Khovanov homology and knot Floer homology for pointed links

John A. Baldwin, Adam Simon Levine, and Sucharit Sarkar

AMS Southeastern Sectional Meeting November 13, 2016

John A. Baldwin, Adam Simon Levine, and Sucharit Sarkar Khovanov homology and knot Floer homology

Conjecture (Rasmussen, Baldwin-L.)

With coefficients in any field \mathbb{F} , for any I-component link $L \subset S^3$ equipped with a basepoint $p \in L$, we have

 $2^{l-1} \operatorname{rank} \widetilde{\operatorname{Kh}}(L, p; \mathbb{F}) \geq \operatorname{rank} \widehat{\operatorname{HFK}}(L; \mathbb{F})$

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture (Rasmussen, Baldwin-L.)

With coefficients in any field \mathbb{F} , for any I-component link $L \subset S^3$ equipped with a basepoint $p \in L$, we have

$$2^{l-1}$$
 rank $\widetilde{\mathsf{Kh}}(L, p; \mathbb{F}) \geq \operatorname{rank} \widehat{\mathsf{HFK}}(L; \mathbb{F})$

Kh(L, p) denotes the reduced (even) Khovanov homology of L.

・ 同 ト ・ ヨ ト ・ ヨ ト

• $\widehat{HFK}(L)$ denotes the knot Floer homology of *L*.

Conjecture (Rasmussen, Baldwin-L.)

With coefficients in any field \mathbb{F} , for any I-component link $L \subset S^3$ equipped with a basepoint $p \in L$, we have

$$2^{l-1}$$
 rank $\widetilde{\mathsf{Kh}}(L, p; \mathbb{F}) \geq \operatorname{rank} \widehat{\mathsf{HFK}}(L; \mathbb{F})$

Kh(L, p) denotes the reduced (even) Khovanov homology of L.

(4 個) (4 回) (4 回)

- $\widehat{HFK}(L)$ denotes the knot Floer homology of *L*.
- Henceforth, we will work over $\mathbb{F} = \mathbb{Z}_2$.

For a link $L \subset S^3$, there are spectral sequences from $\widetilde{Kh}(L)$ to many familiar invariants:

 Heegaard Floer homology of the branched double cover (Ozsváth–Szabó)

(雪) (ヨ) (ヨ)

For a link $L \subset S^3$, there are spectral sequences from $\widetilde{Kh}(L)$ to many familiar invariants:

- Heegaard Floer homology of the branched double cover (Ozsváth–Szabó)
- Instanton knot homology (Kronheimer–Mrowka)

(雪) (ヨ) (ヨ)

For a link $L \subset S^3$, there are spectral sequences from $\widetilde{Kh}(L)$ to many familiar invariants:

- Heegaard Floer homology of the branched double cover (Ozsváth–Szabó)
- Instanton knot homology (Kronheimer–Mrowka)

Corollary

Khovanov homology detects the unknot.

・ 同 ト ・ ヨ ト ・ ヨ ト

For a link $L \subset S^3$, there are spectral sequences from $\widetilde{Kh}(L)$ to many familiar invariants:

- Heegaard Floer homology of the branched double cover (Ozsváth–Szabó)
- Instanton knot homology (Kronheimer–Mrowka)

Corollary

Khovanov homology detects the unknot.

- Monopole Floer homology of the branched double cover (Bloom)
- Instanton Floer homology of the branched double cover (Scaduto)

・ロト ・ 理 ト ・ ヨ ト ・

- Plane Floer homology (Daemi)
- Szabó homology

Skein exact sequences

Let A denote any of the invariants above. Basic properties:

• If L is an L-component unlink, then

$$A(L)\cong \widetilde{\mathsf{Kh}}(L)\cong \mathbb{F}^{2^{l-1}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Skein exact sequences

Let A denote any of the invariants above. Basic properties:

• If *L* is an *L*-component unlink, then

$$\mathsf{A}(L)\cong \widetilde{\mathsf{Kh}}(L)\cong \mathbb{F}^{2^{l-1}}$$

 The maps on A induced by elementary merges and splits agree with those on Kh.

個人 くほん くほん

Skein exact sequences

Let A denote any of the invariants above. Basic properties:

• If *L* is an *L*-component unlink, then

$$\mathsf{A}(L)\cong \widetilde{\mathsf{Kh}}(L)\cong \mathbb{F}^{2^{l-1}}$$

- The maps on A induced by elementary merges and splits agree with those on Kh.
- There is a skein sequence

$$\cdots \rightarrow A(L) \rightarrow A(L_0) \rightarrow A(L_1) \rightarrow A(L) \rightarrow \ldots,$$

Cube spectral sequences

For an *n*-crossing link diagram, *L*, generalize the construction of the skein sequence to obtain a filtered chain complex:

$$X_{\mathcal{A}}(L) = \bigoplus_{v \in \{0,1\}^n} C_{\mathcal{A}}(L_v) \qquad D = \sum_{v \le v'} d_{v,v'}$$

with

 $H_*(X_A(L),D)=A(L).$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

Cube spectral sequences

For an *n*-crossing link diagram, *L*, generalize the construction of the skein sequence to obtain a filtered chain complex:

$$X_{\mathcal{A}}(L) = \bigoplus_{\mathbf{v} \in \{0,1\}^n} C_{\mathcal{A}}(L_{\mathbf{v}}) \qquad D = \sum_{\mathbf{v} \le \mathbf{v}'} d_{\mathbf{v},\mathbf{v}'}$$

with

$$H_*(X_A(L),D)=A(L).$$

Filtering by cube position, we obtain a spectral sequence:

$$E_1(X_A(L), D) = \bigoplus_{\nu \in \{0,1\}^n} A(L_\nu) = \widetilde{\mathsf{CKh}}(L)$$
$$E_2(X_A(L), D) = \widetilde{\mathsf{Kh}}(L)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Cube spectral sequences

For an *n*-crossing link diagram, *L*, generalize the construction of the skein sequence to obtain a filtered chain complex:

$$X_{\mathcal{A}}(L) = \bigoplus_{v \in \{0,1\}^n} C_{\mathcal{A}}(L_v) \qquad D = \sum_{v \le v'} d_{v,v'}$$

with

$$H_*(X_A(L),D)=A(L).$$

Filtering by cube position, we obtain a spectral sequence:

$$E_1(X_A(L), D) = \bigoplus_{\nu \in \{0,1\}^n} A(L_\nu) = \widetilde{\mathsf{CKh}}(L)$$
$$E_2(X_A(L), D) = \widetilde{\mathsf{Kh}}(L)$$

Therefore,

$$\operatorname{rank} \widetilde{\operatorname{Kh}}(L) \geq \operatorname{rank} A(L).$$

(雪) (ヨ) (ヨ)

John A. Baldwin, Adam Simon Levine, and Sucharit Sarkar Khovanov homology and knot Floer homology

Knot Floer homology fails to satisfy this skein sequence. For instance, if L = Hopf link, and $L_0 = L_1 =$ unknot,

rank
$$\widehat{HFK}(L) = 4$$
 rank $\widehat{HFK}(L_0) = \operatorname{rank} \widehat{HFK}(L_1) = 1$

which can't fit into an exact triangle.

(雪) (ヨ) (ヨ)

Knot Floer homology fails to satisfy this skein sequence. For instance, if L = Hopf link, and $L_0 = L_1 =$ unknot,

rank
$$\widehat{HFK}(L) = 4$$
 rank $\widehat{HFK}(L_0) = \operatorname{rank} \widehat{HFK}(L_1) = 1$

which can't fit into an exact triangle.

Definition

A *pointed link* is $\mathcal{L} = (L, \mathbf{p})$, where **p** is a finite set of points on *L*. \mathcal{L} is *nondegenerate* if every component of *L* contains at least one point of **p**.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• Knot Floer homology is really an invariant of non-degenerate pointed links.

 $\widehat{HFK}(L) = \widehat{HFK}(L, \{\text{one point on each component}\}).$

ヘロト ヘアト ヘビト ヘビト

• Knot Floer homology is really an invariant of non-degenerate pointed links.

 $\widehat{HFK}(L) = \widehat{HFK}(L, \{\text{one point on each component}\}).$

 If p₀ ∈ p is on the same component as some other point of p, then

$$\widehat{\mathsf{HFK}}(L,\mathbf{p}) \cong \widehat{\mathsf{HFK}}(L,\mathbf{p} \setminus \{p_0\}) \otimes V, \qquad V = \mathbb{F}_{(0,0)} \oplus \mathbb{F}_{(-1,-1)}.$$

ヘロト ヘアト ヘビト ヘビト

• Knot Floer homology is really an invariant of non-degenerate pointed links.

 $\widehat{HFK}(L) = \widehat{HFK}(L, \{\text{one point on each component}\}).$

 If p₀ ∈ p is on the same component as some other point of p, then

$$\widehat{\mathsf{HFK}}(L,\mathbf{p}) \cong \widehat{\mathsf{HFK}}(L,\mathbf{p} \setminus \{p_0\}) \otimes V, \qquad V = \mathbb{F}_{(0,0)} \oplus \mathbb{F}_{(-1,-1)}.$$

For a pointed link L, let L be the split union of L with an unknot with one marked point. Then

$$\widehat{\mathsf{HFK}}(\hat{\mathcal{L}})\cong \widehat{\mathsf{HFK}}(\mathcal{L})\otimes \textit{W}, \qquad \textit{W}=\mathbb{F}_{(1/2,0)}\oplus \mathbb{F}_{(-1/2,0)}.$$

We will think of this as "unreduced" \widehat{HFK} .

 Manolescu: if p is taken such that (L, p), (L₀, p), and (L₁, p) are all nondegenerate, have a skein sequence:

$$\cdots \to \widehat{\mathsf{HFK}}(-L, \mathbf{p}) \to \widehat{\mathsf{HFK}}(-L_0, \mathbf{p}) \to \widehat{\mathsf{HFK}}(-L_1, \mathbf{p}) \to \cdots$$

伺 とくき とくき とう

 Manolescu: if p is taken such that (L, p), (L₀, p), and (L₁, p) are all nondegenerate, have a skein sequence:

$$\cdots \rightarrow \widehat{\mathsf{HFK}}(-L, \textbf{p}) \rightarrow \widehat{\mathsf{HFK}}(-L_0, \textbf{p}) \rightarrow \widehat{\mathsf{HFK}}(-L_1, \textbf{p}) \rightarrow \cdots$$

 If L is an n-crossing, I-component link diagram, and p is a set of m points with at least one point on each edge, we can iterate to get a filtered complex

$$X(\mathcal{L}) = \bigoplus_{v \in \{0,1\}^n} \widehat{\mathsf{CFK}}(-\mathcal{L}_v) \qquad D = \sum_{v \le v'} d_{v,v'}$$

with

$$H_*(X(\mathcal{L}), D) \cong \widehat{\mathrm{HFK}}(\mathcal{L}) \cong \widehat{\mathrm{HFK}}(L) \otimes V^{\otimes (m-l)}.$$

• If we filter $X(\mathcal{L})$ by cube position:

$$E_{1}(X(\mathcal{L}), D) = \bigoplus_{v \in \{0,1\}^{n}} \widehat{\mathsf{HFK}}(-\mathcal{L}_{v})$$
$$= \bigoplus_{v \in \{0,1\}^{n}} W^{\otimes l_{v}-1} \otimes V^{\otimes m-l_{v}}$$
$$= \bigoplus_{v \in \{0,1\}^{n}} \mathbb{F}^{2^{m-1}}$$

ヘロト ヘアト ヘビト ヘビト

æ

This looks very different from the Khovanov complex!

• If we filter $X(\mathcal{L})$ by cube position:

$$E_{1}(X(\mathcal{L}), D) = \bigoplus_{v \in \{0,1\}^{n}} \widehat{\mathsf{HFK}}(-\mathcal{L}_{v})$$
$$= \bigoplus_{v \in \{0,1\}^{n}} W^{\otimes l_{v}-1} \otimes V^{\otimes m-l_{v}}$$
$$= \bigoplus_{v \in \{0,1\}^{n}} \mathbb{F}^{2^{m-1}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

This looks very different from the Khovanov complex!

• The *E*₂ page isn't an invariant.

• If we filter *X*(*L*) by cube position:

$$E_{1}(X(\hat{\mathcal{L}}), D) = \bigoplus_{v \in \{0,1\}^{n}} \widehat{\mathsf{HFK}}(-\hat{\mathcal{L}}_{v})$$
$$= \bigoplus_{v \in \{0,1\}^{n}} W^{\otimes l_{v}} \otimes V^{\otimes m - l_{v}}$$
$$= \bigoplus_{v \in \{0,1\}^{n}} \mathbb{F}^{2^{m}}$$

This looks very different from the Khovanov complex!

(雪) (ヨ) (ヨ)

- The *E*₂ page isn't an invariant.
- It will be more convenient to do everything with $\hat{\mathcal{L}}$.

 Given a pointed link (*L*, **p**), consider the unreduced Khovanov complex (CKh(*L*), *d*_{Kh}). For each *p* ∈ **p**, have a chain map

$$\xi_p$$
: CKh(L) \rightarrow CKh(L),

and these maps commute and square to 0.

通 とう ほうとう ほうとう

 Given a pointed link (*L*, **p**), consider the unreduced Khovanov complex (CKh(*L*), *d*_{Kh}). For each *p* ∈ **p**, have a chain map

$$\xi_{p}$$
: CKh(L) \rightarrow CKh(L),

and these maps commute and square to 0.

• Let
$$\Lambda_{\mathbf{p}} = \Lambda^*(y_{\rho} \mid \rho \in \mathbf{p})$$
, and define

$$\mathsf{CKh}(L,\mathbf{p}) = \mathsf{CKh}(L) \otimes \Lambda_{\mathbf{p}} \qquad d = d_{\mathsf{Kh}} \otimes 1 + \sum_{\rho \in \mathbf{p}} \xi_{\rho} \otimes y_{\rho}.$$

Let

$$\operatorname{Kh}(L,\mathbf{p}) = H_*(\operatorname{CKh}(L,\mathbf{p}),d).$$

通 とくほ とくほ とう

 Given a pointed link (*L*, **p**), consider the unreduced Khovanov complex (CKh(*L*), *d*_{Kh}). For each *p* ∈ **p**, have a chain map

$$\xi_p$$
: CKh(L) \rightarrow CKh(L),

and these maps commute and square to 0.

• Let
$$\Lambda_{\mathbf{p}} = \Lambda^*(y_{\rho} \mid \rho \in \mathbf{p})$$
, and define

$$\mathsf{CKh}(L,\mathbf{p}) = \mathsf{CKh}(L) \otimes \Lambda_{\mathbf{p}} \qquad d = d_{\mathsf{Kh}} \otimes 1 + \sum_{\rho \in \mathbf{p}} \xi_{\rho} \otimes y_{\rho}.$$

Let

$$\operatorname{Kh}(L,\mathbf{p}) = H_*(\operatorname{CKh}(L,\mathbf{p}),d).$$

・ 回 と ・ ヨ と ・ ヨ と

I'm being lazy about signs; all of this works over Z.

Theorem

Let $\mathcal{L} = (L, \mathbf{p})$ be a pointed link in S^3 , where $|\mathbf{p}| = m > 0$.

• Kh(L, **p**) is a pointed link invariant.

John A. Baldwin, Adam Simon Levine, and Sucharit Sarkar Khovanov hom

Khovanov homology and knot Floer homology

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ .

э

Theorem

Let $\mathcal{L} = (L, \mathbf{p})$ be a pointed link in S^3 , where $|\mathbf{p}| = m > 0$.

- Kh(L, **p**) is a pointed link invariant.
- If p contains a point p that is on the same component of L as some other point of p, then

 $\mathsf{Kh}(L,\mathbf{p})\cong\mathsf{Kh}(L,\mathbf{p}\smallsetminus\{p\})\otimes V.$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Theorem

Let $\mathcal{L} = (L, \mathbf{p})$ be a pointed link in S^3 , where $|\mathbf{p}| = m > 0$.

- $Kh(L, \mathbf{p})$ is a pointed link invariant.
- If p contains a point p that is on the same component of L as some other point of p, then

 $\mathsf{Kh}(L,\mathbf{p})\cong\mathsf{Kh}(L,\mathbf{p}\smallsetminus\{p\})\otimes V.$

• With coefficients in any field \mathbb{F} , and for each point $p \in \mathbf{p}$,

rank $\operatorname{Kh}(L, \mathbf{p}; \mathbb{F}) \leq 2^m \operatorname{rank} \widetilde{\operatorname{Kh}}(L, \mathbf{p}; \mathbb{F}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

When L is a knot this relation is an equality.

Theorem

Let $\mathcal{L} = (L, \mathbf{p})$ be a pointed link in S^3 , where $|\mathbf{p}| = m > 0$.

- $Kh(L, \mathbf{p})$ is a pointed link invariant.
- If p contains a point p that is on the same component of L as some other point of p, then

 $\operatorname{Kh}(L,\mathbf{p})\cong\operatorname{Kh}(L,\mathbf{p}\smallsetminus\{p\})\otimes V.$

• With coefficients in any field \mathbb{F} , and for each point $p \in \mathbf{p}$,

rank $\operatorname{Kh}(L, \mathbf{p}; \mathbb{F}) \leq 2^m \operatorname{rank} \widetilde{\operatorname{Kh}}(L, \mathbf{p}; \mathbb{F}).$

When L is a knot this relation is an equality.

• If *L* is an unlink, then $Kh(L, \mathbf{p})$ is canonically isomorphic to $\widehat{HFK}(\widehat{\mathcal{L}})$, with rank 2^m .

・ 同 ト ・ ヨ ト ・ ヨ ト

 There is an additional filtration on (X(L), D) coming from the internal Alexander gradings on the summands CFK(Lv). Let D⁰ denote the associated graded differential, so that

rank $H_*(X(\hat{\mathcal{L}}), D^0) \ge \operatorname{rank} H_*(X(\hat{\mathcal{L}}), D) = 2^{m-l+1} \operatorname{rank} \widehat{\operatorname{HFK}}(L).$

通 とく ヨ とく ヨ とう

 There is an additional filtration on (X(L), D) coming from the internal Alexander gradings on the summands CFK(L_v). Let D⁰ denote the associated graded differential, so that

rank
$$H_*(X(\hat{\mathcal{L}}), D^0) \ge \operatorname{rank} H_*(X(\hat{\mathcal{L}}), D) = 2^{m-l+1} \operatorname{rank} \widehat{\operatorname{HFK}}(L).$$

We conjecture that

$$H_*(X(\hat{\mathcal{L}}), D^0) \cong \operatorname{Kh}(L, \mathbf{p}; \mathbb{Z}_2),$$

which has rank $\leq 2^m \operatorname{rank} \widetilde{\operatorname{Kh}}(L; \mathbb{Z}_2)$.

 There is an additional filtration on (X(L), D) coming from the internal Alexander gradings on the summands CFK(L_v). Let D⁰ denote the associated graded differential, so that

rank
$$H_*(X(\hat{\mathcal{L}}), D^0) \ge \operatorname{rank} H_*(X(\hat{\mathcal{L}}), D) = 2^{m-l+1} \operatorname{rank} \widehat{\operatorname{HFK}}(L).$$

We conjecture that

$$H_*(X(\hat{\mathcal{L}}), D^0) \cong \operatorname{Kh}(L, \mathbf{p}; \mathbb{Z}_2),$$

which has rank $\leq 2^m \operatorname{rank} \widetilde{\operatorname{Kh}}(L; \mathbb{Z}_2)$.

• This would imply that

$$2^{l-1}$$
 rank $\widetilde{\mathsf{Kh}}(L; \mathbb{Z}_2) \ge \operatorname{rank} \widehat{\mathsf{HFK}}(L).$

Both (X(L), D⁰) and (CKh(L), d) are filtered by cube position, giving rise to spectral sequences.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Both (X(L̂), D⁰) and (CKh(L), d) are filtered by cube position, giving rise to spectral sequences.

Proposition

The E^1 pages of the cube filtrations of $(X(\hat{\mathcal{L}}), D^0)$ and $(CKh(\mathcal{L}), d)$ are naturally isomorphic as chain complexes.

・ 同 ト ・ ヨ ト ・ ヨ ト

Both (X(L), D⁰) and (CKh(L), d) are filtered by cube position, giving rise to spectral sequences.

Proposition

The E^1 pages of the cube filtrations of $(X(\hat{\mathcal{L}}), D^0)$ and $(CKh(\mathcal{L}), d)$ are naturally isomorphic as chain complexes.

 Goal: Construct a filtered chain map on the total complexes realizing the isomorphism on the E¹ page. This would imply the conjecture.

(日本) (日本) (日本)

Both (X(L), D⁰) and (CKh(L), d) are filtered by cube position, giving rise to spectral sequences.

Proposition

The E^1 pages of the cube filtrations of $(X(\hat{\mathcal{L}}), D^0)$ and $(CKh(\mathcal{L}), d)$ are naturally isomorphic as chain complexes.

 Goal: Construct a filtered chain map on the total complexes realizing the isomorphism on the E¹ page. This would imply the conjecture.

・ロット (雪) () () () ()

 Problem is that this requires understanding all of the holomorphic polygons that go into the definition of D⁰.