\mathbb{R} \mathrm{P}^{2} \hookrightarrow \mathbb{R}^{4}$, we require embeddings carrying a nonzero homology class in $H_{2}\left(M \times I ; \mathbb{Z}_{2}\right)$.
- More generally, can consider not just $M \times I$, but any homology cobordism between rational homology spheres M_{0} and M_{1} : a compact, oriented 4-manifold W with $\partial W=-M_{0} \sqcup M_{1}$, such that the inclusions $M_{i} \hookrightarrow W$ induce isomorphisms on homology.
- If M_{0} and M_{1} are homology cobordant, then they have the same d-invariants (Ozsváth-Szabó).

Non-orientable surfaces in 4-manifolds

Theorem (L.-Ruberman-Strle)

Let $W: M_{0} \rightarrow M_{1}$ be a homology cobordism between rational homology spheres, and suppose that F_{h} embeds in W with normal Euler number e. Let $\Delta=\Delta\left(M_{0},[F]\right)=\Delta\left(M_{1},[F]\right)$. Then

$$
h \geq 2 \Delta, \quad|e| \leq 2 h-4 \Delta, \quad \text { and } \quad e \equiv 2 h-4 \Delta \quad(\bmod 4)
$$

Non-orientable surfaces in 4-manifolds

Corollary

If F_{h} embeds in $L(2 k, q) \times I$ (or, more generally, in any homology cobordism from $L(2 k, q)$ to itself) with normal Euler number e, representing a nontrivial \mathbb{Z}_{2} homology class, then

$$
h \geq N(2 k, q) \quad \text { and } \quad|e| \leq 2(h-N(2 k, q))
$$

In other words, F_{h} has the same genus and normal Euler number as a stabilization of an embedding in $L(2 k, q)$.

Non-orientable surfaces in 4-manifolds

Corollary

If F_{h} embeds in $L(2 k, q) \times I$ (or, more generally, in any homology cobordism from $L(2 k, q)$ to itself) with normal Euler number e, representing a nontrivial \mathbb{Z}_{2} homology class, then

$$
h \geq N(2 k, q) \quad \text { and } \quad|e| \leq 2(h-N(2 k, q))
$$

In other words, F_{h} has the same genus and normal Euler number as a stabilization of an embedding in $L(2 k, q)$.

- More generally, if M is an L-space and contains a Floer-simple knot in each order-2 homology class, then the minimal genus problem in $M \times I$ (or any homology cobordism from M to itself) is the same as the minimal genus problem in M.

Questions

- Can we find examples where the minimal genus in $M \times I$ is less than that in M ?

Questions

- Can we find examples where the minimal genus in $M \times I$ is less than that in M ?
- There are Seifert fibered L-spaces for which the maximal difference of d invariants is $\frac{1}{2}$, but which don't contain embedded $\mathbb{R P}^{2}$ s. Thus, these manifolds do not contain Floer-simple knots of order 2.

Questions

- Can we find examples where the minimal genus in $M \times I$ is less than that in M ?
- There are Seifert fibered L-spaces for which the maximal difference of d invariants is $\frac{1}{2}$, but which don't contain embedded $\mathbb{R P}^{2}$ s. Thus, these manifolds do not contain Floer-simple knots of order 2.
- What if we only require the surfaces to be topologically locally flat, not smoothly embedded? Or only require the homology cobordisms to be topological manifolds?

Questions

- Can we find examples where the minimal genus in $M \times I$ is less than that in M ?
- There are Seifert fibered L-spaces for which the maximal difference of d invariants is $\frac{1}{2}$, but which don't contain embedded $\mathbb{R P}^{2}$ s. Thus, these manifolds do not contain Floer-simple knots of order 2.
- What if we only require the surfaces to be topologically locally flat, not smoothly embedded? Or only require the homology cobordisms to be topological manifolds?
- If $M=S_{+2}^{3}\left(D_{+}\left(T_{2,3}\right)\right)$, then there is a topological homology cobordism from M to itself that contains an embedded $\mathbb{R} \mathrm{P}^{2}$, but this 4-manifold can't be smoothed.

Questions

- Can we find examples where the minimal genus in $M \times I$ is less than that in M ?
- There are Seifert fibered L-spaces for which the maximal difference of d invariants is $\frac{1}{2}$, but which don't contain embedded $\mathbb{R P}^{2}$ s. Thus, these manifolds do not contain Floer-simple knots of order 2.
- What if we only require the surfaces to be topologically locally flat, not smoothly embedded? Or only require the homology cobordisms to be topological manifolds?
- If $M=S_{+2}^{3}\left(D_{+}\left(T_{2,3}\right)\right)$, then there is a topological homology cobordism from M to itself that contains an embedded $\mathbb{R} \mathrm{P}^{2}$, but this 4-manifold can't be smoothed.
- Is there a locally flat $\mathbb{R} \mathrm{P}^{2}$ in $L(4,1) \times I$?

Non-orientable surfaces in closed, definite 4-manifolds

Theorem (L.-Ruberman-Strle)

Suppose X is a closed, positive definite 4-manifold with $H_{1}(X ; \mathbb{Z})=0$, and F_{h} embeds in X with normal Euler number e. Denote by ℓ the minimal self-intersection of an integral lift of
[F_{h}]. Then

$$
e \equiv \ell-2 h \quad(\bmod 4) \quad \text { and } \quad e \geq \ell-2 h .
$$

Additionally, if $\ell=b_{2}(X)$, then

$$
e \leq 9 b+10 h-16
$$

