Bordered Heegaard Floer Homology and Knot Doubling Operators

Adam Simon Levine

Brandeis University

Knot Concordance and Homology Cobordism Workshop
Wesleyan University
July 21, 2010

Slice Knots and Links

Definition

A knot in S^{3} is called

- topologically slice if it is the boundary of a locally flatly embedded disk in B^{4}.
- smoothly slice if it is the boundary of a smoothly embedded disk in B^{4}.
A link is topologically/smoothly slice if it bounds a disjoint union of such disks.

Slice Knots and Links

Definition

A knot in S^{3} is called

- topologically slice if it is the boundary of a locally flatly embedded disk in B^{4}.
- smoothly slice if it is the boundary of a smoothly embedded disk in B^{4}.
A link is topologically/smoothly slice if it bounds a disjoint union of such disks.

Big question: How do these two notions compare?

Whitehead and Bing Doubling

Given a $\operatorname{knot} K$, the positive Whitehead double, negative Whitehead double, and Bing double are:

Whitehead and Bing Doubling

Given a knot K, the positive Whitehead double, negative Whitehead double, and Bing double are:

We consider only untwisted doubles here.

When are Whitehead doubles topologically slice?

Theorem (Freedman)
The Whitehead double (with either sign) of any knot is topologically slice. More generally, if L is a boundary link, then any Whitehead double of L is topologically slice.

When are Whitehead doubles topologically slice?

Theorem (Freedman)

The Whitehead double (with either sign) of any knot is topologically slice. More generally, if L is a boundary link, then any Whitehead double of L is topologically slice.

Question (Freedman)

Are the Whitehead doubles of a link with trivial linking numbers topologically slice?

When are Whitehead doubles topologically slice?

Theorem (Freedman)

The Whitehead double (with either sign) of any knot is topologically slice. More generally, if L is a boundary link, then any Whitehead double of L is topologically slice.

Question (Freedman)

Are the Whitehead doubles of a link with trivial linking numbers topologically slice?

- For two-component links, the answer is yes.

When are Whitehead doubles topologically slice?

Theorem (Freedman)

The Whitehead double (with either sign) of any knot is topologically slice. More generally, if L is a boundary link, then any Whitehead double of L is topologically slice.

Question (Freedman)

Are the Whitehead doubles of a link with trivial linking numbers topologically slice?

- For two-component links, the answer is yes.
- It is equivalent to the four-dimensional surgery conjecture.

When are Whitehead doubles topologically slice?

Theorem (Freedman)

The Whitehead double (with either sign) of any knot is topologically slice. More generally, if L is a boundary link, then any Whitehead double of L is topologically slice.

Question (Freedman)

Are the Whitehead doubles of a link with trivial linking numbers topologically slice?

- For two-component links, the answer is yes.
- It is equivalent to the four-dimensional surgery conjecture.
- Most people, including Freedman, think it's not true.

Conjecture (Kirby's problem list)

$W h_{ \pm}(K)$ is smoothly slice if and only if K is (smoothly) slice.

When are Whitehead doubles smoothly slice?

Conjecture (Kirby's problem list)
$W h_{ \pm}(K)$ is smoothly slice if and only if K is (smoothly) slice.

Theorem (Rudolph)

(1) If K is a strongly quasipositive knot different from the unknot, then K is not smoothly slice.

When are Whitehead doubles smoothly slice?

Conjecture (Kirby's problem list)
$W h_{ \pm}(K)$ is smoothly slice if and only if K is (smoothly) slice.

Theorem (Rudolph)

(1) If K is a strongly quasipositive knot different from the unknot, then K is not smoothly slice.
(2) If K is strongly quasipositive, then $W h_{+}(K)$ is also strongly quasipositive, hence not smoothly slice.

When are Whitehead doubles smoothly slice?

Conjecture (Kirby's problem list)

$W h_{ \pm}(K)$ is smoothly slice if and only if K is (smoothly) slice.

Theorem (Rudolph)

(1) If K is a strongly quasipositive knot different from the unknot, then K is not smoothly slice.
(2) If K is strongly quasipositive, then $W h_{+}(K)$ is also strongly quasipositive, hence not smoothly slice.

- These were among the first known examples of knots that are topologically but not smoothly slice. (Akbulut, Gompf also found early examples.)

When are Whitehead doubles smoothly slice?

Conjecture (Kirby's problem list)

$W h_{ \pm}(K)$ is smoothly slice if and only if K is (smoothly) slice.

Theorem (Rudolph)

(1) If K is a strongly quasipositive knot different from the unknot, then K is not smoothly slice.
(2) If K is strongly quasipositive, then $W h_{+}(K)$ is also strongly quasipositive, hence not smoothly slice.

- These were among the first known examples of knots that are topologically but not smoothly slice. (Akbulut, Gompf also found early examples.)
- Bižaca used this to construct explicit examples of exotic smooth structures on \mathbb{R}^{4}.

The Ozsváth-Szabó invariant τ

Knot Floer homology provides a knot invariant $\tau(K) \in \mathbb{Z}$, which vanishes for any smoothly slice knot.

The Ozsváth-Szabó invariant τ

Knot Floer homology provides a knot invariant $\tau(K) \in \mathbb{Z}$, which vanishes for any smoothly slice knot.

Theorem (Hedden)

$$
\tau\left(W h_{+}(K)\right)= \begin{cases}1 & \tau(K)>0 \\ 0 & \tau(K) \leq 0\end{cases}
$$

The Ozsváth-Szabó invariant τ

Knot Floer homology provides a knot invariant $\tau(K) \in \mathbb{Z}$, which vanishes for any smoothly slice knot.

Theorem (Hedden)

$$
\tau\left(W h_{+}(K)\right)= \begin{cases}1 & \tau(K)>0 \\ 0 & \tau(K) \leq 0\end{cases}
$$

Corollary

If K is any knot with $\tau(K)>0$ (e.g., any strongly quasipositive knot), then any iterated positive Whitehead double of K is not smoothly slice.

Iterated Bing Doubling

Any binary tree T specifies an iterated Bing double of K, denoted $B_{T}(K)$.

Iterated Bing Doubling

Any binary tree T specifies an iterated Bing double of K, denoted $B_{T}(K)$.

Iterated Bing Doubling

Any binary tree T specifies an iterated Bing double of K, denoted $B_{T}(K)$.

Generalized Borromean Rings

The family of generalized Borromean links consists of all links obtained by taking iterated Bing doubles of the components of the Hopf link.

Main Theorem

Are Whitehead doubles of iterated Bing doubles smoothly slice?

Main Theorem

Are Whitehead doubles of iterated Bing doubles smoothly slice?
Theorem (L.)
(1) Let K be any knot with $\tau(K)>0$ (e.g., any strongly quasipositive knot), and let T be any binary tree. Then the all-positive Whitehead double of $B_{T}(K)$ is topologically but not smoothly slice.

Main Theorem

Are Whitehead doubles of iterated Bing doubles smoothly slice?
Theorem (L.)
(1) Let K be any knot with $\tau(K)>0$ (e.g., any strongly quasipositive knot), and let T be any binary tree. Then the all-positive Whitehead double of $B_{T}(K)$ is topologically but not smoothly slice.
(2) The all-positive Whitehead double of any generalized Borromean link is not smoothly slice.

Main Theorem

Are Whitehead doubles of iterated Bing doubles smoothly slice?
Theorem (L.)

- Let K be any knot with $\tau(K)>0$ (e.g., any strongly quasipositive knot), and let T be any binary tree. Then the all-positive Whitehead double of $B_{T}(K)$ is topologically but not smoothly slice.
(2) The all-positive Whitehead double of any generalized Borromean link is not smoothly slice.

It is not known whether the links in (2) are topologically slice.

Doubling operators

- Given knots J, K and integers s, t, define the knot $D_{J, s}(K, t)=D_{K, t}(J, s)$ as the boundary of the plumbing of an s-framed J-annulus and a t-framed K-annulus.

Doubling operators

- Given knots J, K and integers s, t, define the knot $D_{J, s}(K, t)=D_{K, t}(J, s)$ as the boundary of the plumbing of an s-framed J-annulus and a t-framed K-annulus.

- So $W h_{ \pm}(K)=D_{O, \mp 1}(K, 0)$.

Doubling operators

- Given knots J, K and integers s, t, define the knot $D_{J, s}(K, t)=D_{K, t}(J, s)$ as the boundary of the plumbing of an s-framed J-annulus and a t-framed K-annulus.

- So $W h_{ \pm}(K)=D_{O, \mp 1}(K, 0)$.
- When $t=0$, we often omit it: $D_{J, s}(K)=D_{J, s}(K, 0)$.

Doubling operators

Proposition (Rudolph, Livingston)

If $s \leq T B(J)$ and $t \leq T B(K)$, then $D_{J, s}(K, t)$ is strongly quasipositive, so $\tau\left(D_{J, s}(K, t)\right)=1$.

Doubling operators

Proposition (Rudolph, Livingston)

If $s \leq T B(J)$ and $t \leq T B(K)$, then $D_{J, s}(K, t)$ is strongly quasipositive, so $\tau\left(D_{J, s}(K, t)\right)=1$.

Theorem (L.)

$$
\tau\left(D_{J, s}(K, t)\right)= \begin{cases}1 & s>2 \tau(J), t>2 \tau(K) \\ -1 & s<2 \tau(J), t<2 \tau(K) \\ 0 & \text { otherwise } .\end{cases}
$$

Covering link calculus

Definition

A link L in a \mathbb{Z}_{2}-homology 3-sphere Y is called \mathbb{Z}_{2}-slice if there exists a \mathbb{Z}_{2}-homology 4-ball X with $\partial X=Y$ such that L bounds disjoint disks in X.

Covering link calculus

Definition

A link L in a \mathbb{Z}_{2}-homology 3-sphere Y is called \mathbb{Z}_{2}-slice if there exists a \mathbb{Z}_{2}-homology 4-ball X with $\partial X=Y$ such that L bounds disjoint disks in X.

Proposition

If $L^{\prime} \subset Y^{\prime}$ is a covering link of $L \subset Y$, and L is \mathbb{Z}_{2}-slice, then L^{\prime} is \mathbb{Z}_{2}-slice.

Covering link calculus

Definition

A link L in a \mathbb{Z}_{2}-homology 3-sphere Y is called \mathbb{Z}_{2}-slice if there exists a \mathbb{Z}_{2}-homology 4-ball X with $\partial X=Y$ such that L bounds disjoint disks in X.

Proposition

If $L^{\prime} \subset Y^{\prime}$ is a covering link of $L \subset Y$, and L is \mathbb{Z}_{2}-slice, then L^{\prime} is \mathbb{Z}_{2}-slice.

Theorem (Ozsváth-Szabó)

If $K \subset S^{3}$ is smoothly \mathbb{Z}_{2}-slice, then $\tau(K)=0$.

Covering link calculus

Lemma

Let L be a link in S^{3}, and suppose there is an unknotted solid torus $U \subset S^{3}$ such that $L \cap U$ consists of two components K_{1}, K_{2} embedded as follows: if A_{1}, A_{2} are the components of the untwisted Bing double of the core C of U, then

$$
K_{1}=D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}}\left(A_{1}\right), \quad K_{2}=D_{Q_{1}, t_{l}} \circ \cdots \circ D_{Q_{1}, t_{1}}\left(A_{2}\right)
$$

Covering link calculus

Lemma

Let L be a link in S^{3}, and suppose there is an unknotted solid torus $U \subset S^{3}$ such that $L \cap U$ consists of two components K_{1}, K_{2} embedded as follows: if A_{1}, A_{2} are the components of the untwisted Bing double of the core C of U, then

$$
K_{1}=D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}}\left(A_{1}\right), \quad K_{2}=D_{Q_{l}, t_{l}} \circ \cdots \circ D_{Q_{1}, t_{1}}\left(A_{2}\right)
$$

Let L^{\prime} be the link obtained from L by replacing K_{1} and K_{2} by

$$
\begin{aligned}
C^{\prime} & =D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}} \circ D_{R, u}(C), \text { where } \\
(R, u) & = \begin{cases}\left(Q_{1} \# Q_{1}^{r}, 2 t_{1}\right) & I=1 \\
\left(D_{Q_{1}, t_{1}} \circ \cdots \circ D_{Q_{l-2}, t_{l-2}}\left(D_{Q_{l-1}, t_{l-1}}\left(Q_{l} \# Q_{l}^{r}, 2 t_{l}\right)\right), 0\right) & I>1 .\end{cases}
\end{aligned}
$$

Covering link calculus

Lemma

Let L be a link in S^{3}, and suppose there is an unknotted solid torus $U \subset S^{3}$ such that $L \cap U$ consists of two components K_{1}, K_{2} embedded as follows: if A_{1}, A_{2} are the components of the untwisted Bing double of the core C of U, then

$$
K_{1}=D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}}\left(A_{1}\right), \quad K_{2}=D_{Q_{l}, t_{l}} \circ \cdots \circ D_{Q_{1}, t_{1}}\left(A_{2}\right)
$$

Let L^{\prime} be the link obtained from L by replacing K_{1} and K_{2} by

$$
\begin{aligned}
C^{\prime} & =D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}} \circ D_{R, u}(C), \text { where } \\
(R, u) & = \begin{cases}\left(Q_{1} \# Q_{1}^{r}, 2 t_{1}\right) & I=1 \\
\left(D_{Q_{1}, t_{1}} \circ \cdots \circ D_{Q_{l-2}, t_{l-2}}\left(D_{Q_{l-1}, t_{l-1}}\left(Q_{l} \# Q_{l}^{r}, 2 t_{l}\right)\right), 0\right) & I>1 .\end{cases}
\end{aligned}
$$

Then L^{\prime} is a covering link of L.

Covering link calculus

Covering link calculus

Covering link calculus

Covering link calculus

Covering link calculus

- By iterating this move, we see that there is a knot

$$
D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}}(K)
$$

that is a covering link of $W h_{+}\left(B_{T}(K)\right)$.

Covering link calculus

- By iterating this move, we see that there is a knot

$$
D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}}(K)
$$

that is a covering link of $W h_{+}\left(B_{T}(K)\right)$.

- Additionally, $s_{i}<2 \tau\left(P_{i}\right)$ for all i.

Covering link calculus

- By iterating this move, we see that there is a knot

$$
D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}}(K)
$$

that is a covering link of $W h_{+}\left(B_{T}(K)\right)$.

- Additionally, $s_{i}<2 \tau\left(P_{i}\right)$ for all i.
- Thus, $\tau\left(D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}}(K)\right)=1$, so
$D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}}(K)$ is not smoothly \mathbb{Z}_{2}-slice, so $W h_{+}\left(B_{T}(K)\right)$ is not smoothly slice.

Covering link calculus

- By iterating this move, we see that there is a knot

$$
D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}}(K)
$$

that is a covering link of $W h_{+}\left(B_{T}(K)\right)$.

- Additionally, $s_{i}<2 \tau\left(P_{i}\right)$ for all i.
- Thus, $\tau\left(D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}}(K)\right)=1$, so
$D_{P_{k}, s_{k}} \circ \cdots \circ D_{P_{1}, s_{1}}(K)$ is not smoothly \mathbb{Z}_{2}-slice, so $W h_{+}\left(B_{T}(K)\right)$ is not smoothly slice.
- If we use a mix of positive and negative Whitehead doubling, this approach fails.

Heegaard Floer Homology

- For a closed 3-manifold Y, we get a chain complex $\widehat{\mathrm{CF}}(Y)$, invariant up to chain homotopy. So the homology is an invariant:

$$
\widehat{\mathrm{HF}}(Y)=H_{*}(\widehat{\mathrm{CF}}(Y)) .
$$

Heegaard Floer Homology

- For a closed 3-manifold Y, we get a chain complex $\widehat{\mathrm{CF}}(Y)$, invariant up to chain homotopy. So the homology is an invariant:

$$
\widehat{\mathrm{HF}}(Y)=H_{*}(\widehat{\mathrm{CF}}(Y)) .
$$

- For a nulhomologous knot $K \subset Y$, we get a filtered chain complex $\widehat{\mathrm{CF}}(Y, K)$, invariant up to filtered chain homotopy.

Heegaard Floer Homology

- For a closed 3-manifold Y, we get a chain complex $\widehat{\mathrm{CF}}(Y)$, invariant up to chain homotopy. So the homology is an invariant:

$$
\widehat{\mathrm{HF}}(Y)=H_{*}(\widehat{\mathrm{CF}}(Y)) .
$$

- For a nulhomologous knot $K \subset Y$, we get a filtered chain complex $\widehat{\mathrm{CF}}(Y, K)$, invariant up to filtered chain homotopy. The associated graded complex is denoted $\widehat{\mathrm{CFK}}(Y, K)$, and its homology is a knot invariant:

$$
\widehat{\operatorname{HFK}}(Y, K)=H_{*}(\widehat{\operatorname{CFK}}(Y, K)) .
$$

Heegaard Floer Homology

- For a closed 3-manifold Y, we get a chain complex $\widehat{\mathrm{CF}}(Y)$, invariant up to chain homotopy. So the homology is an invariant:

$$
\widehat{\mathrm{HF}}(Y)=H_{*}(\widehat{\mathrm{CF}}(Y)) .
$$

- For a nulhomologous knot $K \subset Y$, we get a filtered chain complex $\widehat{\mathrm{CF}}(Y, K)$, invariant up to filtered chain homotopy. The associated graded complex is denoted $\widehat{\operatorname{CFK}}(Y, K)$, and its homology is a knot invariant:

$$
\widehat{\mathrm{HFK}}(Y, K)=H_{*}(\widehat{\mathrm{CFK}}(Y, K)) .
$$

- There is a spectral sequence with E^{1} page $\widehat{\mathrm{HFK}}(Y, K)$, converging to $\widehat{H F}(Y)$. The whole sequence is an invariant of K.

Heegaard Floer Homology

- For a closed 3-manifold Y, we get a chain complex $\widehat{\mathrm{CF}}(Y)$, invariant up to chain homotopy. So the homology is an invariant:

$$
\widehat{\mathrm{HF}}(Y)=H_{*}(\widehat{\mathrm{CF}}(Y)) .
$$

- For a nulhomologous knot $K \subset Y$, we get a filtered chain complex $\widehat{\mathrm{CF}}(Y, K)$, invariant up to filtered chain homotopy. The associated graded complex is denoted $\widehat{\operatorname{CFK}}(Y, K)$, and its homology is a knot invariant:

$$
\widehat{\operatorname{HFK}}(Y, K)=H_{*}(\widehat{\operatorname{CFK}}(Y, K)) .
$$

- There is a spectral sequence with E^{1} page $\widehat{\mathrm{HFK}}(Y, K)$, converging to $\widehat{H F}(Y)$. The whole sequence is an invariant of K.
- If $Y=S^{3}$, then $\widehat{\mathrm{HF}}(Y)=\mathbb{F}$. $\tau(K)$ is the least filtration of any element of $\widehat{\operatorname{HFK}}(Y, K)$ that survives to the E^{∞} page.

Bordered Heegaard Floer homology

Surface $F \Longrightarrow$

Surface $F \quad \Longrightarrow \quad$ DG algebra $\mathcal{A}(F)$

Surface $F \quad \Longrightarrow \quad D G$ algebra $\mathcal{A}(F)$
$Y_{1}, \phi_{1}: F \stackrel{\cong}{\rightrightarrows} \partial Y_{1} \Longrightarrow$

Surface $F \quad \Longrightarrow \quad$ DG algebra $\mathcal{A}(F)$
$Y_{1}, \phi_{1}: F \stackrel{\cong}{\cong} \partial Y_{1} \Longrightarrow$ Right \mathcal{A}_{∞} module $\widehat{\mathrm{CFA}}\left(Y_{1}\right)_{\mathcal{A}(F)}$

$$
\begin{aligned}
& \text { Surface } F \Longrightarrow \text { DG algebra } \mathcal{A}(F) \\
& Y_{1}, \phi_{1}: F \cong \\
& Y_{2}, \phi_{2}: F \xlongequal{\cong} \partial Y_{1} \Longrightarrow \text { Right } \mathcal{A}_{\infty} \text { module } \widehat{\mathrm{CFA}}\left(Y_{1}\right)_{\mathcal{A}(F)}
\end{aligned}
$$

Surface $F \quad \Longrightarrow \quad$ DG algebra $\mathcal{A}(F)$
$Y_{1}, \phi_{1}: F \stackrel{\cong}{\Longrightarrow} \partial Y_{1} \Longrightarrow$ Right \mathcal{A}_{∞} module $\widehat{\mathrm{CFA}}\left(Y_{1}\right)_{\mathcal{A}(F)}$
$Y_{2}, \phi_{2}: F \stackrel{\cong}{\Longrightarrow}-\partial Y_{2} \Longrightarrow$ Left DG module ${ }_{\mathcal{A}(F)} \widehat{\mathrm{CFD}}\left(Y_{2}\right)$

Bordered Heegaard Floer homology

Theorem (Lipshitz-Ozsváth-Thurston)
If $Y=Y_{1} \cup_{\phi_{1} \circ \phi_{2}^{-1}} Y_{2}$, then
$\widehat{\mathrm{CFA}}\left(Y_{1}\right) \tilde{\otimes} \widehat{\mathrm{CFD}}\left(Y_{2}\right) \simeq \widehat{\mathrm{CF}}(Y)$.

Bordered Heegaard Floer homology

$$
\begin{aligned}
\text { Surface } F & \Longrightarrow \text { DG algebra } \mathcal{A}(F) \\
Y_{1}, \phi_{1}: F \cong \partial Y_{1} & \Longrightarrow \text { Right } \mathcal{A}_{\infty} \text { module } \widehat{\mathrm{CFA}}\left(Y_{1}\right)_{\mathcal{A}(F)} \\
Y_{2}, \phi_{2}: F \stackrel{ }{\rightrightarrows}-\partial Y_{2} & \Longrightarrow \text { Left DG module } \mathcal{A (F)} \overline{\mathrm{CFD}\left(Y_{2}\right)}
\end{aligned}
$$

Theorem (Lipshitz-Ozsváth-Thurston)

If $Y=Y_{1} \cup_{\phi_{1} \circ \phi_{2}^{-1}} Y_{2}$, then

$$
\widehat{\mathrm{CFA}}\left(Y_{1}\right) \tilde{\otimes} \widehat{\mathrm{CFD}}\left(Y_{2}\right) \simeq \widehat{\mathrm{CF}}(Y) .
$$

Moreover, if K is a nulhomologous knot in either Y_{1} or Y_{2}, then there is an induced filtration on either $\widehat{\operatorname{CFA}}\left(Y_{1}\right)$ or $\widehat{\operatorname{CFD}}\left(Y_{2}\right)$, which induces the filtration on $\widehat{\operatorname{CF}}(Y, K)$.

Can also define bimodules. For example:

Bordered Heegaard Floer homology

Can also define bimodules. For example:

- If Y has boundary components parametrized by F_{1}, F_{2}, get a (right, right) bimodule $\widehat{\operatorname{CFAA}}(Y)_{\mathcal{A}\left(F_{1}\right), \mathcal{A}\left(F_{2}\right)}$.

Bordered Heegaard Floer homology

Can also define bimodules. For example:

- If Y has boundary components parametrized by F_{1}, F_{2}, get a (right, right) bimodule $\widehat{\operatorname{CFAA}}(Y)_{\mathcal{A}\left(F_{1}\right), \mathcal{A}\left(F_{2}\right)}$.
- If Y has boundary components parametrized by $-F_{1},-F_{2}$, get a (left, left) bimodule ${ }_{\mathcal{A}\left(F_{1}\right), \mathcal{A}\left(F_{2}\right)} \widehat{\operatorname{CFDD}}(Y)$.

Bordered Heegaard Floer homology

Can also define bimodules. For example:

- If Y has boundary components parametrized by F_{1}, F_{2}, get a (right, right) bimodule $\widehat{\mathrm{CFAA}}(Y)_{\mathcal{A}\left(F_{1}\right), \mathcal{A}\left(F_{2}\right)}$.
- If Y has boundary components parametrized by $-F_{1},-F_{2}$, get a (left, left) bimodule ${ }_{\mathcal{A}\left(F_{1}\right), \mathcal{A}\left(F_{2}\right)} \widehat{\operatorname{CFDD}}(Y)$.
There are versions of the gluing theorem for bimodules as well.

Bordered Heegaard Floer homology

- Let Y_{J}^{s}, Y_{K}^{t} be the exteriors of J and K, with appropriate framings.

Bordered Heegaard Floer homology

- Let Y_{J}^{S}, Y_{K}^{t} be the exteriors of J and K, with appropriate framings.
- Let $B_{1} \cup B_{2} \cup B_{3} \subset S^{3}$ denote the Borromean rings, and let X be the exterior of $B_{1} \cup B_{2}$.

Bordered Heegaard Floer homology

- Let Y_{J}^{s}, Y_{K}^{t} be the exteriors of J and K, with appropriate framings.
- Let $B_{1} \cup B_{2} \cup B_{3} \subset S^{3}$ denote the Borromean rings, and let X be the exterior of $B_{1} \cup B_{2}$.
- Then $D_{J, s}(K, t)$ is the image of B_{3} in $X \cup Y_{J}^{s} \cup Y_{K}^{t}$,

Bordered Heegaard Floer homology

- Let Y_{J}^{S}, Y_{K}^{t} be the exteriors of J and K, with appropriate framings.
- Let $B_{1} \cup B_{2} \cup B_{3} \subset S^{3}$ denote the Borromean rings, and let X be the exterior of $B_{1} \cup B_{2}$.
- Then $D_{J, s}(K, t)$ is the image of B_{3} in $X \cup Y_{J}^{s} \cup Y_{K}^{t}$, so

$$
\widehat{\mathrm{CF}}\left(S^{3}, D_{J, s}(K, t)\right) \simeq\left(\widehat{\mathrm{CFAA}}(X) \tilde{\otimes} \widehat{\mathrm{CFD}}\left(Y_{J}^{S}\right)\right) \tilde{\otimes} \widehat{\mathrm{CFD}}\left(Y_{K}^{t}\right) .
$$

Bordered Heegaard Floer homology

- Let Y_{J}^{S}, Y_{K}^{t} be the exteriors of J and K, with appropriate framings.
- Let $B_{1} \cup B_{2} \cup B_{3} \subset S^{3}$ denote the Borromean rings, and let X be the exterior of $B_{1} \cup B_{2}$.
- Then $D_{J, s}(K, t)$ is the image of B_{3} in $X \cup Y_{J}^{s} \cup Y_{K}^{t}$, so

$$
\left.\widehat{\mathrm{CF}}\left(S^{3}, D_{J, s}(K, t)\right) \simeq \widehat{\mathrm{CFAA}}(X) \tilde{\otimes} \widehat{\mathrm{CFD}}\left(Y_{J}^{s}\right)\right) \tilde{\otimes} \widehat{\mathrm{CFD}}\left(Y_{K}^{t}\right) .
$$

- We can then follow the spectral sequence from $\widehat{\mathrm{HFK}}\left(D_{J, s}(K, t)\right)$ to $\widehat{\mathrm{HF}}\left(S^{3}\right)$ carefully to determine $\tau\left(D_{J, s}(K, t)\right)$.

The torus algebra

The algebra $\mathcal{A}\left(T^{2}\right)$ is generated over \mathbb{F}_{2} by

$$
\iota_{0}, \iota_{1}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{12}, \rho_{23}, \rho_{23}
$$

The torus algebra

The algebra $\mathcal{A}\left(T^{2}\right)$ is generated over \mathbb{F}_{2} by

$$
\iota_{0}, \iota_{1}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{12}, \rho_{23}, \rho_{23}
$$

with nonzero multiplications:

$$
\begin{aligned}
\iota_{0} \iota_{0} & =\iota_{0} & \iota_{1} \iota_{1} & =\iota_{1} \\
\rho_{1} \rho_{2} & =\rho_{12} & \rho_{2} \rho_{3} & =\rho_{23} \\
\rho_{12} \rho_{3} & =\rho_{123} & \rho_{1} \rho_{23} & =\rho_{123}
\end{aligned}
$$

The torus algebra

The algebra $\mathcal{A}\left(T^{2}\right)$ is generated over \mathbb{F}_{2} by

$$
\iota_{0}, \iota_{1}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{12}, \rho_{23}, \rho_{23}
$$

with nonzero multiplications:

$$
\begin{aligned}
\iota_{0} \iota_{0} & =\iota_{0} & \iota_{1} \iota_{1} & =\iota_{1} \\
\rho_{1} \rho_{2} & =\rho_{12} & \rho_{2} \rho_{3} & =\rho_{23} \\
\rho_{12} \rho_{3} & =\rho_{123} & \rho_{1} \rho_{23} & =\rho_{123}
\end{aligned}
$$

$$
\begin{aligned}
\iota_{0} \rho_{1}=\rho_{1} \iota_{1} & =\rho_{1} & \iota_{1} \rho_{2}=\rho_{2} \iota_{0} & =\rho_{2} & \iota_{0} \rho_{3}=\rho_{3} \iota_{1} & =\rho_{3} \\
\iota_{0} \rho_{12}=\rho_{12} \iota_{0} & =\rho_{12} & \iota_{1} \rho_{23}=\rho_{23} \iota_{1} & =\rho_{23} & \iota_{0} \rho_{123}=\rho_{123} \iota_{1} & =\rho_{123}
\end{aligned}
$$

CFD of knot complements

For $K \subset S^{3}, \widehat{\mathrm{CFD}}\left(X_{K}^{t}\right)$ is determined by the following data coming from $\mathrm{CFK}^{-}\left(S^{3}, K\right)$:

CFD of knot complements

For $K \subset S^{3}, \widehat{\mathrm{CFD}}\left(X_{K}^{t}\right)$ is determined by the following data coming from $\mathrm{CFK}^{-}\left(S^{3}, K\right)$:

- Two bases $\left\{\tilde{\eta}_{0}, \ldots, \tilde{\eta}_{2 n}\right\}$ and $\left\{\tilde{\xi}_{0}, \ldots, \tilde{\xi}_{2 n}\right\}$ for $\operatorname{CFK}^{-}\left(S^{3}, K\right)$;

CFD of knot complements

For $K \subset S^{3}, \widehat{\mathrm{CFD}}\left(X_{K}^{t}\right)$ is determined by the following data coming from $\mathrm{CFK}^{-}\left(S^{3}, K\right)$:

- Two bases $\left\{\tilde{\eta}_{0}, \ldots, \tilde{\eta}_{2 n}\right\}$ and $\left\{\tilde{\xi}_{0}, \ldots, \tilde{\xi}_{2 n}\right\}$ for $\operatorname{CFK}^{-}\left(S^{3}, K\right)$;
- Vertical arrows $\tilde{\xi}_{2 j-1} \rightarrow \tilde{\xi}_{2 j}$ of length $k_{j} \in \mathbb{N}$;

CFD of knot complements

For $K \subset S^{3}, \widehat{\mathrm{CFD}}\left(X_{K}^{t}\right)$ is determined by the following data coming from $\mathrm{CFK}^{-}\left(S^{3}, K\right)$:

- Two bases $\left\{\tilde{\eta}_{0}, \ldots, \tilde{\eta}_{2 n}\right\}$ and $\left\{\tilde{\xi}_{0}, \ldots, \tilde{\xi}_{2 n}\right\}$ for $\operatorname{CFK}^{-}\left(S^{3}, K\right)$;
- Vertical arrows $\tilde{\xi}_{2 j-1} \rightarrow \tilde{\xi}_{2 j}$ of length $k_{j} \in \mathbb{N}$;
- Horizontal arrows $\tilde{\xi}_{2 j-1} \rightarrow \tilde{\xi}_{2 j}$ of length $I_{j} \in \mathbb{N}$.

CFD of knot complements

Lipshitz, Ozsváth, and Thurston proved:

- $\iota_{0} \widehat{\operatorname{CFD}}\left(X_{K}^{t}\right)$ is generated by $\left\{\xi_{0}, \ldots, \xi_{2 n}\right\}$ or by
$\left\{\eta_{0}, \ldots, \eta_{2 n}\right\}$.

CFD of knot complements

Lipshitz, Ozsváth, and Thurston proved:

- $\iota_{0} \widehat{\operatorname{CFD}}\left(X_{K}^{t}\right)$ is generated by $\left\{\xi_{0}, \ldots, \xi_{2 n}\right\}$ or by $\left\{\eta_{0}, \ldots, \eta_{2 n}\right\}$.
- $\iota_{1} \widehat{\mathrm{CFD}}\left(X_{K}^{t}\right)$ is generated by

$$
\left\{\gamma_{1}, \ldots, \gamma_{r}\right\} \cup \bigcup_{j=1}^{n}\left\{\kappa_{1}^{j}, \ldots, \kappa_{k_{j}}^{j}\right\} \cup \bigcup_{j=1}^{n}\left\{\lambda_{1}^{j}, \ldots, \lambda_{l_{j}}^{j}\right\} .
$$

where $r=|2 \tau(K)-t|$.

CFD of knot complements

- Vertical stable chains:

$$
\xi_{2 j} \xrightarrow{\rho_{123}} \kappa_{1}^{j} \xrightarrow{\rho_{23}} \cdots \xrightarrow{\rho_{23}} \kappa_{k_{j}}^{j} \stackrel{\rho_{1}}{\leftrightarrows} \xi_{2 j-1}
$$

CFD of knot complements

- Vertical stable chains:

$$
\xi_{2 j} \xrightarrow{\rho_{123}} \kappa_{1}^{j} \xrightarrow{\rho_{23}} \cdots \xrightarrow{\rho_{23}} \kappa_{k_{j}}^{j} \stackrel{\rho_{1}}{\leftrightarrows} \xi_{2 j-1}
$$

- Horizonal stable chains:

$$
\eta_{2 j-1} \xrightarrow{\rho_{3}} \lambda_{1}^{j} \xrightarrow{\rho_{23}} \cdots \xrightarrow{\rho_{23}} \lambda_{1_{j}}^{j} \xrightarrow{\rho_{2}} \eta_{2 j},
$$

CFD of knot complements

- Vertical stable chains:

$$
\xi_{2 j} \xrightarrow{\rho_{123}} \kappa_{1}^{j} \xrightarrow{\rho_{23}} \ldots \xrightarrow{\rho_{23}} \kappa_{k_{j}}^{j} \stackrel{\rho_{1}}{\leftrightarrows} \xi_{2 j-1} .
$$

- Horizonal stable chains:

$$
\eta_{2 j-1} \xrightarrow{\rho_{3}} \lambda_{1}^{j} \xrightarrow{\rho_{23}} \cdots \xrightarrow{\rho_{23}} \lambda_{l_{j}}^{j} \xrightarrow{\rho_{2}} \eta_{2 j},
$$

- Unstable chain:

$$
\begin{cases}\eta_{0} \xrightarrow{\rho_{3}} \gamma_{1} \xrightarrow{\rho_{23}} \ldots \xrightarrow{\rho_{23}} \gamma_{r} \stackrel{\rho_{1}}{\xi_{0}} & t<2 \tau(K) \\ \xi_{0} \xrightarrow{\rho_{12}} \eta_{0} & t=2 \tau(K) \\ \xi_{0} \xrightarrow{\rho_{123}} \gamma_{1} \xrightarrow{\rho_{23}} \ldots \xrightarrow{\rho_{23}} \gamma_{r} \xrightarrow{\rho_{2}} \eta_{0} & t>2 \tau(K) .\end{cases}
$$

CFA for the Whitehead double

Let $W h \subset S^{1} \times D^{2}$ be the pattern for the positive Whitehead double. Then $\widehat{\operatorname{CFA}(}\left(S^{1} \times D^{2}, W h\right)$ has the following form:

$$
-1
$$

0
1

CFA for the Whitehead double

Let $W h \subset S^{1} \times D^{2}$ be the pattern for the positive Whitehead double. Then $\widehat{\mathrm{CFA}}\left(S^{1} \times D^{2}, W h\right)$ has the following form:

$$
\begin{array}{lll}
-1 & 0 & 1
\end{array}
$$

In other words, for instance:

$$
m_{1}\left(b^{\prime}\right)=b \quad m_{2}\left(b, \rho_{1}\right)=a \quad m_{4}\left(b, \rho_{3}, \rho_{2}, \rho_{1}\right)=c
$$

Proving Hedden's formula for $\tau\left(W h_{+}(K, t)\right)$

We split $\widehat{\mathrm{CFA}}\left(S^{1} \times D^{2}, W h\right) \boxtimes \widehat{\mathrm{CFD}}\left(X_{K}^{t}\right)$ into direct summands according to the horizontal and vertical chains:

$$
\begin{aligned}
C_{\text {vert }}^{j} & =\left\langle b, b^{\prime}\right\rangle \boxtimes\left\langle\xi_{2 j-1}, \xi_{2 j}\right\rangle+\left\langle a, a^{\prime}, c, c^{\prime}\right\rangle \boxtimes\left\langle\kappa_{i}^{j} \mid 1 \leq i \leq k_{j}\right\rangle \\
C_{\text {hor }}^{j} & =\langle d\rangle \boxtimes\left\langle\eta_{2 j-1}, \eta_{2 j}\right\rangle+\left\langle a, a^{\prime}, c, c^{\prime}\right\rangle \boxtimes\left\langle\lambda_{i}^{j} \mid 1 \leq i \leq I_{j}\right\rangle \\
C_{\text {unst }} & =\left\langle b \boxtimes \xi_{0}, b^{\prime} \boxtimes \xi_{0}, d \boxtimes \eta_{0}\right\rangle+\left\langle a, a^{\prime}, c, c^{\prime}\right\rangle \boxtimes\left\langle\lambda_{i} \mid 1 \leq i \leq r\right\rangle .
\end{aligned}
$$

Proving Hedden's formula for $\tau\left(W h_{+}(K, t)\right)$

We split $\widehat{\mathrm{CFA}}\left(S^{1} \times D^{2}, W h\right) \boxtimes \widehat{\mathrm{CFD}}\left(X_{K}^{t}\right)$ into direct summands according to the horizontal and vertical chains:

$$
\begin{aligned}
C_{\text {vert }}^{j} & =\left\langle b, b^{\prime}\right\rangle \boxtimes\left\langle\xi_{2 j-1}, \xi_{2 j}\right\rangle+\left\langle a, a^{\prime}, c, c^{\prime}\right\rangle \boxtimes\left\langle\kappa_{i}^{j} \mid 1 \leq i \leq k_{j}\right\rangle \\
C_{\text {hor }}^{j} & =\langle d\rangle \boxtimes\left\langle\eta_{2 j-1}, \eta_{2 j}\right\rangle+\left\langle a, a^{\prime}, c, c^{\prime}\right\rangle \boxtimes\left\langle\lambda_{i}^{j} \mid 1 \leq i \leq I_{j}\right\rangle \\
C_{\text {unst }} & =\left\langle b \boxtimes \xi_{0}, b^{\prime} \boxtimes \xi_{0}, d \boxtimes \eta_{0}\right\rangle+\left\langle a, a^{\prime}, c, c^{\prime}\right\rangle \boxtimes\left\langle\lambda_{i} \mid 1 \leq i \leq r\right\rangle .
\end{aligned}
$$

What's special here is that we actually get a direct sum decomposition. Almost. The single \mathbb{F} that survives in homology always comes from $C_{\text {unst }}$.

Proving Hedden's formula for $\tau\left(W h_{+}(K, t)\right)$

In the case where $s<2 \tau(K)$:

Our goal is one whose application's nice For smooth four-manifold topology: To tell if certain knots and links are slice With bordered Heegaard Floer homology.

Our goal is one whose application's nice For smooth four-manifold topology:
To tell if certain knots and links are slice
With bordered Heegaard Floer homology.
We seek concordance data that detect
Some links obtained by Whitehead doublings,
As well as knots we get when we infect
Along two of the three Borromean rings.

Our goal is one whose application's nice For smooth four-manifold topology:
To tell if certain knots and links are slice With bordered Heegaard Floer homology.

We seek concordance data that detect
Some links obtained by Whitehead doublings,
As well as knots we get when we infect
Along two of the three Borromean rings.
Some lengthy work with bordered Floer then proves
How τ for satellites like these is found.
We see, by this result and cov'ring moves,
That smooth slice disks our links can never bound.

Our goal is one whose application's nice For smooth four-manifold topology:
To tell if certain knots and links are slice With bordered Heegaard Floer homology.

We seek concordance data that detect
Some links obtained by Whitehead doublings,
As well as knots we get when we infect
Along two of the three Borromean rings.
Some lengthy work with bordered Floer then proves
How τ for satellites like these is found.
We see, by this result and cov'ring moves,
That smooth slice disks our links can never bound.
The theorem's proved, the dissertation's done,
But all the work ahead has just begun.

