Ribbon Concordance and Link Homology Theories

Adam Simon Levine (with Ian Zemke, Onkar Singh Gujral)

Duke University

June 3, 2020

- Given knots $K_{0}, K_{1} \subset S^{3}$, a concordance from K_{0} to K_{1} is a smoothly embedded annulus $A \subset S^{3} \times[0,1]$ with

$$
\partial A=-K_{0} \times\{0\} \cup K_{1} \times\{1\}
$$

K_{0} and K_{1} are called concordant ($K_{0} \sim K_{1}$) if such a concordance exists.

- \sim is an equivalence relation.
- K is slice if it is concordant to the unknot - or equivalently, if it bounds a smoothly embedded disk in D^{4}.
- For links L_{0}, L_{1} with the same number of components, a concordance is a disjoint union of concordances between the components. L is (strongly) slice if it is concordant to the unlink.
- A concordance $A \subset S^{3} \times[0,1]$ from L_{0} to L_{1} is called a ribbon concordance if projection to $[0,1]$, restricted to A, is a Morse function with only index 0 and 1 critical points. We say L_{0} is ribbon concordant to $L_{1}\left(L_{0} \preceq L_{1}\right)$ if a ribbon concordance exists.

Ribbon

Not ribbon

Ribbon concordance

Ribbon concordance

Ribbon concordance

Ribbon concordance

Ribbon concordance

- K is a ribbon knot if the unknot is ribbon concordant to K; this is equivalent to bounding a slice disk in D^{4} for which the radial function has only 0 and 1 critical points.

Conjecture (Slice-ribbon conjecture)

Every slice knot is ribbon.

- The above terminology is backwards from Gordon's original definition, where "from" and "to" are reversed. (But his \preceq is the same.)

Ribbon concordance

- Ribbon concordance is reflexive and transitive, but definitely not symmetric!

Conjecture (Gordon 1981)

If K_{0}, K_{1} are knots in S^{3} such that $K_{0} \preceq K_{1}$ and $K_{1} \preceq K_{0}$, then K_{0} and K_{1} are isotopic ($K_{0}=K_{1}$).
l.e., \preceq is a partial order on the set of isotopy classes of knots.

- Philosophy: If $L_{0} \preceq L_{1}$, then L_{0} is "simpler" than L_{1}. And if $L_{0} \preceq L_{1}$ and $L_{1} \preceq L_{0}$, then lots of invariants cannot distinguish L_{0} and L_{1}.

Let C be a concordance from L_{0} to L_{1}.

- If C is ribbon, with r births, then
$\left(S^{3} \times[0,1]\right)-\operatorname{nbd}(C)$

$$
\cong\left(S^{3}-\operatorname{nbd}\left(L_{0}\right)\right) \times[0,1] \cup(r \text { 1-handles }) \cup(r \text { 2-handles })
$$

$$
\cong\left(S^{3}-\operatorname{nbd}\left(L_{1}\right)\right) \times[0,1] \cup(r \text { 2-handles }) \cup(r \text { 3-handles })
$$

(C is strongly homotopy ribbon.)

- This implies:

$$
\pi_{1}\left(S^{3}-L_{0}\right) \hookrightarrow \pi_{1}\left(S^{3} \times[0,1]-C\right) \longleftarrow \pi_{1}\left(S^{3}-L_{1}\right)
$$

(C is homotopy ribbon.)
Surjectivity is easy; injectivity takes some significant 3-manifold topology (Thurston) and group theory (Gerstenhaber-Rothaus).

Ribbon concordance and π_{1}

Theorem (Gordon 1981)

If $K_{0} \preceq K_{1}$ and $K_{1} \preceq K_{0}$, and $\pi_{1}\left(K_{1}\right)$ is tranfinitely nilpotent, then $K_{0}=K_{1}$.

- Knots that for which π_{1} is transfinitely nilpotent include fibered knots, 2-bridge knots, connected sums and cables of transfinitely nilpotent.
- Nontrivial knots with Alexander polynomial 1 are not transfinitely nilpotent.

Theorem (Silver 1992 + Kochloukova 2006)

If $K_{0} \preceq K_{1}$ and K_{1} is fibered, then K_{0} is fibered.

Ribbon concordance and polynomial invariants

Theorem (Gordon 1981)

If $L_{0} \preceq L_{1}$, then $\operatorname{deg} \Delta\left(L_{0}\right) \leq \operatorname{deg} \Delta\left(L_{1}\right)$.

Theorem (Gilmer 1984)

If $L_{0} \preceq L_{1}$, then $\Delta\left(L_{0}\right) \mid \Delta\left(L_{1}\right)$.

Theorem (Friedl-Powell 2019)

If there is a (locally flat) homotopy ribbon concordance from L_{0} to L_{1}, then $\Delta\left(L_{0}\right) \mid \Delta\left(L_{1}\right)$.

Ribbon concordance and polynomial invariants

The analogous divisibility result for the Jones polynomial isn't true, except for...

Theorem (Eisermann 2009)

If L is an n-component ribbon link (i.e. if $O^{n} \preceq L$), then $V\left(O^{n}\right) \mid V(L)$.

Link homology theories

- Knot Floer homology and Khovanov homology are each bigraded vector spaces:

$$
\widehat{\mathrm{HFK}}(K)=\bigoplus_{a, m \in \mathbb{Z}} \widehat{\mathrm{HFK}}_{m}(K, a) \quad \mathrm{Kh}(L)=\bigoplus_{i, j \in \mathbb{Z}} K h^{i, j}(L) .
$$

$\widehat{\text { HFK }}$ behaves a little bit differently for multi-component links.

- They categorify the Alexander and Jones polynomial, respectively:

$$
\begin{aligned}
\Delta(K)(t) & =\sum_{a, m}(-1)^{m} t^{a} \operatorname{dim} \widehat{\mathrm{HFK}}_{m}(K, a) \\
V(L)(q) & =\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim}{K h^{i, j}}^{i,}(L)
\end{aligned}
$$

Link homology theories

- Knot Floer homology detects the genus of a knot (Ozsváth-Szabó):

$$
\begin{aligned}
g(K) & =\max \left\{a \mid \widehat{\mathrm{HFK}}_{*}(K, a) \neq 0\right\} \\
& =-\min \left\{a \mid \widehat{\mathrm{HFK}}_{*}(K, a) \neq 0\right\}
\end{aligned}
$$

- ...and whether the knot is fibered (Ozsváth-Szabó, Ghiggini, Ni): K is fibered if $\operatorname{dim} \widehat{\mathrm{HFK}}_{*}(K, g(K))=1$.
- Khovanov homology, like the Jones polynomial, tells us something about the minimal crossing number:

$$
\max \left\{j \mid K h^{*, j}(L) \neq 0\right\}-\min \left\{j \mid K h^{*, j}(L) \neq 0\right\} \leq 2 c(L)+2
$$

with equality iff L is alternating.

Link homology theories

Both knot Floer homology and Khovanov homology are functorial under (decorated) cobordisms:

- For any (dotted) link cobordism $F \subset S^{3} \times[0,1]$ from L_{0} to L_{1}, there's an induced map $\operatorname{Kh}(F): \operatorname{Kh}\left(L_{0}\right) \rightarrow \operatorname{Kh}\left(L_{1}\right)$, which is homogeneous with respect to the bigrading (of degree determined by the genus), invariant up to isotopy, and functorial under stacking.
- Khovanov, Jacobsson, Bar-Natan: invariance up to sign, for isotopy in $\mathbb{R}^{3} \times[0,1]$.
- Caprau, Clark-Morrison-Walker: eliminated sign ambiguity.
- Morrison-Walker-Wedrich: invariance for isotopy in $S^{3} \times[0,1]$.
- Juhász, Zemke: Defined similar structure for knot Floer homology - not just for links in S^{3} and cobordisms in $S^{3} \times[0,1]$, but for arbitrary 3 - and 4-manifolds.

Link homology theories and ribbon concordance

Theorem

If C is a (strongly homotopy) ribbon concordance from L_{0} to L_{1}, then C induces a grading-preserving injection of $H\left(L_{0}\right)$ into $H\left(L_{1}\right)$ as a direct summand, where $H(L)$ denotes:

- Knot Floer homology (Ribbon: Zemke 2019; SHR: Miller-Zemke 2019)
- Khovanov homology (Ribbon: L.-Zemke 2019; SHR:

Gujral-L. 2020)

- Instanton knot homology; Heegaard Floer homology or instanton Floer homology of the branched double cover $\Sigma($ L) (Lidman-Vela-Vick-Wang 2019)
- Khovanov-Rozanskysl(n) homology (Ribbon: Kang 2019)
- Universal $\mathfrak{s l}(2)$ or $\mathfrak{s l}(3)$ homology; $\mathfrak{s l}(n)$ foam homology (Ribbon: Caprau-González-Lee-Lowrance-SazdanovićZhang 2020)

Ribbon concordance and link homologies

Corollary (Zemke)
If $L_{0} \preceq L_{1}$, then $g\left(L_{0}\right) \leq g\left(L_{1}\right)$.
Corollary (L.-Zemke)
If $L_{0} \preceq L_{1}$, and L_{0} is a non-split alternating link, then
$c\left(L_{0}\right) \leq c\left(L_{1}\right)$.
Both of these also apply in the strongly homotopy ribbon setting as well.

Link homology theories and ribbon concordance

Corollary (Gujral-L. 2020?)

If $L_{0} \preceq L_{1}$, and L_{1} is split, then L_{0} is split. More precisely, if there is an embedded 2-sphere that separates $L_{1}^{1} \cup \cdots \cup L_{1}^{j}$ from $L_{1}^{j+1} \cup \ldots L_{1}^{k}$, then there is an embedded 2-sphere that separates $L_{0}^{1} \cup \cdots \cup L_{0}^{j}$ from $L_{0}^{j+1} \cup \ldots L_{0}^{k}$.

Several of the above invariants have additional algebraic structure that fully detect splittings; we apply this in conjunction with injectivity.

Khovanov homology and ribbon concordance

The maps on Khovanov homology satisfy several local relations:

Khovanov homology and ribbon concordance

To clarify what these relations mean: Suppose $F \subset S^{3} \times[0,1]$ is any cobordism from L_{0} to L_{1}.

- Suppose h is an embedded 3-dimensional 1-handle with ends on F (and otherwise disjoint from F). Let F^{\prime} be obtained from F by surgery along h, and let F_{1}° and F_{2}° be obtained by adding a dot to F at either of the feet of h. Then $\operatorname{Kh}\left(F^{\prime}\right)=\operatorname{Kh}\left(F_{1}^{*}\right)+\operatorname{Kh}\left(F_{2}^{*}\right)$.
- Suppose $S \subset \mathbb{R}^{3} \times[0,1]$ is an unknotted 2 -sphere that is unlinked from F, and let S^{\bullet} denote S equipped with a dot. Then $\operatorname{Kh}(F \cup S)=0$ and $\operatorname{Kh}\left(F \cup S^{*}\right)=\operatorname{Kh}(F)$.
- Rasmussen, Tanaka: The sphere relations also hold for knotted 2 -spheres (but still unlinked from F).

Khovanov homology and ribbon concordance

Let C be a ribbon concordance from L_{0} to L_{1} with r local minima, and let \bar{C} be its mirror, viewed as a concordance from L_{1} to L_{0}. Let $D=C \cup_{L_{1}} \bar{C}$, and let $I=L_{0} \times[0,1]$, both concordances from L_{0} to itself.

Lemma (Zemke)

We may find:

- Unknotted, unlinked 2-spheres $S_{1}, \ldots S_{r} \subset\left(S^{3} \backslash L_{0}\right) \times[0,1]$, and
- Disjointly embedded 3-dimensional 1-handles h_{1}, \ldots, h_{r} in $S^{3} \times[0,1]$, where h_{i} joins I to S_{i} and is disjoint from S_{j} for $j \neq i$,
such that D is isotopic to the surface obtained from
$I \cup S_{1} \cup \cdots \cup S_{r}$ by embedded surgery along the handles
h_{1}, \ldots, h_{r}.

Khovanov homology and ribbon concordance

- Applying the neck-cutting relation to each of the handles h_{i} :

$$
\begin{aligned}
\operatorname{Kh}(D) & =\sum_{\vec{e} \in\{\emptyset, \bullet\}^{r}} \mathrm{Kh}\left(I \cup S_{1}^{e_{1}} \cup \ldots S_{r}^{e_{r}}\right) \\
& =\operatorname{Kh}\left(I \cup S_{1}^{\bullet} \cup \cdots \cup S_{r}^{\bullet}\right) \\
& =\operatorname{Kh}(I) \\
& =\operatorname{id}_{\operatorname{Kh}\left(L_{0}\right)}
\end{aligned}
$$

- Hence $\mathrm{Kh}(\bar{C}) \circ \mathrm{Kh}(C)=\operatorname{id}_{\mathrm{Kh}\left(L_{0}\right)}$, so $\mathrm{Kh}(C)$ is injective (and left-invertible).
- Caprau-González-Lee-Lowrance-Sazdanović-Zhang: Basically the same proof works for $\mathfrak{s l}(n)$ homology; it's just that the local relations are slightly more complicated.

Khovanov homology and ribbon concordance

- If C is now merely assumed to be strongly homotopy ribbon, Miller and Zemke showed a very similar lemma about the doubled cobordism D, with one catch: the spheres S_{i} are no longer assumed to be unlinked from l.
- The spheres come from taking the cores of the 2 -handles of $S^{3} \times[0,1]-\operatorname{nbd}(C)$ with the co-cores of the
corresponding handles of $S^{3} \times[0,1]-\operatorname{nbd}(\bar{C})$ - possibly multiple pushoffs.

Proposition (Gujral-L., 2020)

The sphere relations for Khovanov homology also hold for linked 2-spheres.

Khovanov homology and splitting of cobordisms

Theorem (Gujral-L., 2020)

Let L_{0} and L_{1} be links in S^{3}, with splittings $L_{i}=L_{i}^{1} \cup \cdots \cup L_{i}^{k}$, where the L_{i}^{j} are contained in disjoint 3-balls. (The L_{i}^{j} may be links, and may even be empty.) Let F be any cobordism from L_{0} to L_{1} that decomposes as a disjoint union of cobordisms $F^{j}: L_{0}^{j} \rightarrow L_{1}^{j}$. Let \tilde{F} be the "split cobordism" consisting of unlinked copies of F^{j}, each in its own $D^{3} \times[0,1]$. Then $K h(F)= \pm K h(\tilde{F})$.

- Proof works by setting up cobordism maps for Batson-Seed's perturbation of Khovanov homology, which is insensitive to crossing changes between different components.

