ON CANONICAL CONNECTIONS FOR G-STRUCTURES

ROBERT L. BRYANT

ABSTRACT. These are my notes on the question of the existence and unique-
ness of canonical connections for G-structures. It mainly consists of two cau-
tionary examples.
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1. INTRODUCTION

For many of the G-structures that arise in differential geometry, the main method
of computing local invariants of such structures is to introduce a connection in
an intrinsic way and look at the covariant derivatives of the various tensors and
generalized tensors that appear in the problem being studied.

Of course, every G-structure on a manifold (always assumed to be paracompact
and smooth) admits some compatible connection, but, usually, one wants to choose
such a connection that is well-suited to the study of the given G-structure. In fact,
for a given G C GL(n,R), one often wants to be able to define a ‘canonical’ choice
of connection for each G-structure B on an n-manifold, one that has the virtue of
being preserved under equivalence of G-structures.

Perhaps a more descriptive adjective than ‘canonical’ would be ‘functorial’: For-
mally, one wants to define a functor from the category whose objects are smooth
n-manifolds endowed with G-structures (M, B) and whose morphisms are diffeo-
morphisms of the underlying manifolds that identify the corresponding G-structures
to the category whose objects are smooth n-manifolds endowed with affine connec-
tions (M, V) and whose morphisms are diffeomorphisms of the underlying manifolds
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that identify the corresponding affine connections. However, the common usage in
differential geometry is to describe such a functor as a ‘canonical choice’ of connec-
tion.

For example, in Riemannian geometry, i.e., the geometry of O(n)-structures on
n-manifolds, one usually introduces and uses the Levi-Civita connection, which is
characterized by simple conditions derived from the given O(n)-structure, namely
that the covariant derivative of the underlying metric should vanish and that the
torsion should vanish. (More generally, this construction can be used to define a
canonical choice of connection for any G C GL(n,R) whose closure is compact.)

Nevertheless, it is easy to see that not every G C GL(n,R) allows a canonical
choice of connection for G-structures. For example, if G C GL(n,R) is such that
there exists a G-structure on some n-manifold whose symmetry group contains
nontrivial elements that fix a point up to second order, such a symmetry group
cannot leave invariant any affine connection, and hence there cannot be any canon-
ical choice of affine connection for G-structures on n-manifolds. For example, this
happens in the cases of (almost) symplectic geometry and conformal geometry.

At first glance, it might seem reasonable to suppose that this sort of obstruction
is the only obstruction, namely that if G C GL(n,R) is such that no G-structure on
an n-manifold admits a (local) symmetry (pseudo-)group that contains nontrivial
elements that fix a point to second order)] then there should be a way to define a
‘canonical’ connection for each such G-structure.

However, it turns out that this is not the case. Moreover, even in the case that
there does exist a ‘canonical’ connection, it may well not be unique in the sense
that there could be more than one ‘recipe’ that yields a ‘canonical’ connection. The
point of these notes is to give some examples of these phenomena in the simplest
cases, when n = 3.

2. LAcK OF UNIQUENESS

First, I will consider a case in which there always exists a ‘canonical’ connection,
but in which there may be several possible choices.

Let A1, A2, and A3 be nonzero real numbers, fixed throughout this example.
Consider the connected subgroup G C GL(3,R) of dimension 2 that consists of the
diagonal matrices with positive entries of the form

tp 0 0
0 t2 O with  (t)™M (t2)2 (t3)** = 1.
0 0 t3

Let M be a 3-manifold and let 7 : B — M be a G-structure on M. In other
words, m : B — M is a principal right G-bundle where an element v € B that
satisfies 7w(u) = z is a linear isomorphism v : T,M — R3, and the right action
of g € G satisfies u-g =g tou.

Define the tautological 1-forms w® on B by the usual rule

w?(v) | =u(7'(v)) for all v € T, B.

1Equivalently7 the first prolongation of g C gl(n, R) vanishes, where the first prolongation gM
is defined as the intersection of g ®(R™)* C (R” ® (R")*) ® (R™)* with R™ ® S2((R™)*).
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A connection on B will then consist of a triple of 1-forms #* on B that are
invariant under the right action by G (since G is abelian) and that satisfy

/\191+/\292+)\393:0

and
dw! = —0' nw! + AJ;w? Aw® + A Wi Aw! + Al wh Aw?
dw? = =02 rnw? + A2 wi Aw? + A2 Wi aw! + A2, Wl A w?
dw® = =P A w® + AW Aw® + A3 Wi aw! + A3, W A w?
for some functions A;k = —A};j on B.

By the usual general theorem, we know that a connection exists, but we would
like to have a way to choose a unique one.

2.1. A canonical coframing. Now, using the fact that the A’ are nonzero, one
can show that there exist unique 1-forms 7!, 72, and 73 on B such that

/\1T1+/\2T2+/\3T3=0

and

dw! = =7 Aw! 4+ 20005 A W2 A WP

dw? = =72 Aw? 4+ 2030 A2 W3 AWt

dw? = =2 Aw? 4+ 2000 A3 W A W?
for some functions A', A%, and A% on B. These forms will satisfy 7% = 6
mod w!,w?, w3, but it has yet to be verified that the 7* themselves define a connec-

tion on B, since we do not yet know that they are invariant under the right action
of G.

However, by computing the exterior derivatives of the above equations and an-
alyzing the results, one finds that

dA' = A"+ P+ P —27') + Al W
and
drt = XoAs (241w Aw® — (A5 + K*) w’ aw' — (A3 — K%)w' Aw?)
dr? = A3A; (245 w° Aw! — (AF + KP)w! nw? — (A] — K1) w? Aw?)
dr® = M Ag (245w nw? — (A] + KN w’ rw® — (A3 — K?)w? Aw?)

for some functions A;- and K* on B. It follows that the forms 7¢ are actually
invariant under the right action of G and hence define an actual connection on B.

2.2. The possibility of other canonical connections. Thus, a ‘canonical’ con-
nection exists in this case. However, there is also the possibility (depending on
the ratios of the \;) that there might be other choices of ‘canonical’ connection for
these G-structures. If (71, 72,73) is to be such a choice, then 7% = 7¢ + p’ where
the p’ would have to be some ‘canonical’ 1-forms that would be well-defined on the
base manifold M and hence be of the form

i i, ]
pr=riw

for some functions rj— on B. These would have to be subject to the linear rela-

tion Aipt + Aap? + A3p® = 0.
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In order to be ‘canonical’, the r} would need to be some specific ‘universal’
functions of the A* and K* and, in order for the p’ to be m-pullbacks of forms
defined on M the functions rj» would need to satisfy

dri =r;77 mod wlw?, Wi,

For example, suppose [A1, A2, A3] = [-2,1,1]. Then
dA'w) = (2 + 7 =2 A (AW =0 mod w? Aw?, WP Aw!, w! Aw?,
so that A'w! is the m-pullback of a well-defined 1-form on M, and one could take, for
example, (pt, p2, p?) = (0, \3A'w!, — A2 A'w!), which would yield a new ‘canonical’
choice 7 of connection forms on B.

Similarly, if [A1, A2, A3] = [1, —1,2], then one can check that A'(A42)%w? is the 7-
pullback of a 1-form on M and hence can be used to modify the connection forms 7°.
Likewise, if [A1, A2, A3] = [~1,1,1], then K'w! is the 7-pullback of a 1-form on M
and is a second order invariant that can be used to modify the ‘fundamental’,
‘canonical’ connection forms 7. (In particular, it can happen that a ‘canonical’
connection might depend on higher order information about the G-structure than
first order information.)

On the other hand, if the ratios of the \; are not rational, then no construction
of this kind will work, and the 7% constructed above give the only possibility for a
canonical connection.

3. LACK OF EXISTENCE

Now, I will consider a case in which there does not exist a ‘canonical’ connection
for the general G-structure.
Consider the connected abelian subgroup G C GL(3,R) of dimension 2 that
consists of the matrices of the form
a 0 0
ab a 0 with a > 0 and b arbitrary.
%abQ ab a
Let M be a 3-manifold and let 7 : B — M be a G-structure on M. In other
words, m : B — M is a principal right G-bundle where an element v € B that
satisfies w(u) = x is a linear isomorphism u : T, M — R? and the right action
of g € G satisfies u-g =g~ ou.
Define the tautological 1-forms w® on B by the usual rule
w(v)
w?(v) | =u(7'(v)) for all v € T, B.

A connection on B will then consist of a pair of 1-forms o and S on B that are
invariant under the right action by G (since G is abelian) and that satisfy

dw! = —aaw! + Adyw? nwd + AL W AWt + Ay w! Aw?

dw? = —Brw! —anrw? + Asw? Aw? + A3 WP aw! + ATy wh A w?

dw? = —Brw? —anrw® + AdwP w4+ A3 Wi aw! + A3, Wl Aw?
for some functions A;k = —A}Cj on B.

By the usual general theorem, we know that a connection exists, but we would
like to have a way to choose a unique one.
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3.1. A canonical coframing. Now, by elementary linear algebra, there exist
unique 1-forms A and p on B such that

dw! = =AM AWl + AW AR 4+ A2 WP Aw! + AP W AW?
dw? = —prw! = Aaw?
dw? = —prw? = Aaw?

for some (also unique) functions A* on B. Moreover, for any choice of connection
forms o and 8 as above, one must have

a—-A=B—-p=0 mod w!,w? wd.

Computing the exterior derivatives of the structure equations yields formulae of
the form
dAt = A"\ + AW+ A+ AW
dA? = A2 X —2A' p+ A3 W' + AZw? + A3
dA® = AP N —2A% p+ A3t + ASW? + AS W3,
while
d\ = pa(A%W? — A'W3) + (AT + A2+ A WP hw? — K1 Wi aw! — K2 wh aw?
dp = pr(A%w?® — A30%) + K'w? AW + K2 Wi aw! + K wh aw?
for some unique functions A and K* on B, and this shows that, except when the
A vanish, A and p are not invariant under the G-action on B and hence do not
define a connection on B.

Still, because the forms A and p are uniquely characterized by the structure
equations, one has that the coframing (w!,w? w3, \, p) is a canonical coframing
on B. Thus, the invariants of coframings satisfying structure equations of the above
form will be invariants of the original G-structure B and wvice versa. Cartan would
have regarded this as the solution of the equivalence problem for these G-structures
and would have used it to define the fundamental invariants of the G-structure.

Indeed, even though no connection has been defined, the structure equations
derived so far can be used to construct tensorial invariants of the G-structure B.
For example, one finds from the above structure equations that the three 1-forms

nt = Al
n2:Alw2_%A2wl
nnglwg—%Asz—i—%A?’wl
are the m-pullbacks of well-defined forms on M and that, on the open set U
where A' # 0, they define a canonical coframing of U, which can be used to

reduce the structure group. One also finds that @ = ((A%)? — 24'4%) (w')? is the
m-pullback of a well-defined rank 1 quadratic form on M.

3.2. Covariants and derived covariants. In the general theory of the method
of equivalence, when one has defined a canonical coframing on a G-structure B (or,
more generally, on some prolongation of the G-structure), then any equivalence
of G-structures preserves the forms in the coframing and hence also preserves the
functions that arise as coefficients of the exterior derivatives of these forms when
they are expressed in terms of the coframing. These coefficient functions are known
as the (generalized) covariants of the G-structure. Taking the exterior derivative
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of such a covariant and expressing it as a linear combination of the elements of the
coframing then yields coeflicient functions that are known as the derived covariants
of the G-structure. In the general theory, one shows that, in an appropriate sense,
the iterated derived covariants yield a complete set of invariants of G-structures.

In the present case, one can use the canonical coframing to generate the derived
covariants of the G-structure by starting with the initial covariants I (such as, for
example the A* and K7), defining

dl = LA+, p+ L w' + Lw® + 303

and adding the Iy, I,, and the I; to the list of known covariants and then repeating
the process. In this way, one generates all (in a suitable sense) of the differential
invariants.

Of course, when iterating the derivations, one should keep in mind that, because
d(dI) = 0, not all of the second derived covariants of a given covariant are indepen-
dent. In fact, there will be 10 relations among these (potentially) 25 second derived
invariants that allow one to eliminate 10 of them in favor of polynomials in lower
order invariants.

For purposes of an argument to be presented below, let us say that a (derived)
covariant I has A-weight n if Iy = nI. Thus, for example, the A’ all have A-weight 1,
the Aé and the K* have A\-weight 2, and so on. Note that A-weight is logarithmic
in the sense that if Iy = nl and Jyx = mJ, then (IJ)x = (m+n)IJ. Moreover,
if I = nI then the identity d(dl) = 0 implies that (I;)x» = (n+1) I;. In particular,
note that, in the polynomial ring Z over R generated by the derived covariants,
only linear combinations of the A* have A-weight equal to 1.

By computing the Cartan characters of the structure equations above (which, as
it turns out, are involutive) one finds that Z is freely generated as a polynomial ring
over R by a set S C Z of independent invariants that consists of Ny = 2k24-3k—2
elements of differential order k (and A-weight k) for each k > 1. For example, the
elements A are the 3 elements of differential order 1, and the A% and K7 are the 12
elements of differential order 2.

In particular, the necessary and sufficient condition that two G-structures B and
B’ agree up to diffeomorphism to order k > 1 at some frames u € B and v’ € B’ is
that the N7 + - - - + Ny algebraically independent elements of S of order at most k
have the same values at u’ as they do at u. Moreover, one can freely specify the
values of these invariants at a frame u € B.

3.3. The nonexistence of a canonical connection. I now want to explain why
the above analysis shows that there cannot be any process that yields a canonical
connection for the general G-structure on a 3-manifold.

Suppose that there did exist some process that produced a canonical connection
for every G-structure. The connection forms « and g for this purported canonical
connection would have to have the form

a:)\+11w1+12w2+13w3

B=p+J W+ I3+ PP
for some functions I* and J? that are universal expressions in the derived covariants
up to some finite order k. Moreover, these expressions would have to be smooth

functions of the elements of S of order less than or equal to k that were also weighted
homogeneous of A-weight +1 since, otherwise the expressions I‘w? and Jiw/ would
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not be weighted homogeneous of A-weight 0, which is, of course, necessary. This
implies that the I’ and the J* must be polynomials in these elements of S that are
weighted homogeneous of A-weight +1, but, as we have seen, this can only happen
if they are constant linear combinations of the A’
Now, expanding the condition that da and dB be 2-forms that are quadratic in
the w' yields
diP=Dr A+ Ay
d=J3N-A%)p
Since I? and J? must be linear combinations of the A?, this implies that I3 =
e A — 3 A? while J3 = ¢y A' + 1 A3 for some constants ¢; and co. Substituting
this information back into the formulae for da and df and simplifying then yields

A =P A+ (g A" =3 4%)p
A = A+ (2 A"+ 3 A%)p

} mod w!, w? w3.

} mod w?, w?, w3,

This implies that 12 = c3 A! — %cl A? + % A3 for some constant ¢z, but there is no
linear combination of the A’ that satisfies the above equation for J2.

Consequently, the necessary formulae for the I’ and J? cannot be satisfied, and
one concludes that there can be no local algorithm that yields a canonical connection
for all G-structures on all 3-manifolds.

Remark 1. This does not mean that there is no process that yields a canonical
connection for some G-structures. For example, for the G-structures that satisfy the
open condition that A'w! be nowhere vanishing, which is a well-defined condition
on G-structures, one can always define a unique section of B as the image of the
locus in B where A' =1 and A% = 0. Now, one can choose the unique connection
on B for which this ‘canonical’ section is parallel, and this defines a ‘canonical’ flat
connection on B. The corresponding o and 8 in terms of A and p in this case are
found by solving the equations

Ala=dA' = A\ + Al w! + AL w? + AL w3
Ala —A'B=dA? = A2\ — Alp4 AZw! + AZw? + A2WP
for o and 3. Note, though, that this requires dividing by A!, so that the resulting
formulae for o and 8 will not, generally, be smooth for arbitrary G-structures for
which the 1-form A'w! can vanish.
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