RICCI FLOW SOLITONS
IN DIMENSION THREE
WITH SO(3)-SYMMETRIES

ROBERT L. BRYANT

ABSTRACT. These are my notes on the Ricci low solitons in dimension 3 that
have an SO(3)-symmetry.

I prove that there is a unique steady example that is complete and of
positive curvature.

I prove that there is a 1-parameter family of complete expanding examples
with positive curvature.
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1. INTRODUCTION

The goal is to understand the rotationally invariant solutions of the gradient
Ricci flow solitons.

A pair (g, f), where g is a Riemannian metric on a manifold M and f is a
(smooth) function on M, is said to be a gradient Ricci flow soliton with expansion
constant A if it satisfies

(1.1) Ric(g) = Hess,(f) — A g,
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where Hessy(f) = ng is the Hessian form of f with respect to g.
For such a pair, the Ricci flow heat equation Gy = —2 Ric(G) with initial condi-
tion Gy = ¢ has, in the t-interval on which 142Xt > 0, the solution

(1.2) G = (142xt) @4 (9)
where ®; : M — M is the (possibly locally defined) time 7 flow of V, f = grad, f

and the function h is given by

log(1 + 2X¢)
_— A#£0
2)\ 7 # 7

(1.3) h(t) =

—t A=0.

7

When A < 0, the soliton is said to be shrinking, when A = 0, the soliton is said
to be steady, and when A > 0, the soliton is said to be expanding.

When (g, f) is a gradient Ricci flow soliton with expansion constant A, the
pair (ug, f + ¢) is a gradient Ricci flow solition with expansion constant A/ for
any constants ¢ and g > 0. Thus, one should regard f as being only determined
up to a constant and one can always reduce to the cases in which A equals —1, 0,
or 1. (However, this scaling can disturb other normalizations, such as scaling to
arrange that the maximum of the sectional curvature be some fixed constant, which
is frequently done in the literature.)

Remark 1 (Ambiguities). In the literature, one finds reference to the metric g, by
itself, as being a soliton. This allows for some slight ambiguity in the terminology,
since it could indeed happen that there could exist distinct functions f and f’' and
distinct constants A and A’ such that

(1.4) Ric(g) = Hessy(f) — g = Hessy(f) — N g.

All that is required is that the soliton (g, f) should admit a nonzero function a such
that Hessy(a) = ag for some constant «, for then (g, f + a) will be a soliton with
expansion constant \' = A\ + a.

For example, when g is the standard flat metric on R, and f = c+b6-x+ %a T-T
for any constants a,c € R and constant vector b € R", one has Hess,(f) = ag.
Thus, since Ric(g) = 0 for the flat metric, (g, f) is a gradient Ricci solition with
expansion constant a for each such f.

Of course, for the ‘generic’ metric g, the only solutions of Hessy(a) = a g for o a
constant have o = 0 and a is constant, so the only ambiguity is that one can add a
constant to f (which one can always do). When g admits a nonconstant function a
such that Hessg(a) = 0, then g is a product metric and these are well-understood.
When g admits a function a such that Hessy(a) = avg where a # 0, one can reduce
to the case a = 1 by scaling. These cases can be explictly computed and one finds
that the only Ricci soliton among them is the flat metric.

Thus, for all but a handful of metrics, the equation (1.1), when it can be satisfied,
determines A and f (up to an additive constant). This justifies calling g the soliton.

2. THE ROTATIONAL ANSATZ

The space of local solutions (g, f) to (1.1) is quite large and not very much is
known about its global properties. The simplest case to consider is the case of
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rotational symmetry, i.e., metrics of the form
(2.1) g = dt? + a(t)? do?

where do? is the standard round metric on the unit 2-sphere. Usually, one assumes
that the aperature function a is nonvanishing, but, in order to take into account
the fixed points (if any) of the rotational metric, the function a is allowed to vanish
at isolated points to within its interval of definition, as long as a/(tg) = +1 and

a(to—7) = —a(to+7) for all 7 such that ¢g =7 lies in the interval of definition of a.
For such a metric, the Ricci curvature is given by the formula
. a’(t) .o 1(4\2 " 2
(2.2) Ric(g) = —2 de“ + (1 —d'(t)* = a(t)a"(t)) do”.

a(t)

Remark 2 (Sectional Curvatures). The radial sectional curvature of the metric (2.1)
a’ (t)
a(t) ?

is — while the sectional curvature of planes tangent to the 2-dimensional orbits

of the rotation group (i.e., the level sets of t) is T;)Z

For any function f(¢), the Hessian of f with respect to g is
(2.3) Hess,(f) = f"(t) dt* + a(t)a’ (t) £ (t) do*.
Thus, the equation (1.1) becomes the pair of autonomous ODE

—2a(t)a" (t) = a(®)*(f"(t) = ),
1—d (t)? —a(t)d"(t) = a(t)d () f (t) — Na(t)?.

Note that the function f does not appear explicitly, which is to be expected,
since adding a constant to f does not affect the property of (g, f) being a soliton
with expansion constant \.

On any t-interval in which aa’ is nonzero, one can solve the second equation
of (2.4) for f' and substitute the result into the first equation of (2.4), yielding a
(somewhat complicated) third order autonomous ODE for a. However, this equation
does not appear to be useful, so it will not be written out explicitly.

(2.4)

Remark 3 (Bianchi conservation law). The usual Bianchi identity for Ricci cur-
vature, when applied to Ricci solitons, shows that any solution of (2.4) satisfies

—2Nf(t) =C

)\ 1+ad(1)?
a<t>> SToE

(2.5) (f’(t) +2

for some constant C'.

When A is nonzero, this constant C' has no significance, since it is affected by
adding a constant to f, which, of course, does not change the metric g.

When A = 0 (the steady case), (2.5) turns out to be an important conservation
law that allows integration of the equations up to a phase portrait (see below).

2.1. Analyticity and Duality. One can write the equations (2.4) in the form
a(t)® f"(t) = =2+ 2a'(t)* + 2a(t)a’ () f'(t) — Aa(t)?,
at)d’(t) =1—d )% —a@®)d' @) f () + Na(t)?

It follows that, on any t-interval in which a is nonvanishing, the functions a and f
are real-analytic.

(2.6)
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Recalling that only the derivative of f has any actual significance, one can recast
this equation as a ‘lower order’ system by setting p(t) = a(t)f'(¢) and writing the
system in the form

a(t)p'(t) = =2+ 2d'(t)* + 3d'(t)p(t) — Aa(?)?,
at)ad’(t) =1—d )% —d t)p(t) + Na(t)?.

2.1.1. Fized points. A value ty for which a(tp) = 0 represents a fixed point of the
rotational symmetry. By translation in ¢, one can assume that g = 0.

By the second equation of (2.6), one has a’(0) = +1. Thus, there exists an
interval (=T, T) about ¢ = 0 (where 0 < T" < 00) on which a is an odd function
of t whose first derivative is nonvanishing. By reversing ¢ if necessary, it can be
assumed that a’(0) = 1, so that a’(t) > 0 for all |[t| < T. Consequently, there is
a function h, positive and smooth on some interval (—s, A) where A,e¢ > 0 and
satisfying h(0) = 1, such that

2.7)

B da?
97 h(a?)
Setting » = a?, one finds that the ODE for h that makes g into a soliton with
expansion constant A is

(2.9) 2r2h(r)h" (1) = h(r) (h(r) = 1) + rh/(r) (rh'(r) = Ar — 1), r>0.
The corresponding function f can be found by quadrature via the equation

(2.10) df — a® (h’(aQ) —A) +h(a?)—1 da — r(h’(r) —A)+h(r)—1 dr
ah(a?) 2rh(r)

Because h(0) = 1 and h is smooth and positive on the interval of definition, these
latter two expressions are smooth in a® and r, respectively. Moreover, since h is
real-analytic on (0, A), it follows that f must also be real-analytic as a function of r
on (0, A). The issue is whether h is real-analytic at r = 0.

Now, (2.9) has a singular point at 7 = 0.! However, there are real-analytic
solutions to (2.9) defined on a neighborhood of r = 0.

(2.8) +a?do?.

Proposition 1 (Singular solutions). For any constant hy, the equation (2.9) has

a unique real-analytic solution about r = 0 satisfying h(0) =1 and h'(0) = h;.
Moreover, any solution of (2.9) that is defined and C' on an interval of the

form 0 <r <€ or —e <1 <0 and that satisfies h(0) = 1 is real-analytic at r = 0.

Proof. Straightforward calculation shows that the formal power series

(2.11) h(r) =1+ hyr+hgr? + -

satisfies (2.9) if and only if, for all £ > 2,
k—1

(212)  (2k+1)(k—1) hi + A(k—1) hie—1 + > _(K*=3kj+3j2—k—1) hjhi_; = 0.
j=1

Thus, specifying h; determines hy uniquely for £ > 2. From the form of (2.12),
it follows that for & > 2, there exist polynomials Hy(u,1), homogeneous of total
degree k in u and v, such that the solution of (2.12) is given by hy = Hy(h1,A). For
example, Ho(u,v) = %u(Qu — ), etc. For consistency of notation, set H;(u,v) = u.

1The order of the singularity can be reduced by one by making the substitution h(r) = 1—rao(r),
but it cannot be removed entirely.
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It must now be shown that the formal power series thus determined has a pos-
itive radius of convergence. This is most easily done by the method of majorants.
Observe that, when 1 < j < k, the inequality
(2.13) k?=3kj+35°—k—1| < $(2k+1)(k—1)

holds. It follows that the sequence hy, defined by (2.12) satisfies |h| < ax, when ay
is the sequence defined by a; = |h;| and

k—1
(2.14) ap = | N ap—1 + % a;Cp—;
j=1
for k > 2. This latter sequence is the sequence of coefficients of the analytic
function a(r) = a;r + agr? + - - - that satisfies the equation
(2.15) a(r) — |Alra(r) — %a(r)2 =ayr.

Explicitly, a(r) = 1 — |[A|7 — \/(1=|A|7)2 — 2a; 7. In particular the Taylor series
for a(r) has a positive radius of convergence about r = 0. Since |hg| < ay for
all kK > 1, the series (2.11) also has a positive radius of convergence.

Finally, suppose that h is a solution of (2.9) that is defined and C'! on an interval
0<r<eor —e<r <0 and such that h(0) = 1. Writing (2.9) in the form

(2.16)  2h(r)(r(rh'(r)) — k(1)) = h(r)(h(r) — 1) +rh/(r) (rh'(r) — Ar — 1)

note that the curve (z,y, 2) = (r, h(r)—1, rh’(r)) for r # 0 is, up to reparametriza-
tion, an integral curve of the vector field

(2.17) (#,9,2) = 2(1+y)z, 2(1+y)2, (y+22)(1+y) + 2(z — Az — 1)).
that a-limits to (x,y, 2) = (0,0,0). The linearization of this vector field at (0,0, 0)
is

(2.18) (#,9,2) = (22, 22, y+2).

and its eigenvalues are 2, 2, and —1. Thus, the curve (r, h(r)—1, rh’(r)) must lie
on the (2-dimensional) unstable manifold at (0,0,0) of the vector field (2.17) and
its tangent space at (0,0, 0) is the subspace of vectors of the form (a, b, b).

Now, the analytic solutions of (2.9) already found above give curves of the form

o0 o0
(219) (I, Y, Z) - (T, hl’r + Z Hk(h17 )\)rk7 hlr + Z ka(hh )\),,Jf)

k=2 k=2
where hi is an arbitrary constant. These curves lie in the 2-dimensional real-
analytic surface parametrized in the form

(2.20) X(r,s) = (r,erZHk(s,)\r),erZk:Hk(s,)\r)) )
k=2 k=2

and, are, in fact, the curves of the form X (r, hi7). Thus, for r and s small, X(r, s)
must parametrize the 2-dimensional unstable manifold of the vector field (2.17).
In particular, these curves X (r, h1r) and X (0, s) must represent all of the integral
curves of (2.17) that a-limit to (0,0,0). It follows that the given solution h(r)
must agree with one of these curves for r sufficiently small and hence must be
real-analytic at 7 = 0, as desired. O
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h“

FIGURE 1. Solutions of the equation (2.9) with A = 1 that sat-
isfy h(0) = 1. The blue line represents the flat solution and the
green line represents the constant curvature solution. (The nega-
tive values of r are useful for understanding the case A = —1. See

Remark 7.)

Remark 4 (The h-series near r = 0). Explicitly, the first few terms of the solution
of (2.9) that satisfies h(0) = 1 and h'(0) = h; are given by
hi(2h1 —X) 5 hi(2hy —A)(h1 — A) 4
5 e+ 35 r
_ hi(2hy = N)(6h1% + 2X0hy —1502) N
4725 "

For a graphical depiction of these solutions when A = 1, see Figure 1.

h(r):1+h1r+

(2.21)

Proposition 1 yields the existence of a 1-parameter family of solitons for each
expansion constant A in a neighborhood of any fixed point of the rotational action.
Of interest will be the behavior of these solutions as r increases, which will be taken
up below.

It is also worthwhile to describe the behavior of the nonsmooth solutions defined
on an interval 0 < r < e.

Proposition 2. There exists a function G that is real-analytic on a neighborhood
of (0,0,0) € R? such that, for any solution h of (2.9) that is defined on the interval
0 < r <€ bul thal does not extend real-analytically to v = 0, there exist constants
co £ 0 and ¢ and a 6 satisfying 0 < § < € so that

r\/§71

Co

) = 51

(2.22) G ()\r, Arin(r) + eqr, ) for 0<r <.
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Conversely, for any constants co # 0 and ¢y, there is an € > 0 such that (2.22)
defines a solution to (2.9) on the interval 0 < r < e. This solution will be positive
near r = 0 if and only if co > 0.

The function G has a convergent power series expansion of the form

(2.23) G(u,v,w) = Z agjpur
i+j<k

and is uniquely determined by the additional condition that

3 22
(2.24) Glu,v,w) = 1+ <£+ V2

5 1 T) w + O(u?).

Proof. (Sketch) One looks for solutions of the form

o > ro J
(2.25) h(r) = o 14 Zhj(r) <a>
Jj=1
where ¢g # 0 and « > 0 are constants and h;(r) is a polynomial of degree at most j
inr and rinr.

Substituting (2.25) into (2.9) and collecting like powers of r®, one finds, by
examining the lowest power of r®, that a > 0 must satisfy a2 —2a — 1 = 0,
i.e., « = v/2 — 1. Examining the next lowest power of r®, one then obtains

V2 2—42

(2.26) ha(r) = 5 7

(Arlnr+cir)

for some constant c¢i, and these are the only possibilities for linear combinations
of 1, Ar and Arlnr 4+ cyr. The successive higher powers of 7 then recursively
define, for j > 2, unique functions h;(r) that can be written in the form h;(r) =
H;(Ar, ArInr+cqr) where H;(x,y) is a polynomial of degree at most j in « and y

whose coefficients belong to the field Q(ﬁ) The series

. ¢ c o0
(2.27) Gu,v,w) =1+ (g 2 4\/21) w+ ZHj(u,T)uJ
Jj=2
can now be proved to have a positive radius of convergence by the method of
majorants, using the recursive definition of the H;.

Once G has been shown to exist, it is not difficult to show that any solution
of (2.9) that is defined on an interval 0 < r < e and does not extend smoothly
to 7 = 0 must be of the form claimed for the appropriate constants ¢y and c;.

Details will be supplied later. O

Remark 5 (Sectional curvatures). In terms of the representation (2.8), one finds
that the radial sectional curvature is —h'(r) and the orbital sectional curvature
is (1 - h(r))/ r. Of course, these are equal at r = 0 for solutions h that extend
smoothly to 7 = 0.

On the other hand, for the solutions A described in Proposition 2, the func-
tion —h/(r) goes to +o0o as r — 0% while (1 — h(r))/r goes to —oo as r — 0F.
Meanwhile, for the corresponding metric g = dt? + a(t)?do?, one has r = a® and
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hence

~ da aV? 1 da
— — = .
\/h(a ) \/Co G <)\a2, Aa?lIn(a?) + c1a?, a2\/§*2/00>

(2.28) dt

Thus, the metric completion to r = 0 of such a soliton simply adds a fixed point at
finite distance, but this point is singular.

Remark 6 (Constant curvature solutions). Note that h(r) =1 and h(r) =14 1 \r
are explicit solutions of (2.9), defined for all . The first of these represents the

flat metric on R?, i.e., g = da® + a® do?, where f = —%)\r = —%)\G/Q. The second
solution, distinct from the first as long as A #£ 0, is a non-flat metric,
da?
2.29 = +4d%de?, =0.
(2:29) 977 + 1 X\a? /

Of course, this is a representation of the metric of constant sectional curvature —%)\.
When A > 0, this formula describes a complete metric. When A < 0, this formula
does not give a complete metric, but represents the metric on a hemisphere of the
complete metric on S°.

Remark 7 (Duality and Scaling). There is a principle of duality relating expanding
solitons with shrinking solitons: If h satisfies (2.9) with ~(0) = 1 and is positive on
an interval (L, M) where —oo < L. < 0 < M < oo, then the function & defined on
the interval (—M, —L) by the relation k(r) = h(—r) satisfies the equation

(2.30) 2r2k(r)k" (r) = k(r) (k(r) — 1) +rk'(r) (k' (r) + A7 — 1),

which is the same as (2.9) with A replaced by —A. Thus, in some sense, the ex-
panding solitons near a fixed point of the rotation are analytic continuations of
contracting solitons near a fixed point of the rotation, and vice versa.

More generally, if h satisfies (2.9) and is positive on an interval (I, M), then
for any constant p # 0, the function ¢ defined on the interval ' - (L, M) by the
relation £(r) = h(ur) satisfies the equation

(2.31) 2r20(r)0" (1) = £(r) ((r) = 1) + 7€' (r) (7€' (r) — pAT — 1),

which is the same as (2.9) with A replaced by pA. For p > 0, this corresponds to
the effect of scaling the metric g.

2.2. The xyz-curve. Another way of expressing the soliton system is to consider
the quantities

(2.32) z(t) = a(t)? y(t) = d’(t)? 2(t) = a(t)a” (t).

All of these quantities are ‘geometric’: z is the square of the aperature, (1—y)/x is

the 2-sphere orbit sectional curvature, and —z/z is the radial sectional curvature.
For any function a, the zyz-space curve (2.32) will satisfy the relation

(2.33) rxdy— zdz = 0.
The equation (2.4) induces a relation on a that can be expressed in terms of the zyz-
space curve as
(2.34) 2xydz — ((y +2)(y+2—1) — Azz) de = 0.

For any soliton, the xyz-curve will be an immersion except at points ¢ = tg
where a(to) = a”’(tg) = 0 or a’(typ) = a’’(tp) = 0. (Remember that one cannot
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have a(tg) = a’(tp) = 0 at any point ¢g lest the formula (2.1) fail to define a smooth
metric at ¢ = tp.) In order to study these points, it suffices to take to = 0, which
will be done from now on.

As has already been seen, a solution (a(t),f(t)) of (2.4) with a(0) = 0 is an-
alytic, with @ an odd function of ¢ and f an even function of £. Consequently,
the functions z(t), y(t), and z(¢) defined by (2.32) are analytic functions of ¢2,
satisfying (m(O),y(O),z(O)) = (0,1,0). Moreover, writing z(t) = r(¢?), one knows
that 7/(0) = 1, so that one can parametrize the image curve in the form

(2.35) (m(t), y(t), z(t)) = (r, h(r), rh/(r)),

where h is a solution of (2.9) that satisfies h(0) = 1. Consequently, the image of
the xyz-curve near the ‘singular’ point is a half-closed interval in a smooth integral
curve of the two 1-forms (2.33) and (2.34).

Now consider the other kind of ‘cusp’: A solution of (2.4) with a/(0) = a’”(0) = 0.
Of course, a(0) #£ 0 and a short calculation shows that the equations (2.4), together
with the conditions a’(0) = a’”’(0) = 0 imply that f/(0) = 0. It is then easy to see
that the unique power series solution to (2.4) with a(0) = ag, a’(0) =0, f(0) = fo,
and f/(0) = 0 is even in ¢ (i.e., is a series in t?) and, in fact, takes the form

14 Aap?
a(t):ao+%t2+...7
(2.36) 2+‘;0 ,
a
f(t):fo_ 2 20 t2+
ap

The evenness of a and f implies that the soliton (g, f) is invariant under the
involution ¢t — —t. Thus, the metric g has a reflectional symmetry across the
2-sphere ¢ = 0 and this sphere is fixed by the flow of the vector field grad, f.

If 1+ Xag? = 0, the solution is simply (a(t),f(t)) = (ao, fo), which describes
the product metric on the cylinder. The xyz-curve is constant, with image equal
to (ag?,0,0). (This case only arises when \ < 0, i.e., for shrinking solitions.)

If 14+ Xap? # 0, then the zyz-curve is an embedding (near ¢ = 0) of the
half-interval ¢ > 0. In particular, the image must lie in a smooth curve of the
form (x,y,z) = (r,h(r),rh’(r)) where h is an analytic solution of (2.9) defined
on a neighborhood of r = a¢? and satisfying the initial conditions h(ag?) = 0
and h/(ap?) = (1 + Aag?)/ao? # 0. There is a unique such (necessarily convergent)
power series solution and it has the form

1 + )\GOQ
a02

2 + )\GOQ

(2.37) h(r) = o~

(r—ao®) + (r—ao®)> +---
3. THE STEADY CASES
In the steady case, i.e., when A\ = 0, the equations simplify somewhat and one

can get a more detailed picture of the solutions.

3.1. A rational first integral. In the first place, the differential equations (2.33)
and (2.34) simplify to

(3.1) rdy — zdx =2zxydz — (y+ 2)(y+ 2 —1)dx = 0.
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NN
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FIGURE 2. Integral curves of the relation (3.3). The red curve,
the critical separatrix that provides the complete steady soliton, is
smooth but not analytic at the origin. The green hyperbola is the
union of the curves on which C'= 0 (see (3.2).)

Moreover, the relation (2.5) then yields the following rational function C' as a first
integral of the 1-forms (3.1)

(1 —2z—y*—2yz +27)

7

(3.2) C

zy

at least, away from the planes x = 0 and y = 0. On an integral curve for which C' #£
0, one can use this to express x explicitly as a function of y and z.
To go further, one can eliminate x from the relations (3.1) and get

(3.3) 2uzdz —(y+2)(y+2—1)dy = 0.

This 1-form has three singular points: (y,z) = (0,0), (0,1), and (1,0). Moreover,
the hyperbola 3?4+ 2yz — 22 +2z—1 = 0, which passes through the second and third
of these points, is the union of the integral curves for which C' = 0. See Figure 2,
which will be justified below.

3.2. A complete, nonnegatively curved soliton. For the purpose of studying
complete steady solitons with nonnegative sectional curvatures, one is interested
only in the integral curves of (3.3) that lie in the half-strip described by the in-
equalities 0 < y < 1 and z < 0, since the integral curves of interest satisfy x > 0
and y > 0 and the sectional curvatures of the corresponding solution are (1—y)/x
and —z/x. Thus, the only integral curve that could provide such a solution is
the portion of the red separatrix in Figure 2 that joins the two fixed points (0,0)
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and (1,0). The first task is to establish properties of this separatrix (including its
existence).

Proposition 3 (The red separatrix). There is a unique solution to the ODE
L dz
(3.4) 2z — = (y+2)(y+2—1)
dy
that satisfies z(0) = z(1) = 0. [t is real-analytic everywhere except at y = 0, where
it s smooth and has a (nonconvergent) Taylor series expansion of the form

(3.5) 2y) = —y— 207 — 1247 — - ..

Corollary 1 (A complete steady soliton). Up to constant multiples, there is a
unique, complete, smooth, rotationally invariant steady soliton with positive curva-
ture.

Proof. This follows by considering the integral curve of (3.3) that joins the two
singular points (0,0) and (1, 0), as it is the only integral curve that satisfies 1 —y > 0
and —z > 0, so that, setting

C(1-2z—9* —2yz +27) S

(3.6) z 0
Y
(i.e., setting C' =1 in (3.2)), the metric g defined by
da? (d(a(®)2)”
3. = — do? = —— t)?do? = dt? t)? do?
(3.7) 9= Ty T = R +a(t)" do +a(t)”do

will have z > 0 and will have positive sectional curvatures (1—y)/x and —z/x. The
issue is whether even this metric is complete.

By Proposition 3, this curve is a graph of the form z = f(y) where f is analytic
for 0 < y <1 and is smooth at y = 0 with a Taylor series expansion of the form
(3.8) fy) =—y—2y" —12¢° — -

It is also known (see below) that f has a (convergent) Taylor expansion at y = 1
of the form

(3.9) f)=@G—1)+2y—-1)2= 2y —1)7>+....

The Taylor expansion of x(y) at y = 1 now shows that the metric completes
smoothly by adding a point for y = 1 (where z(y) vanishes).
Since

(3.10) z(y) = (1-2f(y) — e ;2yf(y) 4 f(y)Q) o

the radial distance ¢ from the center (i.e., y = 1) is given by
1 /
— d
(3.11) t = / M
y 2y nx(n)

Using the formula for x(y), one finds that ¢ has the expansion

7

11
(3.12) t=— -2 4 )
Yy

where 7 is a smooth function of y near y = 0. Thus, the metric g is complete in
the direction y — 0. O
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Remark 8 (Asymptotics of sectional curvature). One also has the expansions

-y —2(¥)

z(y) z(y)
Thus, by (3.12), in an asymptotic expansion in terms of ¢, the orbital sectional
curvature has leading order term 1/(2t) while the radial sectional curvature has
leading order term 1/(4t2).

(3.13) y—=3y"+0(y’)  and =y + 6y +O).

Proof. (of Proposition 3) It is easily established that the only formal power series
of the form

(3.14) z:—cly—02y2—~~~:—20jyj
j=1
that satisfies (3.4) is given by ¢; = 1, co = 2, ¢3 = 12 and the recursion formula
J
(3.15) iz = 2(J +2)cjm + Z(zp—l)cpcjw—p ; for j > 2.
p=2

This recursion implies ¢; > 277251 for j > 1, so this power series solution has a
radius of convergence equal to 0. Thus, there is no real-analytic solution of (3.4)
that satisfies z(0) = 0.

Now, consider the vector field defined by the equations

y = 2yz,
t=y+2)(y+z—1)

In the interior of the wedge W defined by the inequalities z +y < 0 < y, the flow of
this vector field has y monotone decreasing and z monotone increasing and there
are no fixed points in this wedge other than at (y,2) = (0,0). Consequently, all
integral curves of this vector field in W tend to (0,0). Moreover, it is easy to show
that any integral curve of this vector field in the half-plane 3y > 0 that tends to (0, 0)
(in either forward or backwards time) either satisfies y = 0 or else enters W at some
point in forward time.

The next step is to show that there is at least one smooth solution z = zo(y) on
an interval |y| < e of (3.4) that has its Taylor series at y = 0 of the form (3.14)
with the ¢; defined by ¢; =1, ¢co = 2, ¢3 = 12 and the recursion (3.15). To see this,
first make the substitution z = —y+v/14+w, where one assumes that w > —1 and the
positive square root is intended, so that this can parametrize the two quadrants
where yz < 0. One finds that the equation (3.4) becomes

5 dw
Yy
where F' is an analytic function on the half-plane w > —1. By the above calcula-
tions, (3.17) has a unique (non-convergent) power series solution of the form w =
4y+28y° +---. Since (3.17) is of the form treated in [1], those results® show that
there is at least one smooth solution w = wq(y) whose Taylor series at y = 0 is the

(3.16)

(3.17) =1 -2y)vVitw —yuw — 1= F(y,w),

formal power series solution. Tracing this back, i.e., setting zo(y) = —y+/14+wo(y),

2See Theorems 12.1 and 14.1 of [1]. However, note that one must make the change of inde-
pendent variable y = 1/z to align with the notation there. Especially, note that these theorems
imply that there is a smooth solution of (3.17) with w(0) = O defined on an interval |y| < € for
some € > 0 and not merely for 0 < y <e.
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one sees that (3.4) has a smooth solution zg(y) whose Taylor series at y = 0 is
necessarily equal to the (unique) formal power series solution (3.14).

It remains to understand the behavior of the general solution u of (3.4) that
satisfies lim, o+ u(y) = 0. Make the substitution z = 2o(y)+21 (y) v, where 21 (y) =
0 for y < 0 while 21(y) = (—:‘71/(29)/1/2 for y > 0. The function z; is smooth on the
real line and, using the Taylor series for zp, one sees that (3.4) pulls back under
this substitution to be of the form

dve  (=8y* + 4" foly) + 20(y)=1 (y) Gyr—1))

(3.18) dy -t 2y220(y) (Zo(y) +z1(y) )

for some function fy that is smooth on a neighborhood of ¥y = 0. Using the facts
that the function fy(y) = 20(y)/y is smooth and nonvanishing near y = 0 and the
function fi(y) = z1(y)/y> is smooth near y = 0, one sees that this equation can be
written as

de (=8 +yf(y) + foly) fi(y) Gyr—1))
dy 26 (o) + 2 hiy) )

where the right hand side is smooth along the line y = 0. Consequently, every
solution u of (3.4) that satisfies lim, o+ u(y) = 0 is of the form

(3.19)

e 1/(2y)

(3.20) u(y) = zo0(y) + Tl‘(y% y=0.

where v is a solution of (3.19) defined and smooth on a neighborhood of y = 0.
In particular, all of these solutions are smooth at y = 0 and have the same Taylor
series,

(321) u(y):—y—2y2_12y3_... .

By continuity, exactly one of these solutions has the property that it extends over
the whole interval 0 < y < 1 and satisfies lim, ;- u(y) = 0. The point (y,2) =
(1,0) is a hyperbolic fixed point of the flow (3.16) and one easily shows that this
solution is analytic at y = 1, with a convergent Taylor series of the form

(3.22) uly) = (y— 1)+ 2y —1)?—2E(y—1>+---.
O

The rest of this section will be devoted to proving that, up to constant multiples
the soliton just found is the only complete steady rotationally invariant soliton
(without any assumption on the sign of the curvature).

3.3. Solitons with C = 0. A short calculation shows that the integral curves
of (3.1) for which C'= 0 can be parametrized in the form

(2—s?) (\/§+5>\/§ 52 - 2(s+1)

(3.23) T =c o112 \ Vo Y= (2—52) z = (2—s2)"

where s satisfies s < 2, i.e., |s| < v/2, and ¢ is a constant (which must be positive
for our purposes since x = a(t)? > 0). The two singular points of the 1-form (3.3)
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that lie on this curve in the yz-plane are at s = —1 and s = 0. The corresponding
steady soliton metric g then takes the form

V2
= ¢ \/EJFS \2 ) 2709 2 2
L (ﬁ) ((ds)* 4 (s+1)*(2—5%) do?) .

This metric is smooth on the two intervals —v2 < s < —1 and —1 < s < v/2. On
the interval (—/2, —1), the metric is complete towards s = —1, but not towards s =
—+/2. However, it cannot be extended to s = —v/2 or below because the radial
sectional curvature —z/x goes to infinity as s approaches —y/2. Similarly, on the
interval (—1,/2), the metric is complete towards s = —1, but not towards s = /2.
Again, it cannot be extended past s = v/2 because the curvatures of this metric
tend to infinity as s approaches v/2. Note that neither of these solutions with C' = 0

has nonnegative sectional curvature.

(3.24) g

3.4. Solitons with C' £ 0. To study the solutions that satisfy C' # 0, the following
device seems to be the most convenient: The form of the equation (3.3) is that of
an Abel equation, when z is regarded as a function of y. This suggests (since I
am only concerned with solutions satisfying y > 0) making the following change of
variables®
2 .

s 2(u+ s)
(3.25) Y= =) w2 — 52)
where u # 0 and |s| < v/2. In order to avoid the locus 3 + 2yz — 22 +22 —1 = 0,
I require that u? — 1 # 0. The relation (3.3) is equivalent to

(3.26) u(l —u?)s?ds — (2 — s%)(u + s) du = 0.
Note that the lines uw = 0, u = +1 and s = /2 are integral curves of the rela-
tion (3.26).
With this change of variables, one finds that
(WP +2yz— 22 +22—1) 401 —u?)

3.27 = —c =c
(3.27) x c " Cu2(2—52)’

where the constant ¢ must be chosen so that ¢(1 —u2) > 0.
Computation now shows that, on an integral curve of (3.26) other than v = 0
or u = %1, the corresponding soliton metric can be expressed in the form

. 4(1 —u?) u? (ds)? 2
9= 202 ((u+s)2(2—52)+d >

To analyze the integrals for which |u| > 1, it is useful to set u = 1/v and express
everything in terms of s and v. The relation (3.3) is then equivalent to

(3.29) (1 —2?)s?ds — (2 — s2)(1 + sv)de = 0.

(3.28)

Note that the lines s = /2 and v = 1 are integral curves of the relation (3.29).

3Actually7 a double covering, since the points (s,u) and (—s, —u) represent the same yz-
point. However, this covering presents an advantage, especially for understanding the solutions
with |u| > 1.
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A
u

FIGURE 3. Integral curves of the relation (3.26) that lie in the
rectangle |s| < v/2 and |u| < 1. The red curves generate the
complete soliton. The corners of the rectangle are sinks, the center
is a source, and the points (s, u) = (£1,F1) are hyperbolic saddles.
See the text for further discussion.

Computation now shows that, on an integral curve of (3.29) that satisfies |v| < 1,
the corresponding soliton metric can be expressed in the form

. 4(1—?) (ds)? o2
(3.30) 9=(=0) (2 — s2) ((1+s1~)2(2—52) e >

The expressions for the sectional curvatures in terms of these coordinates are

l—y w?(1—s%)  (1—s?

(3.31) Tz 2¢(1 — u?2) - _20(1 —2)
and
(3.32) -z —u(uts)  (1+sv)

x  2c(l—u2)  2c(1 —2)’

Now, these sectional curvature functions become infinite at the corners of the
rectangles |s| < v/2, |u| < 1 (in the su-plane) and |s| < v/2, || < 1 (in the
sv-plane). Each integral curve of (3.26) in this su-rectangle other than the red
separatrices (which generate the complete soliton already found) or those on the
line v = 0 (which correspond to no soliton) has at least one end in a corner.
Similarly, each integral curve of (3.29) in the sv-rectangle has at least one end in
one of the corners (s,v) = (v/2,41). Thus, it suffices to show that the soliton
metrics generated by integral curves ending in corners of these rectangles have an
incomplete ‘end’ corresponding to the corner limit. Because of the invariance of the
equations under the involutions (s,u) — (—s, —u) and (s,v) — (—s, —v), it suffices
to examine one or two of the corners in each rectangle.

To see the incompleteness, note that the ‘radial parameter’ ¢ in the metric g =
dt? + a(t)?do? takes one of the following forms (up to sign) near |s| = v/2:

(3.33) g 22— ds 22/ —2?) ds

(u+s)(2—52)  (1+s)(2—s2)
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A

FIGURE 4. Integral curves of the relation (3.29) that lie in the
rectangle |v| < 1 and |s| < /2. The corners of this rectangle
are hyperbolic sinks. The points (s,v) = (+1,F1) are hyperbolic
saddles. See the text for further discussion.

1%

Now, (s,u) = (—\/Z 1) is a hyperbolic singularity of the ODE. By computation,
one finds that the integral curves in the rectangle |s| < v/2, |u| < 1 that limit to
this point can be expressed in the form

(3.34) us) = 1— U(s) (s + V32) "2

for some function U continuous and positive on some s-interval [—\/Z -2+ e).
Thus, near such an end, one has

(3.35) dt = U (s)(s +V?2) V2Iz g,

where U; is continuous and positive on the s-interval [—\/Z —V2+ e) . The integral
of this differential over this interval is finite.

Next, (s,u) = (\/Z 1) is also a hyperbolic singularity of the ODE. By computa-
tion, one finds that the integral curves in the rectangle |s| < v/2, |u| < 1 that limit
to this point can be expressed in the form

(3.36) u(s) = 1—U(s) (V2 —5)* V2
for some function U that is continuous and positive on some s-interval (\/5— €, \/ﬂ .
Thus, near such an end, one has

(3.37) dt = Uy (s) (V2 —s) V22 g,

where U; is continuous and positive on the s-interval (\/§ —¢, \/ﬂ . The integral of
this differential over this interval is also finite since —/2/2 > —1.

In the sv-rectangle, it suffices to examine the curves limiting to (s,v) = (\/Z 1).
Again, this is a hyperbolic singularity of the ODE. By computation, one finds that
the integral curves in the rectangle |s| < /2, [v| < 1 that limit to this point can be
expressed in the form

(3.38) v(s) =1-V(s) (V2 - 5)2*“5
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for some function V' that is continuous and positive on some s-interval (\/5—6, \/ﬂ .
Thus, near such an end, one has

(3.39) dt = Vi(s)(V2 - s) V22 g,

where V] is continuous and positive on the s-interval (\/§ —¢, \/§] The integral of
this differential over this interval is also finite since —/2/2 > —1.

Thus, all of these corners are reached in finite geodesic distance, but the sectional
curvatures approach infinity as one approaches such a corner. Consequently, these
solutions, although incomplete, cannot be extended any further.

Theorem 1 (Steady soliton uniqueness). Up to constant multiples, there is only
one complete, steady, rotationally invariant soliton in dimension 3 that is not flat.
It has positive sectional curvature, which reaches a mazimum at the center of rota-
tion.

Writing the complete soliton whose mazximal sectional curvature is % in the
form g = dt? + a(t)?do?, where t is the distance from the center of rotation, one
has, for large t, the following asymptotic orders: The aperature a(t) has leading
order term \/2t, the radial sectional curvature has leading order term 1/(4t%), and
the orbital sectional curvature has leading order term 1/(2t).

4. THE EXPANDING CASES

Throughout this section, it will be assumed that A > 0, so that the solitons to
be considered will be expanding solitons.

The object is to prove the existence of a 1-parameter family of complete ex-
panding solitons for each expansion constant A > 0. In particular, it will be shown
that (as suggested by Figure 1) each of the solutions of (2.9) that satisfy h(0) =1
and h'(0) < 0 extends to the whole interval 0 < r < co and corresponds to a com-
plete expanding soliton of positive sectional curvature that decays to 0 as distance
from the center of rotation (i.e., r = 0) goes to infinity. As will be seen, these
solutions are asymptotic to cones, with the curvatures falling off as the square of
the reciprocal of the distance to the center of symmetry.

It will first be necessary to develop a few properties of solutions to (2.9).

Lemma 1 (No oscillation). Let h be a positive solution of (2.9) defined on an
r-interval (L, M) C (0,00). Either h = 1 or else h has al most one critical point
on (L, M), which will be nondegenerate if it exists. Moreover, if h'(rg) > 0 for
some ro € (L, M) and h(rq) > 1, then h' is positive on (ro, M) while if h'(rg) <0
for some ro € (L, M) and h(ro) <1, then h' is negative on (ro, M).

Proof. Suppose that h'(rg) = 0 for some 7o € (L, M). If h(rg) = 1, then h(r) =1
for all r € (1., M) by ODE uniqueness. Setting this case aside, one sees by (2.9) that

(1) W) = ML g,

27“02
so that each critical point of h is nondegenerate (and hence isolated). If h(rg) >
1, then h”/(rg) > 0, which implies that, if there be another critical point of h
and r; € (L, M) be one that is ‘adjacent’ to ro (i.e., h’ has no zeroes between rg
and r1), then h(r1) > h(ro) > 1, implying that h”(r1) > 0 so that h also has a
strict local minimum at r;. Evidently, this is impossible. Similarly, if h(rg) < 1,
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then h”(ro) < 0, which implies that, if there be another critical point of h and r; €
(L, M) be one that is ‘adjacent’ to ro (i.e., h’ has no zeroes between ro and r1),
then h(r1) < h(ro) < 1, implying that A”(r1) < 0 so that h also has a strict local
maximum at ry. Again, this is impossible. Thus, h can have at most one critical
point in (L, M).

Suppose that h'(rg) < 0 and h(ro) < 1. If A’(rp) = 0 then h has a nondegenerate
local maximum at ro. Moreover, h’ cannot have any other zeros in (I, M) and
hence must be strictly negative on (ro, M). If h'(ry) < 0 and yet h'(r1) = 0 for
some r1 € (rg, M) then h’ would then have to be positive just before r; and hence
would have to have another zero between rg and r1. Thus, A’ < 0 on (rq, M).

The case when h'(rg) > 0 and h(ro) > 1 is entirely analogous. O

4.1. A projective interpretation. At this point, it is useful to give a geometric
interpretation of (2.9), namely, as an equation for the geodesics of a projective
structure. Note that the right hand side of (2.9) is a polynomial of degree two
in A'(r). Since (2.9), for r > 0 and h(r) > 0, can be written in the form

(h(r)=1) (14 Ar) (h'(r))*
272 2rh(r) 2h(r)

it can thought of as defining the geodesics of a projective structure on the (open)
first quadrant of the rh-plane. The geodesics of this projective structure consist
of the curves of the form (r, h(r)), where h is a positive solution of (2.9) defined
on an r-interval inside (0, 00) together with the vertical lines r = ro (since there is
no A'(r)3 term in the right hand side).

One immediate consequence of this interpretation is that, because the vertical
lines r = ry are geodesics of this projective structure, any other geodesic is trans-
verse to the vertical lines along its entire length. In other words, each (non-vertical)
maximally extended geodesic can be parametrized in the form (r, h(r)) where h is
a positive solution of (2.9) defined on an interval (I, M) where 0 < L. < M < oo
and where, if L > 0 then logh(r) becomes unbounded as r — L' and, if M < oo,
then log h(r) becomes unbounded as r — M ™.

(4.2) R (r) = B (r) +

Proposition 4 (Long time existence). Let h : (L,M) — RY be a mazimally
extended solution to (2.9) for (L, M) CRT. Then M = co.

Proof. Suppose that M < co. Since log h(r) becomes unbounded as r — M~ , and
since h is eventually monotone, either lim,._, 3, h(r) = 0 or else lim,_, 3~ h(r) = co.

If lim, , ;- h(r) = 0, then there must exist an 7o € (L, M) such that h(rg) <1
and h'(rg) < 0. By Lemma 1, it follows that h’ is strictly negative on (rq, M). The
equation (4.2) then implies that, for ro < r < M, one has

1 A R(r)
2r2 2 h(r)’
Integrating this inequality from rq to r < M yields

(4.4) W)~ (o) > (1 _ L) 2 10g (%) |

T To

(4.3) R'(r) >

The left hand side of this inequality is bounded above by —h'(r) (since h'(r) < 0
for ro < r < M) while the right hand side must approach 400 as 1 — M~ increases
(since lim,_, 3;— h(r) = 0 and A > 0). This is a contradiction.
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On the other hand, if lim,_, 5;— h(r) = 0o, then there must exist an rq € (L, M)
such that h(rg) > 1 and h'(rg) > 0. By Lemma 1, it follows that A’ is strictly
positive on (rg, M). The equation (4.2) then implies that, for ro < r < M, one has

()" _ hir)

2h(r) 2 7“02 '
Multiplying both sides of this inequality by the positive quantity 2h’/h and inte-
grating from rg to 7 < M yields

(W) (W(r)®  (h(r) = h(ro))
(46) h(r) N h(’l“o) < 7“02 ’

Simple rearrangement then yields
7“02 h(’l“o) ’
. h'(r .
(7 ¢ W) (o ()2 + hro) () — hr)) ) <

By hypothesis h(r) goes to infinity as r approaches M, so integrating this inequality
from 7o to M yields

e 7“02 h(’l“o) I—r
(4.8) /h(’l“o) \/h((Toh/(To))Q I h(ro)(h — h(To))) dh < M 0-

However, the integral on the left hand side of this inequality is infinite. This is a
contradiction.
Thus, it has been shown that M = oo. O

(4.5) R (r) —

Remark 9 (Positive lower limits). In contrast with this ‘big r existence’ result for
the upper limit M, it can happen that L > 0. For example, the positive solutions h
of the form (2.37) have I = a2 > 0.

Corollary 2. Each solution h of (2.9) that satisfies h(0) =1 and h'(0) < 0 exists
for all r > 0 and has a positive lower bound.

Proof. That the solution exists for all r > 0 follows immediately from Proposition 4.
By Lemma 1, A must be strictly monotone decreasing, so that, as in the proof of
Proposition 4, one has the inequality

171 1 A h(ro)
4.9 R(r)y—h'(ro) >=(-—— ]+ = log )
(4.9) (r) (o) 2\r 1o 2 °\ h(r)
for all 0 < rg < r. However, the left hand side of this inequality is bounded above
by —h/(ro) while the right hand side cannot be bounded above if h decreases to 0
as r — 00. Thus, h must have a positive lower bound as r — co. O

Proposition 5 (Complete, positive curvature expanders). Fach of the solutions h :
[0,00) — (0,1] to (2.9) with h'(0) < 0 defines a rotationally invariant, complete
soliton with expansion constant A > 0 and positive sectional curvature via the for-
mula

(4.10)

The sectional curvatures reach a maximum value of —h'(0) > 0 at a = 0 and the
mazimum sectional curvature decays at a rate proportional to the reciprocal of the
square of the distance from the center.
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Remark 10 (Asymptotics). The distance ¢ from the center of rotation is given by
the integral

¢ dr
(4.11) ¢ = / T
0 Vh(7?)
For small r, one has h(r) = 1+ h'(0) r + O(r?) so, for small a,
(4.12) t=a—Lh'(0)a® + O(a").

On the other hand, for large r, when lim, o, hA(r) = 1 — p > 0 for some p > 0,
it is not difficult to prove (see Remark 11) that one one has the (nonconvergent)
asymptotic expansion

p(l=p)  p(1=p)*

(4.13) () ~ (1) + B i b

(Note that because h is asymptotic to a positive constant, the metric g is asymptotic

to a cone.) This leads to the (also nonconvergent) asymptotic expansion for large a

a P
4.14 t ~ YN +
( ) 1—p 2M\/1—pa
where v < 0 is a constant.
In particular, note that the radial sectional curvature for large a is

1-p) | 2p(1-p)* P
4.15 —K 2y P PR
(4.15) (a”) Aat A2af + A(1—p)tt’
while the orbital sectional curvature is
1 —h(a? 1— 1—p)?
(4.16) 1-h(@®) p _pl=p) p-p) P
a? a? Aat A28 (1—p)t2

Remark 11 (Asymptotics of h at infinity). If h is a solution of (2.9) that is defined
on an r-interval of the form (L,00) and has a finite limit as r tends to infinity,
then h has an asymptotic expansion of the form

(4.17) h(r) ~ Z (;Tf)j

This formal series satisfies the equation if and only if the coefficients c¢; satisfy the
recursion

(4.18)  (j+Dejp+ (G—Dej— Y (0°—pgta*+prg—1)epey =0, j > 0.
p+q=j

One can show that, except when ¢g = 0 or ¢g = 1, this formal series has zero radius

of convergence. However, the asymptotics do give useful information.

The positively curved examples produced above limit to the flat metric as the
sectional curvature at the center decreases to zero. Interestingly, enough, one can
continue this family through the flat solution to negatively curved complete exam-
ples, whose curvatures still have the same quadratic decay rate.

Lemma 2 (Increasing bounded solutions). Let h : [0,00) — R be a solution
of (2.9) that satisfies h(0) =1 and 0 < h'(0) < 2X. Then h is strictly increasing
and lim, o, h(r) < co.
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Corollary 3 (Complete, asymptotically conical, negatively curved expanders).
There exist complete, negatively curved, rotationally invariant expanding solitons
whose curvature decays at least quadratically with distance from the center of rota-
tion.

Proof. Just use the bounded solutions h described in Lemma 2 in the formula (4.10).
The boundedness of h implies completeness of the metric (and the asymptotic
expansion for h near v = co shows that the metric g is asymptotically conical).
Since h(r) > 1 for r > 0 and A'(r) > 0 for all » > 0, the sectional curvatures
of the metric are negative. The asymptotic formulae still hold as before, so the
relations between the distance ¢ from the center of rotation, the aperature a, and
the sectional curvatures hold as before (except that, now, p < 0). O

Remark 12 (A possibly improvable bound). Note that, because h(r) = 1+ Ar is a
solution (which, by Remark 6, corresponds to the space form of constant sectional
curvature —X < 0), some upper bound on h’(0) must be assumed in order for
the boundedness conclusion in Lemma 2 to hold. Perhaps the best upper bound in
Lemma 2 is really %)\ rather than %)\, but the proof to be given below cannot be
strengthened to get this.

Proof. (of Lemma 2.) The idea is based on the notion of a subsolution of (2.9),
which is defined to be a twice differentiable function g defined on an r-interval I C
(0, 00) that satisfies

(119)  2%()g" () > g(r) (9(r) = 1) + rg' () (rg'(r) = Ar — 1)
forall r € I.
For example, for any numbers a, b > 0 consider the function
14 bAr
4.20 @ = —.
(4.20) Ga() =

This function is defined and positive on the r-interval [0, c0) and satisfies
27“29&71)(7“)9;’71)(7“) — Gan(T) (gmb(r)—l) + rgfl’b(r) (rgfl’b(r)—)\r—l)
(b — a)(Ar)?((1—b)(arr)? + 2(1—3b)(aXr) + 1—3a—2b)
- 4
(1 + a)\r)

The righthand side of this equation is positive for all » > 0 when b6 > a > 0 and
1—3a—2b > 0 and either b < 2 or £ < b < 2 and 0 < a < b(3=Tb)/(3(1-b)).
Thus, for (a,b) satisfying these restrictions, g, is a subsolution of (2.9) on the r-
interval (0, 00). For use below, note that, when (a, b) satisfies the above restrictions,

the function g, is strictly increasing for positive r and that
b .
(4.21) lim gap(r) = — and Gap(r) = 14 (b—a) \r —a(b—a) (\r)? +O(r?).
7—00 a
Now, (a,b) = (% ,, %(3—20)) with 0 < ¢ < 1 satisfies these restrictions. Consider
the mapping @ : [0, 00) x [0, 1] — R? defined by

1+ 1(3—2c) )\r>

4.22 P(r,c) =
(1.22) o= (n
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Note that ®(r,1) = (r,1) and ®(r,0) = (r, 1+ %)\r) while, for 0 < ¢ < 1, the
curve r +— ®(r,c) is the graph of an increasing subsolution g, whose Taylor ex-
pansion at r = 0 is of the form

(4.23) Gap(r) =14 2(1—c) Ar — Se(1 —¢) (Ar)? 4+ O(r%).
and that satisfies

3—2c¢
(4.24) lim gq(r) = ‘.

Moreover, the mapping ® : (0, 00) x (0,1) — R? is a diffeomorphism onto its image,
namely the wedge

(4.25) W={(rh)|1<h<l+2I}.

The curves r — ®(r, ¢) foliate W by graphs of subsolutions.

Now, consider a solution h of (2.9) that satisfies h(0) = 1 and 0 < h’(0) < 2 X. It
has already been shown that h is defined and strictly increasing (since A’ is positive)
for all r > 0. In particular, h(r) > 1 for all r > 0.

Because of the inequality A’'(0) < %)\, there is some largest R < oo such
that h(r) < 142 Ar for all r < R. If R < oo, note that this implies h(R) = 1+2\R.
(It will eventually be seen that R = oo, though.) Thus, for 0 < r < R, there exists
ac(r) € (0,1) such that (r, h(r)) = ®(r,c(r)). Defining ¢(0) € (0,1) so that h'(0) =
%(1—0(0)))\, one sees that ¢ is continuous at 0 and, because CID(T, c(0)) = (r,g(r))
where g is a subsolution of (2.9), it follows easily that h(r) < g(r) for all sufficiently
small r > 0.

I claim that, in fact, ¢ is a strictly increasing function of r. To see this, note
that ¢/(0) > 0 (because g"”(0) > h”(0)) and consider what happens at a point 7o > 0
such that ¢’(rg) = 0. For such an rg, the curve r — CID(T,C(TO)) = (r, g(r)) is
tangent to the curve r — (r,h(r)) at (ro,h(ro)) and, because g is a subsolu-
tion satisfying g(ro) = h(ro) and g'(ro) = h'(ro), must therefore satisfy g"”(ro) >
h'(ro). In particular, the graph of g near ro must lie strictly above the graph
of h near rq. Thus ¢”’(rq) > 0, i.e., the only critical points of ¢ are strict lo-
cal minima. Since ¢’(0) > 0, this implies that ¢ cannot have any critical points
in the range (0, R). Thus c is always strictly increasing, but is bounded above
by 1, In fact, though, it cannot reach the value 1 because h is strictly increasing
and ®(r,1) = (r,1). Thus, R < oo leads to a contradiction since then ¢ could be ex-
tended continuously to [0, R] with ¢(R) < 1, implying that (R, h(R)) = CID(R, c(R)),
so that A(R) <1+ %)\R, violating the definition of K.

In particular, it now follows that lim, . ¢(r) = coo for some co, € (C(O)7 1), so
that

3 —2¢o0 - 3—2c(0)  2XA+420/(0)
Coo c(0)  2X—R(0)"

(4.26) lim h(r) =

Remark 13 (Apologia). The proof of Lemma 2 certainly appears to be rather ad
hoc and the reader will undoubtedly wonder whether it can be improved by a more
judicious choice of subsolution field than that afforded by (4.22). 1 certainly have
tried to come up with one, but so far, this is the best I have found. There is, of
course, a subsolution field that covers the whole wedge 1 < h <1+ %)\r, namely

(4.27) U(r,c)=(r,1+Lchr), 7>0,0<c<L.
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However, this subsolution field is only good for proving that, for any solution A
of (2.9) that satisfies £(0) = 1 and 0 < h’(0) < 1), the quantity (h(r)—l)/r is
strictly decreasing in r > 0. In particular, such a solution, while increasing, must
have sublinear growth.

O

5. THE SHRINKING CASES

This section has yet to be written up.

The first step is to study the maximal extent of a positive solution to (2.9)
when r > 0 and A < 0. Note that Lemma 1 continues to hold in this case since the
sign of A was not used in that discussion.

When A < 0, one cannot hope that all positive solutions of (2.9) extend to a
neighborhood of 7 = oo; just look at the solutions (2.37) where ag? > —1/), which
are positive on an interval of the form (L, a02). However, this is, in some sense,
the worst case:

Lemma 3. Any mazimally extended solution h : (L, M) — R™ to (2.9) with A <0
and M >0 has M > —1/\.

Proof. Suppose that h : (L, M) — RT were such a maximally extended solution
and 0 < M < —1/X. T will show that, in this case M = —1/A.

Just as before in the discussion of projective geodesics, h(r) either increases
to +oo or decreases to 0 as r approaches M (from below) and there is an ro € (0, M)
such that A’ is nonvanishing on (ro, M).

As in the proof of Proposition 4, if h increases to +co as r — M~ one reaches a
contradiction using the inequality (4.5) (which remains valid because the hypothesis
that M < —1/X yields that 1 4+ Ar > 0 on the interval (ro, M)).

Thus, it suffices to treat the case in which h decreases to 0 as r approaches M.
By choosing ro > M sufficiently close to M, one can assume both that h’ is negative
on (rg, M) and h(r) <1 for ro < r < M. Now, one has the inequality

1 14+ Ar A'(r)

272 2r  h(r)’

Integrating this inequality from ro to r € (ro, M) (and integrating by parts) yields
1/1 1 1+ 1+ "Inh

(5.2) W)=k (ro) > = [ =—— ) =27 1y p(r) 4 270 lnh(ro)—/ nhlp) 4,
2\7r 719 2r 279 o 2p?

The left hand side of this inequality is bounded above as r approaches M, so the

right hand side must be as well. Because the function 1 + Ar is positive on the

interval (ro, M) and because the function h is less than 1 on this interval, each of
the right hand side terms

1+ "Inh
(5.3) _ A In h(r) and —/ nhlp)
2r o 207

must be positive and bounded above as r approaches M. If M < —1/X held, then
the first of these two terms would approach +o0o as r approaches M, which is a
contradiction. Thus, 0 < M < —1/X implies M = —1/\. Consequently, M > 0
implies M > —1/), as desired. O

(5.1) R'(r) > —

dp

0
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