
NOTES ON HYPERBOLIC GEOMETRY

ROBERT L. BRYANT

Abstract. These are some notes to help you follow the lectures in class on
the construction of a non-Euclidean model of the Hilbert plane, i.e., a model
in which Hilbert’s Euclidean Parallel Postulate does not hold. As it happens,
our model will also satisfy Dedekind’s Axiom, so, in particular, all of the
various continuity axioms will be satisfied for our model as well. This particular
model is known as the hyperbolic plane, and it has a number of different (but
isomorphic) realizations.
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1. Introduction

In these notes, I will provide the details for the construction of the hyperbolic
plane, a model for our incidence, betweenness, and congruence axioms for which
the Parallel Postulate does not hold. It will also satisfy Dedekind’s Axiom and,
hence, all of the continuity axioms that we have discussed.

It turns out that it is useful to have more than one way to represent the hyperbolic
plane, though all of them are equivalent. (We’ll show that they are equivalent, i.e.,
isomorphic.)

2. The Klein Disk Model

The first model we’ll discuss is the Klein model K. Although it would be possible
to verify all of Hilbert axioms in this model directly (once we have fully defined the
model), it turns out that this is somewhat complicated algebraically, so we’ll rely
on the other models to help us avoid this algebraic mess.1

2.1. Points and Lines. The points of K are the points P = (x, y) ∈ R2 that lie
inside the unit circle, i.e.,

x2 + y2 < 1.

We’ll call these ‘K-points’, when there is any danger of confusion. The points on
the unit circle are sometimes called ideal points, but I emphasize that they are not
points in the model.

A line of K (i.e., a ‘K-line’) is a chord of the unit circle, i.e., it is described by
a linear equation

ax+ by − c = 0,

where a2 + b2 > c2 is necessary in order that this Euclidean line pass through some
K-point. (Any K-line has a K-point on it, by Incidence Axiom 2, and the closest
point on the line ax+by−c = 0 to the origin is (x, y) =

(

ca/(a2+b2), cb/(a2+b2)
)

.)
We define incidence and betweenness in this model to be the same as incidence

and betweenness in the coordinate plane R2.

Remark 1 (Basic axioms of the Klein model). In earlier discussions, in class and
homework, we have already seen that Hilbert’s incidence and betweenness axioms
hold for the points and lines of K.

We also know that Dedekind’s Axiom holds (because Dedekind’s Axiom holds
for the coordinate plane and this easily implies Dedekind’s Axiom for chords of the
unit circle, i.e., lines in the model K).

We have also seen, through simple examples, that the Parallel Postulate does
not hold.

1Still, the algebra isn’t so complicated except for the final SAS Postulate (C-6), so it’s instruc-
tive to see how this works.



HYPERBOLIC GEOMETRY 3

Exercise 2.1. Show that two distinct K-lines

a1x+ b1y − c1 = 0 and a2x+ b2y − c2 = 0

intersect in a K-point (i.e., in a point inside the unit circle) if and only if

(c1c2 − a1a2 − b1b2)
2 < (a1

2 + b1
2 − c1

2)(a2
2 + b2

2 − c2
2).

(Hint: Use Cramer’s Rule to find the point of intersection (x, y) of the two lines
and check that x2 + y2 < 1 is equivalent to the above inequality.)

Remark 2 (Normalized equations of K-lines). Since a K-line ax+by−c = 0 satisfies
a2+b2−c2 > 0, we can let λ satisfy λ2 = a2+b2−c2 and note that, if (ā, b̄, c̄) =
( aλ ,

b
λ ,

c
λ ), then

āx+ b̄y − c̄ = 0

defines the same line as ax+by−c = 0, but it satisfies ā2 + b̄2 − c̄2 = 1. We say
that an equation ax+by−c = 0 for a K-line ℓ is normalized if a2+b2−c2 = 1. Any
K-line ℓ is defined by exactly two normalized equations:

ax+by−c = 0 and (−a)x+(−b)y−(−c) = 0.

when a2 + b2 − c2 = 1.

2.2. Segment Length and Congruence. The first thing to do in the model K
is to define congruence of segments. Here is how this can be done:

Let A and B be distinct K-points. Since they are distinct, they lie on a unique
K-line ℓ, which meets the unit circle in two ideal points P and Q with

Q ∗A ∗B and A ∗B ∗ P.

(Note that, if we were to switch A and B, we would have to switch P and Q in
order to maintain the required betweenness relations.)

Since all of the vectors A, B, P , and Q are distinct and lie on a line, all of the
difference vectors

P−A, P−B, A−Q, B−Q
are positive multiples of the vector P−Q. Thus, their ratios are well-defined as real
numbers. In fact, we clearly have

P−A
P−B > 1 and

Q−B
Q−A > 1.

Definition 1 (K-length and segment congruence). The K-length of the K-segment
AB is the (positive) real number2

(2.1) AB =
1

2
log

(

P−A
P−B · Q−B

Q−A

)

> 0.

Moreover, two K-segments AB and CD are congruent, i.e., AB ∼= CD, if and only
if AB = CD.

2Here and elsewhere, the base of the logarithm is assumed to be Euler’s constant e, i.e., the
natural logarithm, denoted in some texts by ln. Since we will not have any need to use the so-called

common logarithm, i.e., log10, this should not cause confusion.
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Remark 3. Note that if we switch A and B (and therefore P and Q), the formula
shows that AB = BA, so the K-length really does depend only on the pair of
points, not their order.

The choice of the coefficient 1

2
in the formula for K-length simplifies many of

the later formulae. We could have used any (positive) coefficient and obtained a
workable definition of K-length (corresponding to the choice of unit length segment
in Theorem 4.3 of Greenberg), but, again, it turns out that this particular choice
simplifies many later formulae. We’ll return to this point later.

Exercise 2.2. Let P and Q be any two distinct ideal points. Show that a K-point
X lies on the line through Q and P if and only if there is a real number x such that

X =
1

1+e2x
Q+

e2x

1+e2x
P.

Next, let a < b be any two real numbers. Show that the points

A =
1

1+e2a
Q+

e2a

1+e2a
P and B =

1

1+e2b
Q+

e2b

1+e2b
P

are K-points (i.e., lie inside the ideal circle) and satisfy Q ∗ A ∗ B and A ∗ B ∗ P .
Show also that A ∗X ∗B if and only if a < x < b.

Using the formula (2.1), show that

AB = b− a.

(Hint: First, observe that X = (1−t)Q + tP for some t satisfying 0 < t < 1 and
then solve for x. Next, observe that X = (1−s)A+ sB for some s and that this s
satisfies 0 < s < 1 if and only if a < x < b.)

Finally, use the above observations to show that, if A ∗X ∗B then

AB = AX +XB.

Exercise 2.3. Explain why the previous exercises imply that, with this definition of
K-congruence of segments, the model K satisfies congruence axioms C-1, C-2, and
C-3.

2.3. Angle Congruence. It turns out that defining congruence of angles is not
so easy in the K-model. However, it can be done as follows:

First, note that

ax+ by − c = 0

is the equation of a K-line ℓ, so a2+ b2− c2 > 0. Then the two half-planes bounded
by ℓ are described by the inequalities

ax+ by − c > 0 or ax+ by − c < 0.

By replacing (a, b, c) by (−a,−b,−c), we can switch the two half planes.
Now suppose that A = (xA, yA), B = (xB , yB), and C = (xC , yC) are distinct

K-points that are not collinear. Let ℓ be the line through A and B, with normalized
equation

a1x+ b1y − c1 = 0

(i.e., a1
2 + b1

2 − c1
2 = 1), and let m be the line through A and C with normalized

equation

a2x+ b2y − c2 = 0

(i.e., a2
2 + b2

2 − c2
2 = 1).
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After replacing (ai, bi, ci) with (−ai,−bi,−ci) if necessary, we can assume that

a1xC + b1yC − c1 > 0 and a2xB + b2yB − c2 > 0.

Thus, C is on the ‘positive’ side of ℓ and B is on the ‘positive’ side of m, according
to the equations we use to define them. The point is that the two linear functions
a1x+ b1y − c1 and a2x+ b2y − c2 are positive on the interior of the angle ∠BAC.

Because ℓ and m pass through the K-point A, we know from Exercise 2.1 that

|c1c2 − a1a2 − b1b2| <
√

a12 + b1
2 − c12

√

a22 + b2
2 − c22 = 1.

Definition 2 (K-angle measure and angle congruence). The radian K-measure
of ∠BAC is

(2.2) (∠BAC)r = cos−1
(

c1c2 − a1a2 − b1b2
)

.

Also K-angles ∠ABC and ∠DEF are congruent, i.e., ∠ABC ∼= ∠DEF , if and only
if (∠ABC)r = (∠DEF )r .

Remark 4. The above inequality ensures that the quantity inside the parenthesis
is strictly between −1 = cosπ and 1 = cos 0, so this does define (∠BAC)r as a
number between 0 and π. (Recall that the cosine function is strictly decreasing on
the interval [0, π], so it does have a well-defined inverse function when restricted to
this interval.)

Also, note the use of radian measure rather than the more ‘traditional’ degree
measure. Of course, we could convert radians to degrees, but it turns out that
formulae work out simpler when we use radians.

Exercise 2.4. Explain why, if ∠BAC is an angle and
−−−→
AB′ =

−−→
AB while

−−−→
AC′ =−−→

AC , then
(∠B′AC′)r = (∠BAC)r .

Thus, the K-radian measure depends only on the two rays that make up the angle,
not on the particular points.

Also, if D is a K-point that satisfies D ∗A ∗C (so that
−−→
AD is the opposite ray

to
−−→
AC ), explain why

(∠BAD)r = π − (∠BAC)r .

(Hint: cos(π − x) = − cos(x).) Hence, by definition, a K-angle is congruent to its
supplement if and only if its radian K-measure is π

2
.

Exercise 2.5. Let A = (0, 0), B = (r1 cos θ1, r1 sin θ1), and C = (r2 cos θ2, r2 sin θ2)
where 0 < θ2 − θ1 < π and r1, r2 > 0. Using the definitions, show that

(∠ABC)r = θ2 − θ1 ,

i.e., when A = (0, 0), the radian K-measure of angles agrees with Euclidean angle
measure (in radians). Show, however, that, when A = (u, v), B = (u+ǫ, v), and
C = (u, v+ǫ), are K-points with ǫ > 0 some small number, we have

cos
(

(∠ABC)r
)

=
uv

√

(1−u2)(1−v2)
,

so angles that ‘look right’ in the Euclidean sense need not be right in the K-model.
Use this formula to construct a Lambert quadrilateral in the model K and show
that its fourth angle is acute.
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Exercise 2.6. Show that, for any K-ray
−−→
AB , any x satisfying 0 < x < π, and on

any given side of the line ℓ passing through A and B, there is a unique ray
−−→
AC

satisfying

(∠BAC)r = x.

Explain why this shows that, with this definition of angle congruence, the model K
satisfies Congruence Axioms C-4 and C-5.

(Hint for the first part: Because of the properties of the cosine function, the
hypothesis 0 < x < π is equivalent to the hypothesis −1 < cosx < 1, so you

are being asked to show that there is a unique ray
−−→
AC defined by a normalized

equation a2 x+ b2 y − c2 = 0, where

a2 xA + b2 yA − c2 = 0 and c1c2 − a1a2 − b1b2 = cosx,

where the line through A and B satisfies a normalized equation a1 x+ b1 y− c1 = 0
with a1 xC+b1 yC−c1 > 0 and a2 xB+b2 yB−c2 > 0. This is three linear equations
for (a2, b2, c2) (don’t forget that the equation is normalized, so a2

2 + b2
2 − c2

2 = 1)
plus some inequalities. How does that help?)

2.4. Side-Angle-Side. Assuming all the exercises up to this point, we have now
verified that the model K satisfies all of the axioms for a Hilbert plane except C-6,
i.e., the infamous SAS Postulate. It is now possible (though the algebra is tedious),
to prove by algebraic calculations that C-6 is satisfied as well. Right now, though,
I’ll just state this result as a theorem, and leave the proof to the next section, after
we have developed further insight using a different (but isomorphic) model.

Theorem 1. The model K, with incidence, betweenness, and congruence of seg-
ments and angles as defined above, satisfies the axioms of a Hilbert plane (in par-
ticular, C-6) and Dedekind’s Axiom, but it does not satisfy the Parallel Postulate.

Remark 5 (The hyperbolic laws of cosines and sines). In order not to leave the
reader mystified, I’ll just indicate how one could prove C-6 directly by algebra.

Consider a K-triangle △ABC. To simplify notation, let BC = a, AC = b, and
AB = c and let α = (∠BAC)r , β = (∠CBA)r , γ = (∠ACB)r . Then, using the
above definitions, one can prove by algebra that the following identities hold

(2.3) cosh c = cosha cosh b− sinh a sinh b cos γ ,

(2.4)
sinα

sinh a
=

sinβ

sinh b
=

sin γ

sinh c
,

and

(2.5) cos γ = − cosα cosβ + sinα sinβ cosh c .

The identity (2.3) is known as the first hyperbolic law of cosines, the identity (2.4)
is known as the hyperbolic law of sines, and the identity (2.5) is known as the second
hyperbolic law of cosines.

The first hyperbolic law of cosines shows that if we know a and b and γ (i.e., the
length of two sides and the measure of the included angle), we can compute c (the
remaining side length) (since the function cosh is strictly increasing on the interval
(0,∞). Now, knowing a, b, and c, we can solve for α and β by using the permuted
identities (since sinhx > 0 whenever x > 0)

cosha = cosh b cosh c− sinh b sinh c cosα
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and

cosh b = cosha cosh c− sinh a sinh c cosβ.

Thus, knowing the length of two sides of a triangle and the measure of the included
angle determines the length of the other side and the measures of the other angles.
But this is exactly the content of C-6.

Unfortunately, the proof of (2.3) just using the formulae for a, b, c, and γ that
come straight from the definitions is very complicated. In the model that we will
develop in the next section, though, we can bring to bear some insight from 3-
dimensional linear algebra, and this simplifies the proof of (2.3) dramatically.

3. The Hyperbolic Sheet Model

This model, the hyperbolic sheet model S turns out to be good because it makes
the closest connection to linear algebra, and linear algebra is easier than complicated
polynomial algebra.

You have probably already noticed that expressions of the form a2 + b2 − c2

kept coming up in our discussion of K-geometry, but it wasn’t obvious why this
was happening. Our model in 3-space is going to make this clear, because we are
going to use the Minkowskian (aka Lorentzian) inner product on R3 instead of the
standard (Euclidean) one.

3.1. Minkowskian linear algebra in dimension 3. We need to modify the
familiar definitions of the (Euclidean) inner product (also known as ‘dot product’)
and cross product. In this subsection, we’ll collect the facts about this that we
need.

Definition 3. The Minkowsian inner product of two vectors (a, b, c) and (u, v, w)
in R3 is defined to be the real number

(3.1) (a, b, c) · (u, v, w) = au+ bv − cw.

Definition 4. The Minkowskian cross product of two vectors, is defined to be the
expression

(3.2) (a, b, c)× (u, v, w) = (bw−cv, cu−aw, bu−av).

Remark 6. Note the minus sign in the third term in the formula for the inner of
two vectors in R3. Also, if you look carefully at the formula for the cross product,
you’ll note that the sign of the third term there is also reversed from the Euclidean
case. These are essential for everything that we will do in this model. Despite these
minus signs, the inner product will have most of the properties of the more familiar
Euclidean inner (aka ‘dot’) product.

Remark 7 (Linearity). For example, we have the familiar linearity in each variable
separately, and symmetry for the dot product and anti-symmetry for the cross
product:

(3.3)

X · Y = Y ·X
X · (a Y + b Z) = a (X · Y ) + b (X · Z)

X × Y = −Y ×X

X × (a Y + b Z) = a (X × Y ) + b (X × Z)
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Remark 8 (Relations between the two products). We also have that X × Y = 0
only when X and Y are linearly dependent and that

(3.4) X · (X × Y ) = Y · (X × Y ) = 0

for all vectors X and Y in R3. Thus, when X and Y are linearly independent, the
vector X × Y is orthogonal (in the Minkowski sense) to the plane spanned by X
and Y .

There is also the important formula

(3.5) (X × Y ) · (X × Y ) = (X · Y )2 − (X ·X)(Y · Y ),

in which, you should note, the right hand side is the negative of the right hand side
you find in the Euclidean inner product formula.

Finally, there is the triple product determinant formula

(3.6) X · (Y × Z) = det





X
Y
Z



 .

(Remember that we are writing our vectors as row vectors.) As a consequence, we
still have the ‘cyclic permutation identity’ for the triple product:

(3.7) X · (Y × Z) = Y · (Z ×X) = Z · (X × Y ).

Exercise 3.1. Verify the identity (3.5), then show that the following generalization
holds:

(3.8) (X × Y ) · (X × Z) = (X · Y )(X · Z)− (X ·X)(Y · Z).
(The original case is when Z = Y .) (Hint: Once you have verified that (3.5) holds
for all X and Y in R3, substitute Y + Z for Y in that formula and expand both
sides, using the fact that you already know that the formula holds for Y and for
Y = Z.)

3.2. Points and Lines. With that bit of linear algebra out of the way, the first
order of business is to define the points and lines of the model and the incidence
relation.

3.2.1. Points. The points of S will be the vectors A = (u, v, w) ∈ R3 that lie on
the upper sheet S of the hyperboloid of 2-sheets defined by u2 + v2−w2 = −1, i.e.,
the ones that satisfy w > 0. (In fact, because w2 = 1+ u2 + v2 ≥ 1, the hypothesis
w > 0 implies that w ≥ 1.)

Note that an S-point A ∈ R3 satisfies A · A = −1, but this is not quite enough,
because we also have to check that A lies on the upper sheet, i.e., that its third
coordinate is positive.

3.2.2. Correspondences between K and S. If (u, v, w) ∈ S lies in ℓ, then w 6= 0, so
there is a well-defined point

(x, y) =
( u

w
,
v

w

)

= f(u, v, w)

that satisfies

x2 + y2 = (u/w)2 + (v/w)2 = 1 + (u2 + v2 − w2)/w2 = 1− 1/w2 < 1,
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so (x, y) is a K-point. Conversely, if (x, y) is a K-point, then

(u, v, w) =

(

x
√

1− x2 − y2
,

y
√

1− x2 − y2
,

1
√

1− x2 − y2

)

= g(x, y)

is a point on S, and we have

g
(

f(u, v, w)
)

= (u, v, w) and f
(

g(x, y)
)

= (x, y),

so this establishes a one-to-one correspondence between K-points and S-points.

3.2.3. Lines. An S-line ℓ is a plane in R3 that passes through the origin (0, 0, 0)
and that has nonempty intersection with S.

By definition, the point A is incident with ℓ if and only if A lies in the plane ℓ.
A plane ℓ through the origin has an equation of the form

a u+ b v − cw = 0

for some constants (a, b, c) (unique up to replacement by (λa, λb, λc) for any nonzero
real number λ).

A plane ℓ with the above equation meets S in a point (u, v, w) if and only if

a
u

w
+ b

v

w
− c = a x+ b y − c = 0.

From what we already know about the model K, we know that this can happen for
some (u, v, w) ∈ S if and only a2 + b2 − c2 > 0.

Exercise 3.2. Show that the mappings g : K → S and f : S → K (which are
inverse to each other), make the lines in the two models correspond as well. In
other words, show that the two mappings f and g preserve collinearity, i.e., carry
collinear triples to collinear triples.

Thus, we can always assume, if necessary, that an equation a u + b v − cw = 0
for an S-line ℓ is normalized so that a2 + b2 − c2 = 1, and this determines (a, b, c)
up to replacing it by (−a,−b,−c). In other words, the S-lines correspond 2-to-1 to
the points of the hyperboloid of one sheet

Λ =
{

(a, b, c) ∈ R3 a2 + b2 − c2 = 1
}

⊂ R3.

Remark 9 (Choosing sides). This ‘double counting’ is actually an advantage, be-
cause we have two choices for the normalized equation of a line ℓ, and those two
choices correspond to deciding which side of the line ℓ is going to be regarded as
the positive side. What I mean by this is that, when we write the equation of ℓ as
(a, b, c) · (u, v, w) = 0 where P = (a, b, c) ∈ Λ satisfies P · P = 1, then the two sides
of the line in S are the two sets

H+ = {A ∈ S P ·A > 0 } and H− = {A ∈ S P ·A < 0 }.

Replacing P by −P switches these two sides. Thus, a choice of a normalized P ∈ Λ
to define a line ℓ corresponds to choosing not only the line ℓ, but also which of the
two sides we want to call ‘positive’.
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3.3. Segment congruence. We now want to see how to compute length of seg-
ments in the S-model. The following argument will show that, for K-points A and
B, the all-important formula

(3.9) g(A) · g(B) = − cosh
(

AB
)

= −e
AB + e−AB

2

holds, so that the formula for distance in the S-model is expressed simply in terms
of the inner product (and the hyperbolic cosine function).

Let P = (cosα, sinα) and Q = (cosβ, sinβ) be two distinct ideal points of

the K-model, and consider corresponding vectors P̂ = (r cosα, r sinα, r) Q̂ =

(r cosβ, r sinβ, r) in R3, where r is a positive real number Then P̂ and Q̂ are
linearly independent, and they satisfy

P̂ · P̂ = Q̂ · Q̂ = 0

and

P̂ · Q̂ = −r2
(

1− cos(α−β)
)

< 0

(after all, cos(α− β) < 1 because P and Q are distinct).

Choose r > 0 so that r2
(

1− cos(α−β)
)

= 1

2
. Then P̂ · Q̂ = − 1

2
.

Now, using the formulae for these inner products, we have that, for each a ∈ R,
the point

Â = eaP̂ + e−aQ̂

lies in S and the plane ℓ spanned by P̂ and Q̂. Moreover, Â = g(A) where A is the
K-point

A =

(

1

1 + e2a

)

Q+

(

e2a

1 + e2a

)

P

which satisfies Q ∗A ∗ P . Conversely, every K-point A that lies between the ideal
points P and Q is A = f(Â) where Â is of the above form.

Similarly, if b 6= a is another real number, then, letting

B̂ = ebP̂ + e−bQ̂

we get B̂ = g(B) where Q ∗B ∗ P and that

B =

(

1

1 + e2b

)

Q+

(

e2b

1 + e2b

)

P

Now, the above formulae for the inner products of P̂ and Q̂ show that Â · B̂ =
− cosh(a− b) = − cosh(b − a).

Meanwhile, using the formula we have already verified for K-points, we have

AB = |a− b|.
Thus, under the mapping g : K → S, we have the desired formula

g(A) · g(B) = − cosh
(

AB
)

= −e
AB + e−AB

2
.

Remark 10. The above exercise shows that the peculiar notion of K-length that we
defined in theK-model actually has a simpler, more natural formula in the S-model
in terms of the inner product. This motivates the following definition:
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Definition 5. The S-length of an S-segment AB is

AB = cosh−1
(

−A ·B
)

> 0.

Two S-segements AB and CD are congruent if they have the same S-length. Equiv-
alently, AB ∼= CD if and only if A ·B = C ·D.

Remark 11. Any linear transformationL : R3 → R3 that preserves the Minkowskian
inner product must preserve the hyperboloid of two sheets and must therefore either
preserve the upper sheet or exchange it with the lower sheet.

The key consequence of the above definition is that if such an L does preserve S
(equivalently, preserves the upper cone), then it carries the points and lines of S to
the points and lines of S and preserves the S-length of all segments.

3.4. Angle Congruence. Now, we want to concentrate on defining the S-angle
measure for a general angle ∠BAC, but, ultimately, I am going to be working with
the triangle △ABC, where A, B, and C are non-collinear S-points.

Thus, I’m going to introduce notation so that a > 0 will be the length of the
side opposite ∠A, i.e., BC; b > 0 will be the length of the side opposite ∠B, i.e.,
AC; and c > 0 will be the length of the side opposite ∠C, i.e., AB. Thus, by the
results of the previous section on length, we have

A · A = B · B = C · C = −1

and

B · C = − cosha, C · A = − cosh b, A · B = − cosh c .

It’s important to note that, because A, B, and C are assumed to form a triangle,
i.e., that they are not linearly dependent, the triple product A · (B×C) is not zero.
By switching B and C if necessary, we can assume, without loss of generality, that

A · (B × C) > 0.

Now, A and B are distinct S-points, which are, therefore, linearly independent
in R3. Using the above dot products, we see that

V =
B − cosh cA

sinh c

is well-defined (since sinh c > 0), and we can compute from the above inner product
formulae that

A · V = 0 and V · V = 1.

Now, consider the vector M = A× V = (A×B)/(sinh c) (since A×A = 0). Then
M must satisfy M ·A =M · B = 0, and we have

M ·M = (A× V ) · (A× V ) = −(A · A)(V · V ) = 1,

so M · X = 0 is a normalized equation for the line ℓ passing through A and B.
Moreover,

M · C = C ·M =
C · (A×B)

sinh c
=
A · (B × C)

sinh c
> 0,

so the equation M ·X = 0 has C on the positive side of the line through A and B.
Next, we consider the line m through A and C. Define the vector

W =
C − cosh bA

sinh b
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which, using our formulae for dot products of A, B, and C, satisfies

A ·W = 0 and W ·W = 1.

Now, consider the vector N = −A ×W = −(A × C)/(sinh b) (since A × A = 0).
Then N must satisfy N ·A = N · C = 0 and we get

N ·N = (A×W ) · (A×W ) = −(A ·A)(W ·W ) = 1,

so N · X = 0 is a normalized equation for the line m passing through A and C.
Moreover,

N ·B = B ·N = −B · (A× C)

sinh b
=
A · (B × C)

sinh b
> 0,

so the equation N ·X = 0 has B on the positive side of the line through A and C.
Because the plane m is spanned by A and W and is different from the plane

ℓ spanned by A and V , it follows that M = (a2, b2, c2) and N = (a1, b1, c1) are
linearly independent. Since A lies on both m and ℓ, we have

−1 < c1c2 − a1a2 − b1b2 < 1.

Definition 6. The S-measure (in radians) of ∠BAC is

(∠BAC)r = cos−1
(

c1c2 − a1a2 − b1b2
)

= cos−1(−M ·N).

Two S-angles are congruent if and only if they have the same S-measure.

Exercise 3.3. Trace through the algebra to verify that for any three non-collinear
K-points A, B, C, we have

(∠BAC)r =
(

∠g(B)g(A)g(C)
)r
.

This shows that the above definition of S-measure in radians corresponds under
the isomorphism g : K → S of the K-measure of angles in radians defined in the
K-model.

Finally, we can now use our formulae to compute M ·N = − cos
(

(∠BAC)r
)

.

(3.10)

M ·N = −(A× V ) · (A×W ) = (A · A)(V ·W )

= −
(

B − cosh cA

sinh c

)

·
(

C − cosh bA

sinh b

)

=
cosh a− cosh b cosh c

sinh b sinh c
.

This rearranges to give the famous First Hyperbolic Law of Cosines :

(3.11) cosha = cosh b cosh c− sinh b sinh c cosα,

where α = (∠BAC)r .

Exercise 3.4. Using the fact that, when x is small, we have sinhx ≈ x and coshx ≈
1 + 1

2
x2, explain why, when a, b, and c are all very small, we have

cos
(

(∠BAC)r
)

≈ b2 + c2 − a2

2bc
,

so, for very small triangles, the Euclidean Law of Cosines is approximately true.
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Exercise 3.5. For an equilateral hyperbolic triangle, with b = c = a > 0, show that

cos
(

(∠BAC)r
)

=
cosh2 a− cosha

sinh2 a
=

cosha

1 + cosha
>

1

2
,

so (∠BAC)r < π/3. Thus, the angle defect of a hyperbolic equilateral triangle is
always positive! (In fact, as the side length grows without bound, the angle measure
at each vertex decreases to zero, so, for any α satisfying 0 < α < π/3, there is an
equilateral hyperbolic triangle whose angles all have measure α.)

Exercise 3.6 (The hyperbolic Law of Sines). Using the notation α = (∠BAC)r ,
β = (∠CBA)r , γ = (∠ACB)r , prove that any triangle △ABC satisfies

(3.12)
sinα

sinh a
=

sinβ

sinh b
=

sin γ

sinh c
.

(Hint: The three ratios are positive numbers, so it suffices to show that their squares
are equal. Let

R =

(

sinα

sinh a

)2

=
(1− cos2 α)

(cosh2 a− 1)
.

Note that, by the first hyperbolic law of cosines, we have

cos2 α =
(cosha− cosh b cosh c)2

(cosh2 b− 1) (cosh2 c− 1)
.

Using this, express R in terms of cosha, cosh b, and cosh c, being sure to simplify
as much as possible. How does this help?).

Theorem 2 (C-6 holds). If, for two S-triangles △ABC and △DEF , we have the
congruences

AB ∼= DE, AC ∼= DF, and ∠BAC ∼= ∠EDF,

then we also have

BC ∼= EF, ∠ABC ∼= ∠DEF and ∠BCA ∼= ∠EFD.

In other words, the two triangles are congruent.

Proof. By the hyperbolic Law of Cosines, we have (using the notation above for
the triangle △ABC)

cosha = cosh b cosh c− sinh b sinh c cos
(

(∠BAC)r
)

,

so knowing b = AC, c = AB and (∠BAC)r determines a = BC. The above
hypotheses then imply that, since we know DE = c, DF = b and (∠EDF )r =
(∠BAC)r , we then also know EF = a. Now we know that all three corresponding
sides of the two triangles are congruent, and the hyperbolic Law of Cosines then
gives us formulae for the S-radian measure of the other two corresponding angles.

�

Exercise 3.7 (The second hyperbolic Law of Cosines). Using the above established
notation, give a proof of the relation (2.5). Note that this relation (and its two cor-
responding relations that come from permuting the vertices) implies the hyperbolic
AAA theorem, namely, two triangles are congruent if their corresponding angles
are congruent. This theorem has no analog in Euclidean geometry because of the
existence of similar triangles that are not congruent.
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3.5. Some Motions of the S-plane. In this part, I will construct some explicit
linear maps of R3 to itself that preserve the inner product. First, though, it’s useful
to observe that

X · Y = 1

4

(

(X+Y ) · (X+Y )− (X−Y ) · (X−Y )
)

,

which shows that a linear map L : R3 → R3 preserves the inner product as long
as it preserves the (simpler) quadratic form Q(Z) = Z · Z = u2 + v2 − w2 (when
Z = (u, v, w)).

Here are three crucial examples:

• Define F : R3 → R3 by

F (u, v, w) = (u,−v, w).
Since u2+(−v)2−w2 = u2+v2−w2, the linear map F preserves the quadratic form
and hence the inner product. Note that F carries S to itself (since it doesn’t change
the sign of w) and preserves all of the incidence, betweenness, and congruence
relations.

• For any angle θ, define Rθ : R
3 → R3 by

Rθ(u, v, w) =
(

cos θ u+sin θ v, − sin θ u+cos θ v, w).

Since cos2 θ + sin2 θ = 1, we have

(cos θ u+sin θ v)2 + (− sin θ u+cos θ v)2 − w2 = u2 + v2 − w2,

so Rθ (which is just ordinary rotation by an angle of θ around the w-axis) does
preserve the inner product and doesn’t change the sign of w. Thus, it carries S to
itself and preserves incidence, betweenness, and congruence, so it is a motion. You
can also verify that

Rθ ◦Rψ = Rθ+ψ .

• For any real number t, define Bt : R
3 → R3 by

Bt(u, v, w) =
(

u, cosh t v+sinh t w, sinh t v+cosh t w).

Since cosh2 t− sinh2 t = 1, we have

u2 + (cosh t v+sinh t w)2 − (sinh t v+cosh t w)2 = u2 + v2 − w2,

so Bt (which is what in physics is called the Lorentz boost of magnitude t) does
preserve the inner product. It slightly less obvious, but it’s also true that Bt doesn’t
change the sign of the last entry w, but it doesn’t (why?). You can also verify that

Bt ◦Bs = Bt+s .

Now the way is clear for the following crucial fact:

Lemma 1. For any pair of S-points A and B with AB = x > 0, there is a motion
that is a rotation Rθ followed by a boost Br (with r ≥ 0) followed by another
rotation Rψ that carries A to (0, 0, 1) and B to (sinhx, 0, coshx) with x > 0.
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Proof: Suppose A = (u, v, w) then we can write A = (r sin θ,−r cos θ, w) for some
r ≥ 0 and some θ, and we see that

Rθ(A) = (0,−r, w).
Since r2 − w2 = −1 with r ≥ 0 and w > 0, it follows that there is a t ≥ 0 so that
w = cosh t and r = sinh t. Then we have

Bt
(

Rθ(A)
)

= Bt(0,−r, w) = Bt(0,− sinh t, cosh t) = (0, 0, 1).

Thus, the motion Bt ◦Rθ takes A to (0, 0, 1).
Now let B′ = Bt

(

Rθ(B)
)

= (ū, v̄, w̄). We know that (ū, v̄) 6= (0, 0) since B′

cannot be Bt
(

Rθ(A)
)

= (0, 0, 1) because A and B were distinct. Thus

(ū, v̄) = (s cosψ,−s sinψ)
for some s > 0 and some angle ψ. Then s = sinhx for some x > 0 and we have
−1 = ū2 + v̄2 − w̄2 = sinh2 x− w̄2, so w = coshx. Thus,

Rψ(B
′) = Rψ(sinhx cosψ,− sinhx sinψ, coshx) = (sinhx, 0, coshx),

while Rψ(0, 0, 1) = (0, 0, 1).
Thus, the motion Rψ ◦ Bt ◦ Rθ of S has the desired property: It takes A to

(0, 0, 1) and B to (sinhx, 0, coshx). �

This applies immediately to give the following proposition about triangles:

Proposition 1. Let A, B, and C be any three non-collinear S-points. Suppose
that AB = x > 0, AC = y > 0, and (∠BAC)r = φ ∈ (0, π). Then there exists a
motion of S that carries A to A′ = (0, 0, 1), B to B′ = (sinhx, 0, coshx), and C to
C′ = (sinh y cosφ, sinh y sinφ, cosh y).

Proof: We already know that there is a motion M that carries A to A′ = (0, 0, 1)
and B to B′ = (sinhx, 0, coshx). Let C′ be the point to which C is carried by this
motion M . Then C′ = (u, v, w) with w > 0 and u2 + v2 − w2 = −1.

Since −w = A′ · C′ = A · C = − coshy, it follows that w = cosh y. Since
u2 + v2 = w2 − 1 = cosh2 y − 1 = sinh2 y, it follows that there must be an angle ψ
so that

C′ = (sinh y cosψ, sinh y sinψ, cosh y).

Now, sinψ cannot be zero, because, if it were then C′ would lie in the linear span
of A′ and B′, which would make A′, B′, and C′ collinear. But they cannot be
collinear because A, B, and C are not collinear. Thus, v = sinh y sinψ is not zero.
Hence, by applying the motion F (u, v, w) = (u,−v, w) if necessary, we can get a
new motion that still leaves A′ and B′ alone, but ensures that C′ = (u, v, w) has
v > 0. Thus, we have a motion such that

A′ = (0, 0, 1), B′ = (sinhx, 0, coshx), C′ = (sinh y cosψ, sinh y sinψ, cosh y)

with sinψ > 0, i.e., with 0 < ψ < π. However, if we now compute the measure
of the angle ∠B′A′C′ using the easily obtained results that P ′ = (1, 0, 0) and
Q′ = (cosψ, sinψ, 0), we get

cosψ = P ′ ·Q′ = P ·Q = cos
(

∠BAC)r
)

= cosφ,

so ψ = φ, and we are done. �
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Finally, we can give another proof of SAS:

Theorem 3. Let △ABC and △DEF be S-triangles that satisfy AB ∼= DE, AC ∼=
DF and ∠BAC ∼= ∠EDF . Then there is a motion of the S-plane that carries A
to D, B to E, and C to F . In particular, all the six corresponding parts of the
triangles are congruent, so the triangles are congruent.

Proof: By definition, the hypotheses say thatAB = DE, AC = DF and (∠BAC)r =
(∠EDF )r. By the above Proposition, this implies that there is a motion of the S-
plane that carries A to D, B to E, and C to F . But this determines all of the
inner products in the set {D,E, F} to be the same as the inner products in the set
{A,B,C}, and all of the angle measures and segment measures are expressed in
terms of the inner products, so all of the corresponding parts are congruent. �

3.6. Sub-models without Dedekind’s Axiom. One of the main theorems in
our book (though it’s not proved there) is this:

Theorem 4. Any Hilbert plane that satisfies Dedekind’s Axiom is isomorphic to
either the Euclidean plane or the hyperbolic plane.

Thus, we have found all of the models of Hilbert’s axioms that satisfy Dedekind’s
Axiom. However, just as it’s useful to know Euclidean models that don’t necessarily
satisfy Dedekind’s Axiom because they can be used to show that certain construc-
tions can’t be carried out by ruler and compass, it’s also useful to have models of
Hilbert’s Axioms that don’t satisfy Dedekind’s Axiom or the Parallel Postulate in
order to show that certain constructions cannot be made in neutral geometry.

3.6.1. Some sub-fields of the real numbers. A subset F of the real numbers R is said
to be a sub-field of R if it contains 0 and 1 and is closed under addition, subtraction,
multiplication, and division (by nonzero numbers, of course).

The smallest sub-field of R is Q, the field of rational numbers, i.e., the real
numbers of the form p/q where p and q 6= 0 are integers. Every sub-field of R
contains Q.

An example of another subfield is Q(
√
2), the set of numbers of the form a+b

√
2

where a and b are rational numbers. It’s clear that this set is closed under addition,
subtraction, and multiplication, but it’s not so clear that it’s closed under division,
but the following calculation with the number a+ b

√
2 6= 0

1

a+ b
√
2
=

(a− b
√
2)

(a+ b
√
2)(a− b

√
2)

=
(a− b

√
2)

a2 − 2b2
=

a

a2 − 2b2
− b

a2 − 2b2

√
2,

shows that Q(
√
2) is closed under taking multiplicative inverses of nonzero numbers,

so it’s closed under division as well. 3

Note the important fact that Q(
√
2) is, itself, a vector space over Q of dimension

2, with basis 1 and
√
2.

Similarly, one can prove that Q(
√
2,
√
3), i.e., the set of numbers of the form

x = a+ b
√
2 + c

√
3 + d

√
6 = a+ b

√
2 + c

√
3 + d

√
2
√
3

3Note that a2 − 2b2 6= 0, since, otherwise, we’d have 2 = (a/b)2, but 2 is not the square of a
rational number.
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where a, b, c, and d belong to Q, is a sub-field of R and has dimension 4 over Q.
(The trick is to notice that

(a+ b
√
2+ c

√
3+d

√
6)(a+ b

√
2− c

√
3−d

√
6) = (a+ b

√
2)2−3(c+d

√
2)2 ∈ Q(

√
2),

since this shows that

1

(a+ b
√
2 + c

√
3 + d

√
6)

=
(a+ b

√
2− c

√
3− d

√
6)

(a+ b
√
2)2 − 3(c+ d

√
2)2

,

and we know that (a+ b
√
2)2 − 3(c+ d

√
2)2, which lies in Q(

√
2) has an inverse in

Q(
√
2).

Note that Q(
√
2,
√
3), as a vector space over Q, has dimension 4. (What is a

basis?)
A sub-field F ⊂ R that has finite dimension as a vector space over Q is said to

be a real number field. One of the basic theorems of abstract algebra is that, if F
is a number field that has dimension n over Q, then there is an element x ∈ F that
satisfies a polynomial of degree n

p(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an = 0,

where the ai are rational numbers. Also, the set {1, x, x2, . . . , xn−1} turns out to
be a Q-basis for F, and the polynomial p(t) = tn + a1t

n−1 + a2t
n−2 + · · · + tn is

irreducible, i.e., it is not the product of two polynomials with rational coefficients
with degrees lower than n.

Conversely, every irreducible polynomial p(t) with rational coefficients that has
a real root x ∈ R gives rise to a real number field F, which is the set of all numbers
of the form

q = r0 + r1 x+ r2 x
2 + · · ·+ rn−1 x

n−1,

where the ri are rational numbers.

Another field that turns out to be very useful is the sub-field K ⊂ R that consists
of all the possible (real) numbers one can make starting with Q and using the
operations of addition, subtraction, multiplication, division by nonzero elements,
and taking square roots of positive numbers. It takes a little work to show that K
actually is a field (and that it is not all of R).

The field K is not a number field because it has infinite dimension over Q,
but it has a very interesting property: Any subfield F ⊂ K that does have finite
dimension n over Q has to satisfy n = 2k for some integer k.

In particular, K does not contain 21/3, the cube root of 2, because Q(21/3) has
a basis {1, 21/3, 22/3}, so it has dimension 3 over Q, and 3 is not a power of 2. In
fact, for the same reason, it doesn’t contain any x ∈ R that satisfies an irreducible
rational polynomial of degree 3.

3.6.2. On ruler-and-compass constructions. Now let S(K) ⊂ S denote the set of
S-points (u, v, w) such that u, v, and w belong to K. Also, take the lines in S(K)
to be the S-lines au + bv − cw = 0 for which a, b, and c belong to K. Then it is
not hard to show that S(K) is a Hilbert plane (where we use the same notions of
congruence of segments and angles as in the whole of S).

Moreover, S(K) satisfies Archimedes’ Axiom and the Circle-Circle Continuity
Principle. This implies, in particular, that any ruler-and-compass construction can
be carried out in S(K).
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However, S(K) doesn’t satisfy either Dedekind’s Axiom or the Parallel Postulate.
Here is an example of how this fact can be used:

Proposition 2. There is no ruler-and-compass construction in neutral geometry
that allows us to trisect a general segment.

Proof. Consider the points A = (0, 0, 1) and B = (
√
3, 0, 2) in S(K). Then AB =

cosh−1(−A · B) = cosh−1(2). If C = (u, v, w) ∈ S is the point on AB such that

AC = 1

3
AB, then AC = 1

3
cosh−1(2). So

w = A · C = − cosh
(

1

3
cosh−1(2)

)

.

Obviously, if C lies in S(K), then w lies in K. But now I am going to show that w
does not lie in K. The reason is the triple argument formula for hyperbolic cosine:

cosh(3r) = 4 cosh(r)3 − 3 cosh(r).

Taking r = 1

3
cosh−1(2), we get

2 = cosh(3r) = −4w3 + 3w,

so w satisfies the polynomial equation 4w3 − 3w + 2 = 0, but the polynomial
p(t) = 4t3 − 3t+ 2 does not factor with rational coefficients (why not?), so, by the
above discussion, w does not lie in K, so C does not lie in S(K).

Now, as mentioned above, every ruler-and-compass construction can be carried
out in S(K), so if there were a ruler-and-compass construction that worked in
neutral geometry to trisect segments, then it could be applied in this case to the A
and B given above and would produce C as an element of S(K), which as we have
seen, cannot be done. �

4. The Poincaré Disk Model

The two models we have found so far have different advantages. In the Klein
model K, it’s easy to see incidence, betweenness, parallelism, etc., but it’s hard
to see (or even compute) congruence of segments or angles. In the upper half-
sheet model S, it’s easy to compute distances and angles, and motions are just
linear transformations that preserve the Minkowski inner product, but it’s three
dimensional, and the Minkowski inner product is a little non-intuitive at first.

There is another disk model, the Poincaré disk, that has the advantage that it
is 2-dimensional and incidence and betweenness are easy to see (not quite as easy
as the Klein model), but the big advantage is that angle congruence is very easy to
understand.

4.1. The points of the model. The points of the Poincaré disk P are again
going to be the points inside the unit circle, i.e., the points of the form (s, t) where
s2 + t2 < 1. (Just as in the K-model, the unit circle s2 + t2 = 1 will be referred to
as the ideal circle, and its points will be referred to as ideal points. But, just to be
clear: Ideal points are not P -points.)

I am going to define a mapping from P -points to K-points as follows. For a
P -point (s, t), set

h(s, t) =

(

2s

(1+s2+t2)
,

2t

(1+s2+t2)

)

= (x, y) ∈ K.



HYPERBOLIC GEOMETRY 19

Thus, h : P → K. Note that, using this formula

1− x2 − y2 = 1− 4s2 + 4t2

(1+s2+t2)2
=

(1− s2 − t2)2

(1 + s2 + t2)2
> 0,

so (x, y) is, indeed, a point in K.

Exercise 4.1. Show that h is one-to-one by showing that the inverse mapping is
given by

h−1(x, y) =

(

x

1 +
√

1−x2−y2
,

y

1 +
√

1−x2−y2

)

= (s, t) ∈ P.

Hint: solve the above equations for s and t, using the relation derived above:

√

1−x2−y2 =
(1 − s2 − t2)

(1 + s2 + t2)
.

Exercise 4.2. Show that the formula

p(u, v, w) =

(

u

1 + w
,

v

1 + w

)

= (s, t)

defines a mapping p : S → P from the hyperboloid upper sheet model to the
Poincaré disk that is one-to-one and onto and that it satisfies

p
(

g(x, y)
)

= h−1(x, y) = (s, t),

so all three models are related by these mappings.
Show also that the inverse mapping p−1 : P → S is given by

p−1(s, t) =

(

2s

(1− s2 − t2)
,

2t

(1 − s2 − t2)
,
(1 + s2 + t2)

(1− s2 − t2)

)

.

(This fact will come in handy below.)

4.2. Lines in P. We might as well define the P -lines so that the mappings h :
P → K and h−1 : K → P carry collinear points to collinear points. This will, of
course, mean that a line in P will be defined by an equation of the form

0 = a x+ b y − c = a

(

2s

(1+s2+t2)

)

+ b

(

2t

(1+s2+t2)

)

− c

where a2 + b2 − c2 > 0. Clearing fractions, this is

c (1+s2+t2)− 2a s− 2b t = 0,

which is the equation of an ordinary line through (0, 0) when c = 0 and the equation
of a circle

(s− a/c)2 + (t− b/c)2 = (a/c)2 + (b/c)2 − 1 > 0

when c 6= 0.
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Exercise 4.3. Explain why the circle above has its center C = (a/c, b/c), outside the

circle s2 + t2 = 1. The (Euclidean) radius of the circle is r =
√

(a/c)2 + (b/c)2 − 1.
Explain why this circle meets s2 + t2 = 1 in two points, say P and Q , and explain
why the triangles APC and AQC (where A = (0, 0) is the (Euclidean) center of
the ideal circle s2 + t2 = 1) have right angles at P and Q.

Conversely, show that, if a circle (s − p)2 + (t − q)2 = r2 meets the ideal circle
s2 + t2 = 1 in two points at right angles to the ideal circle, then p2 + q2 > 1 and
r2 = p2 + q2 − 1, so we can write p = a/c, q = b/c where a2 + b2 − c2 > 0.

This motivates the following:

Definition 7. A P -line is either a diameter of the ideal circle s2 + t2 = 1 or the arc
inside the ideal circle of a circle that intersects the ideal circle at right angles.

4.3. Segment congruence. We’ll just transfer the notion of segment congruence
directly from the easy one for the S-model: If A = (s1, t1) and B = (s2, t2), then
we define the P -length of the segment AB so that

coshAB =
(1 + s1

2 + t1
2)(1 + s2

2 + t2
2)− 4s1s2 − 4t1t2

(1− s12 − t1
2)(1− s22 − t2

2)
.

You might want to check, using the Exercises above, that this agrees with our
previous definition, in the sense that

−A ·B = coshAB = cosh p(A)p(B)

for any two distinct S-points A and B.

Exercise 4.4. Explain why the P -circle with center C = (s1, t1) ∈ P and radius
r > 0 is described by an equation in the st-plane of the form

(1 + s1
2 + t1

2)(1 + s2 + t2)− 4s1s− 4t1t = (cosh r)(1 − s1
2 − t1

2)(1 − s2 − t2),

which can be rearranged and written in the form

s2 + t2 − 2p s− 2q t− v = 0

for some real numbers p, q, and v. In particular, this is the equation of a Euclidean
circle in the st-plane! Thus, P -circles (as sets) are Euclidean circles!

Is is necessarily true that the P -center of a P -circle is the Euclidean center of
the circle? Can you find three non-collinear P -points such that there is no P -circle
that passes through them? (Remember that we did not prove, in neutral geometry,
that every triangle can be circumscribed by a circle. This example explains why we
didn’t try to prove this.)

4.4. Angle congruence. The really nice thing about the Poincaré model is that
angle congruence is the same as Euclidean angle congruence! In fact, using a little
bit of (tedious, but not difficult) high school algebra, it can be checked that two

P -rays (i.e., Euclidean circles or lines through the origin),
−−→
XY and

−−→
XZ defined

by the respective equations

c1 (s
2 + t2 + 1)− 2a1 s− 2b1 t = 0,

c2 (s
2 + t2 + 1)− 2a2 s− 2b2 t = 0,
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such that the left hand side of the first (respectively, second) equation is positive
on Z (respectively, Y ) form a Euclidean angle θ if and only if

cos θ =
c1c2 − a1a2 − b1b2

√

a12 + b1
2 − c12

√

a22 + b2
2 − c22

,

(As we have seen, the corresponding pair of K-lines in K meet if and only if the
right hand side of this equation is between −1 and 1.) In other words, the P -radian
angle measure between P -lines is the same as the Euclidean angle measure.

5. The Poincaré Upper Half-Plane Model

Our final model is also due to Henri Poincaré, and is known as the upper half-
plane model U . As usual, I will start by defining the U -points and U -lines.

5.1. The points. A point in the model U is a point (a, b) ∈ R2 that satisfies b > 0.
Thus, the U -points are the ones that lie in the upper half-plane of R2.

5.2. The lines. The lines in the model U are the vertical coordinate lines together
with the Euclidean circles in the ab plane with centers on the a-axis. Thus, a line
is defined by an equation of the form

p (a2 + b2)− 2q a+ r = 0

where p, q, and r are (real) constants satisfying q2 − pr > 0. (Why do we need
this inequality?) Note that replacing (p, q, r) by (λp, λq, λr) merely multiplies the
equation by a constant, so it doesn’t change the curve that it defines.

A U -line is incident with a U -point if and only if the curve (circle or line) passes
through the point in the Euclidean sense. (Note that p = 0 if and only if the U -line
is an Euclidean line.)

Exercise 5.1. Show that the (unique) U -line though the U -points P = (a1, b1) and
Q = (a2, b2) has its equation of the above form, where

p = 2(a2 − a1),

q = a2
2+b2

2−a12−b12,
r = 2a1(a2

2+b2
2)− 2a2(a1

2+b1
2).

Explain why the U -model satisfies the incidence and betweenness axioms. (Be sure
to explain how you understand betweenness.)

5.3. An identification between P and U . There is a mapping φ : P → U ,
defined by

(a, b) = φ(s, t) =

( −2t

(s− 1)2 + t2
,
1− s2 − t2

(s− 1)2 + t2

)

that is,

a =
−2t

(s− 1)2 + t2
, b =

1− s2 − t2

(s− 1)2 + t2
.

Then φ is one-to-one and onto, and its inverse φ−1 : U → P , is defined by

s =
a2 + b2 − 1

a2 + (b+ 1)2
, t =

−2a

a2 + (b+ 1)2
.
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Exercise 5.2. Show that the correspondence φ carries P -lines to U -lines and con-
versely. Thus, it preserves incidence and betweenness. (Hint: Use the above substi-
tutions in the equations defining P -lines or U -lines and verify that this correspon-
dence makes them correspond.)

Remark 12. The map φ may seem a little strange at first. It comes from complex
analysis, and has a rather natural formula there: If we write z = s + i t and use
this to identify the complex plane C with R2, and, particularly, the Poincaré disk
(s2+t2 < 1) with the unit complex disk defined by |z|2 = zz̄ < 1, then the mapping
φ can be written in the linear fractional form

a+ i b = w =
i(1 + z)

(1− z)
,

because, when one writes out the latter expression, one obtains

i(1 + z)

(1 − z)
=

−t+ i (1 + s)

(1 − s)− i t
=

−2t+ i (1−s2−t2)
(s−1)2 + t2

.

You might want to check that solving for z in terms of w, i.e.,

s+ i t = z =
iw + 1

iw − 1
=
i(a+ i b) + 1

i(a+ i b)− 1

gives the form of the inverse mapping of φ.

5.4. Segment and Angle Congruence. Since we know that φ : P → U preserves
incidence and betweenness, we can use φ to transfer the notions of segment and
angle measure from P to U , and this will complete our definition of the U -model.

Exercise 5.3. Show (using a previous exercise from Section 4), that, if we define
the U -distance AB between U -points A = (a1, b1) and B = (a2, b2) by the rule

(5.1) coshAB =
(a1 − a2)

2 + b1
2 + b2

2

2b1b2
,

then the map φ : P → U preserves distances. (Hint: This is just algebra, but,
in order to make the calculation manageable by hand, you want to first see how
the various parts simplify, such as how 1− s1

2 − t1
2 simplifies when you make the

substitution that expresses s1 and t1 in terms of a1 and b1, etc.)

Remark 13. The fact that the above formula for distance is much simpler than
the formula for distance in the P -model (or the K-model for that matter) is what
makes the U -model particularly attractive.

Exercise 5.4. Use the above formula for distance to explain why a U -circle (i.e.,
the set of U -points X that have a fixed U -distance r > 0 from a given U -center
C = (a, b)) is an Euclidean circle.

Exercise 5.5. Show that two U -rays
−−→
PQ and

−−→
PR defined by a pair of equations

p1 (a
2 + b2)− 2q1 a+ r1 = 0,

p2 (a
2 + b2)− 2q2 a+ r2 = 0,

such that each equation for a given ray is positive on the other ray (except at P ,
of course), meet at an Euclidean angle of θ if and only if

cos θ = −
(

q1q2 − 1

2
(p1r2 + p2r1)

)

√

q12 − p1r1
√

q22 − p2r2
.
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If the number on the right hand side is not between −1 and 1, then the two U -
lines do not meet. (Hint: By scaling, one can assume that q1

2 − p1r1 = 1 and
q2

2 − p2r2 = 1, i.e., that the equations for the lines are normalized).

Remark 14. One can now show (though, even assuming several of the above exer-
cises, it is somewhat tedious) that the Euclidean radian measure of angles between
U -rays is the same as the radian U -measure of U -angles. The easiest way to do it
using algebra is to compare with the S-model, but there is a more conceptual way
to do it, which is to use the fact (proved in every complex analysis course) that
complex linear fractional transformations (such as the map w = i(1+z)/(1−z) de-
scribed above) always preserve angles and then quote the result from the Poincaré
disk.

5.5. Motions. Another great advantage of the U -model is that it is easy to write
down motions that preserve U -distance between points.

For example, the scaling transformation

Sλ(a, b) = (λa, λb)

when λ > 0 carries the points of U into themselves, carries U -lines to U -lines and
preserves U -distance (and hence angles).

As another example, the translation transformation

Tp(a, b) = (a+ p, b)

for all p ∈ R carries the points of U into themselves, carries U -lines to U -lines and
preserves U -distance (and hence angles).

Finally, as a third (less immediate) example, the inversion transformation

I(a, b) =

(

a

a2 + b2
,

b

a2 + b2

)

.

This transformation fixes points on the Euclidean unit circle a2 + b2 = 1 and
carries points inside the Euclidean unit circle to points outside and vice versa. The
map I : U → U preserves U -distance (see the Exercise below). (It also satisfies
I(I(P )) = P for all U -points P . Since the Euclidean unit circle is a U -line, this
map is just reflection across this line.)

Exercise 5.6. Verify that Sλ, Tp, and I do, in fact, preserve U -distance. In other
words, if P and Q are (distinct) U -points then

Sλ(P )Sλ(Q) = Tp(P )Tp(Q) = I(P )I(Q) = PQ.

(Hint: Because cosh : [0,∞) → [1,∞) is one-to-one and onto, it suffices to prove
that the hyperbolic cosines of all these numbers are the same. Now let P = (a1, b1)
and Q = (a2, b2) and compute. The hardest case (still not very hard) is for the
inversion I. )

Since any point of U can be carried to any other point of U by a combination of
scaling and translation, it follows that we can understand angles and distances by
looking at them for a single U -point, say A = (0, 1) (= φ(0, 0) when (0, 0) ∈ P ).
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Exercise 5.7. Show that, if a U -circle γ has center C = (a, b) and passes through
the points (a, b+) and (a, b−) where 0 < b− < b < b+, then b

2 = b+b−. Since the
Euclidean center of γ is

(

a, 1
2
(b++ b−)

)

, the Euclidean center is always higher than
the U -center. (Hint: First, treat the case where C = (0, 1), let the U -radius of the
circle be r > 0 and determine b+ and b−, verifying the formula in this case. Now,
use Exercise 5.6 to show that, since this formula holds for C = (0, 1), the formula
must hold for any possible center.)

6. Curves and Calculus

This final section is about a somewhat more advanced topic: Curves in the
various models and the notion of their length.

6.1. The standard formulae. You may remember from your calculus course how
we computed the length of a curve: When it’s presented as a graph y = f(x) in R2

with a ≤ x ≤ b, the textbooks tell you that the length of the curve is

L =

∫ b

a

√

1 + f ′(x)2 dx.

The usual justification is that this integral is approximated by the sum

S =
n
∑

k=1

√

(xk − xk−1)2 +
(

f(xk)− f(xk−1)
)2

where a = x0 < x1 < · · · < xn−1 < xn = b and where the k-th term in the sum
is the (Euclidean) distance between the two points Ak−1 =

(

xk−1, f(xk−1)
)

and

Ak =
(

xk, f(xk)
)

on the curve. In other words, S is the length of the polygonal
path got by taking the sum of the length of the segments Ak−1Ak from k = 1 to
k = n. In calculus, we show that, if the function f is ‘reasonable’ (continuously
differentiable is more than enough), then, as the maximum length of the individual
segments Ak−1Ak decreases, this will converge to the length of the graph.

More generally, given a curve γ(τ) =
(

x(τ), y(τ)
)

with a ≤ τ ≤ b, the (Euclidean)

length of γ : [a, b] → R2 is

L =

∫ b

a

√

x′(τ)2 + y′(τ)2 dτ =

∫ b

a

√

γ′(τ) · γ′(τ) dτ.

For example, for the circle of radius r, we can take γ(τ) = (r cos τ, r sin τ) with
0 ≤ τ ≤ 2π, and we get the expected result

L =

∫ 2π

0

√

γ′(τ) · γ′(τ) dτ =

∫ 2π

0

r dτ = 2πr.

In the general case of a Hilbert plane M satisfying Dedekind’s Axiom, we can
use our measurement theorem to define a notion of length of a curve. (Of course,
we need to know what we mean by a ‘curve’, but I’m going to take a very näıve
definition of this: I’ll require that, when we establish (any) coordinates in our
Hilbert model, then a (differentiable) curve will be a mapping γ : [a, b] → M that
is differentiable in coordinates.

In any case, our definition of the length of γ will be that it will be the least
upper bound of all the numbers S of the form

S =

n
∑

k=1

γ(τk−1)γ(τk),
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where a = τ0 < τ1 < τ2 < · · · < τn−1 < τn = b, i.e., the sum of the lengths of the
segments in any polygonal path approximation to the curve γ.

Now, just as in the case of Euclidean geometry, as n goes to infinity, these sums
increase and go to a limit (when the curve is continuously differentiable), which is
called the length of the curve in the Hilbert plane M .

6.2. Length of curves in S. It turns out that the easiest case to work in is
the case of the hyperbolic sheet model S ⊂ R3. There, it turns out that, when
γ : [a, b] → S is a differentiable curve, i.e.,

γ(τ) =
(

u(τ), v(τ), w(τ)
)

where u, v, and w are differentiable functions satisfying u(τ)2+v(τ)2−w(τ)2 = −1,
then the formula for length is

L =

∫ b

a

√

γ′(τ) · γ′(τ) dτ =

∫ b

a

√

u′(τ)2 + v′(τ)2 − w′(τ)2 dτ,

exactly as in the Euclidean case, but using the Minkowskian inner product!
Here is how this is justified: For starters, consider the case of a line, say γ(τ) =

(sinh τ, 0, cosh τ). Then γ′(τ) = (cosh τ, 0, sinh τ), so γ′(τ) · γ′(τ) = 1, so

L =

∫ b

a

1 dτ = b− a,

which agrees with the fact that the distance between γ(a) and γ(b) is

cosh−1
(

−γ(a)·γ(b)
)

= cosh−1
(

cosh(a− b)
)

= |a− b| = b− a

(when a < b). Thus, the above formula gives the right answer for all the line
segments on that particular line. However, because the length formula uses only
the inner product and any two line segments of the same length can be matched up
using a rigid motion (which does not change the inner product), this means that
the above formula assigns the right length to all line segments.

Since the formula works for all line segments and since length of a curve is defined
as the supremum of all lengths of polygonal paths got by subdividing the curve, it
follows that this formula defines a length for curves in the hyperbolic plane.

What does this give for the circle of radius r? Well, by use of motions, we can
assume that the center of the circle is at A = (0, 0, 1), then A ·X = − cosh r (the
equation for a circle of radius r centered at A), implies that

X =
(

sinh r cos τ, sinh r sin τ, cosh r
)

= γ(τ)

for some 0 ≤ τ ≤ 2π. Now we can compute that γ′(τ) · γ′(τ) = sinh2 r, so we get

L =

∫ 2π

0

sinh r dt = 2π sinh r.

Thus, the circumference of the circle of radius r grows very rapidly with r since,
for large r, we have sinh r = (er−e−r)/2 ≈ er/2, so L ≈ πer for sufficiently large r!

Exercise 6.1. Check this answer as follows: Let γ be a circle of radius r in the
hyperbolic plane with center O and let R0, R1, . . . , Rn = R0 be n ≥ 3 points on γ
that are ‘equally spaced’ around γ in the sense that the ray from O to Ri is between
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the rays from O to Ri−1 and Ri+1 and each of the angles ∠Ri−1ORi has radian
measure 2π/n. Use the hyperbolic Law of Cosines to show that

cosh(Ri−1Ri ) = cosh2 r − sinh2 r cos(2π/n)

= 1 + sinh2 r
(

1− cos(2π/n)
)

= 1 + 2 sinh2 r sin2(π/n).

Then, using the identity coshx− 1 = 2 sinh2(x/2), conclude that

Ri−1Ri = 2 sinh−1
(

sin(π/n) sinh r
)

.

Thus, the total perimeter of the n-gon R0R1R2 · · ·Rn−1RnR0 is

Sn = 2n sinh−1
(

sin(π/n) sinh r
)

,

and the limit as n tends to infinity is

L = lim
n→∞

Sn = lim
n→∞

2n sinh−1
(

sin(π/n) sinh r
)

= lim
t→0+

2 sinh−1
(

sin(πt) sinh r
)

t
.

Use calculus (specifically, L’Hôpital’s Rule and the Chain Rule) to show that his

limit is L = 2π sinh r. (Hint: To compute the derivative of sinh−1(u) at u = 0, use
the fact that the derivative of sinh(v) at v = 0 is cosh(v) = cosh 0 = 1 and the
usual formula for inverse funtions.)

Exercise 6.2. Show, that, if γ : [a, b] → S is described in ‘hyperbolic polar coordi-
nates’ in the form

γ(τ) =
(

sinh r(τ) cosφ(τ), sinh r(τ) sinφ(τ), cosh r(τ)
)

for two functions r(τ) and φ(τ) while a ≤ τ ≤ b, then

L =

∫ b

a

√

r′(τ)2 +
(

sinh r(τ)
)2
φ′(τ)2 dτ.

(Hint: This is just calculus and the definition: You just need to compute γ′(τ)·γ′(τ)
for γ in this form.)

6.3. Length of curves in P . The formula for hyperbolic length of curves in the
Poincaré disk turns out to be this: Given a curve

(

s(ρ), t(ρ)
)

within P , the P -length
of the curve traced out in P as ρ goes from a to b can be shown to be

L = 2

∫ b

a

√

s′(ρ)2 + t′(ρ)2

1− s(ρ)2 − t(ρ)2
dρ.

Exercise 6.3. Use the formula for p : S → P given by

p(u, v, w) =

(

u

1 + w
,

v

1 + w

)

and that fact that p preserves distances between points to show that if γ : [a, b] → S
is a differentiable curve in S of the form γ(ρ) =

(

u(ρ), v(ρ), w(ρ)
)

, then the above
formula assigns the same length L to the S-curve γ and the P -curve p ◦ γ given by

(

s(ρ), t(ρ)
)

= p ◦ γ(ρ) =
(

u

1 + w
,

v

1 + w

)

.

(Hint: You will need to use the facts that γ · γ = −1 and γ · γ′ = 0 when working
out the formula for the P -curve.)
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6.4. Length of curves in U . Perhaps the simplest of all is the formula for length
of curves in the model U . It turns out that, for a differentiable curve γ : [τ0, τ1] → U
of the form γ(τ) =

(

a(τ), b(τ)
)

, we have

L =

∫ τ1

τ0

√

a′(τ)2 + b′(τ)2

b(τ)
dτ.

One can prove this, given the formula for the length of curves in the model P ,
by using the transformation rule relating P to U that we have used before, i.e., φ :
P → U given by

(a, b) = φ(s, t) =

( −2t

(s− 1)2 + t2
,
1− s2 − t2

(s− 1)2 + t2

)

,

and calculus. It’s a little bit messy, so here is a simple example for you to try:

Exercise 6.4. Check that this integral formula gives us the right formula for distance
between two points (0, b1) and (0, b2) for b2 > b1 > 0 by using the parametrization
of the segment γ(τ) = (0, τ) with b1 ≤ τ ≤ b1 and comparing it with the given
definition of the distance in Exercise 5.3.

6.5. Length of curves in K. Finally, a little calculus using the coordinate changes
between P and K shows that the formula for the length of curves in K is as follows:
For a differentiable curve γ : [τ0, τ1] → K of the form γ(τ) =

(

x(τ), y(τ)
)

, we have

L =

∫ τ1

τ0

√

(

1−y(τ)2
)

x′(τ)2 + 2x(τ)y(τ)x′(τ)y′(τ) +
(

1−x(τ)2
)

y′(τ)2
(

1−x(τ)2−y(τ)2
) dτ

(The relative complexity of this formula indicates why it’s more difficult to calculate
distances and angles in K than in P , H , or U .)
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