Ribbon Concordance and Link Homology Theories

Adam Simon Levine (with Ian Zemke, Onkar Singh Gujral)

Duke University

June 3, 2020

Adam Simon Levine Ribbon Concordance and Link Homology Theories

Given knots K₀, K₁ ⊂ S³, a concordance from K₀ to K₁ is a smoothly embedded annulus A ⊂ S³ × [0, 1] with

$$\partial A = -K_0 \times \{0\} \cup K_1 \times \{1\}.$$

 K_0 and K_1 are called concordant ($K_0 \sim K_1$) if such a concordance exists.

- $\bullet \sim$ is an equivalence relation.
- *K* is slice if it is concordant to the unknot or equivalently, if it bounds a smoothly embedded disk in *D*⁴.
- For links L₀, L₁ with the same number of components, a concordance is a disjoint union of concordances between the components. L is (strongly) slice if it is concordant to the unlink.

A concordance A ⊂ S³ × [0, 1] from L₀ to L₁ is called a ribbon concordance if projection to [0, 1], restricted to A, is a Morse function with only index 0 and 1 critical points. We say L₀ is ribbon concordant to L₁ (L₀ ≤ L₁) if a ribbon concordance exists.

• *K* is a *ribbon knot* if the unknot is ribbon concordant to *K*; this is equivalent to bounding a slice disk in *D*⁴ for which the radial function has only 0 and 1 critical points.

Conjecture (Slice-ribbon conjecture)

Every slice knot is ribbon.

 The above terminology is backwards from Gordon's original definition, where "from" and "to" are reversed. (But his ≤ is the same.) Ribbon concordance is reflexive and transitive, but definitely not symmetric!

Conjecture (Gordon 1981)

If K_0 , K_1 are knots in S^3 such that $K_0 \leq K_1$ and $K_1 \leq K_0$, then K_0 and K_1 are isotopic ($K_0 = K_1$). I.e., \prec is a partial order on the set of isotopy classes of knots.

Philosophy: If L₀ ≤ L₁, then L₀ is "simpler" than L₁. And if L₀ ≤ L₁ and L₁ ≤ L₀, then lots of invariants cannot distinguish L₀ and L₁.

Ribbon concordance and π_1

Let *C* be a concordance from L_0 to L_1 .

• If *C* is ribbon, with *r* births, then

$$(S^3 \times [0, 1]) - \operatorname{nbd}(C)$$

 $\cong (S^3 - \operatorname{nbd}(L_0)) \times [0, 1] \cup (r \text{ 1-handles}) \cup (r \text{ 2-handles})$
 $\cong (S^3 - \operatorname{nbd}(L_1)) \times [0, 1] \cup (r \text{ 2-handles}) \cup (r \text{ 3-handles}).$

(*C* is strongly homotopy ribbon.)

• This implies:

$$\pi_1(S^3 - L_0) \hookrightarrow \pi_1(S^3 \times [0, 1] - C) \twoheadleftarrow \pi_1(S^3 - L_1).$$

(*C* is homotopy ribbon.)

Surjectivity is easy; injectivity takes some significant 3-manifold topology (Thurston) and group theory (Gerstenhaber–Rothaus).

Theorem (Gordon 1981)

If $K_0 \leq K_1$ and $K_1 \leq K_0$, and $\pi_1(K_1)$ is transitively nilpotent, then $K_0 = K_1$.

- Knots that for which π₁ is transfinitely nilpotent include fibered knots, 2-bridge knots, connected sums and cables of transfinitely nilpotent.
- Nontrivial knots with Alexander polynomial 1 are not transfinitely nilpotent.

Theorem (Silver 1992 + Kochloukova 2006)

If $K_0 \leq K_1$ and K_1 is fibered, then K_0 is fibered.

Ribbon concordance and polynomial invariants

Theorem (Gordon 1981)

If $L_0 \preceq L_1$, then deg $\Delta(L_0) \leq \deg \Delta(L_1)$.

Theorem (Gilmer 1984)

If $L_0 \preceq L_1$, then $\Delta(L_0) | \Delta(L_1)$.

Theorem (Friedl–Powell 2019)

If there is a (locally flat) homotopy ribbon concordance from L_0 to L_1 , then $\Delta(L_0)|\Delta(L_1)$.

The analogous divisibility result for the Jones polynomial isn't true, except for...

Theorem (Eisermann 2009)

If L is an n-component ribbon link (i.e. if $O^n \leq L$), then $V(O^n)|V(L)$.

 Knot Floer homology and Khovanov homology are each bigraded vector spaces:

$$\widehat{\mathsf{HFK}}(K) = \bigoplus_{a,m\in\mathbb{Z}} \widehat{\mathsf{HFK}}_m(K,a) \qquad \mathsf{Kh}(L) = \bigoplus_{i,j\in\mathbb{Z}} \mathsf{Kh}^{i,j}(L).$$

HFK behaves a little bit differently for multi-component links.

• They categorify the Alexander and Jones polynomial, respectively:

$$\Delta(K)(t) = \sum_{a,m} (-1)^m t^a \dim \widehat{\operatorname{HFK}}_m(K, a)$$
$$V(L)(q) = \sum_{i,j} (-1)^i q^j \dim \operatorname{Kh}^{i,j}(L)$$

Link homology theories

 Knot Floer homology detects the genus of a knot (Ozsváth–Szabó):

$$egin{aligned} g(\mathcal{K}) &= \max\{oldsymbol{a} \mid \widehat{\mathsf{HFK}}_*(\mathcal{K},oldsymbol{a})
ot = -\min\{oldsymbol{a} \mid \widehat{\mathsf{HFK}}_*(\mathcal{K},oldsymbol{a})
ot = 0\} \end{aligned}$$

- ...and whether the knot is fibered (Ozsváth–Szabó, Ghiggini, Ni): K is fibered if dim HFK_{*}(K, g(K)) = 1.
- Khovanov homology, like the Jones polynomial, tells us something about the minimal crossing number:

 $\max\{j \mid \mathsf{Kh}^{*,j}(L) \neq 0\} - \min\{j \mid \mathsf{Kh}^{*,j}(L) \neq 0\} \le 2c(L) + 2,$

with equality iff *L* is alternating.

Both knot Floer homology and Khovanov homology are functorial under (decorated) cobordisms:

- For any (dotted) link cobordism $F \subset S^3 \times [0, 1]$ from L_0 to L_1 , there's an induced map Kh(F): $Kh(L_0) \rightarrow Kh(L_1)$, which is homogeneous with respect to the bigrading (of degree determined by the genus), invariant up to isotopy, and functorial under stacking.
 - Khovanov, Jacobsson, Bar-Natan: invariance up to sign, for isotopy in $\mathbb{R}^3\times[0,1].$
 - Caprau, Clark–Morrison–Walker: eliminated sign ambiguity.
 - Morrison–Walker–Wedrich: invariance for isotopy in $\mathcal{S}^3 \times [0,1].$
- Juhász, Zemke: Defined similar structure for knot Floer homology — not just for links in S³ and cobordisms in S³ × [0, 1], but for arbitrary 3- and 4-manifolds.

Link homology theories and ribbon concordance

Theorem

If C is a (strongly homotopy) ribbon concordance from L_0 to L_1 , then C induces a grading-preserving injection of $H(L_0)$ into $H(L_1)$ as a direct summand, where H(L) denotes:

- Knot Floer homology (Ribbon: Zemke 2019; SHR: Miller–Zemke 2019)
- Khovanov homology (Ribbon: L.–Zemke 2019; SHR: Gujral–L. 2020)
- Instanton knot homology; Heegaard Floer homology or instanton Floer homology of the branched double cover Σ(L) (Lidman–Vela-Vick–Wang 2019)
- Khovanov–Rozansky sl(n) homology (Ribbon: Kang 2019)
- Universal sί(2) or sί(3) homology; sί(n) foam homology (Ribbon: Caprau–González–Lee–Lowrance–Sazdanović– Zhang 2020)

Ribbon concordance and link homologies

Corollary (Zemke)

If $L_0 \preceq L_1$, then $g(L_0) \leq g(L_1)$.

Corollary (L.-Zemke)

If $L_0 \preceq L_1$, and L_0 is a non-split alternating link, then $c(L_0) \leq c(L_1)$.

Both of these also apply in the strongly homotopy ribbon setting as well.

Corollary (Gujral-L. 2020?)

If $L_0 \leq L_1$, and L_1 is split, then L_0 is split. More precisely, if there is an embedded 2-sphere that separates $L_1^1 \cup \cdots \cup L_1^j$ from $L_1^{j+1} \cup \ldots L_1^k$, then there is an embedded 2-sphere that separates $L_0^1 \cup \cdots \cup L_0^j$ from $L_0^{j+1} \cup \ldots L_0^k$.

Several of the above invariants have additional algebraic structure that fully detect splittings; we apply this in conjunction with injectivity.

The maps on Khovanov homology satisfy several local relations:

To clarify what these relations mean: Suppose $F \subset S^3 \times [0, 1]$ is any cobordism from L_0 to L_1 .

- Suppose *h* is an embedded 3-dimensional 1-handle with ends on *F* (and otherwise disjoint from *F*). Let *F'* be obtained from *F* by surgery along *h*, and let F_1^{\bullet} and F_2^{\bullet} be obtained by adding a dot to *F* at either of the feet of *h*. Then $\operatorname{Kh}(F') = \operatorname{Kh}(F_1^{\bullet}) + \operatorname{Kh}(F_2^{\bullet})$.
- Suppose S ⊂ ℝ³ × [0, 1] is an unknotted 2-sphere that is unlinked from F, and let S[•] denote S equipped with a dot. Then Kh(F ∪ S) = 0 and Kh(F ∪ S[•]) = Kh(F).
- Rasmussen, Tanaka: The sphere relations also hold for knotted 2-spheres (but still unlinked from F).

Let *C* be a ribbon concordance from L_0 to L_1 with *r* local minima, and let \overline{C} be its mirror, viewed as a concordance from L_1 to L_0 . Let $D = C \cup_{L_1} \overline{C}$, and let $I = L_0 \times [0, 1]$, both concordances from L_0 to itself.

Lemma (Zemke)

We may find:

- Unknotted, unlinked 2-spheres $S_1, \ldots S_r \subset (S^3 \smallsetminus L_0) \times [0, 1]$, and
- Disjointly embedded 3-dimensional 1-handles h_1, \ldots, h_r in $S^3 \times [0, 1]$, where h_i joins I to S_i and is disjoint from S_j for $j \neq i$,

such that D is isotopic to the surface obtained from $I \cup S_1 \cup \cdots \cup S_r$ by embedded surgery along the handles h_1, \ldots, h_r .

Applying the neck-cutting relation to each of the handles h_i:

$$\begin{split} \mathsf{Kh}(D) &= \sum_{\vec{e} \in \{\emptyset, \bullet\}^r} \mathsf{Kh}(I \cup S_1^{e_1} \cup \dots S_r^{e_r}) \\ &= \mathsf{Kh}(I \cup S_1^{\bullet} \cup \dots \cup S_r^{\bullet}) \\ &= \mathsf{Kh}(I) \\ &= \mathsf{id}_{\mathsf{Kh}(L_0)} \end{split}$$

- Hence Kh(C) ∘ Kh(C) = id_{Kh(L₀)}, so Kh(C) is injective (and left-invertible).
- Caprau–González–Lee–Lowrance–Sazdanović–Zhang: Basically the same proof works for st(n) homology; it's just that the local relations are slightly more complicated.

- If *C* is now merely assumed to be strongly homotopy ribbon, Miller and Zemke showed a very similar lemma about the doubled cobordism *D*, with one catch: the spheres S_i are no longer assumed to be unlinked from *I*.
- The spheres come from taking the cores of the 2-handles of S³ × [0, 1] − nbd(C) with the co-cores of the corresponding handles of S³ × [0, 1] − nbd(C) possibly multiple pushoffs.

Proposition (Gujral–L., 2020)

The sphere relations for Khovanov homology also hold for linked 2-spheres.

Theorem (Gujral–L., 2020)

Let L_0 and L_1 be links in S^3 , with splittings $L_i = L_i^1 \cup \cdots \cup L_i^k$, where the L_i^j are contained in disjoint 3-balls. (The L_i^j may be links, and may even be empty.) Let F be any cobordism from L_0 to L_1 that decomposes as a disjoint union of cobordisms $F^j: L_0^j \to L_1^j$. Let \tilde{F} be the "split cobordism" consisting of unlinked copies of F^j , each in its own $D^3 \times [0, 1]$. Then $Kh(F) = \pm Kh(\tilde{F})$.

 Proof works by setting up cobordism maps for Batson–Seed's perturbation of Khovanov homology, which is insensitive to crossing changes between different components.