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0. Introduction

It is a great honor for me to be asked to give a lecture about the work of Élie Cartan at
the institute that was founded in his name. When I was asked to do this, I was immediately
beset by doubts as to whether I could actually say anything of value. Nowadays, the work
of Cartan is so widely and deservedly praised and studied, the originality and central
importance of his insights so universally acknowledged, that there would seem to be little
point in my adding my own small testimonial, however deeply felt, to his pile of honors.

Mathematicians better qualified have written in-depth surveys of Cartan’s work and
comments on its significance for modern geometry. In addition to the masterful obituaries
by Chern and Chevalley [CC] and by J. H. C. Whitehead [Wh], written shortly after his
death, there has been a recent book [AR] and a beautiful recent survey containing much
valuable information about his life and work by P. Libermann [Li]. Moreover, we have the
survey by Élie Cartan himself [Ca13], in which he outlines the great themes of his work in
a style that I cannot hope to match.

Thus, my plan in this lecture is not to try to describe the whole tapestry of Cartan’s
work but, instead, to follow one tiny thread, explain its significance for Cartan as best
I can and then expose some of the ramifications of this work in modern geometry. The
thread that I will follow is the geometry of the rank 2 simple Lie groups, particularly the
geometry of G2.

1. Lie groups

In 1893, Cartan published his first papers, including the famous “Über die einfachen
Transformationsgruppen” [Ca1], in which he announces, in particular, that he has found
examples of Lie groups corresponding to each of the ‘exceptional’ root systems found by
Killing. One of the things that I find remarkable about this work is the way that Cartan
found interpretations of the exceptional groups as transformation groups.

I want to describe this in a little detail because it will serve as the basis of the rest of
my talk. Of course, this material is extremely well-known nowadays and there are many
excellent expositions. Helgason’s masterful treatment [He] is also an indispensable guide
to the literature. I apologize in advance to the experts in the audience, for whom this will
be an unnecessary review.

I want to begin by recalling some of the origins of the theory of Lie groups. For Sophus
Lie, a transformation group in n-space was essentially a set of (local) transformations of Rn
(or Cn) that is closed under composition and inverse.
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Examples in Rn:
1. Translations: fa(x) = x + a,
2. Linear: fA(x) = Ax,
3. Affine: fA,b(x) = Ax + b,
4. Projective:

fM (x) =
Ax + b
c · x + d

, M =
(
A b
c d

)
∈ SL(n+1,R)

(not defined when c · x + d = 0.)
A Lie transformation group depends smoothly on a finite number of parameters, as in the
above cases. We will also assume it to be generated by elements near the identity.

If ft : Rn → Rn is a smooth curve in the group with f0(x) = x, then

ft(x) = x + tX(x) +O(t2).

Lie considered X as a infinitesimal generator vector field (summation understood):

X = Xi ∂

∂xi
.

For example, when n = 1, and one defines a curve of projective transformations of R1 by
taking

M(t) =
(

1 + ta tb
tc 1 + td

)
then

fM(t)(x) =
(1+ta)x+ tb

tcx+ (1+td)
= x+ t (b+ (a−d)x− c x2) +O(t2),

so the infinitesimal generators of the linear fractional transformation group are of the form

X = (a+ bx+ cx2)
∂

∂x
.

They form a three dimensional linear space. This explains the relationship of the linear
system (

u̇(t)
v̇(t)

)
=
(
a(t) b(t)
c(t) d(t)

)(
u(t)
v(t)

)
to the (nonlinear) Riccati equation for x = u/v,

ẋ(t) = b(t) +
(
a(t)−d(t)

)
x(t) − c(t)x(t)2.

Lie showed how this classical ‘linearization’ of the Riccati equation generalized to an arbi-
trary Lie transformation group and made it the basis of his method of integrating ordinary
and partial differential equations.
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As part of his general program, Lie showed that the flow of an infinitesimal generator X
generates a 1-dimensional subgroup of the given Lie transformation group, that the vector
fields whose flows lie in the group form a finite dimensional vector space of vector fields g

and that every element of the group that is sufficiently close to the identity is part of a
flow generated by an element of g.

The group multiplication in a Lie group need not be abelian, of course, and Lie found
that this was reflected in g as follows: If ft, gt : Rn → Rn are smooth curves in the group,
with f0(x) = g0(x) = x and

ft(x) = x + tX(x) +O(t2)

gt(x) = x + t Y (x) +O(t2)

then
g−t ◦ f−t ◦ gt ◦ ft(x) = x + 1

2 t
2Z(x) +O(t3)

where Z = [X,Y ] is (now) called the Lie bracket of X and Y . It is another infinitesimal
generator of the group and can be calculated directly in terms of X and Y as

Z =
(
Xi ∂Y

j

∂xi
− Y i∂X

j

∂xi

)
∂

∂xj
.

Lie proved that a finite dimensional linear subspace g of vector fields on Rn that is
closed under Lie bracket is the space of infinitesimal generators of a (local) Lie group.

In addition to the evident skewsymmetry [X,Y ] = −[Y,X], the Lie bracket satisfies
the Jacobi identity: [

[X,Y ], Z
]

+
[
[Y,Z],X

]
+
[
[Z,X], Y

]
= 0.

An algebra [, ] : g × g → g with these two properties is now known as a Lie algebra. Lie
showed that two transformation groups are locally isomorphic if their Lie algebras are
isomorphic (as algebras).

What I mean by ‘local isomorphism’ is not that the two transformation groups are
conjugate by a change of variables, but that the two groups are isomorphic as abstract
groups. In the Riccati example above, the same group SL(2,R) acts both as linear trans-
formations of R2 and as linear fractional transformations of R1 (or, more globally, as
projective transformations of P1 = R1 ∪ {∞}).

A more substantial example, and one that I will return to at some length below, is the
example of SL(3,R) acting in two distinct ways on P2 (= lines in 3-space). Namely, A ∈
SL(3,R) can act either as

A · [x] = [Ax] or as A · [y] = [A∗y] = [(A−1)Ty]

(where x and y are nonzero vectors in R3, [x] denotes the line spanned by x, and A∗

denotes the contragredient of A, i.e., the inverse of the transpose of A). Both actions
of SL(3,R) are transitive on P2, but they are not intertwined by any diffeomorphism of P2.
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However, these two representations are related via projective duality. The product
action of SL(3,R) on P2 × P2 defined by

A ·
(
[x], [y]

)
=
(
[Ax], [A∗y]

)
preserves the locus I ⊂ P2×P2 defined by yT x = 0 and acts transitively on its complement.
The set I is the classical incidence correspondence that mediates projective duality:

I
λ↙ ↘π

P2 P2
∗
.

The notion of duality is important in projective geometry, having profound consequences
for its development. Felix Klein’s Erlanger lectures had promoted the idea that the geome-
try of transformation groups was the proper setting for generalizations of this relationship.

Lie’s results naturally led to the following two questions: “What are all the possible
Lie algebras?”, an abstract algebra question, and “How can they appear as Lie algebras of
vector fields?”, a more geometric question.

A Lie algebra g 6= 0 is said to be simple if it has no proper ideals. It was quickly
realized that the algebraic classification problem would depend on a classification of the
simple Lie algebras. It was to this problem that Killing and Cartan turned.

Let g be a Lie algebra defined over C. For x ∈ g, let ad(x) : g → g be defined
by ad(x)(y) = [x, y]. What Killing and Cartan showed is that, when g is simple and
of dimension d > 0, there is a maximal abelian subalgebra (nowadays called a ‘Cartan
subalgebra’) t ⊂ g of dimension r > 0 and a set Λ ⊂ t∗ (the root system) consisting
of (d−r) non-zero, distinct covectors so that

det
(
λ Id − ad(x)

)
= λr

∏
α∈Λ

(
λ − α(x)

)
for all x ∈ t and so that

g = t⊕
⊕
α∈Λ

C ·Xα

where Xα ∈ g satisfies [x,Xα] = α(x)Xα for all x ∈ t. The Jacobi identity then implies
that [Xα,Xβ ] = cαβXα+β for some constants cαβ when α+β 6= 0, while [Xα,X−α] lies
in t. The line C ·Xα is known as the root space belonging to α ∈ Λ.

The root system Λ ⊂ t∗ turns out to have remarkable properties. It spans a real
subspace r ⊂ t∗ of dimension r and c α lies in Λ for c ∈ C and α ∈ Λ if and only if c = ±1.
In fact, for every α ∈ Λ, there is a linear map rα : r→ r that preserves Λ, satisfies (rα)2 = 1
and whose (−1)-eigenspace is R · α. The simplicity of g turns out to imply that Λ ⊂ r is
irreducible, i.e., it does not lie in the union of two proper subspaces r′, r′′ ⊂ r.

Killing (with a few later corrections by Cartan) classified the finite subsets Λ ⊂ r ' Rr
with these properties. He found that there were four families, nowadays called the ‘classical
root systems’ and labeled Ar (r ≥ 1), Br (r ≥ 2), Cr (r ≥ 3), and Dr (r ≥ 4), and five
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‘exceptional root systems’, nowadays labeled as G2, F4, E6, E7, and E8 (the subscript
indicates the rank r).

Thus, for example, there are three distinct, irreducible root systems of rank 2 (drawn
here so that the involutions rα are reflections):

A2 B2 G2

The four classical root systems corresponded to the classically known (complex) Lie
groups: Ar to SL(r+1,C), Br to SO(2r+1,C), Cr to Sp(r,C), and Dr to SO(2r,C).
However, in 1888, Killing did not have examples of Lie groups for the five exceptional root
systems. While Killing was able to argue that a root system came from at most one Lie
algebra, he did not give a convincing argument that there actually existed a Lie algebra
corresponding to each of the exceptional root systems.

In 1893, Cartan and Engel, independently, found examples of 14-dimensional simple
Lie algebras of vector fields in R5 whose root system was of type G2. Contrary to what
one might expect, these examples apparently had nothing to do with the octonions or
Cayley numbers (more about this below). Instead, their examples were described in terms
of differential equations.

What they claimed (although neither gave a proof at the time) was that the Lie
algebra of vector fields on C5 whose flows preserve the 2-plane field E ⊂ TC5 defined by
the equations

dx2 − x4 dx1 = 0 , dx3 − x2 dx1 = 0 , dx5 − x4 dx2 = 0 .

is such a Lie algebra. Cartan further claimed that there is no simple Lie algebra of vector
fields on C4 whose root system is of type G2.

In addition, Cartan and Engel found a second simple Lie algebra of vector fields on C5

of dimension 14 and whose root system is of type G2. The flows of the vector fields in
this algebra preserve a contact 4-plane field but no 2-plane field. I will return to these
examples below.

It is interesting that, in his thesis [Ca2], even when representing the exceptional groups
as matrix groups, Cartan did not give a purely algebraic model of G2, as he did for E6

(the stabilizer of a certain cubic form on C27), E7 (the stabilizer of a certain quartic
form on C56), and F4 (the stabilizer of a certain quadratic form on C26 and a certain
15-dimensional subvariety X15 ⊂ P25). Instead Cartan characterizes G2 as the subgroup
of SO(7,C) that preserves a certain set of differential equations for curves in C7.
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Nowadays, we are accustomed to thinking of G2 as being connected with the algebra of
octonions O. The algebra of octonions was discovered independently by Graves (1844) and
Cayley (1845) and was reasonably well known by 1890. However, there does not appear
to be any indication that Cartan (or anyone else, for that matter) linked the octonions
with the exceptional groups until much later. To my knowledge, the first mention of
this relationship that appears in print is in Cartan’s 1908 encyclopedia article [Ca3]. On
the penultimate page of that article, Cartan remarks (without reference or indication
of proof) that the group of automorphisms of the “octaves of Graves and Cayley” is a
14-dimensional simple group. (This is also, to my knowledge, the first place where any
discussion of the automorphism group of the octonions appears in print, almost 50 years
after their discovery.) As far as I can tell, it is not until six years after this that Cartan
explicitly states [Ca6] that the compact form of G2 is the group of automorphisms of the
octonions. The relation of the octonions with the other exceptional simple groups did not
come to light until much later.

In the next three sections, I am going to examine these three different rank 2 groups
and explain certain analogies between them that, I believe, helped lead Cartan to some of
his most profound discoveries.

For simplicity, I will take the ground field to be C instead of R, and work in the
holomorphic category. Nearly everything that I say will have an obvious analog over the
reals (with ‘smooth’ replacing ‘holomorphic’), but, as was customary one hundred years
ago, I will not always make explicit remarks about real versus complex when discussing
algebraic objects.

I will discuss the three groups in order of their increasing complexity, but it should
be noted that this is historically backwards. In fact, Cartan thoroughly analyzed the G2

case first [Ca4].

2. Classical Duality: A2

The Lie algebra g = sl(3,C) of the group G = SL(3,C) has its root system of type A2.
Now, G acts transitively on P2, the space of lines L ⊂ C3, and it also acts transitively

on P2
∗, the space of 2-planes E ⊂ C3. As I already mentioned, the product action on P2×

P2
∗ acts transitively on the 3-dimensional incidence correspondence

I =
{

[L,E] ∈ P2 × P2
∗ L ⊂ E

}
.

Let [L̄, Ē] ∈ I be fixed. Let P1 ⊂ G denote the stabilizer of L̄ and let P2 ⊂ G denote
the stabilizer of Ē. Then the spaces and subgroups introduced so far fit into a double
fibration of the following kind:

I
‖

G/(P1∩P2)
λ↙ ↘π

P2 = G/P1 G/P2 = P2
∗
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Let pi ⊂ g denote the corresponding Lie algebras. The intersection p1∩ p2 contains a
Cartan subalgebra t such that pi is equal to the sum of t and the root spaces corresponding
to the roots that lie in a closed half-plane, as illustrated below:

p1 p2

Via the incidence correspondence I, the points of P2
∗ define the projective lines in P2

and, conversely, the points of P2 define the projective lines in P2
∗. This is classical duality.

Correspondence of curves. Although the two spaces are not isomorphic as homoge-
neous spaces of G = SL(3,C), there is a correspondence between the curves in the two
spaces. A smooth curve C ⊂ P2 defines a dual curve C∗ ⊂ P2

∗ by assigning to each
point p ∈ C its projective tangent line p∗ ∈ P2

∗. When C is free of flexes, the assign-
ment p 7→ p∗ is an immersion of C into P2

∗ and this is a true duality in the sense that the
corresponding dual mapping of C∗ into P2 simply recovers the curve C .

When the curve C is algebraic and nonlinear (i.e., no component of C is a projective
line in P2), the dual curve C∗ is also an (isomorphic) algebraic curve and the singularities,
flexes, double tangents and so forth of C correspond to the singularities, flexes, double
tangents, and so forth of C∗. The classical Plücker relations describe these relations and
they are an important tool in the study of algebraic plane curves.

Duality of differential equations in the plane. The picture described so far is very
classical and familiar to every algebraic geometer. However, in [Ca12], Cartan considered
generalizations of this duality that played an important role in his development of the
theory of projective geometry and projective connections. Cartan wanted to generalize the
idea of projective plane geometry as the geometry of a 2-parameter family of lines in the
plane by considering, instead, an essentially arbitrary 2-parameter family of curves on a
surface.

More precisely, Cartan considered what we would now call a double fibration

I
λ↙ ↘π

Λ S

where Λ and S are surfaces and I ⊂ S×Λ is a 3-manifold with the nondegeneracy properties
that, first, each of the projections π : I → S and λ : I → Λ is a submersion and, second,
for each (x, ξ) ∈ I, the two curves λ−1(ξ) and π−1(x) meet transversely at (x, ξ), their
tangents spanning a 2-plane E(x,ξ) ⊂ T(x,ξ)I that defines a contact structure on I.
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Cartan showed [Ca9] that I carries a canonical (P1∩P2)-structure τ : B → I with
what is now called a Cartan connection θ, a 1-form on B with values in sl(3,C) so that,
at every point b ∈ B, the map θb : TbB → sl(3,C) is an isomorphism. This form θ has the
property that θ−1(p1) = ker(π◦τ )′ while θ−1(p2) = ker(λ◦τ )′ and that its curvature takes
values in the nilpotent part of p1∩ p2. The curvature of θ vanishes if and only if the double
fibration is locally equivalent to that of the double fibration of the projective plane.

There are two ‘real forms’ of this picture that show up in Cartan’s work.
The first is the ‘split’ real form got by simply redoing everything over R instead of

over C. This gives path geometry on surfaces as we now understand it and the duality
is the classical duality of second order differential equations. Namely, one thinks of S as
having local coordinates (x, y), Λ as having local coordinates (a, b) and I ⊂ S×Λ as being
defined by an equation f(x, y; a, b) = 0. Assuming that the 1-form ρ = fx dx + fy dy =
−fa da − fb db is a contact form on I, this equation can be regarded as defining a 2-
parameter family of paths on P .

Eliminating a and b from the equations

f = fx + fy y
′ = fxx + 2fxyy′ + fyy(y′)2 + fyy

′′ = 0

leads to a second order equation y′′ = F (x, y, y′) and conversely, a second order equation
of this form defines a path geometry on S, where the paths are the graphs of the solutions
of this equation. Doing the analogous operation after switching the variables leads to the
dual equation b′′ = G(a, b, b′) for curve on Λ.

In this case, Cartan showed that, after replacing SL(3,C) by SL(3,R) and the two
parabolic subgroups Pi by their real counterparts, the geometry of this double fibration
was captured by a sl(3,R)-valued Cartan connection θ on a bundle over I. He showed,
moreover, that this bundle with connection could be regarded as a P1 bundle with connec-
tion over S if and only if the paths are the geodesics of what is now known as a projective
connection on S.

The second ‘real form’ is now known as the geometry of a CR-hypersurface I3 ⊂ C2.
One can understand this as a different real form of the above path geometry by simply
thinking of (x, y) as complex coordinates on S ' C2 and setting (a, b) = (x̄, ȳ). The real
hypersurface I ⊂ C2 can now be regarded as the locus of points satisfying f(x, y; x̄, ȳ) = 0.
In [Ca10,11], Cartan shows that, after replacing SL(3,C) by its real form SU(2, 1), one can
define a bundle over I endowed with a Cartan connection θ with values in su(2, 1) whose
invariants capture the geometry of the given real hypersurface in C2. In fact, understanding
Cartan’s papers on hypersurfaces in C2 is made much simpler by keeping this model in
mind since it clearly guided his solution of the equivalence problem.

3. The Lie correspondence: B2

The Lie algebra g = sp(4,C) of the group G = Sp(2,C) ⊂ SL(4,C) of linear transfor-
mations that preserve a nondegenerate skewsymmetric pairing Ω : C4 × C4 → C, has its
root system of type B2.

Now, G acts transitively on P3, the space of lines L ⊂ C4, and it also acts transitively
on Q3, the space of 2-planes E ⊂ C4 to which Ω restricts to become zero. In fact, one
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can understand this as follows: G acts on Λ2(C4) ' C6 and preserves the 5-dimensional
subspace ker Ω ⊂ Λ2(C4). Since the symplectic form Ω defines a volume form on C4,
i.e., an isomorphism Λ4(C4) ' C, there is a natural quadratic form on Λ2(C4) given by
sending e ∈ Λ2(C4) to e∧e ∈ Λ4(C4) ' C. This quadratic form is nondegenerate, so the
representation of G on ker Ω ' C5 is as a subgroup of SO(5,C). This defines a double
cover Sp(2,C)→ SO(5,C), yielding a local isomorphism of these two groups that was first
noticed by Lie. The non-zero null elements of the quadratic form on ker Ω are evidently
the same as the decomposable 2-vectors in ker Ω, i.e., projectively the same as the 2-
planes E ⊂ C4 to which Ω restricts to become zero, as desired. This shows, by the way,
that Q3 is, indeed, as the notation suggests, a 3-quadric. Moreover, G = Sp(2,C) acts
on Q3 as the full SO(5,C). In particular, this action is transitive.

Now, the product action on P3 ×Q3 acts transitively on the 4-dimensional incidence
correspondence

I =
{

[L,E] ∈ P3 ×Q3 L ⊂ E
}
.

Let [L̄, Ē] ∈ I be fixed. Let P1 ⊂ G denote the stabilizer of L̄ and let P2 ⊂ G denote
the stabilizer of Ē. Then the spaces and subgroups introduced so far fit into a double
fibration of the following kind:

I
‖

G/(P1∩P2)
λ↙ ↘π

P3 = G/P1 G/P2 = Q3

Let pi ⊂ g denote the corresponding Lie algebras. The intersection p1∩ p2 contains a
Cartan subalgebra t such that pi is equal to the sum of t and the root spaces corresponding
to the roots that lie in a closed half-plane, as illustrated below:

p1 p2

Via the incidence correspondence I, the points of Q3 define a 3-parameter family of
projective lines in P3, the lines tangent to a contact 2-plane field on P3. Conversely, the
points of P3 are represented as the lines in Q3 ⊂ P4 that are null with respect to the
induced (holomorphic) conformal structure.

Correspondence of curves. Just as in projective duality in the plane, there is a corre-
spondence between certain curves in the two spaces. A smooth contact curve C ⊂ P3 (i.e.,
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a curve tangent to the Sp(2,C)-invariant contact field on P3) defines a dual curve C∗ ⊂ Q3

by assigning to each point p ∈ C its projective tangent line p∗ ∈ Q3. When C is free of
flexes, the assignment p 7→ p∗ is an immersion of C into Q3 as a null curve.

Conversely, a smooth null curve D ⊂ Q3, defines a dual curve D∗ ⊂ P3 by assigning to
each point p ∈ D its (null) projective tangent line p∗ ∈ P3. As long as D does not osculate
too closely to the straight null lines in Q3, the assignment p 7→ p∗ is an immersion of D
into P3. A straightforward computation shows that D∗ is a contact curve and, moreover,
that C∗∗ = C and D∗∗ = D as long as these curves are not straight lines.

This correspondence between null curves inQ3 and contact curves in P3 was discovered
by Lie. It takes nonlinear algebraic curves to nonlinear algebraic curves and there are
generalizations of the Plücker relations that relate the singularities of one curve to the
‘dual’ singularities of the other. For one particular application of this to the study of
Willmore surfaces, see [Br2].

Conformal geometry in dimension 3. One of two possible generalizations of this pic-
ture is to replace Q3 by an arbitrary complex 3-manifold S endowed with a holomorphic
conformal structure [g]. Assuming certain reasonable global hypotheses that I won’t spell
out here, the space Λ of (holomorphic) null geodesics of [g] is a complex 3-manifold (The
global hypotheses needed are just to ensure that the space Λ is Hausdorff.) The incidence
correspondence I ⊂ S × Λ consists of the set of pairs (p, ξ) where p ∈ S lies on the null
geodesic ξ ∈ Λ. Again, the projections of I onto the two factors defines a double fibration

I
λ↙ ↘π

Λ S

and the space Λ carries a natural contact structure, where the contact 2-plane field E ⊂ TΛ
is defined at ξ ∈ Λ, by letting Eξ be the tangent plane at ξ to the surface Σξ ⊂ Λ consisting
of the set of null geodesics in S that meet ξ.

Each point p ∈ S defines a contact curve Dp in Λ by letting Dp consist of the curve
of null geodesics that pass through p. Thus, the double fibration defines, in addition to a
contact structure on Λ, a 3-parameter family of contact curves.

Moreover, just as in the ‘flat case’, there is a duality between certain curves in the two
spaces. Each [g]-null curve C in S gives rise to a contact curve C∗ in Λ and conversely. The
correspondence is just given by sending each p ∈ C to the null geodesic p∗ that is tangent
to C at p. For a contact curve D ⊂ Λ, one gets a dual null curve D∗ by sending ξ ∈ D to
the point ξ∗ ∈ S for which Dξ∗ is tangent to D at ξ.

Cartan [Ca8] developed a theory of conformal connections that, in dimension 3, di-
rectly generalizes the geometry of the fibration Sp(2,C)/P2 = Q3. In fact, what Cartan
shows is that in the above situation, there is a canonical principal right P2-bundle B → S
endowed with a sp(2,C)-valued 1-form θ whose invariants capture the conformal geometry
of
(
S, [g]

)
completely. This bundle B is, in a natural way, a (P1∩P2)-bundle over I, though

it does not, in general, have the structure of a P1-bundle over Λ in a natural way.
Of course, there are two real forms of this picture. One is the case of a conformal

structure on a real 3-manifold and the other is the case of a conformal Lorentzian structure
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on a real 3-manifold. It is the second one that has the clearest analog of the complex picture
since it is in this case that there exist null geodesics.

Third order differential equations. The other possible generalization of the flat picture
is to generalize the P1-bundle Sp(2,C) → P3. In this case, one starts with a contact 3-
manifold Λ endowed with a three-dimensional family S of contact curves. The necessary
nondegeneracy hypothesis one imposes is that the incidence correspondence I ⊂ Λ × S
should be a smooth 4-dimensional submanifold that submerses onto each of the factors
and that the tangents at any ξ ∈ Λ of the set of curves in S that pass through ξ should
fill out an open set in the set of lines in the contact plane at ξ.

One source of this geometry is to consider a third order differential equation y′′′ =
F (x, y, y′, y′′) in the plane. On the space Λ of first order contact elements in the plane,
with coordinates (x, y, y′), each line that lies in a contact plane is tangent to a unique
lifted solution of the above equation. Thus, the space S of solutions to the given third
order equation defines a structure of the desired kind on Λ. To study this geometry is to
study the geometry of third order equations in the plane up to contact transformations.
Cartan [Ca14] studied the geometry of these equations up to point transformations in the
plane as a generalization of the geometry of second order equations discussed in the last
section. Chern [Ch] studied the more general equivalence of such equations up to contact
transformations and showed that one could, in fact, associate a bundle of dimension 10
with connection over Λ to this geometry that generalized the bundle Sp(2,R)/(P1∩P2)→ I
in the ‘flat’ case (which turns out to correspond to the equation y′′′ = 0). He showed, that
if a certain invariant, originally defined by Wünschmann, vanishes then this bundle has the
structure of a P2-bundle over S, in fact the P2-bundle associated to a conformal structure
on S.

Thus, again, the notion of a ‘generalized space’ in Cartan’s sense (roughly speaking,
a ‘deformation’ of a homogeneous bundle with connection) turns out to be reflected in
the geometry of so system of differential equations. Cartan points out in [Ca12] that
these situations provide an important way to generalize the notion of ‘integrability’ of an
ordinary differential equation. I think that this set of ideas is still very profound and needs
to be better understood.

4. Cartan’s correspondence: G2

Cartan showed that there is a 14-dimensional Lie group G ⊂ SO(7,C) whose Lie
algebra g has its root system of type G2. It is interesting that, in his thesis, Cartan does
not describe this group as the subgroup preserving some algebraic structure on C7. In fact,
his original description is in terms of the inner product and a set of differential equations
for curves in C7. What he says is that G is the subgroup of GL(7,C) that preserves the
quadratic form

J = z2 + x1 y1 + x2 y2 + x3 y3

and the system of 7 Pfaffian equations (where (i, j, k) is any even permutation of (1, 2, 3))

z dxi − xi dz + yj dyk − yk dyj = 0,
z dyi − yi dz + xj dxk − xk dxj = 0,

x1 dy1 − y1 dx1 + x2 dy2 − y2 dx2 + x3 dy3 − y3 dx3 = 0.
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Since G preserves a quadratic form on C7, it cannot act transitively on P6, the space
of lines in C7. However, Cartan showed that G does act transitively on Q5 ⊂ P6, the space
of J -null lines in C7.

Now G does not act transitively on the space of J -null 2-planes in C7 (a 7-dimensional
homogeneous space of SO(7,C)), but it does act transitively on the 5-dimensional space N5

consisting of the J -null 2-planes on which the following 2-forms vanish (again, (i, j, k) is
any even permutation of (1, 2, 3)):

dz ∧ dxi + dyj ∧ dyk = 0,
dz ∧ dyi + dxj ∧ dxk = 0,

dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3 = 0.

Cartan does not seem to have been aware that G can be defined more simply as the
stabilizer of the 3-form

φ = dz ∧
(
dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3

)
+ dy1 ∧ dy2 ∧ dy3 − dx1 ∧ dx2 ∧ dx3,

even as late as 1914, when he finally identified the two real forms of type G2 as the
stabilizers of certain algebraic structures on R7. In fact, this form has a very simple
interpretation in terms of the octonions O, an eight dimensional algebra with unit 1 and
nondegenerate inner product 〈, 〉 that satisfies 〈xy,xy〉 = 〈x,x〉 〈y,y〉. (Over C there is a
unique such algebra while, over R, there are two, one for which 〈, 〉 is positive definite and
one for which it is of type (4, 4).) Letting ImO = {x ∈ O 〈x,1〉 = 0}, the 3-form φ can
be defined as φ(x,y, z) = 〈xy, z〉. Then, in each of the three possible cases (one complex
and two real), the stabilizer of φ is a Lie group of dimension 14 whose root system is of
type G2.

The product action of G on Q5 ×N5 acts transitively on the 6-dimensional incidence
correspondence

I =
{

[L,E] ∈ Q5 ×N5 L ⊂ E
}
.

Let [L̄, Ē] ∈ I be fixed. Let P1 ⊂ G denote the stabilizer of L̄ and let P2 ⊂ G denote
the stabilizer of Ē. Then the spaces and subgroups introduced so far fit into a double
fibration of the following kind:

I
‖

G/(P1∩P2)
λ↙ ↘π

Q5 = G/P1 G/P2 = N5

Let pi ⊂ g denote the corresponding Lie algebras. The intersection p1∩ p2 contains a
Cartan subalgebra t such that pi is equal to the sum of t and the root spaces corresponding
to the roots that lie in a closed half-plane, as illustrated below:
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p1 p2

Via the incidence correspondence I, the points of Q5 define lines in N5 and, conversely,
the points of N5 define lines inQ5. These are not arbitrary lines, but, instead satisfy certain
conditions that I now want to describe in terms of the Lie algebras.

As we now know, the infinitesimal geometry of the homogeneous space G/Pi is re-
flected in the representation of pi on g/pi induced by the adjoint representation.

In the case of Q5 = G/P1, this representation preserves a filtration

0 ⊂ n
(−1)
1 ⊂ n

(−2)
1 ⊂ n

(−3)
1 = g/p1 ' C5

with associated graded spaces n
(−1)
1 ' C2, n

(−2)
1 /n

(−1)
1 ' C, and n

(−3)
1 /n

(−2)
1 ' C2. The

induced representation of p1 on each graded piece has image the full general linear repre-
sentation. In particular, it is irreducible. It follows that G acts on Q5 = G/P1 preserving
a 2-plane field E ⊂ TQ5. The plane field E is null with respect to the conformal structure
on Q5. Via the correspondence I, each point of N5 represents a line in Q5 that is tangent
to this 2-plane field. Now, the 2-plane field E is as non-integrable as possible. The sys-
tem [E,E] spanned by the Lie brackets of vector fields tangent to E is a 3-plane field and
the system

[
[E,E], E

]
generated by the triple brackets of vector fields in E is equal to the

whole of TQ5. As we will see, this ‘generic’ behavior is what makes it a model for the
‘generic’ 2-plane field in dimension 5.

This 2-plane field is exactly the 2-plane field discovered by Cartan and Engel (more
precisely, there is an affine open set C5 ⊂ Q5 such that the restriction of the 2-plane field E
to C5 is the one identified by Cartan and Engel). Consequently, G is the symmetry group
of this 2-plane field. Moreover, this plane field has turned up in other ways. For example,
I used it in [Br1] to give a description of the null-torsion pseudo-holomorphic curves in the
6-sphere, thereby managing to prove that every compact Riemann surface appears as such
a pseudo-holomorphic curve.

In the case of Q5 = G/P2, this representation preserves a filtration

0 ⊂ n
(−1)
2 ⊂ n

(−2)
2 = g/p2 ' C5

with associated graded spaces n
(−1)
2 ' C4 and n

(−2)
2 /n

(−1)
2 ' C. The induced represen-

tation of p2 on n
(−1)
1 is isomorphic to the representation of gl(2,C) on the third sym-

metric power of C2. This is a conformally symplectic representation, so it preserves a
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2-dimensional cone F ⊂ n
(−1)
2 of degree 3 that corresponds to the cone of perfect cubes

in S3(C2). Thus, G acts on Q5 = G/P2 preserving a field F ⊂ TN5 of 2-dimensional
cubic cones. These cones lie in the contact plane field on N5 defined by the 4-plane field
corresponding to n

(−1)
2 . Via the correspondence I, each point of Q5 represents a line in N5

that is tangent to this 2-cone field.

Correspondence of curves. Now the analog of the Lie-Klein correspondence can be
explained. Every curve C ⊂ Q5 that is tangent to the plane field E defines a curve C∗

in N5 by the rule p 7→ p∗ where p∗ ∈ N5 is the projective tangent line to C at p. The
curve C∗ is tangent to the cone field F . Conversely, every curve D ⊂ N5 that is tangent
to the cone field F defines a curve D∗ in Q5 by the rule p 7→ p∗ where p∗ ∈ Q5 is the
projective tangent line to D at p. The curve D∗ is tangent to the plane field E. Moreover,
assuming that the curves C and D are not linear, these transforms are dual, i.e., C∗∗ = C
and D∗∗ = D.

2-plane fields in dimension 5. Cartan used the model geometry of the double fibration
to study the geometry of generic 2-plane fields on 5-manifolds [Ca4]. The genericity condi-
tion can be described as follows: Let Q be a 5-manifold and let E ⊂ TQ be a 2-plane field.
Let us say that E is of Cartan type if the brackets of local sections of E span a 3-plane
field at each point of Q (a generic condition) and the triple brackets of local sections of E
span the entire tangent space at each point of Q (also a generic condition).

Cartan showed how one can canonically associate to each 2-plane field E ⊂ TQ of
Cartan type a principal P1-bundle B endowed with a g-valued coframing 1-form θ (in fact,
what is now known as a Cartan connection) that captures the local geometry of the plane
field E completely in the sense that any equivalence (Q,E) ' (Q′, E′) of Cartan type
2-plane fields on 5-manifolds is covered by a unique P1-bundle isomorphism B ' B′ that
identifies θ with θ′. Using this construction, for example, Cartan was able to show that
the fundamental curvature tensor (the analog, in this situation, of the Riemann curvature
tensor for metrics) of a Cartan-type 2-plane field E is a section of S4(E∗) and that it
vanishes if and only if the 2-plane field is locally equivalent to the ‘flat’ example described
above on Q5.

His argument is a true tour-de-force, still striking in its originality today. It was, by
far, the most elaborate application of his method of equivalence to be fully worked out in
his lifetime and, I believe, served as the model for many of his later applications of the
method to conformal and projective geometries.

I do not have time today to discuss all of the ways this example was applied or the
effects that it had on the development and application of the general theory. For example,
Hilbert and Cartan [Ca7] dealt with exactly this case in their studies of certain foundational
problems in the calculus of variations, and Cartan had used it to illustrate his notion of
‘absolute equivalence’ of differential equations and its relation with the integration problem
for such systems. In fact, Cartan’s motivation for studying this problem in the first place
was to understand the geometry of the characteristics of a certain type of parabolic equation
in the plane.

Instead, I just want to point out one particular application that emphasizes the anal-
ogy of it with the first two cases A2 and B2. One might wonder what the analog of the
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‘second base’ of the double fibration should be in this case. This went unidentified for a
long time. However, when Lucas Hsu and I were trying to understand the geometry of the
abnormal curves in the calculus of variations, the example of 2-plane fields in five (or more)
dimensions was very important. What we found [BH] was that, regarding a Cartan-type
2-plane field E on a 5-manifold Q as a holonomic mechanical system (for example, one
surface in space rolling over another without slipping or twisting), the abnormal curves
have the property that there is exactly one such curve passing through each point of Q
in each direction tangent to E. In other words, the space of abnormal curves for such a
2-plane field is a 5-manifold N . In the ‘flat’ case discussed above, this is exactly the mani-
fold N5, but even in the general case, N inherits the structure of a contact 5-manifold. The
geometry of the resulting double fibration has not at all been explored, but it might be
the key to understanding such fundamental problems as the conditions for global rigidity
for such abnormal curves.
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[AR] M. Akivis and B. Rosenfeld, Élie Cartan (1869-1951). Translations of Math. Mono-
graphs, Amer. Math. Soc., Providence, RI, 1993.

[Br1] R. Bryant, Submanifolds and special structures on the octonians. J. Differential Geom.
17 (1982), 185–232.

[Br2] R. Bryant, Surfaces in conformal geometry. The mathematical heritage of Hermann
Weyl (Durham, NC, 1987), 227–240, Proc. Symp. Pure Math. 48, Amer. Math. Soc.,
Providence, RI, 1988.

[BH] R. Bryant and L. Hsu, Rigidity of integral curves of rank 2 distributions. Invent.
Math. 114 (1993), 435–461.
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