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Concordance

Given knots K0,K1 ⊂ S3, a concordance from K0 to K1 is a
smoothly embedded annulus A ⊂ S3 × [0,1] with

∂A = −K0 × {0} ∪ K1 × {1}.

K0 and K1 are called concordant (K0 ∼ K1) if such a
concordance exists.
∼ is an equivalence relation.
K is slice if it is concordant to the unknot — or equivalently,
if it bounds a smoothly embedded disk in D4.
For links L0,L1 with the same number of components, a
concordance is a disjoint union of concordances between
the components. L is (strongly) slice if it is concordant to
the unlink.
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Ribbon concordance

A concordance A ⊂ S3 × [0,1] from L0 to L1 is called a
ribbon concordance if projection to [0,1], restricted to A, is
a Morse function with only index 0 and 1 critical points. We
say L0 is ribbon concordant to L1 (L0 � L1) if a ribbon
concordance exists.

Ribbon Not ribbon
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Ribbon concordance

K is a ribbon knot if the unknot is ribbon concordant to K ;
this is equivalent to bounding a slice disk in D4 for which
the radial function has only 0 and 1 critical points.

Conjecture (Slice-ribbon conjecture)
Every slice knot is ribbon.

The above terminology is backwards from Gordon’s
original definition, where “from” and “to” are reversed. (But
his � is the same.)
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Ribbon concordance

Ribbon concordance is reflexive and transitive, but
definitely not symmetric!

Conjecture (Gordon 1981)

If K0,K1 are knots in S3 such that K0 � K1 and K1 � K0, then
K0 and K1 are isotopic (K0 = K1).
I.e., � is a partial order on the set of isotopy classes of knots.

Philosophy: If L0 � L1, then L0 is “simpler” than L1. And if
L0 � L1 and L1 � L0, then lots of invariants cannot
distinguish L0 and L1.
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Ribbon concordance and π1

Let C be a concordance from L0 to L1.
If C is ribbon, with r births, then

(S3 × [0,1])− nbd(C)

∼= (S3 − nbd(L0))× [0,1] ∪ (r 1-handles) ∪ (r 2-handles)

∼= (S3 − nbd(L1))× [0,1] ∪ (r 2-handles) ∪ (r 3-handles).

(C is strongly homotopy ribbon.)
This implies:

π1(S3 − L0) ↪→ π1(S3 × [0,1]− C) � π1(S3 − L1).

(C is homotopy ribbon.)
Surjectivity is easy; injectivity takes some significant
3-manifold topology (Thurston) and group theory
(Gerstenhaber–Rothaus).
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Ribbon concordance and π1

Theorem (Gordon 1981)

If K0 � K1 and K1 � K0, and π1(K1) is tranfinitely nilpotent, then
K0 = K1.

Knots that for which π1 is transfinitely nilpotent include
fibered knots, 2-bridge knots, connected sums and cables
of transfinitely nilpotent.
Nontrivial knots with Alexander polynomial 1 are not
transfinitely nilpotent.

Theorem (Silver 1992 + Kochloukova 2006)
If K0 � K1 and K1 is fibered, then K0 is fibered.
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Ribbon concordance and polynomial invariants

Theorem (Gordon 1981)

If L0 � L1, then deg ∆(L0) ≤ deg ∆(L1).

Theorem (Gilmer 1984)

If L0 � L1, then ∆(L0)|∆(L1).

Theorem (Friedl–Powell 2019)
If there is a (locally flat) homotopy ribbon concordance from L0
to L1, then ∆(L0)|∆(L1).
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Ribbon concordance and polynomial invariants

The analogous divisibility result for the Jones polynomial isn’t
true, except for...

Theorem (Eisermann 2009)

If L is an n-component ribbon link (i.e. if On � L), then
V (On)|V (L).
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Link homology theories

Knot Floer homology and Khovanov homology are each
bigraded vector spaces:

ĤFK(K ) =
⊕

a,m∈Z
ĤFKm(K ,a) Kh(L) =

⊕
i,j∈Z

Khi,j(L).

ĤFK behaves a little bit differently for multi-component
links.
They categorify the Alexander and Jones polynomial,
respectively:

∆(K )(t) =
∑
a,m

(−1)mta dim ĤFKm(K ,a)

V (L)(q) =
∑
i,j

(−1)iqj dim Khi,j(L)
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Link homology theories

Knot Floer homology detects the genus of a knot
(Ozsváth–Szabó):

g(K ) = max{a | ĤFK∗(K ,a) 6= 0}

= −min{a | ĤFK∗(K ,a) 6= 0}

...and whether the knot is fibered (Ozsváth–Szabó,
Ghiggini, Ni): K is fibered if dim ĤFK∗(K ,g(K )) = 1.
Khovanov homology, like the Jones polynomial, tells us
something about the minimal crossing number:

max{j | Kh∗,j(L) 6= 0} −min{j | Kh∗,j(L) 6= 0} ≤ 2c(L) + 2,

with equality iff L is alternating.
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Link homology theories

Both knot Floer homology and Khovanov homology are
functorial under (decorated) cobordisms:

For any (dotted) link cobordism F ⊂ S3 × [0,1] from L0 to
L1, there’s an induced map Kh(F ) : Kh(L0)→ Kh(L1),
which is homogeneous with respect to the bigrading (of
degree determined by the genus), invariant up to isotopy,
and functorial under stacking.

Khovanov, Jacobsson, Bar-Natan: invariance up to sign, for
isotopy in R3 × [0,1].
Caprau, Clark–Morrison–Walker: eliminated sign ambiguity.
Morrison–Walker–Wedrich: invariance for isotopy in
S3 × [0,1].

Juhász, Zemke: Defined similar structure for knot Floer
homology — not just for links in S3 and cobordisms in
S3 × [0,1], but for arbitrary 3- and 4-manifolds.
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Link homology theories and ribbon concordance

Theorem
If C is a (strongly homotopy) ribbon concordance from L0 to L1,
then C induces a grading-preserving injection of H(L0) into
H(L1) as a direct summand, where H(L) denotes:

Knot Floer homology (Ribbon: Zemke 2019; SHR:
Miller–Zemke 2019)
Khovanov homology (Ribbon: L.–Zemke 2019; SHR:
Gujral–L. 2020)
Instanton knot homology; Heegaard Floer homology or
instanton Floer homology of the branched double cover
Σ(L) (Lidman–Vela-Vick–Wang 2019)
Khovanov–Rozansky sl(n) homology (Ribbon: Kang 2019)
Universal sl(2) or sl(3) homology; sl(n) foam homology
(Ribbon: Caprau–González–Lee–Lowrance–Sazdanović–
Zhang 2020)
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Ribbon concordance and link homologies

Corollary (Zemke)

If L0 � L1, then g(L0) ≤ g(L1).

Corollary (L.–Zemke)
If L0 � L1, and L0 is a non-split alternating link, then
c(L0) ≤ c(L1).

Both of these also apply in the strongly homotopy ribbon setting
as well.
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Link homology theories and ribbon concordance

Corollary (Gujral–L. 2020?)
If L0 � L1, and L1 is split, then L0 is split. More precisely, if
there is an embedded 2-sphere that separates L1

1 ∪ · · · ∪ Lj
1

from Lj+1
1 ∪ . . . Lk

1, then there is an embedded 2-sphere that
separates L1

0 ∪ · · · ∪ Lj
0 from Lj+1

0 ∪ . . . Lk
0.

Several of the above invariants have additional algebraic
structure that fully detect splittings; we apply this in conjunction
with injectivity.
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Khovanov homology and ribbon concordance

The maps on Khovanov homology satisfy several local
relations:

= 0 = 1 = 0

= +
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Khovanov homology and ribbon concordance

To clarify what these relations mean: Suppose F ⊂ S3 × [0,1]
is any cobordism from L0 to L1.

Suppose h is an embedded 3-dimensional 1-handle with
ends on F (and otherwise disjoint from F ). Let F ′ be
obtained from F by surgery along h, and let F •1 and F •2 be
obtained by adding a dot to F at either of the feet of h.
Then Kh(F ′) = Kh(F •1 ) + Kh(F •2 ).
Suppose S ⊂ R3 × [0,1] is an unknotted 2-sphere that is
unlinked from F , and let S• denote S equipped with a dot.
Then Kh(F ∪ S) = 0 and Kh(F ∪ S•) = Kh(F ).
Rasmussen, Tanaka: The sphere relations also hold for
knotted 2-spheres (but still unlinked from F ).
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Khovanov homology and ribbon concordance

Let C be a ribbon concordance from L0 to L1 with r local
minima, and let C be its mirror, viewed as a concordance from
L1 to L0. Let D = C ∪L1 C, and let I = L0 × [0,1], both
concordances from L0 to itself.

Lemma (Zemke)
We may find:

Unknotted, unlinked 2-spheres
S1, . . .Sr ⊂ (S3 r L0)× [0,1], and
Disjointly embedded 3-dimensional 1-handles h1, . . . ,hr in
S3 × [0,1], where hi joins I to Si and is disjoint from Sj for
j 6= i ,

such that D is isotopic to the surface obtained from
I ∪ S1 ∪ · · · ∪ Sr by embedded surgery along the handles
h1, . . . ,hr .
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Khovanov homology and ribbon concordance

Applying the neck-cutting relation to each of the handles hi :

Kh(D) =
∑

~e∈{∅,•}r

Kh(I ∪ Se1
1 ∪ . . .S

er
r )

= Kh(I ∪ S•1 ∪ · · · ∪ S•r )

= Kh(I)
= idKh(L0)

Hence Kh(C) ◦ Kh(C) = idKh(L0), so Kh(C) is injective (and
left-invertible).
Caprau–González–Lee–Lowrance–Sazdanović–Zhang:
Basically the same proof works for sl(n) homology; it’s just
that the local relations are slightly more complicated.
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Khovanov homology and ribbon concordance

If C is now merely assumed to be strongly homotopy
ribbon, Miller and Zemke showed a very similar lemma
about the doubled cobordism D, with one catch: the
spheres Si are no longer assumed to be unlinked from I.
The spheres come from taking the cores of the 2-handles
of S3 × [0,1]− nbd(C) with the co-cores of the
corresponding handles of S3 × [0,1]− nbd(C) — possibly
multiple pushoffs.

Proposition (Gujral–L., 2020)
The sphere relations for Khovanov homology also hold for
linked 2-spheres.
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Khovanov homology and splitting of cobordisms

Theorem (Gujral–L., 2020)

Let L0 and L1 be links in S3, with splittings Li = L1
i ∪ · · · ∪ Lk

i ,
where the Lj

i are contained in disjoint 3-balls. (The Lj
i may be

links, and may even be empty.) Let F be any cobordism from L0
to L1 that decomposes as a disjoint union of cobordisms
F j : Lj

0 → Lj
1. Let F̃ be the “split cobordism” consisting of

unlinked copies of F j , each in its own D3 × [0,1]. Then
Kh(F ) = ±Kh(F̃ ).

Proof works by setting up cobordism maps for
Batson–Seed’s perturbation of Khovanov homology, which
is insensitive to crossing changes between different
components.
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