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ABSTRACT

We explicitly construct a pair of immersed tori in three dimensional Euclidean space that are related by a mean
curvature preserving isometry. These Bonnet pair tori are the first examples of compact Bonnet pairs. This resolves a
longstanding open problem on whether the metric and mean curvature function determine a unique smooth compact
immersion. Moreover, we prove these isometric tori are real analytic. This resolves a second longstanding open problem
on whether real analyticity of the metric already determines a unique compact immersion. Our construction uses the
relationship between Bonnet pairs and isothermic surfaces. The Bonnet pair tori arise as conformal transformations of an
isothermic torus with one family of planar curvature lines. The above approach stems from computational investigations
of a 5 × 7 quad decomposition of a torus using a discrete differential geometric analog of isothermic surfaces and Bonnet
pairs.
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1. Introduction

A smooth oriented surface immersed in three-dimensional Euclidean space is an-
alytically described by a metric and second fundamental form. The latter is a symmetric
bilinear form with respect to the metric, and its determinant and trace are the Gauss
curvature and twice the mean curvature, respectively. Two immersions are congruent if
they are related by an orientation-preserving ambient isometry, i.e., a rigid motion. The
classical Bonnet theorem is that a metric and second fundamental form satisfying the
Gauss–Codazzi compatibility equations determine an immersion that, up to congruence,
is unique.

When is a reduced set of geometric data sufficient for uniqueness?
The metric determines the Gauss curvature, so in 1867 Bonnet asked if a surface

can instead be characterized by a metric and mean curvature function [11]. Generically,
the answer is yes, but there are important exceptions. These include constant mean cur-
vature surfaces, like the textbook example (see [29]) of the isometry between the helicoid
and catenoid minimal surfaces, both of which have vanishing mean curvature.

In 1981, Lawson and Tribuzy proved that for each smooth metric and non-
constant mean curvature function there exist at most two compact smooth immer-
sions [37]. Moreover, they showed there is at most one immersion of a compact surface
with genus zero (see Corollary 1 below). They emphasized the following remained unan-
swered:

Problem 1 (Global Bonnet Problem). — Do there exist two non-congruent compact smooth (C∞)

immersions in three-dimensional Euclidean space that are related by an isometry with the same mean

curvature at corresponding points?

On the other hand, sometimes a compact immersion is uniquely determined by
the metric alone. In 1927 Cohn-Vossen proved that two isometric compact analytic (Cω)
surfaces that are convex must be congruent [18]. A similar statement can also hold for
non-convex analytic surfaces. For example, an analytic surface isometric to a circular
torus of revolution must be congruent to it (a special case of A.D. Alexandrov’s uniqueness
result on tight analytic immersions [1]).

In 1929, Cohn-Vossen constructed two isometric compact surfaces that are
nowhere locally congruent (compare to Remark 1) but had to drastically reduce the
regularity from analytic to class C2 [19]. In 2010, Marcel Berger highlighted that Cohn-
Vossen’s analytic non-convex metric uniqueness question remains open. It is the first
unsolved problem Berger states in the section “What we don’t entirely know how to do
for surfaces” of his beautiful book Geometry Revealed [2, Section VI.9, pp. 386–387].

Problem 2 (Cohn-Vossen–Berger Problem). — Do there exist two isometric compact immersions

in Euclidean three-space that are analytic (Cω) but not related by an ambient isometry?
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Note the Cohn-Vossen–Berger problem asks for uniqueness up to ambient isome-
try, i.e., rigid motions and reflections.

Remark 1. — The C∞ version of Problem 2 is also mostly unexplored. As far as we
know, the only known examples of a pair of isometric compact C∞ surfaces not related
by ambient isometry are constructed by locally altering a smooth compact surface with a
flat (zero Gaussian curvature) region. One smoothly attaches a bump either outward or
inward, respectively, in place of the flat region, see [23, Section 5-2, Figure 5-1] and [43,
Chap. 12, pp. 209–211]. The isometry is thus a congruence away from the locally altered
regions.

We explicitly construct genus one, i.e., tori, examples to the Global Bonnet Prob-
lem. A numerical example is shown in Figure 1.

Main Theorem 1. — There exist two non-congruent smooth tori in R3 that are related by a

mean curvature preserving isometry.

We prove there are uncountably many such pairs, as their construction has a func-
tional parameter. Moreover, our methods lead to immersions that are real analytic and
generically lead to pairs that are not related by an ambient isometry. We therefore simul-
taneously resolve both the Global Bonnet Problem and the Cohn-Vossen–Berger Prob-
lem.

Main Theorem 2. — There exist two isometric analytic tori in R3 not related by an ambient

isometry.

Both Main Theorems follow directly from Theorem 9 in Section 7.3.

Remark 2. — Since our main focus is the Global Bonnet Problem, the tori we con-
struct correspond via a mean curvature preserving isometry that is nowhere locally a con-
gruence. In other words, every pair of corresponding neighborhoods are non-congruent.
This is in stark contrast to the only previously known C∞ examples of isometric compact
immersions not related by an ambient isometry, as in Remark 1.

1.1. Background. — There are various problems about the existence and unique-
ness of immersions with some prescribed data drawn from the metric and second fun-
damental form. In [16] Cartan gives a good overview of such local problems including
immersions with prescribed metric and either second fundamental form [15] or Wein-
garten operator [12]. The existence of an isometric immersion, i.e., with arbitrary pre-
scribed metric, is a challenging question with vast, complicated literature [25, 26]. Our
focus is on uniqueness up to congruence of surfaces already in R3, with an emphasis on
Bonnet’s problem.
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FIG. 1. — A compact Bonnet pair: two non-congruent immersed real analytic tori that are related by a mean curvature
preserving isometry. Corresponding generators are shown on each surface in orange and blue. Note that the two large
bubbles on the top are closer together than the corresponding bubbles on the bottom, and both surfaces have 180◦ rota-
tional symmetry. These Bonnet pair tori arise as conformal transformations from an isothermic torus with one family of
planar curvature lines. The orange generators come from the planar curves and are therefore congruent, while the blue
generators are not congruent

A generic surface is locally determined by its metric and mean curvature func-
tion (see [14]). Bonnet knew that there are three exceptional cases [11]: constant mean
curvature surfaces, Bonnet families, and Bonnet pairs.

(1) Constant mean curvature surfaces. Every constant mean curvature sur-
face is part of a one-parameter associated family of isometric surfaces with the
same constant mean curvature.

Global theories for constant mean curvature surfaces are an active field
of research. Techniques for constructing complete and embedded examples
span from integrable systems [5, 28, 38] and (generalized) Weierstrass repre-
sentations [24, 30] to geometric analysis [35, 36]. Recently, these approaches
are starting to be blended together [44].
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As far as we know, it remains an open question if the associated family of
a compact constant mean curvature surface contains a second, non-congruent
compact immersion.

(2) Bonnet families. There exists a finite dimensional space of non-constant
mean curvature surfaces that exhibit a one-parameter family of isometric de-
formations preserving principal curvatures. The local classification of such fam-
ilies was obtained in [14, 17, 27]. The global classification of Bonnet families
was obtained in [7] using techniques from the theory of Painlevé equations
and isomonodromic deformations. In particular it was shown that surfaces in
Bonnet families cannot be compact.

(3) Bonnet pairs. A Bonnet pair is two non-congruent immersions f + and f −

with the same metric and mean curvature function. If a third immersion exists
that is isometric to the other two and has the same mean curvature function,
then an entire one-parameter family must exist. These families are further clas-
sified depending on whether the mean curvature is constant or not (see above).

Global results for compact Bonnet pairs have focused on uniqueness,
i.e., non-existence of a pair. For example, a compact surface of revolution is
uniquely determined by its metric and mean curvature function [40]. In 2010,
Sabitov published a paper claiming that compact Bonnet pairs cannot exist for
every genus [41]. In 2012, however, he retracted his claims and published a
second paper with sufficient conditions for uniqueness [42]. The geometry of
these sufficient conditions has been further clarified in [33].

We study the Global Bonnet Problem by investigating Bonnet pairs. We build from
Kamberov, Pedit, and Pinkall’s local classification of Bonnet pairs, using a quaternionic
function theory, in terms of isothermic surfaces [34]. Isothermic surfaces are charac-
terized by exhibiting conformal, curvature line coordinates away from umbilic points.
Isothermic surfaces have a Christoffel dual surface f ∗ with parallel tangent planes and
inverse metric. The differentials of the Bonnet pair surfaces f ± are written in terms of the
isothermic surface f , its dual surface f ∗, and a real parameter ϵ as follows.

df ± = (±ϵ − f )df ∗(±ϵ + f )(1)

The action of f ± ϵ on df ∗ is a rotation and scaling, implying that f + and f − are confor-
mally equivalent to f ∗ and therefore also f .

Here, we construct compact Bonnet pairs that are tori.

1.2. Outline of the construction. — We explicitly construct examples of compact Bon-
net pairs of genus one, i.e., both surfaces f + and f − are tori. Moreover, they are analytic.
The construction uses the above relationship to isothermic surfaces. For an isothermic
surface f (u, v) with conformal curvature line coordinates u, v, (1) allows us to study the
period problem of f +(u, v) and f −(u, v) directly. An immediate necessary condition is
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that the isothermic surface f must be a torus. We therefore find an appropriate isother-
mic torus f that integrates using (1) to the Bonnet pair tori f ±.

Isothermic tori with one family of planar curvature lines. — Our essential geometric ob-
servation is that the periodicity conditions drastically simplify when the isothermic torus
has one family of curvature lines that are planar. We make this planar assumption for the
curvature u-lines, i.e., f (u, v0) lies in a plane for each constant v0.

In 1883, Darboux used complex analytic methods to locally classify isothermic
surfaces with one family of planar curvature lines [21, 22]. His choice of real reduction
does not include tori. In our companion paper [10], we classify the tori found in the
second real reduction. We restate the key results in Sections 5 and 6. The geometry of
these isothermic tori are key to constructing Bonnet pair tori.

In particular, an isothermic surface f (u, v) with closed planar u-lines has a func-
tional freedom in its construction. Given f , there exists a mapping of all planar u-lines
into a common plane such that the family of planar curves is holomorphic with respect
to u + i w for a reparametrization function w(v). Conversely, given the holomorphic family
of closed planar curves, choosing a reparametrization function w(v) gives f . The surface
depends on the choice of reparametrization function w(v). Some choices close f into a
torus.

Constructing Bonnet tori. — The Kamberov–Pedit–Pinkall construction (1) is a for-
mula for 1-forms. It allows us to analyze when the resulting Bonnet pair surfaces f + and
f − are closed.

• The isothermic surface f must be a torus for f ± to be tori.

Expanding (1) gives

df ± = −fdf ∗f + ϵ2df ∗ ± ϵ
(︁
df ∗f − fdf ∗)︁.(2)

In Section 5 we show that if f has planar curvature u-lines the periodicity conditions are
drastically simplified.

If f is a torus with planar curvature u-lines then:

• f ∗ is a torus. Thus, the ϵ2 term of (2) is closed.
• (f −1)∗ is a torus. Thus, the ϵ0 term of (2) is closed.

The ϵ1 term is not automatically closed, but simplifies as follows:
• The u-period of df ∗f − fdf ∗ vanishes.
• The v-period of df ∗f − fdf ∗ is independent of u.

In short, when f is an isothermic surface with one family of planar curvature lines the
Bonnet surfaces f ± are tori if and only if
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i. f is a torus and
ii. the R3-valued v-period vanishes.

In Theorem 6 we show these two conditions reduce even more, see Figure 4.

i. (Rationality condition) For the isothermic surface f to be a torus the reparam-
etrization function w(v) must be periodic. In this case, f is generated by the
rotation of a fundamental piece around an axis. Thus, f is a torus when the
rotation angle is a rational multiple of π .

ii. (Vanishing axial part) The R3-valued integral for the v-period reduces to an
R-valued period that must vanish.

To construct Bonnet tori, we show how to choose a reparametrization function
w(v) so these two conditions are simultaneously satisfied. The challenge is to make both
conditions analytically tractable.

In Section 6 we consider the special case of isothermic surfaces with one family of
closed planar and one family of spherical curvature lines. The spherical curvature lines
are governed by a second elliptic curve. Both the rationality condition and the vanishing
of the real period (conditions i. and ii. above) are expressed in terms of elliptic integrals,
see Theorem 7. We show that both conditions can be satisfied, proving the existence of
real analytic Bonnet pair tori in Theorem 8.

We remark that isothermic tori with two families of spherical curvature lines were
studied by Bernstein in [3] in relationship to the Bonnet problem, but compact Bonnet
pairs were not constructed.

In Section 7 we prove the existence of more general examples of real analytic
Bonnet pair tori. We retain the planar curvature u-lines of the isothermic torus f but
analytically perturb the reparametrization function w(v) so that the v-lines are no longer
spherical, see Theorem 9. This perturbation retains a real analytic functional freedom.
Figure 1 shows a numerical example of these more general analytic Bonnet pair tori.

Both Main Theorems are immediate corollaries of Theorem 9 in Section 7.3.

1.3. Discovery using discrete differential geometry. — At last, we would like to mention
the role of Discrete Differential Geometry (DDG) in the discovery of compact Bonnet
tori. DDG aims at the development of structure preserving discrete equivalents of notions
and methods of classical differential geometry. Discrete isothermic surfaces introduced in
[8] are a well-studied example, highlighting the link between geometry and integrable
systems. It was recently observed that a discrete analog of the Kamberov–Pedit–Pinkall
construction (1) allows to define discrete Bonnet pairs [31]. This led to numerical exper-
iments to search for Bonnet tori on an extremely coarse torus, see Section 8.

A careful study of the discrete isothermic torus, which led to a discrete compact
Bonnet pair, showed, in particular, that one of its families of curvature lines was planar.
This observation initiated our work on the present paper. It is remarkable that a very
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coarse 5 × 7 torus has the essential features of the corresponding smooth object. This
exemplifies the importance of a structure preserving discrete theory.

Data from the figures are available in the Discretization for Geometry and Dynam-
ics Gallery https://www.discretization.de/gallery/. Additional images and animations
appear in the new general-audience documentary film “Solving the Bonnet Problem”,
see https://www.discretization.de/movies/.

2. Differential equations of surfaces

2.1. Conformally parametrized surfaces. — Let ℱ be a smooth orientable surface in 3-
dimensional Euclidean space. The Euclidean metric induces a metric Ω on this surface,
which in turn generates the complex structure of a Riemann surface ℛ. Under such a
parametrization, which is called conformal, the surface ℱ is given by an immersion

f = (f1, f2, f3) :ℛ→R3,

and the metric is conformal: Ω = e2h dzdz̄, where z is a local coordinate on ℛ. Denote by
u and v its real and imaginary parts: z = u + iv.

The tangent vectors fu, fv together with the unit normal n : ℛ → S2 define a con-
formal moving frame on the surface:

⟨fu, fu⟩ = ⟨fv, fv⟩ = e2h, ⟨fu, fv⟩ = 0,

⟨fu, n⟩ = ⟨fv, n⟩ = 0, ⟨n, n⟩ = 1.

Let us use the complex operator ∂z = 1
2(∂u − i ∂v) and the complexified inner prod-

uct to introduce the quadratic Hopf differential Qdz2 by

Q = ⟨fzz, n⟩.
The first and second fundamental forms of the surface are given by

⟨df , df ⟩ = e2hdzdz̄,

− ⟨df , dn⟩ = He2hdzdz̄ + Qdz2 + Q̄dz̄2,
(3)

where H = 1
2(k1 + k2) is the mean curvature (average of the principal curvatures) of the

surface

(4) ⟨fzz̄, n⟩ = 1
2

He2h.

We will also consider the third fundamental form ⟨dn, dn⟩.
The Gaussian curvature is given by

K = k1k2 = H2 − 4QQ̄e−4h,

and is known to be determined by the metric only.

https://www.discretization.de/gallery/
https://www.discretization.de/movies/
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A point P on the surface ℱ is called umbilic if the principal curvatures coincide
k1(P) = k2(P). The Hopf differential vanishes Q(P) = 0 exactly at umbilic points.

The conformal frame satisfies the following complex frame equations:
⎛

⎝
fz
fz̄
n

⎞

⎠

z

=
⎛

⎝
2hz 0 Q
0 0 1

2He2h

−H −2e−2hQ 0

⎞

⎠

⎛

⎝
fz
fz̄
n

⎞

⎠ ,(5)

⎛

⎝
fz
fz̄
n

⎞

⎠

z̄

=
⎛

⎝
0 0 1

2He2h

0 2hz̄ Q̄
−2e−2hQ̄ −H 0

⎞

⎠

⎛

⎝
fz
fz̄
n

⎞

⎠ .(6)

Their compatibility conditions, known as the Gauss–Codazzi equations, have the follow-
ing form:

(7)
Gauss equation hzz̄ + 1

4 H2 e2h − |Q|2 e−2h = 0,

Codazzi equation Qz̄ = 1
2 Hz e2h.

These equations are necessary and sufficient for the existence of the corresponding sur-
face. The classical Bonnet theorem characterizes surfaces via the coefficients e2h, Q, H of
their fundamental forms.

Theorem 1 (Bonnet theorem). — Given a metric e2h dzdz̄, a quadratic differential Q dz2, and a

mean curvature function H on ℛ satisfying the Gauss–Codazzi equations, there exists an immersion

f : ℛ̃→R3

with the fundamental forms (3). Here ℛ̃ is the universal covering of ℛ. The immersion f is unique up

to Euclidean motions in R3.

Generic surfaces are determined uniquely by the metric and the mean curvature
function. This paper is devoted to the investigation of the exceptions, i.e., to surfaces
which possess non-congruent isometric “relatives” with the same curvatures.

2.2. Isothermic surfaces. — Isothermic surfaces play a crucial role in this paper.
A parametrization that is simultaneously conformal and curvature line is called

isothermic. In this case the preimages of the curvature lines are the lines u = const and v =
const on the parameter domain, where z = u+ iv is a conformal coordinate. Equivalently
a parametrization is isothermic if it is conformal and fuv lies in the tangent plane, i.e.,

(8) fuv ∈ span{fu, fv}.
A surface is called isothermic if it admits an isothermic parametrization. Isothermic sur-
faces are divided by their curvature lines into infinitesimal squares.
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Written in terms of an isothermic coordinate z, the Hopf differential of an isother-
mic surface is real, i.e., Q(z, z̄) ∈R.

The differential equations describing isothermic surfaces simplify in isothermic
coordinates. The frame equations are as follows:

⎛

⎝
fu
fv
n

⎞

⎠

u

=
⎛

⎝
hu −hv k1e2h

hv hu 0
−k1 0 0

⎞

⎠

⎛

⎝
fu
fv
n

⎞

⎠ ,(9)

⎛

⎝
fu
fv
n

⎞

⎠

v

=
⎛

⎝
hv hu 0

−hu hv k2e2h

0 −k2 0

⎞

⎠

⎛

⎝
fu
fv
n

⎞

⎠ .(10)

Here k1, k2 are the principal curvatures along the u and v curvature lines. The Hopf
differential is

Q = 1
4

e2h(k1 − k2).

The first, second, and the third fundamental forms are given by

⟨df , df ⟩ = e2h
(︁
du2 + dv2

)︁
,

− ⟨df , dn⟩ = e2h
(︁
k1du2 + k2dv2

)︁
,

⟨dn, dn⟩ = e2h
(︁
k2

1du2 + k2
2dv2

)︁
.

(11)

The Gauss–Codazzi equations become

huu + hvv + k1k2e2h = 0,(12)

k2u = hu(k1 − k2), k1v = hv(k2 − k1).(13)

Let D ⊂C be a simply connected domain and f : D →R3 be an isothermic im-
mersion without umbilic points. Its differential is df = fudu+ fvdv. An important property
of an isothermic immersion is that the following form is closed.

(14) df ∗ := e−2h(fudu − fvdv).

The corresponding immersion f ∗ : D →R, which is determined up to a translation, is
also isothermic and is called the (Christoffel) dual isothermic surface. The relation (14) is an
involution. Note that the dual isothermic surface is defined through one forms and the
periodicity properties of f :ℛ→R3 are not respected.

3. The Bonnet problem

The Bonnet Theorem 1 characterizes surfaces via the coefficients e2h, Q, H of their
fundamental forms. These coefficients are not independent and are subject to the Gauss–
Codazzi equations (7). A natural question is whether some of these data are superfluous.
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A Bonnet pair is two non-congruent isometric surfaces ℱ+ and ℱ− with the same
mean curvature at corresponding points.

In 1981, Lawson and Tribuzy proved there are at most two non-congruent iso-
metric immersions of a compact surface with the same non-constant mean curvature
function [37]. This led them to ask:

(Global Bonnet Problem) Do there exist compact Bonnet pairs?

Let ℱ+,ℱ− ⊂R3 be a smooth Bonnet pair. As conformal immersions of the same
Riemann surface,

f + :ℛ→R3 and f − :ℛ→R3

are described by the corresponding Hopf differentials Q+, Q−, their common metric
e2h dzdz̄ and their common mean curvature function H. Since the surfaces are not con-
gruent, the Gauss–Codazzi equations immediately imply that their Hopf differentials are
not equal Q+ ≢ Q−.

Proposition 1. — Let Q+ and Q− be the Hopf differentials of a Bonnet pair f ± : ℛ →R3.

Then

(15) Qh = Q+ − Q−

is a holomorphic quadratic differential Qh dz2 on ℛ and

(16)
⃓
⃓ Q+ ⃓

⃓=⃓
⃓ Q− ⃓

⃓ .

Due to (16) the umbilic points of ℱ+ and ℱ− correspond.
A holomorphic quadratic differential on a sphere vanishes identically Qh ≡ 0. This

implies Q+ = Q−, and the non-existence of Bonnet spheres. This result and the following
corollary were proven by Lawson and Tribuzy [37].

Corollary 1. — There exist no Bonnet pairs of genus g = 0.

For tori, the Riemann surface can be represented as a factor ℛ=C/ℒ with respect
to a lattice ℒ. A non-vanishing holomorphic quadratic differential Qhdz2 is represented
by a doubly-periodic holomorphic function Qh, which must be a non-vanishing constant.
Scaling the complex coordinate z one can normalize so that Qh = i , in which case

(17) Q+ = 1
2
(α + i ), Q− = 1

2
(α − i ),

where α :C/ℒ→R is a smooth function.

Proposition 2. — Bonnet pairs of genus g = 1 have no umbilic points. The Gauss–Codazzi

equations of Bonnet tori with properly normalized (17) Hopf differentials are

4hzz̄ + H2e2h − (︁
1 + α2

)︁
e−2h = 0,(18)

αz̄ = e2hHz.(19)
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Remark 3. — Generally, for any Bonnet pair ℱ± the set of umbilic points is isolated
and coincides with the zero divisor of the quadratic differential Qh on ℛ, see [6] for the
smooth case and [42] for the case of finite smoothness.

A direct analytic way to construct compact Bonnet pairs that are tori would be to
find doubly-periodic solutions h,H, α :C/ℒ→R of (18), (19) that integrate by (5), (6) to
doubly-periodic frames, and finally to doubly periodic immersions f ± :C/ℒ →R3. We
will not take this approach, since it seems hardly realizable.

Instead, we will find genus g = 1 Bonnet pairs using a quaternionic description of
surfaces and a deep relationship to isothermic surfaces.

4. Characterization of Bonnet pairs via isothermic surfaces

4.1. Quaternionic description of surfaces. — We construct and investigate surfaces in
R3 by analytic methods. For this purpose it is convenient to rewrite the conformal frame
equations (5), (6), (9), (10) in terms of quaternions. This quaternionic description is useful
for studying general curves and surfaces in 3- and 4-space, and particular special classes
of surfaces [5, 13, 24, 34].

Let us denote the algebra of quaternions byH, the multiplicative quaternion group
by H∗ =H \ {0}, and their standard basis by {1, i, j,k}, where

ij = k, jk = i, ki = j, i2 = j2 = k2 = −1.(20)

This basis can be represented for example by the matrices

1 =
(︃

1 0
0 1

)︃
, i =

(︃
0 −i

−i 0

)︃
, j =

(︃
0 −1
1 0

)︃
, k =

(︃−i 0
0 i

)︃
.

We identify H with 4-dimensional Euclidean space

q = q01 + q1i + q2j + q3k ←→ q = (q0, q1, q2, q3) ∈R4.

The length of a quaternion is |q|2 = qq, where q = q01 − q1i − q2j − q3k is the conjugate
of q. The inverse of q ≠ 0 is q−1 = q

|q|2 . The sphere S3 ⊂R4 is naturally identified with
the group of unitary quaternions H1 = SU(2).

Three dimensional Euclidean space is identified with the space of imaginary
quaternions ImH

X = X1i + X2j + X3k ∈ ImH ←→ X = (X1,X2,X3) ∈R3.(21)

The scalar and the cross products of vectors in terms of quaternions are given by

XY = −⟨X,Y⟩ + X × Y,(22)



COMPACT BONNET PAIRS: ISOMETRIC TORI WITH THE SAME CURVATURES 253

in particular

[X,Y] = XY − YX = 2X × Y.

Throughout this article we will not distinguish quaternions, their matrix representation,
and their vectors in R3. For example vectors f and n are also identified with imaginary
quaternions, and we can also write the Christoffel dual one-form (14) as df ∗ = −f −1

u du +
f −1
v dv.

Moreover, we identify the space of complex numbers C with the span of 1 and i.

z = a + bi ←→ z = a1 + bi.

In particular, we will often use a copy of the complex plane in the span of j, k written as
Cj. For z ∈C

zj = (a + bi )j = aj + bk.

Note that (a + bi )j = zj = jz̄ = j(a − bi ).
For clarity we use ImC :C→R and ImH :H→ ImH to distinguish between the

complex and quaternionic imaginary part. Note, in particular, that under these identifi-
cations, for z = (a + bi ) ∈C, ImCz = b while ImH = b i. There is no ambiguity for the
real part Rez = a.

We will extensively use the actions of quaternions on R3. For q ∈H∗ and X ∈R3,
the action X ↦→ q−1Xq rotates X about an axis parallel to ImHq, while X ↦→ qXq rotates
about ImHq and scales by |q|2.

4.2. Local description of Bonnet pairs. — If f : D → Im H is an isothermic surface
with the differential df = fudu + fvdv then the dual isothermic immersion (14) is given by
the closed form

(23) df ∗ = −(fu)
−1du + (fv)

−1dv,

where fu and fv are imaginary quaternions. The closedness of (23) is equivalent to
− ∂

∂v
(fu)

−1 = ∂

∂u
(fv)

−1. The conformality

(24) f 2
u = f 2

v = −e2h, fufv = −fvfu

implies (fu)
−1 = −e2hfu, so we obtain the condition

(25) fufuvfu = fvfuvfv.

This identity is satisfied for isothermic surfaces (8).
Bianchi found out that Bonnet pairs can be described in terms of isothermic sur-

faces in S3 [4]. The following description of simply connected Bonnet pairs in quater-
nionic terms via isothermic surfaces was obtained by Kamberov, Pedit, and Pinkall in
[34].
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Theorem 2. — The immersions f ± : D → Im H =R3 build a Bonnet pair if and only if

there exists an isothermic surface f : D → ImH and a real number ϵ ∈R such that

(26) df ± = (±ϵ − f )df ∗(±ϵ + f ),

where f ∗ is the dual isothermic surface (23).

Since this theorem plays a crucial role in our construction, we give its proof in
one direction, showing that the formulas (26) indeed give a Bonnet pair. For the proof in
other direction see [34], and also [6], where a description of Bonnet pairs and isothermic
surfaces in terms of loop groups is also presented.

Proof. — To show are: the forms df ± are closed and give conformally parametrized
surfaces, the surfaces f ± are isometric and non-congruent, and that they have equal mean
curvatures.

Let us decompose (26) as

df ± = −fdf ∗f ± ϵ
[︁
df ∗, f

]︁ + ϵ2df ∗

and check that all three terms are closed.
The closedness of the first term fdf ∗f = f (−(fu)

−1du + (fv)
−1dv)f is equivalent to

−(f (fu)
−1f )v = (f (fv)

−1f )u. The latter identity follows from the conformality (25) and
(24). The closedness condition for the second term [df ∗, f ] is −[f , (fu)

−1]v = [f , (fv)
−1]u.

It also follows from (24), (25). The closedness of the last term was already shown (23).
Since (26) is a scaled rotation, the conformality of the frames df ± follows from the

conformality of the frame df ∗.
The surfaces f ± are isometric because their frames are related by the rotation

df + = T−1df −T where T = (ϵ + f )/(ϵ − f ) ∈ H1. As T is non-constant f ± are non-
congruent.

The surfaces f ± are isometric, so equality of their mean curvatures (4) is equivalent
to

⟨︁(︁
f +)︁

uu
+ (︁

f +)︁
vv

, n+⟩︁ = ⟨︁(︁
f −)︁

uu
+ (︁

f −)︁
vv

, n−⟩︁
,

where n± are the respective Gauss maps for f ±. Setting S = ϵ + f , with S−1 = S̄/|S|2, we
have

df + = S̄df ∗S, df − = Sdf ∗S̄, n+ = S−1n∗S, n− = Sn∗S−1,

where n∗ is the Gauss map of f ∗ (n∗ = −n for Gauss map n of f ). We obtain
⟨︁(︁

f +)︁
u
,
(︁
n+)︁

u

⟩︁ = ⟨︁
f ∗
u , n∗

u |S|2 + [︁
n∗,SuS̄

]︁⟩︁

= ⟨︁
f ∗
u , n∗

u |S|2⟩︁ − ⟨︁
n∗,

[︁
f ∗
u ,SuS̄

]︁⟩︁
and
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⟨︁(︁
f −)︁

u
,
(︁
n−)︁

u

⟩︁ = ⟨︁
f ∗
u , n∗

u |S|2 − [︁
n∗, S̄Su

]︁⟩︁

= ⟨︁
f ∗
u , n∗

u |S|2⟩︁ + ⟨︁
n∗,

[︁
f ∗
u , S̄Su

]︁⟩︁
.

These two expressions are equal if [f ∗
u , S̄Su + SuS̄] = 0. The last identity follows from

fuf
∗

u = −1.
Analogously we obtain ⟨(f +)v, (n

+)v⟩ = ⟨(f −)v, (n
−)v⟩, and thus equality of the

mean curvatures H+ = H−. □

4.3. Periodicity conditions. — Now we pass to the global theory of isothermic sur-
faces and Bonnet pairs. We are mostly interested in the case of tori ℛ =C/ℒ. If γ is a
homologically nontrivial cycle on ℛ that is closed on the isothermic surface f :ℛ→R3,
then the corresponding curves are closed on the Bonnet pair if

∫︁
γ

df ± = 0, i.e.,

(︁
𝒜−periodicity condition

)︁ ∫︂

γ

−fdf ∗f + ϵ2df ∗ = 0 and(27)

(︁
ℬ−periodicity condition

)︁ ∫︂

γ

[︁
df ∗, f

]︁ = 2
∫︂

γ

ImH

(︁
df ∗f

)︁ = 0.(28)

Let us start with some simple observations.

Remark 4. — Varying the parameter ϵ in formula (26) is not essential. It is equiva-
lent to scaling the surface f → f /ϵ.

Proposition 3. — The map f → −f −1 is the inversion of R3 ∪ {∞} in the unit sphere. This

map is conformal and maps isothermic surfaces to isothermic surfaces. Thus if f :C/ℒ → Im H is

an isothermic torus then f −1 :C/ℒ→ ImH is also an isothermic torus. It and its dual are given by

d
(︁
f −1

)︁ = −f −1fuf
−1du − f −1fvf −1dv,

d
(︁
f −1

)︁∗ = f (fu)
−1fdu − f (fv)

−1fdv.
(29)

Proof. — The class of isothermic immersions belongs to Möbius geometry and is
invariant under Möbius transformations, in particular under f → −f −1. We see that
f −1(u, v) is conformal, and by direct computation one can check that (8) with fuv = αfu +
βfv for α,β ∈ R implies

(︁
f −1

)︁
uv

= (︁
α + 2

⟨︁
f −1, fv

⟩︁)︁(︁
f −1

)︁
u
+ (︁

β + 2
⟨︁
f −1, fu

⟩︁)︁(︁
f −1

)︁
v
.

Thus, f −1(u, v) is isothermic. □

Remark 5. — Substituting f −1 instead of f into (26) and using (29) we observe that
the isothermic surfaces f and f −1 generate the same ϵ-set of Bonnet pairs.
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Formula (29) implies the following periodicity property.

Corollary 2. — Let f :C/ℒ → Im H be an isothermic torus such that the dual isothermic

surfaces f ∗ and (f −1)∗ are also tori. Then the 𝒜-periodicity condition (27) for Bonnet pairs is satisfied

for every cycle on C/ℒ and for every ϵ. Moreover,

(30)
∫︂

−fdf ∗f + ϵ2df ∗ = (︁
f −1

)︁∗ + ϵ2f ∗.

To construct Bonnet pair tori we will consider isothermic tori with closed curvature
lines (u-lines and v-lines). They are given by a doubly periodic immersion f : C/ℒ →
Im H, satisfying f (u + U, v) = f (u, v + V) = f (u, v). The ℬ-periodicity condition (28)
becomes

∫︂ U

0

(︁
f (fu)

−1 − (fu)
−1f

)︁
du = 0 and

∫︂ V

0

(︁
(fv)

−1f − f (fv)
−1

)︁
dv = 0.

5. Bonnet periodicity conditions when f has one generic family of closed
planar curvature lines

This section describes our main insight: examples of compact Bonnet pairs that
are tori arise from isothermic tori with one family of planar curvature lines.

First, we summarize the classification and global geometry of an isothermic cylin-
der f (u, v) with one generic family of closed planar curvature lines, as described in our
paper [10].

Second, we build a Bonnet pair f +(u, v), f −(u, v) from an isothermic cylinder
f (u, v) with one family of closed planar curvature lines. We see the geometric construc-
tion and global properties of f (u, v) vastly simplify the Bonnet periodicity conditions.

5.1. Geometry of an isothermic surface with one generic family of closed planar curvature lines.

— Construct an isothermically parametrized cylinder f as follows. Consider a particular
family of periodic curves γ (·,w) satisfying γ (u,w) = γ (u + 2π,w) expressed in the 1, i-
plane. Now, traverse these curves using a reparametrization function w :R→R, v ↦→ w(v).
Multiply by j to place each curve into the j, k-plane and, simultaneously, rotate using
a unit-quaternion valued function Φ : R→H1, v ↦→ Φ(v). The curvature line planes
therefore intersect in the origin, forming a cone, and generically span R3. Explicitly,

(31)
f (u, v) = Φ(v)−1γ

(︁
u,w(v)

)︁
jΦ(v) where

Φ′(v)Φ−1(v) =
√︁

1 − w′(v)2W1

(︁
w(v)

)︁
k.

The term i W1(w(v))j lies in the j, k-plane and expresses the tangent line to the cone
about which the corresponding plane infinitesimally rotates. The logarithmic derivative
γz/γ is a particular elliptic function of z = u + i w and γ (z) = −γ (z̄).
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It turns out that every isothermic cylinder with one generic family of closed planar
curvature lines is constructed this way. The possible families of plane curves γ (·,w) are
given explicitly in terms of theta functions on an elliptic curve with rhombic period lattice.
There is an open interval of such lattices.

We now state the classification and geometric results from our paper on isothermic
surfaces with one family of planar curvature lines [10]. For theta functions ϑi we use the
convention of Whittaker and Watson [45, Section 21.11], where they are defined on a
lattice spanned by π and τπ with nome q = eiπτ .

Theorem 3 ([10, Theorem 5]). — Every real analytic isothermic cylinder with one generic family

(u-curves) of closed planar curvature lines is given in isothermic parametrization by the following formulas.

f (u, v) = Φ−1(v)γ
(︁
u,w(v)

)︁
jΦ(v),(32)

γ (u,w) = −i
2ϑ2(ω)2

ϑ ′
1(0)ϑ1(2ω)

ϑ1(
1
2(u + i w − 3ω))

ϑ1(
1
2(u + i w + ω))

,(33)

Φ′(v)Φ−1(v) =
√︁

1 − w′(v)2W1

(︁
w(v)

)︁
k,(34)

W1(w) = i
ϑ ′

1(0)

2ϑ2(ω)

ϑ2(ω − i w)

ϑ1(i w)
.(35)

The theta functions ϑi(z|τ) are defined on an elliptic curve of rhombic type spanned by π and πτ with

τ = 1
2 + iR satisfying 0 < ImCτ < ImCτ0 ≈ 0.3547 (defined by ϑ ′′

2 (0|τ0) = 0). The parameter

ω is the unique critical ω ∈ (0,π/4) satisfying ϑ ′
2(ω|τ) = 0. The curvature line planes are tangent

to a cone with apex at the origin. The function w(v) is a τ -admissible reparametrization function.

For each rhombic lattice, we emphasize the functional freedom given by the
reparametrization function v ↦→ w(v). To ensure the isothermic surface is real analytic
we mildly restrict to τ -admissible reparametrization functions.

Definition 1 ([10, real analytic version of Definition 3]). — Fix τ ∈ 1
2 + iR such that 0 <

ImCτ < ImCτ0 ≈ 0.3547. A map w : R→ R is called a τ -admissible reparametrization
function if

(1) w :R→ (0,2πImCτ) is a real analytic function and

(2)
√

1 − w′(·)2 :R→R is also a real analytic function.

Remark 6. — We make three remarks about this definition.

• The range of w is bounded because the closed curve γ (·,w) degenerates for
w = 0 and w = 2πImCτ .

• We necessarily have |w′(v)| ≤ 1 for all v ∈R. Note that the associated square
root function

√
1 − w′(·)2 can change sign at v0 where w′(v0) = 1.
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• To close the isothermic cylinders into tori we will consider τ -admissible
reparametrization functions that are periodic. These are essentially all peri-
odic real analytic functions. If ψ : S1 → R is a real analytic function then
after appropriate renormalization to ψ̃ one can define w′(v) := cos(ψ̃(v))

and
√

1 − w′(v)2 := sin(ψ̃(v)) so that w : S1 → (0,2πImCτ) is a periodic τ -
admissible reparametrization function.

We summarize the conformal frame of f . The metric e2h and Gauss map n will be
used in the next section to better understand the periodicity conditions of the Bonnet pair
surfaces f ±.

Corollary 3 ([10, Corollary 3]). — Let f (u, v) be an isothermic cylinder with one generic family

of planar curvature lines, as in Theorem 3. Then its frame is

fu(u, v) = eh(u,w(v))Φ(v)−1eiσ(u,w(v))jΦ(v),(36)

fv(u, v) = eh(u,w(v))Φ(v)−1
(︁√︁

1 − w′(v)2 i + w′(v) eiσ(u,w(v))k
)︁
Φ(v),(37)

n(u, v) = Φ(v)−1
(︁
w′(v) i −

√︁
1 − w′(v)2 eiσ(u,w(v))k

)︁
Φ(v),(38)

and the family of closed planar curves γ (u,w) satisfies the following.

γu(u,w) = −iγw(u,w) = eh(u,w)+iσ(u,w) = −i
(︃

ϑ2(
u+i w−ω

2 )

ϑ1(
u+i w+ω

2 )

)︃2

,(39)

eh(u,w) = ϑ2(
u+i w−ω

2 )

ϑ1(
u+i w+ω

2 )

ϑ2(
u−i w−ω

2 )

ϑ1(
u−i w+ω

2 )
,(40)

eiσ(u,w) = −i
ϑ2(

u+i w−ω

2 )

ϑ1(
u+i w+ω

2 )

ϑ1(
u−i w+ω

2 )

ϑ2(
u−i w−ω

2 )
.(41)

Moreover, the global geometry of these isothermic cylinders is as follows.

Theorem 4 ([10, Theorem 6]). — Every real analytic isothermic cylinder f (u, v) with one

generic family of closed planar curvature u-lines has the following geometric properties:

(1) The v-curve defined by critical u = ω lies on a sphere of radius |R(ω)|, where R(ω) is the

real number given by

(42) R(ω) = 2ϑ2(ω)2

ϑ ′
1(0)ϑ1(2ω)

.

Moreover, f (ω, v) and fu(ω, v) are parallel and satisfy

(43)
1

R(ω)
f (ω, v) = − fu(ω, v)

|fu(ω, v)| .
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FIG. 2. — A u-curve plane of an isothermic surface f with one generic family of closed planar curvature lines. The trans-
formations (·)inv, inversion in the sphere of radius |R(ω)| centered at the origin, and (·)∗ a Christoffel dualization, are
noncommuting involutions that map every closed planar curvature line onto (possibly minus) itself

(2) Define f inv = −R(ω)2f −1 as the inversion of f in the sphere of radius |R(ω)|. Then,

(44) f inv(u, v) = f (2ω − u, v).

In other words, this inversion maps f onto itself and is an involution. The plane of each

u-curve is mapped to itself.

(3) A Christoffel dual f ∗ of f , with (f ∗)u = fu
|fu|2 and (f ∗)v = − fv

|fv |2 , is

(45) f ∗(u, v) = −f (π − u, v).

In other words, this duality maps f onto (minus) itself and is an involution. The plane of

each u-curve is mapped to itself.

Figure 2 illustrates that the spherical inversion and dualization operations map
each planar curvature line, and therefore the entire surface, onto (minus) itself.

These global symmetries have remarkable consequences for the Bonnet periodicity
conditions. In particular, when f is a torus the 𝒜-periodicity conditions (27) are automat-
ically satisfied, as shown in Corollary 2. The geometric construction of f also has strong
consequences for the ℬ-periodicity conditions (28). We will describe these in more detail
after discussing how to close f (u, v) into a torus. From (31) we see that for f (u, v) to be
a torus, it is necessary that the τ -admissible reparametrization function w(v) is periodic.
We define the fundamental piece as the trace of f (u, v) after one period of w(v).

Definition 2. — We say f (u, v) = Φ(v)−1γ (u,w(v))jΦ(v) is an isothermic cylinder
from a fundamental piece if

(1) f (u, v) is an isothermic cylinder with one generic family (u-curves) of closed planar curvature

lines as in Theorem 3 and

(2) w(v) has period 𝒱 , but f is not closed after only one period, i.e.,

w(v + 𝒱) = w(v) and f (u, v + 𝒱) ≠ f (u, v).
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FIG. 3. — Left: A family of closed curves γ (·,w) with its symmetry circle. Middle: Two views of a fundamental piece Π
with axis A and angle θ traced out by one period of a periodic τ -admissible reparametrization function w(v). Right: A
third view of the fundamental piece showing the axis and sphere symmetry

The fundamental piece Π is the parametrized cylindrical patch

Π = {︁
f (u, v) | u ∈ [0,2π ] and v ∈ [0,𝒱]}︁.

The axis A and generating rotation angle θ ∈ [0,π ] are defined by the monodromy matrix of the

ODE for Φ (34):

(46) Φ(0)−1Φ(𝒱) = cos(θ/2) + sin(θ/2)A.

An isothermic cylinder from a fundamental piece Π is extended by piecing to-
gether congruent copies of Π via a fixed rotation.

Lemma 1. — Let f be an isothermic cylinder from a fundamental piece Π with axis A and angle

θ . Define the rotation quaternion R = cos(θ/2)+ sin(θ/2)A. Then for all 1 < k ∈N, u ∈ [0,2π ],
and v ∈ [0,𝒱] we have

(47) f (u, v + k𝒱) = R−kf (u, v)Rk.

Proof. — The traversed family of planar u-curves only depends on w(v), therefore
γ (u, v) = γ (u, v+𝒱), and f (u, v+k𝒱) = Φ(v+k𝒱)−1γ (u,w(v))jΦ(v+k𝒱). The frame
Φ(v) is integrated from the ODE (34). When w(v) is periodic this ODE has periodic
coefficients with monodromy matrix Φ(0)−1Φ(𝒱). In other words,

Φ(v + k𝒱) = Φ(v)
(︁
Φ(0)−1Φ(𝒱)

)︁k
.(48)

Continuing the calculation from above, we arrive at (47). This formula describes the k-
times rotation with the axis A and generating rotation angle θ ∈ [0,π ]. □

Thus, closing the isothermic cylinder into a torus is a rationality condition, as
shown in Figure 3.

Lemma 2. — An isothermic cylinder f from a fundamental piece is a torus if and only if the

generating rotation angle θ ∈ [0,π ] satisfies kθ ∈ 2πN for some k ∈N so the v-period is k𝒱 .
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5.2. The corresponding Bonnet pair cylinders. — The global symmetries, stated in The-
orem 4, of an isothermic cylinder f with one generic family of closed planar curvature
lines have remarkable consequences for the Bonnet periodicity conditions (27) and (28).

Theorem 5. — Let f (u, v) = Φ(v)−1γ (u,w(v))jΦ(v) be a real analytic isothermic cylinder

with one generic family of closed planar curvature lines as in Theorem 3. For each ϵ ∈R, the resulting

Bonnet pair surfaces f ±(u, v) are real analytic cylinders with translational periods in v that are equal

up to sign. Their immersion formulas are:

f ±(u, v) =
𝒜=(f −1)∗+ϵ2f ∗

⏟ ⏞⏞ ⏟
R(ω)2f (π − 2ω + u, v) − ϵ2f (π − u, v)(49)

± 2ϵ
(︁
Φ−1(v)B̂

(︁
u,w(v)

)︁
iΦ(v) + B̃(v)

)︁

⏞ ⏟⏟ ⏞
ℬ=2ϵ

∫︁
ImH(df ∗f )

,

where R(ω) = 2ϑ2(ω)2

ϑ ′
1(0)ϑ1(2ω)

(42), B̂(u,w(v)) is a real analytic real-valued function that is 2π -periodic

in u, and B̃(v) is a real analytic R3-valued function that depends only on v.

Proof. — The proof of this theorem, together with explicit formulas for B̂(u,w(v))

and the ODE determining B̃(v) are given in Appendix A. □

Theorem 5 shows that an isothermic cylinder f (u, v) with one generic family of
closed planar curvature lines gives rise to Bonnet pair surfaces f ±(u, v) that are cylinders.
All three surfaces f (u, v) and f ±(u, v) are 2π -periodic in u.

Moreover, when f is a torus, both Φ and w are periodic. So, if f is a torus, then the
closing of both Bonnet pair cylinders f ± reduces to a single real-valued integral in terms
of B̃. This integral is computed along the spherical v-curve f (ω, v), recall Theorem 4,
on the isothermic surface.

Lemma 3. — Let f be an isothermic torus from a fundamental piece with axis A and v-period

k𝒱 . The following are equivalent.

(1) The Bonnet pair surfaces f ± parametrized by (49) are tori.

(2) The axial component of B̃(v) vanishes over a period of w(v), i.e.,

(50)
⟨︃
A,

∫︂ 𝒱

0
B̃′(v)dv

⟩︃

R3

= 0.

(3) The Gauss map n, metric e2h = |fu|2 = |fv|2, and axis A of f satisfy the following along

the spherical curve u = ω over a period of w(v).

(51)
⟨︃
A,

∫︂ 𝒱

0
e−h(ω,w(v))n(ω, v)dv

⟩︃

R3

= 0.
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Proof. — The Bonnet pair cylinders parametrized by (49) are tori when the four
terms on the right-hand side are v-periodic. When f (u, v) is a torus, Φ(v) and w(v) are
periodic, so one immediately verifies the first three terms are v-periodic. We compute the
translational period of B̃(v).

By combining (49) and (45) we see that B̃′(v) can be written in the form
Φ(v)−1X(w(v),w′(v))Φ(v). With (48) for Φ(v + k𝒱) we find

∫︂ k𝒱

0
B̃′(v)dv =

k−1∑︂

n=0

(︁
Φ(0)−1Φ(𝒱)

)︁−n

(︃∫︂ 𝒱

0
B̃′(v)dv

)︃
(︁
Φ(0)−1Φ(𝒱)

)︁n
.

This sum decomposes into the parts parallel and orthogonal to the axis. The orthogonal
part must vanish. To see this, recall that Φ(0)−1Φ(𝒱) induces a rotation about the axis
A by angle θ with kθ ∈ 2πN. Hence, the orthogonal part is the sum of the planar k roots
of unity, which is zero. The parallel components then sum together, giving

∫︂ k𝒱

0
B̃′(v)dv = k

⟨︃
A,

∫︂ 𝒱

0
B̃′(v)dv

⟩︃

R3

A.(52)

Thus, the condition that B̃(v) is periodic with period k𝒱 , so that the Bonnet surfaces are
tori, is equivalent to (50).

It remains to prove the equivalent condition on the weighted integral of the Gauss
map n = e−2hfufv . Since Φ and B̂ are both v-periodic, (49) implies that

∫︂ k𝒱

0
B̃′(v)dv =

∫︂ k𝒱

0
ImH

(︁(︁
f ∗)︁

v
(ω, v)f (ω, v)

)︁
dv.

Now use (f ∗)v = − fv
|fv |2 = −fve−2h and f (ω, v) from (43) to compute

(︁
f ∗)︁

v
(ω, v)f (ω, v) = −R(ω)e−h(ω,w(v))n(ω, v).(53)

Thus,

∫︂ k𝒱

0
B̃′(v)dv = −R(ω)

∫︂ k𝒱

0
e−h(ω,w(v))n(ω, v)dv.

The Gauss map n along the u = ω curve has a similar structure as B̃′(v), namely
Φ(v)−1Y(w(v),w′(v))Φ(v). The same reasoning applies to show that

∫︂ k𝒱

0
e−h(ω,w(v))n(ω, v)dv = k

⟨︃
A,

∫︂ 𝒱

0
e−h(ω,w(v))n(ω, v)dv

⟩︃

R3

A,

so condition (51) is equivalent to (50). □
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FIG. 4. — Overview of the construction for real analytic Bonnet pair tori as suggested by Theorem 6

5.3. Simultaneous periodicity conditions of an isothermic cylinder from a fundamental piece and

its corresponding Bonnet pair cylinders. — We summarize Lemma 2 and Lemma 3 into the
following theorem. These are the conditions on f so that it is a torus and gives rise to tori
f ±.

Theorem 6. — Let f (u, v) be an isothermic cylinder with one generic family (u-curves) of closed

planar curvature lines, and with periodic w(v + 𝒱) = w(v) that yields a fundamental piece with axis

A and generating rotation angle θ ∈ [0,π ]. Denote its Gauss map by n and metric by e2h.

Then the resulting Bonnet pair cylinders f ± are tori if and only if

(1) (Rationality condition)

(54) kθ ∈ 2πN for some k ∈N and

(2) (Vanishing axial ℬ-part)

(55)
⟨︃
A,

∫︂ 𝒱

0
e−h(ω,w(v))n(ω, v)dv

⟩︃

R3

= 0.

Theorem 6 reveals a path to prove the existence of compact Bonnet pairs, see
Figure 4. Use the functional freedom of the periodic reparametrization function w(v) to
simultaneously satisfy the rationality (54) and one dimensional integral (55) conditions.

The main analytical challenge is that we cannot explicitly compute the frame Φ(v)

that rotates the planar curvature lines. The above conditions depend on this frame as fol-
lows: the monodromy Φ(0)−1Φ(𝒱) determines the angle θ for the rationality condition
(54) and the axis A; the Gauss map curve n(ω, v) in (55), however, depends directly on
Φ(v).

To overcome this challenge, we restrict to the very special geometric setting where
the v-curves of the isothermic surface f lie on spheres. It is a classical theorem that if
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a surface has one family of planar and one family of spherical curvature lines then the
centers of the spheres lie on a common line. By the rotational symmetry from the fun-
damental piece, this line must be the axis. Thus, in this case, we can compute the axis
from local data at every v, which allows us to express both of the above conditions with
analytically tractable formulas.

We prove the existence of compact Bonnet pairs by explicitly constructing them
from isothermic tori with planar and spherical curvature lines. More general examples
are then found by perturbing the isothermic torus so it no longer has spherical curvature
lines, but retains its one family of planar curvature lines. The remainder of the article is
dedicated to this construction.

6. Bonnet periodicity conditions when f has one generic family of closed
planar curvature lines and one family of spherical curvature lines

Our goal is to construct compact Bonnet pairs out of an isothermic cylinder
f (u, v) = Φ−1(v)γ (u,w(v))jΦ(v) with one generic family (u-curves) of closed planar cur-
vature lines from a fundamental piece with axis A and generating rotation angle θ . Recall
Definition 2 and the discussion surrounding Theorem 6. Note that one of the periodicity
conditions is computed along the u = ω curve f (ω, v), which always lies on a sphere of
radius |R(ω)| centered at the origin. The challenge is computing the axis A.

Fortunately, additionally requiring the isothermic cylinder to have all of its v-
curvature lines spherical makes the problem analytically tractable. The key geometric
insight is that the centers of the curvature line spheres are collinear and lie on the axis.

The analysis, however, is still quite involved. In particular, both periodicity con-
ditions (54), (55) are written as elliptic integrals on the elliptic curve that governs the
spherical v-curves. This elliptic curve is stated in Corollary 4.

6.1. Two elliptic curves and a local formula for the axis. — We state the necessary results
from our paper on isothermic surfaces with one family of planar curvature lines [10].

Corollary 4 ([10, Corollary 6]). — Let f (u, v) be an isothermic cylinder with one generic family

(u-curves) of closed planar curvature lines, as in Theorem 3, with rhombic lattice spanned by π , τπ ,

critical parameter ω satisfying ϑ ′
2(ω) = 0, and τ -admissible reparametrization function w(v). Then,

(1) The function s(w) = e−h(ω,w) satisfies

s′(w)2 = Q3(s), where(56)

Q3(s) = ϑ ′
1(0)2

ϑ2(ω)2

(︃
s − ϑ1(ω)2

ϑ2(0)2

)︃(︃
s − ϑ3(ω)2

ϑ4(0)2

)︃(︃
s − ϑ4(ω)2

ϑ3(0)2

)︃
(57)

= 2U′
1(ω)s3 − U2(ω)s2 − 2U′(ω)s − U(ω)2,(58)
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and

U(ω) = −1
2

ϑ ′
1(0)

ϑ2(ω)2
ϑ1(2ω) = −R(ω)−1, U1(ω) = 0,(59)

U′(ω) = −1
2

ϑ ′
1(0)

ϑ2(ω)2
ϑ ′

1(2ω), U′
1(ω) = 1

2
ϑ ′

1(0)2

ϑ2(ω)2
,(60)

U2(ω) = ϑ ′
1(0)2

ϑ2(ω)2

(︃
ϑ1(ω)2

ϑ2(0)2
+ ϑ4(ω)2

ϑ3(0)2
+ ϑ3(ω)2

ϑ4(0)2

)︃
.(61)

Moreover, the elliptic curve (56) has rhombic lattice π , τπ .

(2) The v-curvature lines are spherical if and only if the function w is given by w′(v) =
w′(s)s′(v) where

w′(s) = 1
√︁

Q3(s)
and v′(s) = δ

√︁
Q(s)

, where(62)

Q(s) = −(s − s1)
2(s − s2)

2 + δ2Q3(s),(63)

for some 0 ≠ δ ∈R and either s1, s2 ∈R or s2 = s1 ∈C. In this case,
√

1 − w′(·)2 as

a signed real-valued function is

√︁
1 − w′(v)2 = δ−1(s(w(v)) − s1)(s(w(v)) − s2)

s′(w(v))
, where(64)

s(w) = e−h(ω,w) = ϑ2(ω)2

ϑ2(0)2

(︃
ϑ1(ω)2

ϑ2(ω)2
− ϑ1(

i w
2 )2

ϑ2(
i w
2 )2

)︃
.(65)

Remark 7. — The polynomial (63) defines a second elliptic curve y2 = Q(s).
Throughout the following, we refer to this elliptic curve and the elliptic curve (56) as
Q and Q3, respectively.

Note that s = e−h(ω,w) already appears as the Gauss map weight in the vanishing
axial periodicity condition (55). When the v-curvature lines are spherical, the axis A from
that periodicity condition is also understood in terms of local data depending on s, the
parameters δ, s1, s2 and constants from Corollary 4.

Proposition 4 ([10, Proposition 11]). — Let f (u, v) be an isothermic cylinder from a funda-

mental piece with axis A and whose second family of curvature lines are spherical. Then, the centers Z(u)

of the spherical curvature line spheres are collinear and

±A = Z′(ω)

|Z′(ω)|(66)
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= z1

(︁
s(v)

)︁(︁
e−h(ω,v)fu(ω, v)

)︁

+ z2

(︁
s(v)

)︁(︁
e−h(ω,v)fv(ω, v)

)︁ + z3

(︁
s(v)

)︁
n(ω, v),

where

z1(s) = s−1

|Z′(ω)|
(︁
1 + sR(ω)2

(︁
U′(ω) + s1s2U′

1(ω)
)︁)︁

,(67)

z2(s) = s−1R(ω)δ−1

|Z′(ω)|
√︁

Q(s),(68)

z3(s) = s−1R(ω)δ−1

|Z′(ω)|
(︁−δ2U′

1(ω)s + (s − s1)(s − s2)
)︁
,(69)

and

⃓
⃓Z′(ω)

⃓
⃓2 = R(ω)2

(︁
2(s1 + s2)U′

1(ω) + δ2U′
1(ω)2 − U2(ω)

)︁+(70)

+ R(ω)4
(︁
U′(ω) + s1s2U′

1(ω)
)︁2

.

Note the axis is constant, so the right hand side of (66) is independent of v.

6.2. Moduli space of isothermic cylinders from a fundamental piece of rhombic type. — To
construct explicit examples of isothermic tori that lead to Bonnet pair tori, we work in
the following finite dimensional space of isothermic cylinders with planar and spherical
curvature lines.

Definition 3. — Let f (u, v) be an isothermic cylinder with one generic family of closed planar

curvature lines whose second family of curvature lines are spherical, as in Corollary 4. The closed planar

u-curves are governed by a real elliptic curve Q3 of rhombic type. We call f (u, v) an isothermic
cylinder from a fundamental piece of rhombic type if:

(1) the second real elliptic curve Q governing the spherical v-curvature lines is also of rhombic

type, and arises from choosing real parameters δ ≠ 0, s1, s2 ∈R;

(2) the real oval of Q3 strictly contains the real oval of Q; and

(3) in (62) we choose positive signs for both square roots.

Remark 8. • We denote the two real zeroes of Q(s) by s−
1 , s+

1 , so its real oval
is [s−

1 , s+
1 ]. As suggested by the notation, we will often assume that s−

1 < s1 < s+
1 .

• The real oval of Q3 is [s0,∞), where s0 = ϑ1(ω;Q3)
2

ϑ2(0;Q3)2 > 0. Note that the leading

coefficient is 2U′
1(ω) = ϑ ′

1(0;Q3)
2

ϑ2(ω;Q3)2 > 0.
• The next lemma shows w(v) is periodic. So, this definition is a special case of,

and thus compatible with, Definition 2 for an isothermic cylinder from a fundamental

piece.
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• The terminology of rhombic type refers to the curve Q, since Q3 must be of rhom-
bic type in order to have closed u-curves. For simplicity we assume s1, s2 ∈R.

Lemma 4. — An isothermic cylinder from a fundamental piece of rhombic type has immersion

formula f (u, v) given as in Theorem 3 with periodic τ -admissible reparametrization function w globally

defined by:

w(v) = ℘−1

(︃
a0 + a1 ℘(v; δ−2Q) + a2

a3 ℘(v; δ−2Q) + a4
;Q3

)︃
, where(71)

a0 = 1
24

Q′′
3(s0), a1 = 1

4
Q′

3(s0), a2 = − 1
96

Q′
3(s0)δ

−2Q′′(︁s−
1

)︁
,(72)

a3 = (︁
s−
1 − s0

)︁
, a4 = 1

4
δ−2Q′(︁s−

1

)︁ − (︁
s−
1 − s0

)︁ 1
24

δ−2Q′′(︁s−
1

)︁
.(73)

The period 𝒱 of w(v) is the real period of ℘(v; δ−2Q). We use a nonstandard notation for the

Weierstrass ℘ function as explained in Remark 9.

Proof. — The real oval [s0,∞) of Q3 strictly contains the real oval [s−
1 , s+

1 ] of Q.
Both elliptic integrals

(74) w(s) =
∫︂ s

s0

dt

Q3(t)
, v(s) =

∫︂ s

s−1

δdt

Q(t)

are monotonic on the interval [s−
1 , s+

1 ], and thus define there a real analytic periodic

function w(v). The period of this function 𝒱 = 2
∫︁ s+1

s−1
δdt

Q(t)
is given by integrating around

the real oval [s−
1 , s+

1 ] for Q. We need to verify that w(v) is τ -admissible to ensure the
immersed surface f is real analytic.

The period lattice of Q3 is of rhombic type and is spanned by the parallelogram
π , τπ . The elliptic integral s ↦→ i w maps the elliptic curve Q3 to the fundamental paral-
lelogram spanned by π , τπ , and the real oval of Q3 is mapped to the imaginary period
2π i ImCτ of the lattice of Q3. Thus we obtain 0 < w(v) < 2πImCτ . Further, we ver-
ify that

√
1 − w′(·)2 is also real analytic across its zero set. Using the right hand side of

(64) we see that v ↦→ √
1 − w′(v)2 is real analytic with sign changes at v0 ∈ [0,𝒱/2] and

𝒱 − v0 ∈ [𝒱/2,𝒱], where s(w(v0)) = s1 ∈ [s−
1 , s+

1 ].
Finally, the variable s equates the inverse elliptic integrals of (74). By the formula

for the inverse of such integrals [45, Section 20.6], we have

s0 +
1
4Q′

3(s0)

℘ (w;Q3) − 1
24Q′′

3(s0)
= s−

1 +
1
4δ

−2Q′(s−
1 )

℘ (v; δ−2Q) − 1
24δ

−2Q′′(s−
1 )

.(75)

Now we can invert ℘(w;Q3) for s ∈ [s−
1 , s+

1 ] to find the globally defined real analytic
function w given by (71). □
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Remark 9. — We use a nonstandard notation for the Weierstrass ℘ function, mo-
tivated by the following result in [45, Section 20.6]. For

𝒬(x) = c4 + 4c3x + 6c2x2 + 4c1x3 + c0x4(76)

the inverse of the elliptic integral z = ∫︁ x

x0
𝒬(t)− 1

2 dt with 𝒬(x0) = 0 is a rational function
of ℘(z; g2(𝒬), g3(𝒬)) where the invariants are

g2(𝒬) = c0c4 − 4c1c3 + 3c2
2,(77)

g3(𝒬) = c0c2c4 + 2c1c2c3 − c3
2 − c0c2

3 − c2
1c4.(78)

We use the notation ℘(z;𝒬) to emphasize the dependence on 𝒬.

Remark 10. — We assume the period 𝒱 of w(v) does not close f into a torus, i.e.,
f (u, v + 𝒱) ≠ f (u, v).

Lemma 5. — The moduli space of isothermic cylinders from a fundamental piece of rhombic type

has real dimension four. The parameters are ImCτ ∈ R with 0 < ImCτ < ImCτ0 giving critical

ω ∈ (0,π/4) and δ ≠ 0, s1, s2 ∈R.

6.3. Computing the periodicity conditions from the axis.

Lemma 6. — Let f (u, v) be an isothermic cylinder from a fundamental piece of rhombic type,

with axis written as

(79) A = a1(s)
(︁
e−h(ω,v)fu(ω, v)

)︁ + a2(s)
(︁
e−h(ω,v)fv(ω, v)

)︁ + a3(s)n(ω, v),

where s = e−h(ω,w(v)) lives on the elliptic curve Q of rhombic type with real oval [s−
1 , s+

1 ]. Then

⟨︃
A,

∫︂ 𝒱

0
e−h(ω,w(v))n(ω, v)dv

⟩︃

R3

= 2δ

∫︂ s+1

s−1
s

a3(s)√︁
Q(s)

ds

Proof. — Since A is constant we pass it under the integral and use
⟨︁
A, e−h(ω,w(v))n(ω, v)

⟩︁
R3 = sa3(s).(80)

In integrated form, using v′(s) = δ√︁
Q(s)

, we have

∫︂ 𝒱

0
e−h(ω,w(v))

⟨︁
A, n(ω, v)

⟩︁
R3dv =

∫︂ v=𝒱

v=0
δs

a3(s)√︁
Q(s)

ds.

We conclude by noting that the integral from v = 0 to v = 𝒱 is the contour integral in
s around the real oval [s−

1 , s+
1 ]. Each value of s is traversed exactly twice, so the contour

integral is twice the real integral from s = s−
1 to s = s+

1 . □
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To compute the angle θ for the rationality condition (54), we write the spherical
curve f (ω, v) in terms of spherical coordinates that are aligned with the axis direction at
the north pole. Equating the axial ℬ-part found by this method with the one found by
the previous method leads to an equation for θ as a second elliptic integral.

Lemma 7. — Let f (u, v) be an isothermic cylinder from a fundamental piece of rhombic type,

with generating rotation angle θ and axis (79). Then

θ = − 2δ

R(ω)

∫︂ s+1

s−1

1
s

1
(1 − a1(s)2)

a3(s)√︁
Q(s)

ds.

Proof. — By Theorem 4, the u = ω curve f (ω, v) lies on a sphere centered at the
origin and f (ω, v) = −R(ω)e−h(ω,w(v))fu(ω, v). Let e1, e2 span the plane perpendicular to
the axis A, so that {e1, e2,A} is a fixed orthonormal basis forR3. Spherical coordinates in
this basis define functions r(v), z(v), θ̃ (v) satisfying

f (ω, v) = r(v) cos θ̃ (v)e1 + r(v) sin θ̃ (v)e2 + z(v)A with

R(ω)2 = r(v)2 + z(v)2.

Moreover, by the expansion of A in terms of the moving frame, we know that, since
z(v) = ⟨A, f (ω, v)⟩ = −R(ω)a1(s(v)),

r(v)2 = R(ω)2
(︁
1 − a1

(︁
s(v)

)︁2)︁
.

Now, the angle θ̃ (v) measures the rotation about the axis, so at the end of the
fundamental piece it must agree with the generating rotation angle, i.e., θ̃ (𝒱) = θ . So we
seek a differential equation for θ̃ (v). This arises by considering the axial component of
(f ∗)v(ω, v)f (ω, v), which we saw in (53) satisfies

(︁
f ∗)︁

v
(ω, v)f (ω, v) = −R(ω)e−h(ω,w(v))n(ω, v).(81)

Alternatively, using the above spherical coordinates and (f ∗)v = −e−2hfv ,
⟨︁
A,

(︁
f ∗)︁

v
(ω, v)f (ω, v)

⟩︁
R3 = e−2h(ω,w(v)))r(v)2θ̃ ′(v).

Combining this with the previous equation and expression for r(v)2 gives, in terms of
s = e−h(ω,w(v)),

⟨︁
A, e−h(ω,w(v))n(ω, v)

⟩︁
R3 = −R(ω)s2

(︁
1 − a1

(︁
s(v)

)︁)︁
θ̃ ′(v).

On the other hand, (80) is ⟨A, e−h(ω,w(v))n(ω, v)⟩R3 = sa3(s). Equating the two expressions
and solving for θ̃ ′(v) yields

θ̃ ′(v) = − 1
R(ω)

s−1a3(s)

1 − a1(s)2
.
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Converting the integral from v = 0 to v = 𝒱 into twice the real integral from s = s−
1 to

s = s+
1 yields the result. □

To find explicit formulas for the periodicity conditions, we use the local axis for-
mula in Proposition 4.

6.4. Periodicity conditions as elliptic integrals. — Now the periodicity conditions of
Theorem 6 can be given as elliptic integrals.

Theorem 7. — Let f (u, v) be an isothermic cylinder, with one generic family (u-curves) of closed

planar curvature lines and one family (v-curves) of spherical curvature lines, from a fundamental piece of

rhombic type, determined by parameters ω, δ, s1, s2.

Then the arising Bonnet pair cylinders f ± are tori if and only if

(1) (Rationality condition)

(82)
θ

2
=

∫︂ s+1

s−1

Z0

Q̃2(s)

Q2(s)√︁
Q(s)

ds satisfies kθ ∈ 2πN for some k ∈N

and

(2) (Vanishing axial ℬ-part)

(83)
∫︂ s+1

s−1

Q2(s)√︁
Q(s)

ds = 0.

Here, s−
1 , s+

1 are the two real zeroes of Q(s), and

Q(s) = −(s − s1)
2(s − s2)

2 + δ2Q3(s),(84)

Q3(s) = 2U′
1(ω)s3 − U2(ω)s2 − 2U′(ω)s − U(ω)2,(85)

Q2(s) = −(s − s1)(s − s2) + δ2U′
1(ω)s,(86)

Q̃2(s) = Z0(ω, δ, s1, s2)
2s2−(87)

− (︁
1 + sU(ω)−2

(︁
U′(ω) + s1s2U′

1(ω)
)︁)︁2

.

The constant Z0(ω, δ, s1, s2) = |Z′(ω)| depends on the parameters via

Z2
0 = ⃓⃓

Z′(ω)
⃓⃓2 = U(ω)−2

(︁
2(s1 + s2)U′

1(ω) + δ2U′
1(ω)2 − U2(ω)

)︁+(88)

+ U(ω)−4
(︁
U′(ω) + s1s2U′

1(ω)
)︁2

.

Proof. — This follows by combining the results of Lemma 6 and Lemma 7, for the
periodicity conditions in terms of the coefficients of the moving frame for the axis A with
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their explicit formulas (up to a common sign) from Proposition 4. Note we also used that
R(ω) = −U(ω)−1 (59).

To ease computation in the rationality condition, rewrite the relevant part of the
integrand of θ as follows.

− 2δ

R(ω)

1
s

1
(1 − a1(s)2)

a3(s) = 2
−δ

R(ω)
sa3(s)

(s2 − (sa1(s))2)
.

Now, replace the ai with the relevant expressions for zi in Proposition 4.

2
Q2(s)

|Z′(ω)|

s2 − (
1+sR(ω)2(U′(ω)+s1s2U′

1(ω))

|Z′(ω)| )2
= 2

⃓
⃓Z′(ω)

⃓
⃓Q2(s)

Q̃2(s)
.

This proves (82). Technically, we only know θ up to sign, but this does not impact the
result. □

We prove that these conditions can be simultaneously satisfied by studying the limit
as the parameter δ goes to zero.

6.5. Asymptotics for the periodicity conditions as δ → 0. — Let us investigate the asymp-
totic behavior of the integrals (82) and (83) in the limit δ → 0. In the degenerate case
δ = 0 the polynomial Q(s) has two double zeros at s1 and s2. For small δ they split into
pairs s±

1 and s±
2 converging to s1 and s2 respectively for δ → 0. A direct computation gives

the following asymptotics for s±
1 :

(89)

s±
1 = s1 ± αδ + βδ2 + O

(︁
δ3

)︁
, δ → 0, with

α =
√︁

Q3(s1)

s1 − s2
, β = 1

2
Q′

3(s1)

(s1 − s2)2
− Q3(s1)

(s1 − s2)3
,

and similar asymptotics for s±
2 .

Since s±
1 are real, and the elliptic curve Q is of rhombic type, the other pair s±

2

must be a pair of complex conjugated points s−
2 = s+

2 . Due to (89) these conditions are
equivalent to

(90) Q3(s1) > 0 and Q3(s2) < 0.

By the change of variables s → t defined by

s = s+
1 + s−

1

2
+ s+

1 − s−
1

2
t

the integration interval s ∈ [s−
1 , s+

1 ] in the periodicity conditions (82) and (83) transforms
to t ∈ [−1,1]. Note that

(91) s = s1 + αδt + βδ2 + O
(︁
δ3

)︁
.
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In terms of the new variable the differential ds/
√︁

Q(s) becomes

2dt√
1 − t2

√︁
(s+

1 + s−
1 + (s+

1 − s−
1 )t − 2s+

2 )(s+
1 + s−

1 + (s+
1 − s−

1 )t − 2s−
2 )

with the asymptotics

ds
√︁

Q(s)
= dt√

1 − t2(s1 − s2)

(︃
1 − δαt

s1 − s2
+ O

(︁
δ3

)︁)︃
.

Substituting (91) into (86) we obtain

Q2(s) = −δαt(s1 − s2) + δ2
(︁−β(s1 − s2) − α2t2 + U′

1(ω)s1

)︁ + O
(︁
δ3

)︁
.

For the integral (83) this implies

∫︂ s+1

s−1

Q2(s)ds
√︁

Q(s)
=

∫︂ 1

−1

δ√
1 − t2

(︃
−αt + δ

(︃
−β + U′

1(ω)s1

s1 − s2

)︃
+ O

(︁
δ2

)︁
)︃

dt(92)

= πδ2

(s1 − s2)3
A + O

(︁
δ3

)︁
, where

A = (s1 − s2)
2U′

1(ω)s1 − 1
2

Q′
3(s1)(s1 − s2) + Q3(s1).(93)

The coefficients in (82) can be computed similarly. For brevity we omit ω in U(ω), U2(ω),
U′(ω), U′

1(ω) below.

Z0 = Z + O
(︁
δ2

)︁
with(94)

Z = 1
U2

√︂(︁
U′ + s1s2U′

1

)︁2 + U2
(︁
2(s1 + s2)U′

1 − U2

)︁
and(95)

1

Q̃2(s)
= 1

Q̃2(s1)

(︃
1 − δαt

Q̃′
2(s1)

Q̃2(s1)
+ O

(︁
δ2

)︁)︃
.(96)

For the integral (82) we find

Zδ

Q̃2(s1)

∫︂ 1

−1

(︃
−αt + δ

(︃
−β + U′

1s1

s1 − s2
+ α2t2 Q̃′

2(s1)

Q̃2(s1)

)︃
+ O

(︁
δ2

)︁)︃ dt√
1 − t2

so that
∫︂ s+1

s−1

Z0

Q̃2(s)

Q2(s)ds
√︁

Q(s)
= Zδ2

Q̃2(s1)

(︃
πA

(s1 − s2)3
+ α2 π

2
Q̃′

2(s1)

Q̃2(s1)

)︃
+ O

(︁
δ3

)︁
.(97)
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Lemma 8. — The periodicity conditions (82) and (83) have solutions for sufficiently small δ if

there exist s1 and s2 satisfying the following conditions:

(i) elliptic curve of rhombic type: inequalities in (90),
(ii) vanishing axial ℬ-part: A(s1, s2) = 0 with A(s1, s2) given by (93),

(iii) real square root in (95): (U′ + s1s2U′
1)

2 + U2(2(s1 + s2)U′
1 − U2) > 0,

(iv) non-degeneracy of the rationality condition: (2s1 + s2)s1U′
1 − s1U2 − U′ ≠ 0,

(v) non-degeneracy of the vanishing condition: (s1 + 2s2)s1U′
1 − s1U2 − U′ ≠ 0.

Proof. — The periodicity condition (83) is the vanishing condition for the integral

b(s1, s2, δ) :=
∫︂ s+1

s−1

Q2(s)ds
√︁

Q(s)
.

Its behavior for small non-vanishing δ is given by the asymptotic (92). The function

b̃(s1, s2, δ) := 1
δ2

b(s1, s2, δ)

is an analytic function for small non-vanishing δ.
Let s0

1, s0
2 satisfy (i-v). We fix s0

1 and apply the implicit function theorem to
b̃(s1, s2, δ) = 0 at (s1, s2, δ) = (s0

1, s0
2,0). At this point b̃(s0

1, s0
2,0) = 0, and ∂ b̃(s1, s2, δ)/

∂s2 ≠ 0 is equivalent to ∂A/∂s2 ≠ 0, which is the condition (v). The implicit function the-
orem guarantees the existence of a solution of b̃(s1, s2(δ), δ) = 0 for small δ with s1 = s0

1

and s2(0) = s0
2.

In the case when (ii) is satisfied the asymptotic (97) of the rationality condition (82)
becomes

θ(s1, s2, δ) = δ2Zα2π
Q̃′

2(s1)

Q̃2
2(s1)

+ O
(︁
δ3

)︁
.

The leading term does not vanish since Q̃′
2(s1) ≠ 0 is equivalent to (iv). Thus, the ratio-

nality of θ can be achieved by a variation of δ. □

Note that s0
1 and ω (or, equivalently, the modulus τ of the elliptic curve) stay fixed

in this consideration and can be treated as additional parameters. An example plot of the
quadratic A as a function only of s2 is shown in Figure 5.

Lemma 9. — There exist s1, s2 ∈R satisfying conditions (i-v) in Lemma 8.

Proof. — We analyze these conditions for large s1. Let s1 be either large positive
or large negative with U′

1(ω)s1 → +∞, such that Q3(s1) > 0. The quadratic equation
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FIG. 5. — Plot of the quadratic A(s1 = 1
2 , s2) (93) for the vanishing axial ℬ-part condition, for ImCτ ≈ 0.3205128205,

critical ω ≈ 0.3890180475, and δ = 0.001

A = 0 for s2 has two solutions with the following asymptotic behavior:

(98) s
(1)

2 = U′

2s1U′
1

+ O
(︃

1
s2
1

)︃
, s

(2)

2 = −s1 + U2

U′
1

+ O
(︃

1
s1

)︃
, s1 → ∞.

Both of them satisfy Q3(s2) < 0. Indeed, we have in the limit Q(s
(1)

2 ) → Q3(0) = −U2 <

0, and Q(s
(2)

2 ) → Q3(−s1 + U2
U′

1
). Since Q3(s) is degree 3, Q3(s1) and Q3(−s1) have differ-

ent signs for large s1. Using the leading terms of the asymptotics (98) we see that inequality
(iii) is valid for s

(1)

2 , s
(2)

2 for large s1. Finally, conditions (iv) and (v) can be satisfied by a small
perturbation of s1. □

7. Compact Bonnet pairs

We explicitly construct isothermic tori with one family of planar curvature lines
that lead to compact Bonnet pairs of genus one.

We start with an observation about the rotational symmetry in the construction.
Recalling Definition 2, we consider an isothermic torus f (u, v) with one generic family
(u-curves) of planar curvature lines and 𝒱-periodic reparametrization function w(v) gen-
erated by a fundamental piece. Lemma 1 shows that the periodicity of w(v) corresponds
to a rotational symmetry in f (u, v). From the formulas for the differentials of the resulting
Bonnet pairs (26), we see that the rotational symmetry carries over to the corresponding
Bonnet pair tori. In particular, if the rotational symmetry of f is f (u, v +𝒱) = Rf (u, v)R
for some fixed rotation unit quaternion R then

df +(u, v + 𝒱) = Rdf +(u, v)R and df −(u, v + 𝒱) = Rdf −(u, v)R.

Therefore, each Bonnet pair torus f + or f − is generated by rotating its respective trans-
formed fundamental piece of f .
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Proposition 5. — Let f + and f − be Bonnet tori arising from an isothermic torus f with one

family of planar curvature lines. Then f +, f −, and f have the same rotational symmetry.

7.1. Existence from isothermic tori with planar and spherical curvature lines.

Theorem 8. — There exists an analytic isothermic torus parametrized by f (u, v) with one

generic family of planar and one family of spherical curvature lines such that the analytic Bonnet pair

surfaces f ±(u, v), given in Theorem 5, are tori.

The compact analytic immersions f + and f − correspond via a mean curvature preserving isometry

that is not a congruence.

Proof. — The result is proven by combining Theorem 7 and Lemma 9, as follows.
Consider the subset of isothermic surfaces with one family of planar and one family

of spherical curvature lines given by Definition 3. By Lemma 5, every such isothermic

cylinder from a fundamental piece of rhombic type f (u, v) is determined by four real parameters
ImCτ , δ, s1, s2.

By Lemma 9, for each ImCτ , with 0 < ImCτ < ImCτ0, and sufficiently small δ >

0, there exists s1 and s2 such that the periodicity conditions of Theorem 7 are satisfied.
Specifically, the rationality condition (82) is satisfied, closing f (u, v) into a torus, and
the vanishing axial ℬ-part condition (83) is satisfied, closing both Bonnet pair surfaces
f +(u, v) and f −(u, v) into tori. □

7.2. Constructing examples. — An isothermic cylinder with planar u-curves and the
resulting Bonnet pair cylinders are determined by a real parameter ImCτ , with 0 <

ImCτ < ImCτ0, for the u-curves and a τ -admissible reparametrization function w(v) for
the v-curves. Here is a summary of the construction.

1. Theorem 3 gives the isothermic cylinder f (u, v). The choice of 0 < ImCτ <

ImCτ0 determines critical ω > 0. The explicit formulas only require numerical
integration of the ODE for Φ(v).

2. Theorem 5 gives the Bonnet pair cylinders f ±(u, v). The explicit formulas only
require numerical integration of the ODE for B̃(v), see Appendix A.

For all 0 < ImCτ < ImCτ0 and w(v) these formulas produce cylinders. To construct
examples of compact Bonnet pairs from an isothermic torus with planar and spherical
curvature lines we choose w(v) as follows.

3. Consider w(v) as in (71), seen as a reduction of the w(v) in Corollary 4 that
characterize spherical v-curves. Three real parameters δ ≠ 0, s1, s2 remain to
be determined.

4. Fix one of the parameters, say s1. Choose a target rational angle θ0 ∈ πQ for the
fundamental piece, and then numerically solve for the other two parameters,
say δ and s2, so that the rationality condition (82) and the vanishing axial ℬ-part
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FIG. 6. — Fundamental pieces of an example with 3-fold rotational symmetry from parameters (99). The top left image is
the fundamental piece of an isothermic torus with planar and spherical curvature lines. The corresponding portions of the
Bonnet tori are shown on the bottom left and right. All three tori are closed by two applications of the same 120◦ rotation.
The Bonnet tori have an orange highlighted curve segment that shows the mean curvature preserving isometry (the curve
segment on the isothermic torus is shown in blue). The top right image shows the pair of corresponding orange curves
after being aligned under Euclidean motions. The Bonnet tori are not congruent as the final endpoints of corresponding
curves do not agree

condition (83) are satisfied. Note that both conditions are expressed as elliptic
integrals, which can be desingularized through a change of variables to allow
for stable numerics during root finding.

We implemented the above procedure in Mathematica [46] to construct examples
with 3-fold and 4-fold rotational symmetry. The following parameters lead to an example
where the isothermic torus has a fundamental piece of angle 2π/3.}

(99)
ImCτ ≈ 0.3205128205 with ω ≈ 0.3890180475,

δ ≈ 1.897366596, s1 ≈ −3.601381552, s2 ≈ 0.5965202011.

The isothermic fundamental piece and corresponding portions of the Bonnet tori are
shown in Figure 6. The full tori are shown in Figure 7. The following parameters
lead to an example where the isothermic torus has a fundamental piece of angle
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FIG. 7. — The example with 3-fold rotational symmetry from parameters (99), whose construction from a fundamental
piece is shown in Figure 6 and highlighted here in orange. The top image is the isothermic torus with planar and spherical
curvature lines, while the bottom left and right images are the corresponding Bonnet tori. All three tori share the same
120◦ rotational symmetry

π/2.}

(100)
ImCτ ≈ 0.3205128205 with ω ≈ 0.3890180475,

δ ≈ 1.61245155, s1 ≈ −3.13060628, s2 ≈ 0.5655771591.

The fundamental pieces and tori are shown in Figure 8.

Remark 11. — (One surface and its reflection) The plots of the examples reveal
that the immersed Bonnet pair tori f + and f − globally resemble each other, even though
they correspond via a mean curvature preserving isometry that is not a congruence. The
explanation comes from the reparametrization functions w(v) that lead to spherical v-
curves. They have the symmetry w(𝒱/2 + v) = w(𝒱/2 − v). This leads to a reflectional
symmetry in the fundamental piece of the isothermic surface f , which implies that the
corresponding Bonnet tori f + and f − are mirror images of each other. Note that the
mirror symmetry mapping f + to f − is not the mean curvature preserving isometry.
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FIG. 8. — An example with 4-fold rotational symmetry from parameters (100). Top shows the fundamental piece and full
isothermic torus with planar and spherical curvature lines. The corresponding Bonnet cylinders and tori are shown to the
middle and bottom. All three tori share the same 90◦ rotational symmetry. The congruent planar boundary curves of the
fundamental piece, and their corresponding curves on the Bonnet cylinders, are shown in orange

7.3. Existence of examples with less symmetry. Compact Bonnet pairs with 2 different surfaces.

— The Bonnet pairs constructed in Section 7.1 are represented by one surface and its
reflection, see Remark 11. These surfaces possess an intrinsic isometry preserving the
mean curvature, which is not a congruence. In this section, by a small perturbation,
we construct Bonnet pairs represented by two surfaces not related by reflection. The
construction has a functional freedom.

Let w0(v) be a τ -admissible reparametrization function from one of the examples
constructed in Section 7.1, see Figure 9. It is a periodic function with period 𝒱 . Both
periodicity conditions of Theorem 6 are satisfied by w0(v):}

θ0 ∈ πQ,
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FIG. 9. — Reparametrization function from 3-fold spherical example in Figures 6 and 7. Top left: w0(v), Top right:
w′

0(v) = cosψ0(v),
√︁

1 − w′
0(v)2 = sinψ0(v), Bottom: ψ0(v)

b0 :=
⟨︃
A0,

∫︂ 𝒱

0
e−h(ω,w0(v))Φ−1

0 (v)n̂
(︁
ω,w0(v)

)︁
Φ0(v)dv

⟩︃
= 0.

Here the axis A0 and dihedral angle θ0 are determined by the monodromy (46)}

M0 = Φ−1
0 (0)Φ0(𝒱) = cos

θ0

2
+ sin

θ0

2
A0,

and n̂ is determined by (38).
The frame Φ0 satisfies

d

dv
Φ0 = ξ

(︁
w0(v)

)︁
Φ0,

with ξ(w0(v))) given by the explicit formula (34).
Note that ξ and n̂ depend on w and w′.
We consider a τ -admissible small perturbation w(v) of w0(v) that is periodic with

the same period. As suggested in Remark 6, we define w(v) in terms of a real analytic
function ψ : S1 →R by

(101) w′(v) = cosψ(v),
√︁

1 − w′(v)2 = sinψ(v),
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Thus in the following ψ0(v) is the function corresponding to w0(v), see Figure 9,
and

(102) ψ(v) := ψ0(v) + ϵϕ(v)

is its small perturbation. The properties of w0(v) in the proof of Lemma 4 show that
ψ0(v) is a monotonic real analytic function on the interval [0,𝒱] with ψ0(v + 𝒱) =
ψ0(v)+2π . Let v0 and 𝒱−v0 be the two zeros of

√︁
1 − w′

0(v)2 on [0,𝒱], i.e., ψ0(v0) = 0,
ψ0(𝒱 − v0) = π . We keep these zeros for

√
1 − w′(v)2 and introduce the perturbation

space

(103) ϕ ∈ Cω
0 [0,𝒱] := {︁

ϕ real analytic, ϕ(v +𝒱) = ϕ(v)
⃓
⃓ ϕ(v0) = ϕ(𝒱 −v0) = 0

}︁
.

For ϵ small enough, ψ(v) defined by (102) determines via (101) a τ -admissible
reparametrization function

w(v) =
∫︂ v

0
cosψ(t)dt + w0(0),

provided
∫︁ 𝒱

0 cosψ(v)dv = 0. The last condition implies the periodicity of w(v). Its
derivative at w0(v) is given by

∂w
∂ϵ |ϵ=0

= −
∫︂ v

0
sinψ0(t)ϕ(t)dt.

Thus one obtains Bonnet tori if the following three conditions are satisfied:

θ ∈ πQ,(104)

b :=
⟨︃
A,

∫︂ 𝒱

0
e−h(ω,w(v))Φ−1(v)n̂

(︁
ω,w(v)

)︁
Φ(v)dv

⟩︃
= 0,(105)

c :=
∫︂ 𝒱

0
cosψ(v)dv = 0.(106)

We compute the derivatives of these functions at ϵ = 0 and apply the implicit function
theorem. For condition (106) we have

∂c

∂ϵ |ϵ=0
= −

∫︂ 𝒱

0
sinψ0(t)ϕ(t)dt.

Formulas for the frame and for the normal read as follows:

ξ
(︁
w(v)

)︁ = sinψ(v)W1

(︁
w(v)

)︁
k,

n̂
(︁
ω,w(v)

)︁ = i cosψ(v) − sinψ(v)eiσ(ω,w(v))k.
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For ϵ → 0 the frame satisfies

(107)

d

dv
Φ = (︁

ξ(w0) + ϵg(v) + o(ϵ)
)︁
Φ, with

g(v) = ∂

∂ϵ
ξ
(︁
w(v)

)︁
|ϵ=0

= cosψ0(v)W1(w0)kϕ(v) − sinψ0(v)
∂W1

∂w |w=w0

k
(︃∫︂ v

0
sinψ0(t)ϕ(t)dt

)︃
.

Substituting Φ = Φ0(I + ϵR + o(ϵ)) we obtain d

dv
R = Φ−1

0 gΦ0. The normalization
R(0) = 0 yields

R(v) =
∫︂ v

0
Φ−1

0 (t)g(t)Φ0(t)dt.

For the monodromy of Φ this implies M = M0(I + ϵG + o(ϵ)) with

(108) G =
∫︂ 𝒱

0
Φ−1

0 (v)g(v)Φ0(v)dv.

Differentiating the monodromy by ϵ at ϵ = 0 we obtain

−1
2

sin
θ0

2
∂θ0

∂ϵ
+ 1

2
cos

θ0

2
∂θ0

∂ϵ
A0 + sin

θ0

2
∂A
∂ϵ

=
(︃

cos
θ0

2
+ sin

θ0

2
A0

)︃
G,

which is equivalent to the following expressions for the derivatives of the dihedral angle
and the axis:

∂θ

∂ϵ |ϵ=0
= 2⟨A0,G⟩,(109)

∂A
∂ϵ |ϵ=0

= cot
θ0

2

(︁
G − ⟨A0,G⟩A0

)︁ + A0 × G.(110)

Integration of (108) by parts gives

G =
∫︂ 𝒱

0
ϕ cosψ0Φ

−1
0 W1(w0)kΦ0dv(111)

+
∫︂ 𝒱

0
ϕ sinψ0

(︃∫︂ v

0
Φ−1

0

∂W1

∂w |w=w0

kΦ0 sinψ0(t)dt

)︃
dv

−
∫︂ 𝒱

0
ϕ sinψ0dv

∫︂ 𝒱

0
Φ−1

0

∂W1

∂w |w=w0

kΦ0 sinψ0(v)dv.
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This function is of the form
∫︁ 𝒱

0 Ĝ(v)ϕ(v)dv, and so is

∂θ

∂ϵ |ϵ=0
=

∫︂ 𝒱

0
â(v)ϕ(v)dv.

By a similar but more involved computation using (110) one proves the same fact
for the periodicity condition (105):

∂b

∂ϵ |ϵ=0
=

∫︂ 𝒱

0
b̂(v)ϕ(v)dv.

Indeed,

∂b

∂ϵ |ϵ=0
=

⟨︃
∂A
∂ϵ

,

∫︂ 𝒱

0
e−h0Φ−1

0 n̂0Φ0dv

⟩︃
+

⟨︃
A0,

∫︂ 𝒱

0

∂

∂ϵ

(︁
e−hΦ−1n̂Φ

)︁
dv

⟩︃
.

Due to (110) the first term is of required form. For the second term we have

∂

∂ϵ

(︁
e−hΦ−1n̂Φ

)︁ = e−h0Φ−1
0

∂ n̂0

∂ϵ
Φ0(112)

+
(︃

−∂h0

∂w
e−h0Φ−1

0 n̂0Φ0 + e−h0Φ−1
0

∂ n̂0

∂w
Φ0

)︃
∂w
∂ϵ

+ e−h0
[︁
Φ−1

0 n̂0Φ0,R
]︁
,

where

∂ n̂0

∂ϵ
= (︁−i sinψ0 − cosψ0eiσ0k

)︁
ϕ,

∂ n̂0

∂w
= −i sinψ0

∂σ0

∂w
eiσ0k,

and [, ] is the commutator. The first term in the right-hand-side of (112) is of required
form. The second one can be brought to this form by integration by parts similar to (108).
Integrating by parts the last term one obtains

∫︂ 𝒱

0
e−h0(v)

[︃
Φ−1

0 (v)n̂0(v)Φ0(v),

∫︂ v

0
Φ−1

0 (t)g(t)Φ0(t)

]︃
dv

= −
∫︂ 𝒱

0

[︃∫︂ v

0
e−h0(t)Φ

−1
0 (t)n̂0(t)Φ0(t)dt,Φ−1

0 (v)g(v)Φ0(v)

]︃
dv

+
∫︂ 𝒱

0
e−h0Φ−1

0 (v)n̂0(v)Φ0(v)dv

∫︂ 𝒱

0
Φ−1

0 (v)g(v)Φ0(v)dv.

One more integration by parts brings this term to the required form.
Now we apply the implicit function theorem to find perturbations preserving the

periodicity conditions. The derivatives of all three periodicity conditions are of the form∫︁ 𝒱
0 ϕ(v)ĉ(v)dv = 0 with explicit functions ĉ(v).
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FIG. 10. — The isothermic torus with 180◦ rotational symmetry that generates the Bonnet tori from Figure 1. The fun-
damental piece and Bonnet cylinder portions are shown in Figure 4. The resulting Bonnet pair tori are not related by an
ambient isometry of R3

Since the functions â(v), b̂(v) and sinψ0(v) are linearly independent, there exist
functions ϕ1, ϕ2, ϕ3 with

∂

∂ϵ
(θ, b, c)|ϵ=0,ϕ=ϕ1 = (1,0,0),

∂

∂ϵ
(θ, b, c)|ϵ=0,ϕ=ϕ2 = (0,1,0),

∂

∂ϵ
(θ, b, c)|ϵ=0,ϕ=ϕ3 = (0,0,1).

Now choose ϵϕ = α1ϕ1 + α2ϕ2 + α3ϕ3 + ϵχ with an arbitrary χ ∈ Cω
0 [0,𝒱]. For

the map F(α1, α2, α3, ϵ) = (θ, b, c) and its Jacobian with respect to α = (α1, α2, α3) we
have

F(0,0,0) = (θ0,0,0),
∂F
∂α |ϵ=0

= Id.

By the implicit function theorem, we obtain that for small ϵ there exist analytic func-
tions α1(ϵ), α2(ϵ), α3(ϵ) with F(α1(ϵ),α2(ϵ),α3(ϵ), ϵ) = (θ0,0). The reparametrization
functions w = w0 + α1(ϵ)ϕ1 + α2(ϵ)ϕ2 + α3(ϵ)ϕ3 + ϵχ give us a family of Bonnet pairs
depending on a functional parameter. For generic functions w(v) (that do not possess a
reflection symmetry as noted in Remark 11) we obtain two Bonnet tori not related by a
reflection. We have therefore proven the following theorem.

Theorem 9. — There exist Bonnet pairs with analytic tori f + and f − not related by an isometry

of the ambient space R3.

Corollary 5. — The statements of Main Theorems 1 and 2.

Figure 10 shows a numerical example of an isothermic torus that generates a Bon-
net pair with two different (i.e. non-congruent and not related by a reflection) tori. The
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corresponding Bonnet pair are in Figure 1. This example was constructed as follows. First
we fixed the elliptic curve parameter ImCτ so that

ImCτ ≈ 0.3205128205 with ω ≈ 0.3890180475.(113)

Then we considered the following three parameter A,B,C ∈R set of reparametrization
functions:

w(v) = C + A sin(v)

π
− A cos(v)

π 2
− B sin(2v)

2π
+ B cos(2v)

4π 2
.(114)

Within this set we numerically solved for an isothermic cylinder satisfying the rationality
and vanishing axial ℬ-part conditions from Theorem 6, with 2-fold symmetry θ0 = π .
The parameters are

A = 1.44531765156, B = 1.33527652772, C = 1.05005399924.(115)

8. Discrete Bonnet pairs

Discrete Differential Geometry studies analogs of the smooth theory that preserve
some underlying structure, like the integrability of a compatibility condition or the geo-
metric invariance under a certain transformation group. These ideas have broad applica-
tion from surface theory and integrable systems to architectural geometry and computer
graphics [9, 20, 39].

Importantly, discrete properties are preserved at every finite resolution, as opposed
to only in a continuum limit. This viewpoint is exemplified by the computational discov-
ery of discrete compact Bonnet pairs shown in Figure 11, which initiated our work on the
present article. To describe the setup and experiments, we briefly introduce the necessary
ideas.

An immersed discrete parametrized surface or discrete net is a map from a sub-
set of the standard lattice f : Z2 →R3 with nonvanishing straight edges in R3. We use
subscripts to denote shifts in a particular lattice direction, i.e., with f (n,m) = f we have
f (n + 1,m) = f1, f (n,m + 1) = f2 and f (n + 1,m + 1) = f12.

Isothermic surfaces are characterized by having coordinates that are both con-
formal and curvature line coordinates. The well-studied discrete analog from integrable
systems has the following geometric definition [8, Definition 6].

Definition 4. — A map f : Z2 → ImH=R3 is called a discrete isothermic net if for

each quad

(f1 − f )(f12 − f1)
−1(f12 − f2)(f2 − f )−1 = −1(116)
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FIG. 11. — Two views (top) of the first numerical example of a discrete isothermic torus that gives rise to a discrete compact
Bonnet pair of tori (bottom). This extremely coarse numerical example on a 5×7 lattice exhibits the remarkable properties
that led to the discovery of smooth compact Bonnet pairs. On the discrete isothermic torus, for example, the curvature
lines with 5 vertices are planar (two planar generators are highlighted in orange) and the curvature lines with 7 vertices
are spherical (generator highlighted in blue). Moreover, interleaving dualization and inversion operations leads to other
examples of discrete isothermic tori that give rise to discrete Bonnet pairs. All these examples of isothermic tori resemble
each other, suggesting the symmetries of the smooth isothermic torus in Theorem 4 that are essential to the construction,
and derived using the theta function formulas for the family of planar curves

Remark 12. — This definition is equivalent to every quad having coplanar vertices
and complex cross-ratio −1 in its respective plane. Thus, each quad can be conformally
mapped by a fractional linear transformation to a square, and the vertices of each quad
lie on a circle. Discrete nets with concircular quads are a discrete analog of curvature
line coordinates, see for example [9]. Hence, these nets can be understood as being in
conformal, curvature line coordinates.

Discrete isothermic nets have dual nets [8, Theorem 6] given by integrating an
analogous expression to the smooth one-form (14).
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Proposition 6. — Every discrete isothermic net f : Z2 →R3 has a dual net f ∗ : Z2 →R3

that is defined up to global translation by

f ∗
1 − f ∗ = f1 − f

|f1 − f |2 and f ∗
2 − f ∗ = − f2 − f

|f2 − f |2 .(117)

Recall the local characterization of smooth Bonnet pairs from smooth isothermic
surfaces using quaternionic function theory [34],

df ± = (±ϵ − f )df ∗(±ϵ + f ).(118)

Recently, discrete Bonnet pairs have been defined from discrete isothermic nets.

Proposition 7. — Let f :Z2 →R3 be a discrete isothermic net with dual net f ∗ :Z2 →R3.

Then for all ϵ ∈R the transformations defined by

(119)
f ±
1 − f ± = ImH

(︁
(±ϵ − f )

(︁
f ∗
1 − f ∗)︁(±ϵ + f1)

)︁
,

f ±
2 − f ± = ImH

(︁
(±ϵ − f )

(︁
f ∗
2 − f ∗)︁(±ϵ + f2)

)︁

integrate to two discrete nets f ± :Z2 →R3, i.e.,

ImH

(︁
(±ϵ − f )

(︁
f ∗
1 − f ∗)︁(±ϵ + f1) + (±ϵ − f1)

(︁
f ∗
12 − f ∗

1

)︁
(±ϵ + f12)

− (±ϵ − f2)
(︁
f ∗
12 − f ∗

2

)︁
(±ϵ + f12) − (±ϵ − f )

(︁
f ∗
2 − f ∗)︁(±ϵ + f2)

)︁ = 0.

Definition 5. — The nets f ± :Z2 →R3 form a discrete Bonnet pair.

This construction was introduced as a remark in [31], alongside a theory of first
and second fundamental forms for discrete nets. The local theory of discrete Bonnet
pairs is thoroughly investigated in [32] as the main application of a conformal theory
for discrete nets immersed in R3 using quaternions. In particular, a characterization of
discrete Bonnet pairs is given in terms of special coordinates (equivalent to the normalized
form (17) of the Hopf differential), and a geometric understanding of the mean curvature
preserving isometry between the pair of nets is described.

To discover numerical examples of compact discrete Bonnet pairs, we used an
extremely coarse Z/5Z × Z/7Z torus. We implemented an optimization algorithm in
Mathematica [46] that searched for a map f :Z/5Z×Z/7Z→R3 such that

(1) f is a discrete isothermic torus, i.e., each quad satisfies (116)
(2) and the corresponding integrated Bonnet pair nets f +, f − are tori, i.e.,

f ±(5,m) = f ±(0,m), m ∈Z/7Z and f ±(n,7) = f ±(n,0), n ∈Z/5Z.

A remarkable feature of the structure preserving discretization is that the discrete
theory also appears to well-approximate the smooth theory in a continuum limit. Sam-
pling the fundamental piece of a smooth isothermic torus that gives rise to smooth Bonnet
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tori, and then optimizing for it to be the fundamental piece of a discrete isothermic torus
leading to discrete Bonnet tori, barely moves the vertices. The surfaces are visually indis-
tinguishable.

9. Concluding remarks

We establish that the metric and mean curvature do not determine a unique com-
pact surface by constructing the first examples of compact Bonnet pairs. Moreover, we
prove that a real analytic metric does not determine a unique compact immersion. It was
unexpected that the construction we found has a functional freedom in it. There appears
to be a lot left to understand and explore. We state some open questions to stimulate
further research and the development of new techniques.

Question 1 (Embedded examples). — Do there exist compact Bonnet tori where both surfaces are

embedded?

Question 2 (Tori classification: No planarity assumption). — Do there exist compact Bonnet pairs

from isothermic tori without one family of planar (or spherical) curvature lines? More generally, can one

classify all compact Bonnet pairs that are tori?

Question 3 (Higher genus examples). — Do there exist compact Bonnet pairs of higher genus?

Question 4 (Constant mean curvature examples). — Do there exist compact Bonnet pairs with

constant mean curvature? In other words, does the associated family of a compact constant mean curvature

surface contain at least one other compact surface that is not congruent to the original? (Note that the

restriction to at most two compact immersions does not apply in the constant mean curvature setting.)

Appendix A: Explicit formulas for Bonnet pair cylinders from an
isothermic surface with one generic family of closed planar
curvature lines

We provide an explicit formula version of Theorem 5.

Theorem 10. — Let f (u, v) = Φ(v)−1γ (u,w(v))jΦ(v) be an isothermic cylinder with one

generic family of closed planar curvature lines as in Theorem 3. For each ϵ ∈R, the resulting Bonnet

pair surfaces f ±(u, v) are real analytic cylinders with translational periods in v that are equal up to sign.

Their immersion formulas are:

f ±(u, v) =
𝒜=(f −1)∗+ϵ2f ∗

⏟ ⏞⏞ ⏟
R(ω)2f (π − 2ω + u, v) − ϵ2f (π − u, v)(120)
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± 2ϵ
(︁
Φ−1(v)B̂

(︁
u,w(v)

)︁
iΦ(v) + B̃(v)

)︁

⏞ ⏟⏟ ⏞
ℬ=2ϵ

∫︁
ImH(df ∗f )

,

where R(ω) = 2ϑ2(ω)2

ϑ ′
1(0)ϑ1(2ω)

(42), B̂(u,w(v)) is a real analytic real-valued function that is 2π -periodic

in u, and B̃(v) is a real analytic R3-valued function that depends only on v.

Explicitly,

B̂(u,w) = R(ω)2 ϑ1(2ω)

ϑ ′
1(0)

(︃
ϑ ′′

2 (ω)

ϑ2(ω)

w
2

− ImC

ϑ ′
2(

u+i w−ω

2 )

ϑ2(
u+i w−ω

2 )

)︃
(121)

and B̃(v) is determined by

B̃′(v) = Φ−1(v)
(︁
R(ω)

√︁
1 − w′(v)2 b̃

(︁
w(v)

)︁
k
)︁
Φ(v),(122)

where the complex-valued function b̃(w) is

b̃(w) = 2ϑ2(ω)

ϑ ′
1(0)

ϑ2(i w − ω)

ϑ1(i w)

(︃
ϑ ′′

2 (ω)

ϑ2(ω)

w
2

− ImC

ϑ ′
2(

i w
2 )

ϑ2(
i w
2 )

)︃
− i

ϑ1(
i w
2 − ω)2

ϑ2(
i w
2 )2

.(123)

Proof. — We first derive the structure of the immersion formulas (120) and then
compute B̂(u,w(v)) and B̃(v).

• Structure of immersion formulas. For the 𝒜-part we write 𝒜= ∫︁ −fdf ∗ ×
f +ϵ2df ∗ = (f −1)∗ +ϵ2f ∗ and then use the inversion and dual formulas, (44) and
(45), respectively.

(︁
f (u, v)−1

)︁∗ = −R(ω)2f (2ω − u, v)∗ = R(ω)2f (π − 2ω + u, v).

To derive the structure in the ℬ-part we use the isothermic parametriza-
tion (31) for f (u, v). We set

∫︁
ImH(df ∗f ) = Φ−1BΦ for someR3-valued function

B(u, v). Its partial derivatives in terms of u and v satisfy
(︁
Φ−1(v)B(u, v)Φ(v)

)︁
u
= ImH

(︁(︁
f ∗)︁

u
f
)︁
,(124)

(︁
Φ−1(v)B(u, v)Φ(v)

)︁
v
= ImH

(︁(︁
f ∗)︁

v
f
)︁
.(125)

As the frame Φ(v) is independent of u, the left side of (124) is Φ−1BuΦ. The
right side is computed with (31) and (f ∗)u = fu

|fu|2 , so that (124) is equivalent to

(126) Φ−1BuΦ = Φ−1ImC

(︁
γ −1

u γ
)︁
iΦ.

Since γ is a function of u and w(v) we define the real-valued function

(127) B̂
(︁
u,w(v)

)︁ =
∫︂ u

0
ImC

(︁
γu

(︁
ũ,w(v)

)︁−1
γ
(︁
ũ,w(v)

)︁)︁
dũ.
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Therefore, integrating (126) with respect to u gives

(128) Φ−1(v)B(u, v)Φ(v) = Φ−1B̂
(︁
u,w(v)

)︁
iΦ + B̃(v),

where B̃(v) is an R3-valued integration function that depends only on v. Note
that B̃(v) is not arbitrary. Since the right hand side of (125) and B̂(u,w(v)) are
known, we differentiate (128) with respect to v, evaluate at any u = u0, and find
the following ODE for B̃(v).

(129) B̃′(v) = ImH

(︁(︁
f ∗)︁

v
(u0, v)f (u0, v)

)︁ − (︁
Φ−1(v)B̂

(︁
u0,w(v)

)︁
iΦ(v)

)︁
v
.

• Deriving the formula for B̂(u,w(v)) (121). From (127) we have that

B̂
(︁
u,w(v)

)︁ =
∫︂ u

0
ImC

(︁
γu

(︁
ũ,w(v)

)︁−1
γ
(︁
ũ,w(v)

)︁)︁
dũ.

Now, using (33) and (39) we find

γ −1
u γ =

(︃
ϑ1(

1
2(u + i w + ω))

ϑ2(
1
2(u + i w − ω))

)︃2 2ϑ2(ω)2

ϑ ′
1(0)ϑ1(2ω)

ϑ1(
1
2(u + i w − 3ω))

ϑ1(
1
2(u + i w + ω))

= 2ϑ2(ω)2

ϑ ′
1(0)ϑ1(2ω)

ϑ1(
1
2(u + i w + ω))ϑ1(

1
2(u + i w − 3ω))

ϑ2(
1
2(u + i w − ω))2

.

This is an elliptic function in z = u+i w
2 with a fundamental set of zeroes α1 =

−ω

2 , α2 = 3ω

2 and poles β1 = ω+π

2 , β2 = ω−π

2 satisfying α1 − β1 + α2 − β2 = 0.
Using the method outlined in Section 21.5 of Whittaker and Watson [45] to
rewrite an elliptic function as a sum of Jacobi zeta functions, their derivatives,
and constants, we find with z = u+i w

2 that

(130) γ −1
u γ = ∂

∂z

(︃
2ϑ2(ω)4

ϑ ′
1(0)3ϑ1(2ω)

(︃
z
ϑ ′

2(ω)2 + ϑ2(ω)ϑ ′′
2 (ω)

ϑ2(ω)2
− ϑ ′

2(z − ω

2 )

ϑ2(z − ω

2 )

)︃)︃
.

Now, note R(ω) = 2ϑ2(ω)2

ϑ ′
1(0)ϑ1(2ω)

(42) and from Theorem 3 that ω is critical, so it
satisfies ϑ ′

2(ω) = 0. Putting these facts together with (130) gives

(131)
∫︂ (︁

γ −1
u γ

)︁
du = R(ω)2 ϑ1(2ω)

ϑ ′
1(0)

(︃
ϑ ′′

2 (ω)

ϑ2(ω)

u + i w(v)

2
− ϑ ′

2(
u+i w(v)−ω

2 )

ϑ2(
u+i w(v)−ω

2 )

)︃
+ C,

for a constant C ∈C. For a rhombic lattice, ϑi(z) = e−iπ/4ϑi(z̄), so the constants
given in terms of ratios of theta functions are real-valued. Thus, we have proven
that B̂(u,w(v)), defined by (127) as the complex imaginary part of the above
expression, is real-valued, 2π -periodic in u and given as in (121). Without loss of
generality we put the integration constant C into the definition of B̃(v).
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• Deriving the formulas for B̃′(v) (122) and b̃(w) (123). We compute (f ∗)vf

and (Φ−1B̂iΦ)v and use (129). Note that (37) implies

fv = Φ−1
(︁√︂

1 − (︁
w′)︁2|γu|i + w′γuk

)︁
Φ.

Combine this with (f ∗)v = − fv
|γu|2 and f = Φ−1γ jΦ to find

(︁
f ∗)︁

v
f = −Φ−1

(︃√︂
1 − (︁

w′)︁2 γ

|γu|k + w′(︁−(γu)−1γ
)︁
i
)︃

Φ.

Now, because ImH((−(γu)−1γ )i) = −ImC(i (γu)
−1γ )i we have

ImH

(︁(︁
f ∗)︁

v
f
)︁ = −Φ−1

(︃√︂
1 − (︁

w′)︁2 γ

|γu|k − w′ImC

(︁
i (γu)

−1γ
)︁
i
)︃

Φ.

Since B̂(u,w(v)) is the complex imaginary part of the integral with respect to u

of the function (γu)
−1γ that is meromorphic in u + i w, we see that

(B̂)v = w′(B̂)w = w′ImC

(︁
i (γu)

−1γ
)︁
.

Thus,

ImH

(︁(︁
f ∗)︁

v
f
)︁ = −Φ−1

(︁√︂
1 − (︁

w′)︁2|γu|−1γ
)︁
kΦ + Φ−1(B̂)viΦ.

On the other hand, B̂ is real-valued and from (34) we know that Φ′Φ−1 lies in
the j, k-plane, so

(︁
Φ−1(v)B̂

(︁
u,w(v)

)︁
iΦ(v)

)︁
v
= Φ−1

(︁
2B̂iΦ′Φ−1

)︁
Φ + Φ−1(B̂)viΦ.

Substitution into (129) implies

B̃′(v) = −Φ−1
(︁√︂

1 − (︁
w′)︁2|γu|−1γ k + 2B̂iΦ′Φ−1

)︁
Φ.

Now plug in the appropriate expressions for γ , γu, Φ′Φ−1, B̂ and simplify to find

B̃′(v) = R(ω)
√︁

1 − w′(v)2Φ−1(v)b̃
(︁
u,w(v)

)︁
kΦ(v),(132)

b̃(u,w) = 2ϑ2(ω)

ϑ ′
1(0)

ϑ2(i w − ω)

ϑ1(i w)

(︃
ϑ ′′

2 (ω)

ϑ2(ω)

w
2

− ImC

ϑ ′
2(

u+i w−ω

2 )

ϑ2(
u+i w−ω

2 )

)︃
(133)

+ i
ϑ1(

u+i w−3ω

2 )ϑ1(
u−i w+ω

2 )

ϑ2(
u+i w−ω

2 )ϑ2(
u−i w−ω

2 )
.

As B̃(v) only depends on v, b̃(u,w(v)) must be independent of u. Set u = ω to
get b̃(w) as in (123). □
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