The Problem. Compute the conjugate locus of $SL(2, \mathbb{R})$ endowed with the 'natural' left-invariant Riemannian metric as described in my answer to the MathOverflow Question 108280

The geodesic formula: As explained there, the formula for the geodesic leaving $I_2 \in SL(2,\mathbb{R})$ with velocity

$$v = \begin{pmatrix} v_1 & v_2 + v_3 \\ v_2 - v_3 & -v_1 \end{pmatrix} \in \mathfrak{sl}(2, \mathbb{R})$$

is given by $\gamma_{\nu}(t) = e^{t \nu^T} e^{t (\nu - \nu^T)}$. Thus, the *geodesic* exponential mapping for this metric is

$$E(v) = e^{v^T} e^{(v - v^T)}.$$

(Here, ' v^T ' denotes the transpose of v.) Meanwhile, since $v^2 = -\det(v) I_2$, it follows that the formula for the Lie group exponential of v is

$$e^{v} = c(\det(v)) I_2 + s(\det(v)) v$$

where c and s are the entire analytic functions defined on the real line that satisfy $c(t^2) = \cos(t)$ and $s(t^2) = \sin(t)/t$ (and hence satisfy $c(-t^2) = \cosh(t)$ and $s(-t^2) = \sinh(t)/t$). Note that, in particular, these functions satisfy the useful identities

$$c(y)^2 + ys(y)^2 = 1$$
, $c'(y) = -\frac{1}{2}s(y)$, and $s'(y) = (c(y) - s(y))/(2y)$.

Using this, the obvious identity $\det(v) = v_3^2 - v_1^2 - v_2^2$ and the above formulae, we can compute the pullback under E of the canonical left invariant form on $SL(2, \mathbb{R})$ as follows.

$$E^*(g^{-1} dg) = E(v)^{-1} d(E(v)) = e^{-(v-v^T)} \left[e^{-v^T} d(e^{v^T}) + d(e^{(v-v^T)}) e^{-(v-v^T)} \right] e^{(v-v^T)}.$$

Expanding this using the above formula for the Lie group exponential and setting

$$E^*(g^{-1} dg) = \begin{pmatrix} \omega_1 & \omega_2 + \omega_3 \\ \omega_2 - \omega_3 & -\omega_1 \end{pmatrix},$$

we find, after setting $det(v) = \delta$ for brevity, that

$$\omega_1 \wedge \omega_2 \wedge \omega_3 = s(\delta) \left(s(\delta) - 2(v_1^2 + v_2^2) \frac{\left(c(\delta) - s(\delta) \right)}{\delta} \right) dv_1 \wedge dv_2 \wedge dv_3.$$

(Note, by the way, that $\frac{c(\delta)-s(\delta)}{\delta}$ is an entire analytic function of δ .)

It follows that the degeneracy locus for the geodesic exponential map $E: \mathfrak{SL}(2,\mathbb{R}) \to \mathrm{SL}(2,\mathbb{R})$ is the union of the locus described by the two equations

$$s(\det(v)) = 0 \tag{1}$$

and

$$s(\det(v)) - 2(v_1^2 + v_2^2) \frac{\left(c(\det(v)) - s(\det(v))\right)}{\det(v)} = 0$$
(2)

Now, $s(t) \ge 1$ when $t \le 0$, while s(t) = 0 for t > 0 implies that $t = (k\pi)^2$ for some integer k > 0. Thus, the first locus is given by the hyperboloids

$$\det(v) = v_3^2 - v_1^2 - v_2^2 = k^2 \pi^2, \quad k = 1, 2, \dots$$

Meanwhile, when $t \le 0$, the expression $\frac{c(t)-s(t)}{t}$ is strictly negative, while $s(t) \ge 1$, so it follows that the second locus has no points in the region $\det(v) \le 0$, i.e., no geodesic γ_v with $\det(v) < 0$ has any conjugate points. Finally, a little elementary analytic geometry shows that the locus described by (2) is a countable union of surfaces Σ_k of revolution in $\mathfrak{Sl}(2,\mathbb{R})$ that can be described in the form

$$v_3^2 = (v_1^2 + v_2^2) + (k + f_k(v_1^2 + v_2^2))^2 \pi^2, \qquad k = 1, 2, ...$$

where $f_k: [0, \infty) \to [0, \frac{1}{2})$ is a strictly increasing real-analytic function on $[0, \infty)$ that satisfies $f_k(0) = 0$. In particular, it follows that, for a $v \in \Sigma_k$, we have $k^2\pi^2 \le \det(v) < (k + \frac{1}{2})^2\pi^2$.

Consequently, the *first* conjugate locus is the image under E of the hyperboloid $\det(v) = \pi^2$. Note that, by the above formulae, this image in $SL(2, \mathbb{R})$ is simply the subgroup $SO(2) \subset SL(2, \mathbb{R})$.