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§0. Introduction

Since its introduction by Élie Cartan, the holonomy of a connection has played an
important role in differential geometry. One of the best known results concerning hol-
onomy is Berger’s classification of the possible holonomies of Levi-Civita connections of
Riemannian metrics. Since the appearance of Berger [1955], much work has been done to
refine his list of possible Riemannian holonomies. See the recent works by Besse [1987] or
Salamon [1989] for useful historical surveys and applications of holonomy to Riemannian
and algebraic geometry.

Less well known is that, at the same time, Berger also classified the possible pseudo-
Riemannian holonomies which act irreducibly on each tangent space. The intervening
years have not completely resolved the question of whether all of the subgroups of the
general linear group on his pseudo-Riemannian list actually occur as holonomy groups of
pseudo-Riemannian metrics, but, as of this writing, only one class of examples on his list
remains in doubt, namely SO∗(2p) ⊂ GL(4p) for p ≥ 3.

Perhaps the least-known aspect of Berger’s work on holonomy concerns his list of the
possible irreducibly-acting holonomy groups of torsion-free affine connections. (Torsion-
free connections are the natural generalization of Levi-Civita connections in the metric
case.) Part of the reason for this relative obscurity is that affine geometry is not as well
known or widely used as Riemannian geometry and global results are generally lacking.
However, another reason is perhaps that Berger’s list is incomplete in the affine case; it
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omits a finite number of possibilities. In fact, just how many are missing from this list is
not known. We shall refer to the missing entries as the list of exotic holonomies.

In this paper, we produce two examples which show that, in fact, the list of exotic
holonomies is non-empty. Moreover, we show that the geometry of connections with these
holonomies is related to classical work on the geometry of ode in terms of “path geome-
tries” and to the modern theory of twistors as initiated by Penrose and his co-workers.

In §1, we give a brief discussion of the two criteria which Berger used to compile his
lists. We then apply these criteria to a simple collection of subgroups: For each d ≥ 1 we
can regard SL(2, R) as a subgroup Hd ⊂ GL(d+1, R) via the (unique) (d+1)-dimensional
irreducible representation of SL(2, R). Moreover, if we let Gd ⊂ GL(d + 1, R) denote the
centralizer of Hd, then Gd may be regarded as a representation of GL(2, R). We show
that H3 and G3 satisfy Berger’s criteria even though they do not preserve any non-trivial
symmetric quadratic form (even up to a conformal factor) and do not appear on Berger’s
list of possible holonomies of torsion-free connections on 4-manifolds. Thus, these are
candidates for exotic holonomy groups.

In §2, we investigate the structure equations for torsion-free connections on 4-manifolds
whose holonomy is (conjugate to) a subgroup of either H3 or G3. We demonstrate the
basic relationship between connections with these holonomies and torsion-free H3- and
G3-structures on 4-manifolds. Of course, this is quite straightforward. However, some
interesting things turn up. For example, it is a consequence of our calculations in §2 that,
for k ≥ 3, the kth covariant derivatives of the curvature tensor of a connection with hol-
onomy H3 are expressible as universal polynomials in the curvature tensor and its first
two covariant derivatives. Generally, however, this section serves as a repository of the
formulas (some, unfortunately, quite elaborate) needed in later sections.

In §3, we prove that connections with either of these holonomies do, indeed, exist. We
first show that there is a differential system with independence condition whose space of
integral manifolds can be interpreted as the space of diffeomorphism classes of 4-manifolds
endowed with certain “non-degenerate” torsion-free connections with holonomy G3. (For
the meaning of “non-degenerate”, see §3.) We then show that this system is involutive
and conclude that, in the real analytic category, the space of non-degenerate torsion-free
G3-structures modulo diffeomorphism depends on four functions of three variables. Of
course, our main tool is the Cartan-Kähler Theorem. The reader who is familiar with
Bryant [1987] should be cautioned that the differential system constructed in this paper
is not of the same sort constructed in that paper. In fact, our approach is more closely
related to that of Cartan [1943]. It is worth remarking that Theorem 3.3 is purely an
existence result and does not seem to be of much help in constructing explicit examples.

We then turn our attention to the geometry of torsion-free H3-structures. It is in
this section that the theory exhibits a remarkable serendipity and the most unexpected
behavior. The upshot of our work is that a torsion-free H3-structure always has at least
a one-parameter local symmetry group, but (except for the flat structure) is never locally
symmetric. Moreover, the (non-Hausdorff) “moduli space” of such structures is essentially
composed of a disjoint union of a two-dimensional space, two one-dimensional spaces, and
four points.
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To see how unusual this is, consider that, in all previously known cases of an irre-
ducibly acting subgroup G ⊂ GL(n, R) which can be holonomy, either there exist only
locally symmetric examples or else there exist connections with holonomy G which have
no local symmetries and, moreover, there exist at least an “arbitrary function’s worth” of
inequivalent connections with holonomy G. This “rigid-but-not-symmetric” behavior of
H3-holonomy connections is perhaps the most remarkable aspect of this entire paper.

In §4, we begin to construct the bridge between the purely differential geometric
treatment in the previous sections and the twistor-theoretic treatment given in §5. In
particular, we show how a torsion-free G3-structure gives rise to a (contact) path geometry
in the sense of Cartan. This geometry interprets the original 4-manifold as the space of
solutions of a fourth order ode for one function of one variable.

This aspect of the theory fits into a program of “geometrizing” classical ode as en-
visioned in Cartan [1938] and Chern [1940]. Cartan had observed that his method of
producing differential invariants of geometric structures, known as the method of equiva-
lence, could be used to integrate certain classes of ode. From the examples he knew, he
then abstracted a general approach which led him to define certain classes of equations
which he called classes C.

It turns out that the class consisting of the fourth order ode which arise from torsion-
free G3-structures constitutes an instance of classe C. Although we do not pursue this in
this paper, it can be shown that, in an appropriate sense, this class is the largest classe
C among the fourth order ode. In fact, it was in connection with the larger problem
of understanding Cartan’s classes C that the author was led to consider torsion-free G3-
structures in the first place.

In more modern language, we use a torsion-free G3-structure to construct a double
fibration N , one base of which is the original 4-manifold M on which the connection is
defined while the other base is the 3-dimensional contact manifold Y of “totally geodesic
null surfaces” in M where the notion of “nullity” is constructed out of a quartic form
associated to the G3-holonomy connection. We show that this double fibration is non-
degenerate and apply the method of equivalence to determine the conditions for a given
double fibration to arise from a torsion-free G3-structure. These conditions take the form
of requiring that certain invariants, herein called the primary and secondary invariants,
vanish.

In §5, we describe the relationship of this path geometry with twistor theory proper
by moving from the real category to the holomorphic category. In this transition, the space
Y is replaced by a complex contact manifold Y and the points of M, a “complexification”
of M , are interpreted as rational contact curves in Y with normal bundle O(2)⊕O(2). We
show, by methods analogous to those in Hitchin [1982], how the holomorphic geometry
encodes the conditions of vanishing of the primary and secondary invariants of the double
fibration and hence gives rise to torsion-free “complexified” G3-structures.

We close this section by applying the twistor description to show how one can, in
principle, construct many explicit examples of torsion-free G3-structures by considering
the geometry of rational holomorphic curves in CP

2. The simplest example, that of smooth
conics passing through a fixed point in CP

2, corresponds to the unique non-flat homoge-
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neous torsion-free H3-structure. We also give a (very brief) discussion of how the Kodaira-
Spencer deformation theory of pseudo-group structures on complex manifolds might be
used to “construct” deformations of torsion-free G3-structures.

Finally, in §6, we point out some of the interesting questions which this investigation
has raised.

It would be remiss of this author indeed if he did not comment on the method of
calculation employed in this paper. The fact is that the vast majority of these calculations
were carried out on computers using the symbolic manipulation program Maple. Many
of the formulas, if written out in full, would contain literally hundreds of terms and would
be utterly incomprehensible. This is particularly true of the calculations in §3 and §4.
This presented a problem for the author: How can one explain the essential points without
being able to demonstrate them by (sample) calculation or without the reader having the
ability to check the calculations personally?

For example, the essential point in the analysis of torsion-free H3-structures is the
existence of three remarkable identities for which the author has been able to find no
conceptual justification. These identities were found by brute force and seem to just
happen to be true. For anyone to find or verify them by hand seems extremely unlikely.

Thus, the author settled on the following strategy: Give the reader enough detail to
understand the structure of the argument and to form an opinion as to the reasonableness
of the claims and then make available thoroughly documented Maple files which will allow
the reader to check the calculations by computer if so inclined. This the author has done.
Anyone wishing to obtain copies of these files is encouraged to contact the author either
by corporeal or electronic mail at the addresses provided.

Since the calculations in this paper make extensive use of the representation theory
of SL(2, R), particularly an explicit version of the Clebsch-Gordan formula, we will give a
short account of it here to establish notation. A good reference for proofs is Humphreys
[1972], though our notation is different.

Let x and y denote two indeterminates and let R[x, y] denote the polynomial ring
with real coefficients generated by x and y. Let SL(2, R) act on R[x, y] in the usual way
via unimodular linear substitutions in x and y. The infinitesimal version of this action is
generated by the Lie algebra D spanned by the three derivations

X = x
∂

∂y
, H = x

∂

∂x
− y

∂

∂y
, Y = y

∂

∂x
.

Let Vd ⊂ R[x, y] denote the subspace consisting of homogeneous polynomials of degree
d. Then it is well-known that Vd is an irreducible SL(2, R)-module and that every finite-
dimensional, irreducible SL(2, R)-module is isomorphic to Vd for some d ≥ 0.

It will occasionally be necessary to refer to a basis of Vd. For this purpose, we use the
standard basis given by the monomials x(d−j)/2y(d+j)/2 where j ranges over the integers
which lie between −d and d and are congruent to d modulo 2. The x(d−j)/2y(d+j)/2-
coefficient of an arbitrary element v ∈ Vd will be denoted by v−j . Thus, v has the expansion
v = v−d xd + v−d+2 xd−1y + · · · + vd yd.
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The Clebsch-Gordan formula describes the irreducible decomposition of a tensor prod-
uct of irreducible SL(2, R)-modules:

Vm ⊗ Vn = V|m−n| ⊕ V|m−n|+2 ⊕ · · · ⊕ Vm+n−2 ⊕ Vm+n.

We shall need an explicit formula for this decomposition which we now describe. For each
p ≥ 0, define the bilinear pairing 〈 , 〉p : R[x, y] × R[x, y] → R[x, y] by

〈u, v〉p =
1
p!

p∑
k=0

(−1)k

(
p

k

)
∂p u

∂xp−k ∂yk

∂p v

∂xk ∂yp−k
.

For example, 〈u, v〉0 = uv and 〈u, v〉1 = uxvy − uyvx.
It is easy to prove that D〈u, v〉p = 〈Du, v〉p + 〈u,Dv〉p for any p ≥ 0 and any D ∈ D.

It follows that the pairings 〈 , 〉p are SL(2, R)-equivariant. For u ∈ Vm and v ∈ Vn, we
have 〈u, v〉p ∈ Vm+n−2p and, moreover, the induced linear mapping Vm ⊗ Vn → Vm+n−2p

is clearly non-trivial for 0 ≤ p ≤ min(m,n). Thus, these pairings give the non-trivial
projections implicit in the Clebsch-Gordan formula.

The following identities are easily verified:

〈u, v〉p = (−1)p〈v, u〉p

〈u, 〈v,w〉1〉1 − 〈v, 〈u,w〉1〉1 = 〈〈u, v〉1, w〉1
In particular, note that 〈 , 〉p:Vp × Vp → V0 = R is non-trivial and hence is an SL(2, R)-
invariant symmetric or skew-symmetric form on Vp depending on whether p is even or
odd.

These pairings satisfy an enormous number of further identities which we shall not
attempt to enumerate, though we have used them implicitly in our calculations. For
example, a frequently used identity is

〈u, 〈v,w〉2〉1 − 〈〈u, v〉1, w〉2 − 〈v, 〈u,w〉1〉2 = v 〈u,w〉3 + w 〈u, v〉3 − 〈u, vw〉3 .

However, a complete list of the identities that we have used in the course of our calculations
would be so long that it would not be comprehensible or useful. Unfortunately, a systematic
method of deriving these identities (other than brute force) is not known to the author.

We shall often work with Vp-valued differential forms on a smooth manifold M . In this
case, we simply extend the pairings 〈 , 〉p : Vm × Vn → Vm+n−2p as graded Ω∗(M)-module
pairings

〈, 〉p: (Ω∗(M) ⊗Vm) × (Ω∗(M) ⊗ Vn) → (Ω∗(M) ⊗ Vm+n−2p) .

In particular, note that if ω is a Vm-valued r-form on M and η is a Vn-valued s-form on
M , then

〈ω, η〉p = (−1)rs+p〈η, ω〉p.
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§1. The Holonomy of a Torsion-Free Connection

Let Mn be a smooth, connected, and simply connected n-manifold. (The assumption
of simple connectivity is made for the sake of convenience. For the problems we wish to
address, the more general case does not differ in any significant way.) Let P(M) denote
the set of piecewise smooth paths γ: [0, 1] → M . For x ∈ M , let Lx(M) ⊂ P(M) denote
the set of x-based loops in M , namely those γ ∈ P(M) for which γ(0) = γ(1) = x.

Let ∇ be a torsion-free affine connection on the tangent bundle of M . (In order to
avoid confusion, we shall not follow the common practice of using the term symmetric
as a synonym for torsion-free.) For each γ ∈ P(M), the connection ∇ defines a linear
isomorphism Pγ:Tγ(0)M → Tγ(1)M called parallel translation along γ. For each x ∈ M ,
we define the holonomy of ∇ at x to be the subset of GL(TxM) given by

Hx = {Pγ | γ ∈ Lx(M) } ⊂ GL(TxM).

It is well known (see Kobayashi and Nomizu [1963]), that Hx is a connected Lie subgroup
of GL(TxM) and that, for any γ ∈ P(M), Pγ induces an isomorphism of Tγ(0)M with
Tγ(1)M which identifies Hγ(0) with Hγ(1).

Choose an x0 ∈ M and an isomorphism ι:Tx0M → V , where V is a fixed real vector
space of dimension n. Then, because M is connected, the conjugacy class of the subgroup
H ⊂ GL(V ) which corresponds under ι to Hx0 ⊂ GL(Tx0M) is independent of the choice
of x0 or ι. By abuse of language, we speak of H as the holonomy of ∇.

A basic question in the theory is this: Which (conjugacy classes of) subgroups H ⊂
GL(V ) can occur as the holonomy of some torsion-free connection ∇ on some n-manifold
M? Two necessary conditions on H were derived by M. Berger [1955] in his thesis and
we will now describe them.

Let us write T , T ∗, etc. to denote the bundles TM , T ∗M , etc. Let R∇ denote the
section of gl(T ) ⊗ Λ2(T ∗) = T ⊗ T ∗ ⊗ Λ2(T ∗) which represents the curvature of ∇. Let
h ⊂ gl(T ) denote the sub-bundle whose fiber hx at x ∈ M is the Lie algebra of Hx(∇).
Then R∇ is a section of h⊗Λ2(T ∗). Moreover, because ∇ is a torsion-free connection, the
first Bianchi identity states that R∇ takes values in the kernel bundle K ⊂ gl(T )⊗Λ2(T ∗)
of the short exact sequence

0 → K → gl(T ) ⊗ Λ2(T ∗) → T ⊗ Λ3(T ∗) → 0,

where the mapping gl(T ) ⊗ Λ2(T ∗) = T ⊗ T ∗ ⊗ Λ2(T ∗) → T ⊗ Λ3(T ∗) is simply skew-
symmetrization on the last three indices. In particular, R∇ takes values in the bundle
K(h) = K∩ (h⊗Λ2(T ∗)). (Note that this intersection has constant rank because all of the
subalgebras hx are conjugate under suitable identifications of the tangent spaces.)

Similarly, if we let ∇R∇ denote the covariant derivative of the curvature tensor, then
∇R∇ can be regarded as a section of the bundle gl(T ) ⊗ Λ2(T ∗) ⊗ T ∗. According to the
second Bianchi identity, the condition that ∇ be torsion-free implies that ∇R∇ has values
in the kernel bundle K1 ⊂ gl(T ) ⊗ Λ2(T ∗) ⊗ T ∗ of the short exact sequence

0 → K1 → gl(T ) ⊗ Λ2(T ∗) ⊗ T ∗ → gl(T ) ⊗ Λ3(T ∗) → 0,

6



where the mapping gl(T ) ⊗ Λ2(T ∗) ⊗ T ∗ → gl(T ) ⊗ Λ3(T ∗) is again defined by skew-
symmetrization on the last three indices. In particular, ∇R∇ takes values in the bundle
K1(h) = K1 ∩ (K(h) ⊗ T ∗).

This motivates the following definitions. For any n-dimensional vector space V , let us
define K(V ) and K1(V ) to be the vector spaces described by the exact sequences

0 → K(V ) → gl(V ) ⊗ Λ2(V ∗) → V ⊗ Λ3(V ∗) → 0

and
0 → K1(V ) → gl(V ) ⊗Λ2(V ∗) ⊗ V ∗ → gl(V ) ⊗ Λ3(V ∗) → 0.

For any Lie subalgebra g ⊂ gl(V ), we define two vector spaces

K(g) = K(V ) ∩ (g ⊗ Λ2(V ∗))

and
K1(g) = K1(V ) ∩ (K(g) ⊗ V ∗).

If g′ ⊂ g ⊂ gl(V ) is a pair of subalgebras of gl(V ), then we have K(g′) ⊂ K(g) and
K1(g′) ⊂ K1(g). Moreover, if g′ ⊂ gl(V ) is any Lie subalgebra which is GL(V )-conjugate
to g, then there are isomorphisms K(g′) � K(g) and K1(g′) � K1(g). As we shall see, the
existence of a mere abstract isomorphism g′ � g does not imply any relationship between
K(g′) and K(g) or between K1(g′) and K1(g).

Recall that a connection ∇ is said to be locally symmetric if the (local) ∇-geodesic
symmetry about each point of M preserves ∇. As is well known (see Kobayashi and
Nomizu [1963]), the necessary and sufficient condition for ∇ to be locally symmetric is
that ∇ be torsion-free and that ∇R∇ = 0.

By combining our discussion so far with the Ambrose-Singer Holonomy Theorem, the
following result of Berger is now easily derived. Hence, we omit the proof.

Theorem 1.1 (Berger): Let V be a real vector space of dimension n. Let g ⊂ gl(V ) be
the Lie algebra of a Lie subgroup G ⊆ GL(V ).
(i) If K(g) = K(g′) for any proper subalgebra g′ ⊂ g, then G is not (conjugate to) the

holonomy of any torsion-free connection on any manifold M of dimension n.

(ii) If K1(g) = 0, then any torsion-free connection whose holonomy is (conjugate to) a
subgroup of G is locally symmetric.

Since locally symmetric connections are also locally homogeneous, the study of locally
symmetric connections can be reduced to the study of certain (non-trivial) problems in the
theory of Lie algebras. Hence, we will not discuss the locally symmetric case any further.

It follows from Theorem 1.1 that two necessary conditions for a connected Lie subgroup
G ⊂ GL(V ) with Lie algebra g ⊂ gl(V ) to be the holonomy of a torsion-free connection
which is not locally symmetric are, first, that K(g′) be a proper subspace of K(g) for
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every proper subalgebra g′ of g, and, second, that K1(g) �= 0. We shall refer to these two
conditions as Berger’s first and second criteria.

Examples: To get some feel for these criteria (and because we shall need the results in
subsequent sections), let us compute some examples.

For n ≥ 1, let Vn denote the irreducible SL(2, R)-module of dimension n+1 described
in §0. Let hn ⊂ gl(Vn) denote the Lie algebra generated by the action of SL(2, R) on Vn

and let Hn ⊂ GL(Vn) denote the connected Lie subgroup whose Lie algebra is hn. It is
easy to see that Hn is abstractly isomorphic to either SL(2, R) or PSL(2, R) accordingly
as n is odd or even. Using the Clebsch-Gordan formula and Maple, it is easy to compute
the entries in Table I.

Table I
n K(hn) K1(hn)

1 V2 V1 ⊕ V3

2 V0 ⊕ V4 V2 ⊕ V4 ⊕ V6

3 V2 V3

4 V0 0
≥ 5 0 0

Similarly, let gn ⊂ gl(Vn) denote the Lie algebra of dimension 4 which is generated by
hn and the multiples of the identity mapping in gl(Vn), and let Gn ⊂ GL(Vn) denote the
connected subgroup whose Lie algebra is gn. Applying the same methods as in the case of
hn, we can derive the entries of Table II.

Table II
n K(gn) K1(gn)

1 V0 ⊕ V2 2V1 ⊕V3

2 V0 ⊕ V2 ⊕ V4 2V2 ⊕ 2V4 ⊕ V6

3 V2 ⊕ V4 V1 ⊕ V3 ⊕ V5 ⊕ V7

4 V0 0
≥ 5 0 0

When n ≥ 5, neither hn nor gn satisfy Berger’s first criterion. In fact, since K(gn) =
K(hn) = 0 for all n ≥ 5, any torsion-free connection on an (n+1)-manifold whose holonomy
is conjugate to any subgroup of Gn ⊂ GL(Vn) is actually flat.

When n = 4, since K(g4) = K(h4) and h4 ⊂ g4, it follows that g4 does not satisfy
Berger’s first criterion.

On the other hand, h4 does satisfy Berger’s first criterion since, as is easily seen,
K(s) = 0 for any proper subalgebra s ⊂ h4.

However, h4 does not satisfy Berger’s second criterion since K1(h4) = 0. Thus, any
connection on a 5-manifold with holonomy conjugate to H4 ⊂ GL(V4) must be locally
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symmetric. In fact, it is easily shown that any such connection on a 5-manifold is locally
equivalent to the canonical connection on one of the irreducible affine symmetric spaces
SL(3, R)/SO(2, 1) or SU(2, 1)/SO(2, 1).

In the remaining dimensions, things are more interesting:

When n = 1, we have g1 = gl(V1) and h1 = sl(V1). A glance at the tables shows that
these two algebras satisfy Berger’s criteria. The corresponding torsion-free connections
on 2-manifolds are, respectively, the “generic” affine connections and the “generic” affine
connections preserving a non-zero parallel area form. It is easy to see that non-locally-
symmetric connections exist with holonomy either H1 = SL(V1) or G1 = GL+(V1).

When n = 2, we have h2 = so(V2), the Lie algebra of linear transformations which
preserve the SL(2, R)-invariant (indefinite) quadratic form 〈 , 〉2 on V2, and g2 = co(V2), the
Lie algebra of linear transformations which preserve 〈 , 〉2 up to a scalar multiple. Again,
a glance at the tables shows that these two algebras satisfy Berger’s criteria. In the case
of h2, the corresponding connections on 3-manifolds are the Levi-Civita connections of
Lorentzian metrics. Of course, these do not have to be locally symmetric. A 3-manifold
M endowed with a torsion-free connection ∇ whose holonomy is conjugate to a subgroup
of G2 = CO(V2) is known in the classical literature as a Weyl space, after Weyl’s work
on conformal geometry. It is easy to construct examples with holonomy G2 which are not
locally symmetric.

When n = 3, the situation is the least understood. Note that both g3 and h3 satisfy
Berger’s second criterion. It is not difficult to show that they both satisfy Berger’s first
criterion. In the remaining sections of this paper, we will show that, for each of H3 and
G3, a torsion-free connection with this holonomy does, in fact, exist. Moreover, as we shall
show, these connections have interesting relationships with path geometry, twistor theory,
and algebraic geometry.

We close this section with a short discussion of the general case. The original question
can now be refined to the following one:

For which connected Lie subgroups G ⊂ GL(V ) satisfying Berger’s criteria do there
exist torsion-free connections which are not locally symmetric and whose holonomy is
(conjugate to) G?

To the author’s knowledge, there is no G ⊂ GL(V ) satisfying Berger’s criteria which
is known not to occur as the holonomy of any torsion-free connection which is not locally
symmetric. Nevertheless, it seems too much to hope that Berger’s necessary criteria are
sufficient.

An obvious strategy for solving this problem is to first make a list of the subgroups of
GL(V ) which satisfy Berger’s criteria and then examine each case separately. A natural
place to start is to classify those subgroups which, in addition, act irreducibly on V . Berger
[1955] employed an extensive series of representation-theoretic calculations to make a list
of (nearly) all of the connected groups G ⊂ GL(V ) which act irreducibly on V and which
satisfy his two criteria. His list falls naturally into two parts (see Theorems 3 and 4 of
Chapter III of Berger [1955]).
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The first part, the metric list, consists of the irreducibly acting G which satisfy
Berger’s criteria and which fix some non-trivial symmetric quadratic form on V . Ac-
tually, Berger’s metric list contains three spurious real forms of Spin(9, C) occurring as
subgroups of GL(16, R) which do not satisfy his second criterion. Due to the efforts of
several persons (see Salamon [1989] for an overview), every G on the corrected list save
one is now known to be the holonomy of some torsion-free connection which is not locally
symmetric. (The remaining open case is that of SO∗(2p) ⊂ GL(4p, R) where p ≥ 3.)

The second part, the “non-metric” list, consists of all but a finite number of the
irreducibly acting G which satisfy Berger’s criteria but which do not fix any non-trivial
symmetric quadratic form on V . Unfortunately, because Berger gives no indication of the
proof of his Theorem 4, we do not have an estimate of how many cases are missing from
the non-metric list.

We shall refer to these missing subgroups as exotic. Since the subgroups H3 and
G3 of GL(V3) do not appear on Berger’s non-metric list, the set of exotic holonomies is
non-empty.

Finally, let us note that, even among the groups which do appear on Berger’s non-
metric list, there are many which are not known to be the holonomy group of any torsion-
free connection which is not locally symmetric. Thus, the non-metric holonomy problem
is far from being solved.

§2. The Structure Equations of H3- and G3-structures

Let us begin by discussing the geometry of H3-structures on 4-manifolds. Let M be
a 4-manifold and let π:F → M be the V3-coframe bundle, i.e., each u ∈ F is a linear
isomorphism u:Tπ(u)M →̃V3. Then F is naturally a principal right GL(V3)-bundle over
M where the right action Rg:F → F is defined by Rg(u) = g−1 ◦ u. A V3-valued 1-form
ω on F , called the tautological 1-form, is defined by letting ω(v) = u(π∗(v)) for v ∈ TuF .
The 1-form ω has the GL(V3)-equivariance Rg

∗(ω) = g−1ω.
An H3-structure on M is, by definition, an H3-subbundle F ⊂ F . Note that the

set of such H3-structures on M is in one-to-one correspondence with the set of sections
of the quotient bundle π̄:F/H3 → M whose general fiber is isomorphic to GL(V3)/H3, a
homogeneous space of dimension 13. For any H3-structure F , we will denote the restriction
of π and ω to F by the same letters.

We shall first show that an H3-structure F has a canonical connection. Since H3 is
canonically isomorphic to SL(2, R), we may regard the SL(2, R)-representations Vd equally
well as H3-representations. Moreover, since sl(2, R) � V2, it is easily seen that the map
ρ′
3:V2 → End(V3) defined, for a ∈ V2, by ρ3(a)(b) = 〈a, b〉1 establishes an isomorphism h3 �

V2. We will use this to regard a connection on F as an H3-equivariant, V2-valued 1-form
φ on F . The torsion of φ is then represented by the V3-valued 2-form T (φ) = dω + 〈φ, ω〉1
and the curvature of φ is represented by the V2-valued 2-form R(φ) = dφ + 1

2 〈φ, φ〉1.
By Clebsch-Gordan, hom(V3,V2) � V1 ⊕V3 ⊕V5, so once one connection φ0 has been

chosen, any other connection φ can be written uniquely in the form

φ = φ0 + 〈p1, ω〉1 + 〈p3, ω〉2 + 〈p5, ω〉3,
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where each pi is an H3-equivariant, Vi-valued function on F . Using appropriate identities
on the pairings 〈 , 〉i we then have

T (φ) = T (φ0) + 〈〈p1, ω〉1 + 〈p3, ω〉2 + 〈p5, ω〉3, ω〉1
= T (φ0) + 1

2
〈p1, 〈ω, ω〉1〉1 + 15

4
p3〈ω, ω〉3 + 1

12
〈p3, 〈ω, ω〉1〉2 − 1

6
〈p5, 〈ω, ω〉1〉3.

Now, T (φ0) can be written uniquely in the form

T (φ0) = 〈t1, 〈ω, ω〉1〉1 + s3〈ω, ω〉3 + 〈t3, 〈ω, ω〉1〉2 + 〈t5, 〈ω, ω〉1〉3 + 〈t7, 〈ω, ω〉1〉4,

where each ti is a Vi-valued function on F and s3 is a V3-valued function on F . It follows
that there is a unique connection φ on F for which

T (φ) = 〈τ 3, 〈ω, ω〉1〉2 + 〈τ 7, 〈ω, ω〉1〉4

for some V3-valued function τ 3 and some V7-valued function τ 7 on F .

We call this φ the intrinsic connection of F and we call the resulting torsion the
intrinsic torsion of F . We shall say that F is 1-flat or torsion-free if its intrinsic torsion
vanishes. (For an explanation of the term “1-flat,” see Bryant [1987]).

The equations τ 3 = τ 7 = 0 may be regarded as a set of 12 first order pde for the
section of the bundleF/H3 which determines F . Thus, locally, these represent 12 first order
equations for 13 unknowns. However, because this “underdetermined” system is invariant
under the diffeomorphism group of M , its behavior is hard to understand directly via the
classical approaches to pde systems. In particular, proving local existence of any local
solutions other than the flat solution is non-trivial and will be taken up in §3.

There is a natural equivalence relation, homothety, on H3-structures which is defined
as follows. Regard R

+, the positive real numbers, as a subgroup of GL(V3) by regarding
t ∈ R

+ as t times the identity mapping. Then, on F , Rt
∗(ω) = t−1ω. For any H3-structure

F , we can define F t = Rt(F ). We say that F t and F are homothetic and the set of H3-
structures homothetic to F will be called its homothety class. The mapping Rt:F → F t

is a bundle mapping and satisfies Rt
∗(ωt) = t−1ω and Rt

∗(φt) = φ where ωt and φt

are the tautological form and intrinsic connection, respectively, of F t. It follows that
Rt

∗((τ 3)t) = t τ 3 and Rt
∗((τ 7)t) = t τ 7. In particular, the condition of being torsion-free

is a homothety invariant.

Henceforth, F will denote a torsion-free H3-structure on M and φ will denote its
intrinsic connection. We thus have the first structure equation:

(1) dω = −〈φ, ω〉1.

Differentiating this equation then yields the relation 〈R(φ), ω〉1 = 0, which is the first
Bianchi identity. According to Table I of §1, the curvature of φ must be represented by
a V2-valued function on F . In fact, solving the first Bianchi identity shows that there is
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a unique V2-valued function a on F for which the following relation, known as the second
structure equation, holds:

(2)
dφ = − 1

2 〈φ, φ〉1 + R(φ)
= − 1

2 〈φ, φ〉1 + a〈ω, ω〉3 − 1
12 〈a, 〈ω, ω〉1〉2.

The following proposition explains the relationship of torsion-free H3-structures on M
with torsion-free connections on M whose holonomy is conjugate to H3.

Proposition 2.1: Let M be a smooth, simply connected 4-manifold. There is a one-to-one
correspondence between the set of torsion-free affine connections on M whose holonomy
is conjugate to a non-trivial subgroup of H3 and the homothety classes of torsion-free
H3-structures on M whose canonical connections are not flat.

Proof: Let F be a torsion-free H3-structure on M whose canonical connection φ is not
flat. Let ψ denote the gl(V3)-valued connection 1-form on F which restricts to F to become
φ. Then ψ is a torsion-free connection on F and hence corresponds to a unique torsion-free
affine connection ∇F on M . By construction, F is invariant under ∇F -parallel transport
and it follows that the holonomy of ∇F is conjugate to a subgroup of H3. Note that
∇F t = ∇F , so ∇F depends only on the homothety class of F .

Conversely, let ∇ be a torsion-free affine connection on M whose holonomy is conjugate
to a non-trivial subgroup of H3. Since the holonomy of ∇ is non-trivial, by the Ambrose-
Singer Holonomy Theorem, there must be a point x ∈ M at which the curvature R∇ is not
zero. Let u ∈ Fx be a linear isomorphism u:Tπ(u)M →̃V3 which induces an isomorphism
Hx →̃H ⊂ H3, where H is a non-trivial connected Lie subgroup of H3. Let P (u) ⊂ F
denote the ∇-holonomy bundle through u, and let P+(u) = P (u) ·H3 denote its extension
to an H3-subbundle of F . Let ψ denote the gl(V3)-valued 1-form on F which corresponds
to ∇.

Because the H3-structure P+(u) contains P (u), it follows that P+(u) is preserved by
∇-parallel transport and hence that ψ restricts to P+(u) to become a 1-form φ with values
in h3 � V2 and which is a connection on P+(u). Since ψ is torsion-free, it follows that φ is
also. It follows that φ is the intrinsic connection of F = P+(u) and that F is torsion-free.
In particular, (1) and (2) hold.

If, on F , we write

ω = ω−3 x3 + ω−1 x2y + ω1 xy2 + ω3 y3

and
a = a−2 x2 + a0 xy + a2 y2,

then the formula for R(φ) can be expressed as

R(φ) = (a−2(9ω−3 ∧ ω3 − 5ω−1 ∧ ω1) + 3a0 ω−3 ∧ ω1 − 6a2 ω−3 ∧ ω−1)x2

+ (−6a−2 ω−1 ∧ ω3 + a0(18ω−3 ∧ ω3 − 2ω−1 ∧ ω1) − 6a2 ω−3 ∧ ω1)xy

+ (−6a−2 ω1 ∧ ω3 + 3a0 ω−1 ∧ ω3 + a2(9ω−3 ∧ ω3 − 5ω−1 ∧ ω1) ) y2 .
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Since R∇ is non-zero at u ∈ F , it follows that a(u) is non-zero. From this explicit formula
for R(φ) it follows that, at u, this 2-form does not have values in any proper subspace of V2

and hence that the holonomy algebra h cannot be a proper subspace of h3. In particular,
again by an application of the Ambrose-Singer Holonomy Theorem, we must have H = H3

and F = P+(u) = P (u).
Now let u′ ∈ F be any other coframe u′:Tπ(u′)M →̃V3 which induces an isomorphism

Hπ(u′)(∇) →̃H3. By parallel transport, we may assume that π(u′) = π(u) = x. It follows
that u′ = A ◦ u where A is an element of the normalizer of H3 in GL(V3). However, it is
easily seen that this normalizer is G3. In particular, A = t g where g ∈ H3 and t ∈ R

+. It
follows that P (u′) = Rt(P (u)) = F t. Thus, ∇ canonically determines the homothety class
of F .

The monicity of the correspondence just constructed is now immediate. �

It is worth remarking that, in the course of the above proof, we showed that no non-
trivial proper subgroup of H3 can be the holonomy of an affine torsion-free connection on
M .

Let us now explore the consequences of the structure equations (1) and (2). If we
write Da = da + 〈φ, a〉1, then the derivative of (2) becomes the relation Da ∧ 〈ω, ω〉3 −
1
12 〈Da, 〈ω, ω〉1〉2 = 0. This relation can be solved, showing that Da = 〈b, ω〉2 for some
unique V3-valued function b on F . This gives the third structure equation,

(3) d a = −〈φ, a〉1 + 〈b, ω〉2 .

Setting Db = d b+〈φ, b〉1 and differentiating (3), gives the relation −〈R(φ), a〉1+〈Db, ω〉2 =
0, which can be solved for Db to show that there exists a V0-valued function c on F so
that the fourth structure equation holds:

(4) d b = −〈φ, b〉1 + (c − 〈a, a〉2)ω + 1
12〈〈a, a〉0 , ω〉2.

Finally, differentiation of (4) gives the fifth structure equation

(5) d c = 0.

No further relations can be deduced by differentiation of the equations (1)–(5). In the
next section, we will use these equations to establish the existence of non-flat, torsion-free
H3-structures and determine their “generality.”

We now turn to the case of G3 ⊂ GL(V3) which, at first, is similar to that of H3. Let
F ⊂ F be an G3 subbundle, i.e., a G3-structure on M . We denote the restriction of π
and ω to F by the same letters. Note that the set of G3-structures on M is in one-to-one
correspondence with the set of sections of the quotient bundle π̄:F/G3 → M whose general
fiber is isomorphic to GL(V3)/G3, a homogeneous space of dimension 12.

Again, we wish to introduce a canonical connection on F . Now g3 = R · idV3 + h3 �
V0 ⊕ V2. We will use these identifications to regard a connection on F as an equivariant
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(V0 ⊕V2)-valued 1-form ϕ = λ + φ on F , where λ is a V0-valued 1-form on F and φ is, as
before, a V2-valued 1-form on F . The torsion of ϕ is represented by the V3-valued 2-form
T (ϕ) = dω + λ∧ω + 〈φ, ω〉1 and the curvature of ϕ is represented by the (V0 ⊕V2)-valued
2-form R(ϕ) = dϕ + 1

2〈ϕ,ϕ〉1 = dλ + dφ + 1
2〈φ, φ〉1.

By an argument entirely analogous to the one for H3 and which need not be recounted
here, it can be shown that there is a unique connection ϕ on F for which the torsion takes
the form

T (ϕ) = 〈τ, 〈ω, ω〉1〉4
for some some V7-valued function τ on F . We call the resulting connection ϕ the intrinsic
connection of F and the resulting torsion the intrinsic torsion of F . We say that F is
1-flat or torsion-free if its intrinsic torsion vanishes.

The equations τ = 0 represent a set of 8 first order pde for the section of the bundle
F/G3 which determines F . Thus, locally, these represent 8 first order equations for 12 un-
knowns. As in the H3 case, because these equations are invariant under the diffeomorphism
group of M , they cannot be written locally as an “underdetermined Cauchy-Kowalewski
system,” in the usual sense. Thus, a direct application of pde techniques to the study of
the “generality” of the solutions of these equations modulo diffeomorphism equivalence is
not easy. It is not at all obvious that this “solution space” is even non-empty.

For the remainder of this section, F will denote a torsion-free G3-structure on M and
ϕ will denote its intrinsic connection. The first structure equation is then

(6) dω = −λ ∧ ω − 〈φ, ω〉1.

Differentiating (6) then yields the relation

dλ ∧ ω + 〈dφ + 1
2
〈φ, φ〉1, ω〉1 = 0,

which is the first Bianchi identity. According to Table II of §1, the curvature of ϕ must be
represented by a (V2 ⊕V4)-valued function on F . In fact, solving the first Bianchi identity
shows that there exist on F a unique V2-valued function a2 and a unique V4-valued function
a4 for which the following relations, the second structure equations, hold:

(7)
dλ = 〈a4, 〈ω, ω〉1〉4
dφ = − 1

2〈φ, φ〉1 + a2 〈ω, ω〉3 − 1
12〈a

2, 〈ω, ω〉1〉2 + 1
12 〈a

4, 〈ω, ω〉1〉3.

Unfortunately, there does not seem to be a simple analogue of Proposition 2.1 for the
case of G3. This is due, in part, to the fact that g3 contains non-trivial algebras h (besides
h3) for which K(h) �= 0. However, we do have the following statement.

Proposition 2.2: Let M be a smooth, simply connected 4-manifold. Any torsion-free G3-
structure F on M determines a unique torsion-free affine connection on M whose holonomy
is (conjugate to) a subgroup of G3. Conversely, any torsion-free affine connection on M
whose holonomy is (conjugate to) G3 corresponds to a unique torsion-free G3-structure on
M .
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Proof: The construction of the correspondence and proof of this proposition are com-
pletely analogous to those of Proposition 2.1. The essential point in the proof of the second
statement of the proposition is that G3 is its own normalizer in GL(V3). �

Finally, for use in the next section, we derive the G3-analogues of the third and fourth
structure equations. A glance at Table II of §1 shows that we should expect the first
covariant derivative of the curvature tensor of ϕ to be represented by a function on F
which takes values in the vector space V1 ⊕ V3 ⊕ V5 ⊕ V7. In fact, computing the exterior
derivative of (7) and solving the resulting relations allows us to show that, for each i = 1,
3, 5, or 7, there exists a unique Vi-function bi on F so that the following equations hold:

(8)
d a2 = 2λ ∧ a2 − 〈φ, a2〉1 + 10〈b1, ω〉1 + 〈b3 , ω〉2 + 14〈b5, ω〉3
d a4 = 2λ ∧ a4 − 〈φ, a4〉1 + 9〈b1, ω〉0 − 5〈b5, ω〉2 + 〈b7, ω〉3

We shall need formulas for the derivatives of the functions bi as well. This leads to a
rather formidable linear algebra problem. Fortunately, however, this can be solved easily
by simple Maple procedures. We merely record the result here: Set

(9)

β1 = d b1 − 3λ ∧ b1 + 〈φ, b1〉1
+ 1

30 〈〈a
2, a4〉2, ω〉2 − 〈 1

108〈a
4, a4〉2 − 1

16〈a
2, a4〉1, ω〉3

β3 = d b3 − 3λ ∧ b3 + 〈φ, b3〉1 + 1
15 〈〈a

2, a4〉2, ω〉1
− 〈 1

405 〈a
4, a4〉2 − 1

30 〈a
2, a4〉1 + 1

12〈a
2, a2〉0, ω〉2 − 4

25 〈〈a
2 , a4〉0, ω〉3

β5 = d b5 − 3λ ∧ b5 + 〈φ, b5〉1 − 〈 1
1260 〈a

4, a4〉2 + 1
240 〈a

2, a4〉1, ω〉1
+ 1

150
〈〈a2, a4〉0, ω〉2 + 1

70
〈〈a4, a4〉0, ω〉3

β7 = d b7 − 3λ ∧ b7 + 〈φ, b7〉1.

A calculation then shows that the exterior derivatives of the equations (8) can be written
in the form

(10)
0 = 10〈β1, ω〉1 + 〈β3, ω〉2 + 14〈β5, ω〉3
0 = 9〈β1, ω〉0 − 5〈β5, ω〉2 + 〈β7, ω〉3.

Another calculation then shows that, for each i = 0, 2, 4, 6, 8, or, 10 there exists a unique
Vi-valued function ci on F so that

(11)

β1 = − 35〈c2, ω〉2 − 147〈c4, ω〉3
β3 = 〈c0, ω〉0 + 56〈c2, ω〉1 − 392〈c4, ω〉2 + 168〈c6, ω〉3
β5 = 9〈c2, ω〉0 + 9〈c4, ω〉1 + 3〈c6, ω〉2 + 〈c8, ω〉3
β7 = −162〈c4, ω〉0 + 10〈c6, ω〉1 − 2〈c8, ω〉2 + 〈c10, ω〉3.

The main importance of this formula (as we shall see in the next section) is that the
space of solutions of the equations (10) at each point of F has dimension

dim(V0 ⊕V2 ⊕ V4 ⊕ V6 ⊕ V8 ⊕V10) = 36.
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§3. The Existence Theorems

In this section, we turn to the question of the existence and “generality” of the set
of torsion-free H3- or G3-structures on 4-manifolds. These problems, though expressible
locally in terms of pde, are rather difficult to treat directly because of their diffeomorphism
invariance. Our approach will be to cast these problems as problems in exterior differential
systems via a technique due originally to Élie Cartan [1943].

We will begin by treating the case of G3. First, we note that we can just as well regard
Vp for each p ≥ 0 as a GL+(2, R) representation where GL+(2, R) is the group of linear
transformations in the two variables x and y with positive determinant. However, note
that the pairings 〈 , 〉p are not GL+(2, R)-equivariant for p > 0. For the sake of simplicity,
we shall denote the action of g ∈ GL+(2, R) on v ∈ Vp by g · v. Note that in the case
p = 3 this establishes a canonical isomorphism G3 = GL+(2, R). We shall identify these
two groups via this isomorphism from now on when there is no possibility of confusion.

Suppose that F is a torsion-free G3-structure on a 4-manifold M . The structure
equations derived in the last section then show that we have G3-equivariant mappings
ai:F → Vi for i = 2 or 4, and bj :F → Vj for j = 1, 3, 5 or 7. To simplify our notation, let
us set V = V2⊕V4 and W = V1⊕V3⊕V5⊕V7 and let a = a2 +a4 and b = b1 + b3 + b5 + b7

be regarded as mappings of F into V and W respectively. We define the total curvature
mapping of F to be the map K:F → V ⊕W where K = a + b.

We shall say that F is non-degenerate if the mapping a:F → V is a local diffeo-
morphism. Since F and V both have dimension 8, this is not an unreasonable notion.
Indeed, if non-degenerate, torsion-free G3-structures exist, one expects them, in some
sense, to be “generic” among torsion-free G3-structures. If F is non-degenerate, the map-
ping K:F → V ⊕W determines an 8-dimensional, G3-invariant, immersed submanifold of
V ⊕W.

We shall now show how this process can be reversed, at least locally. That is, we are
going to show that the image K(F ) determines M and F locally up to diffeomorphism.
Moreover, we shall show that K(F ) is characterized as an integral manifold of a certain
exterior differential system with independence condition.

We now turn to the construction of this differential system. Let ai:V ⊕W → Vi for
i = 2 or 4, and bj:V ⊕W → Vj for j = 1, 3, 5 or 7 denote the projections thought of as
vector-valued functions on V ⊕W. We would like to define 1-forms λ, φ, and ω on V ⊕W
with values in V0, V2, and V3 respectively, so that the following equations hold:

(1)
da2 = 2λ ∧ a2 − 〈φ,a2〉1 + 10〈b1,ω〉1 + 〈b3,ω〉2 + 14〈b5,ω〉3
da4 = 2λ ∧ a4 − 〈φ,a4〉1 + 9〈b1,ω〉0 − 5〈b5,ω〉2 + 〈b7,ω〉3.

Setting a = a2 + a4 and b = b1 +b3 +b5 + b7, this set of equations can be written in the
form

(1∗) da = A(a)(λ + φ) + B(b)(ω)
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where A is linear mapping from V to hom(V0 ⊕V2,V2 ⊕V4) and B is linear mapping from
W to hom(V3,V2 ⊕ V4). Regarding A(a) and B(b) as vector-valued functions on V ⊕W,
we can define a function J on V ⊕ W with values in hom(V0 ⊕ V2 ⊕ V3,V2 ⊕ V4) by the
property that J(u+v) = A(a)(u)+B(b)(v) for all u ∈ V0⊕V2 and v ∈ V3. Thus, the above
equation can also be written as da = J(λ + φ + ω). Since the vector spaces V0 ⊕V2 ⊕V3

and V2 ⊕V4 both have dimension 8, it follows that, relative to the standard bases of these
two spaces, J has a representation as a square matrix (whose entries are linear functions
on V ⊕ W). Let D be the determinant of this matrix representation of J. Then D is a
polynomial function of degree 8 on V ⊕W and it is not hard to check (using Maple) that
D does not vanish identically.

Let O ⊂ V ⊕W denote the open set where D is non-zero. Then, on O, we define λ,
φ, and ω by the formula

(2) λ + φ + ω = J−1da.

Note that, with this definition, the equations (1) become identities. Moreover, if we set

Ω = λ0 ∧ φ−2 ∧ φ0 ∧ φ2 ∧ ω−3 ∧ ω−1 ∧ ω1 ∧ ω3,

then we have

Ω = D−1da2
−2 ∧ da2

0 ∧ da2
2 ∧ da4

−4 ∧ da4
−2 ∧ da4

0 ∧ da4
2 ∧ da4

4.

We are now ready to define an exterior differential system on O. First, we define the
following 2-forms on O:

(3)

Θ = dω + λ ∧ ω + 〈φ,ω〉1,
Λ = dλ − 〈a4, 〈ω,ω〉1〉4,
Φ = dφ + 1

2 〈φ,φ〉1 − a2 〈ω,ω〉3 + 1
12 〈a

2, 〈ω,ω〉1〉2 − 1
12 〈a

4, 〈ω,ω〉1〉3.

Using the identities (1), it is straightforward to compute that the exterior derivatives of
these 2-forms are given by the formulas

(4)

dΘ = Λ ∧ ω − λ ∧ Θ + 〈Φ,ω〉1 − 〈φ,Θ〉1,
dΛ = 2〈a4, 〈ω,Θ〉1〉4,
dΦ = −〈φ,Φ〉1 + 2a2 〈ω,Θ〉3 − 1

6 〈a
2, 〈ω,Θ〉1〉2 + 1

6 〈a
4, 〈ω,Θ〉1〉3.

It follows that the exterior ideal I ⊂ Ω∗(O) generated by the eight 2-forms

Λ0,Φ−2,Φ0,Φ2,Θ−3,Θ−1,Θ1,Θ3

is differentially closed.
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Proposition 3.1: Let F be a non-degenerate, torsion-free G3-structure on a 4-manifold
M . Then the curvature mapping a + b:F → V ⊕W has its image in O ⊂ V ⊕W and is an
integral manifold of the differential system with independence condition (I,Ω). Conversely,
every integral manifold of (I,Ω) is locally the image of a non-degenerate, torsion-free G3-
structure on some 4-manifold M and this G3-structure is unique up to diffeomorphism.

Proof: First, suppose that F is a non-degenerate, torsion-free G3-structure on M . Then
the structure equations (2.6–8) hold for the canonical 1-forms ω, λ, and φ and functions
ai and bj on F . The curvature mapping K = a + b satisfies K:F → V ⊕W and clearly
satisfies K∗(ai) = ai and K∗(bj) = bj . Now, (2.8) takes the form da = K∗(J)(λ + φ + ω).
By the hypothesis that F is non-degenerate, we know that the rank of the differential of
the mapping a:F → V is 8, so it follows that K∗(J) must be invertible. Thus, K∗(D) �= 0,
so K(F ) ⊂ O. Now, pulling back the identity (2), we get

(5)
K∗(λ + φ + ω) = K∗(J)−1dK∗(a)

= K∗(J)−1da = (λ + φ + ω).

Of course, it then follows that K∗(λ) = λ, K∗(φ) = φ, and K∗(ω) = ω. Then the
structure equations (2.6,7) imply that K∗(Λ) = 0, K∗(Φ) = 0, and K∗(Θ) = 0. Moreover,
we clearly have K∗(Ω) �= 0. Thus, K:F → V ⊕ W is an integral manifold of (I,Ω), as
desired.

Now, for the converse. Let P 8 ⊂ O be a connected integral manifold of (I,Ω) and let
ι:P ↪→ O denote the inclusion mapping. Let us define ι∗(λ) = λ̄, ι∗(φ) = φ̄, ι∗(ω) = ω̄,
ι∗(ai) = āi, and ι∗(bj) = b̄j . Since P is an integral manifold of (I,Ω), it follows that
these quantities satisfy the barred versions of the equations (2.6–8), which we will denote
by (2.6̄–8̄). Moreover, the eight 1-form components of λ̄, φ̄, and ω̄ are independent on P
since ι∗(Ω) �= 0 and hence they form a coframing on P .

For any element v = v0 + v2 ∈ V0 ⊕ V2, let Xv denote the unique vector field on P
which satisfies the equations (λ̄ + φ̄)(Xv) = v and ω̄(Xv) = 0. The equations (2.6̄–8̄) then
yield the formulas

(6)

LXv ω̄ = −v0ω̄ − 〈v2, ω̄〉1
LXv λ̄ = 0

LXv φ̄ = − 〈v2, φ̄〉1
LXv āi = 2v0āi − 〈v2, āi〉1
LXv b̄i = 3v0b̄j − 〈v2, b̄j〉1

where LXv denotes the Lie derivative with respect to Xv. From these formulas, it follows
easily that the vector fields {Xv | v ∈ V0 ⊕ V2 } generate a locally free right action of the
group GL+(2, R) on P in such a way that ι = ā+b̄ is equivariant with respect to the natural
right GL+(2, R) action on V ⊕W generated by the right action on each summand given
by Rg(u) = g−1 · u for u ∈ Vp. In particular, note that, for each z ∈ P , the intersection
P ∩ (z · GL+(2, R)) is of dimension 4 and is an open subset of the orbit z · GL+(2, R).
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Now let z0 ∈ P be fixed. It follows from the above discussion that there is a neigh-
borhood U of z0 in P which can be written in the form U = M · V where M ⊂ P is a
connected submanifold of dimension 4 which passes through z0 and which is transverse
to the local GL+(2, R) orbits and V is a connected open neighborhood of the identity in
GL+(2, R). Let π̄:U → M be the projection onto the first factor. Let π:F → M denote,
as usual, the GL(V3) coframe bundle of M . There is a natural mapping τ :U → F which is
defined as follows: For u ∈ U , we let τ (u) denote the linear isomorphism τ (u):Tπ̄(u) →̃V3

which satisfies ω̄(v) = τ (u)(π̄∗(v)) for all v ∈ TuU .
It is now easy to check that τ is a GL+(2, R)-equivariant embedding and that there

exists a unique G3-structure F on M which contains τ (U) (as an open subset). Moreover,
if ω represents the tautological form on F , then τ ∗(ω) = ω̄. It follows easily that if φ
and λ represent the intrinsic connection and torsion on F , then they satisfy τ ∗(φ) = φ̄
and τ ∗(λ) = λ̄. We then conclude from the equations (2.6̄–8̄), that F is a torsion-free
G3-structure. Moreover, we must have τ ∗(ai) = āi and τ ∗(bj) = b̄j . It then follows that
ι|U = ā + b̄ = K ◦ τ , where K = a + b is the curvature mapping of F . Moreover, since
ā = a ◦ τ , we see that a:F → V is an immersion. Thus, F is non-degenerate.

We have shown that P is locally of the form K(F ) for a non-degenerate G3-structure
F . Local uniqueness of F up to diffeomorphism can safely be left to the reader. �

We now turn to the problem of proving the existence of non-degenerate torsion-free
G3-structures. By Proposition 3.1, it suffices to prove the existence of integral manifolds
of (I,Ω).

As a first step in this analysis, let us define, for each i = 1, 3, 5, or 7, the Vi-
valued 1-form β

i on O by “emboldening” the definition of βi in (2.9). For example,
β

i = db7 − 3λ ∧ b7 + 〈φ,b7〉1. We will also use the notation β = β
1 + β

3 + β
5 + β

7.
If we differentiate (1∗), then, after a considerable amount of linear algebra, we can

express the result in the form

(7) A(a)(Λ + Φ) + B(b)(Θ) = −B(β)(ω).

Since J(Λ + Φ + Θ) = A(a)(Λ + Φ) + B(b)(Θ) and J is invertible on O, it follows that
the differential system I can equally well be generated by the eight components of the
(V2 ⊕ V4)-valued 2-form B(β)(ω).

Proposition 3.2: The differential system with independence condition (I,Ω) is in linear
form and involutive on O with Cartan characters s0 = 0, s1 = s2 = 8, s3 = 4 and si = 0
for i > 3.

Proof: According to the discussion just above, I is generated by the components of the
2-forms Υ

2 and Υ
4 where

(8)
Υ

2 = 10〈β1,ω〉1 + 〈β3,ω〉2 + 14〈β5,ω〉3
Υ

4 = 9〈β1,ω〉0 − 5〈β5,ω〉2 + 〈β7,ω〉3.

This clearly shows that I is in linear form.
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Now, according the calculation done at the end of §2 which resulted in (2.11), the
space of integral elements of (I,Ω) at each point of O is an affine space of dimension
S = 36.

It remains to calculate the Cartan characters. Relative to the sequence

σ = (ω−3,ω3,ω−1,ω1,λ0,φ−2,φ0,φ2)

(note the ordering), the reduced character sequence is easily shown to be s′0 = 0, s′1 = s′2 =
8, s′3 = 4 and s′i = 0 for i > 3. Since S = 36 = s′1 +2s′2 +3s′3 +4s′4 +5s′5 +6s′6 +7s′7 +8s′8,
it follows that Cartan’s Test is verified, so the sequence σ is regular

Thus, (I,Ω) is involutive. Moreover, si = s′i for 0 ≤ i ≤ 8. �

Theorem 3.3: There exist torsion-free, non-degenerate G3-structures whose holonomy is
equal to G3. In fact, modulo diffeomorphism, the general such structure depends on four
functions of three variables.

Proof: It is clear that, for an open set U of values a = a2 + a4 ∈ V2 ⊕V4, the associated
curvature tensor in K(g3) does not lie in K(g) for any proper subalgebra g ⊂ g3. Thus,
if F is a torsion-free, non-degenerate G3-structure on a 4-manifold M whose curvature
function a takes values in U , then the holonomy of F will be equal to G3.

By the Cartan-Kähler theorem, since the differential system (I,Ω) is involutive and
real-analytic on O, there exist integral manifolds of (I,Ω) passing through every point
of O. It follows easily that there exists a torsion-free, non-degenerate G3-structure on a
4-manifold M whose curvature function a takes values in U . The statement about the
generality of such structures up to diffeomorphism follows immediately from Proposition
3.2 in which it was shown that the last non-zero character of (I,Ω) is s3 = 4. �

Note that, in view of Proposition 2.2, one effect of Theorem 3.3 is to prove that there
do indeed exist torsion-free affine connections whose holonomy is G3.

Before leaving the differential system I, let us note that it has four-dimensionalCauchy
characteristics, namely the orbits of the action of GL+(2, R) on O. Unfortunately, this
action is not free, so passing to the orbit space will not generally yield a smooth manifold,
only an orbifold. However, it is not difficult to show that the generic point of O has trivial
GL+(2, R)-stabilizer.

Let O∗ ⊂ O denote the open set on which GL+(2, R) acts freely. The quotient
X∗ = O∗/GL+(2, R) is then a smooth manifold. If we let π:O∗ → X∗ denote the canonical
projection, then the fibers of π are the Cauchy characteristics of the system I. Thus, there
is an exterior differential system with independence condition (Ī, Ω̄) on X∗ whose local
integral manifolds are of dimension 4 and are the GL+(2, R)-quotients of the local integral
manifolds of (I,Ω). This “reduced” system is the natural one for discussing the geometry
of the integral manifolds. However, working directly on this space is awkward because
there is no natural basis for the generators of (Ī, Ω̄).

We will close our discussion of the G3 case in this section by briefly describing the
characteristic variety of the integral manifolds.
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Although the action of SL(2, R) on V3 does not preserve any symmetric quadratic or
cubic forms, it does preserve a quartic form Q given by Q(v) = 〈〈v, v〉2 , 〈v, v〉2〉2 for all
v ∈ V3. It is easy to see that Q(v) = 0 if and only if v has a double or triple linear factor
when regarded as a homogeneous cubic polynomial in x and y. Thus, Q is essentially the
discriminant of v.

If a 4-manifold M is endowed with a G3-structure F , then each tangent space TxM
can be identified with V3 up to an action of G3, and thus, the polynomial Q is well-defined
up to a scalar multiple on TxM . In particular, Ξx ⊂ P(TxM), the zero locus of Q, is a well
defined algebraic hypersurface of degree 4. The union of all of these varieties as x ∈ M
varies is a subset Ξ ⊂ P(TM). It is not difficult to show that if F is a torsion-free, non-
degenerate G3-structure, then Ξ is the characteristic variety of the corresponding integral
of the Cauchy-reduced exterior differential system Ī.

We now turn to the case of H3. The remainder of this section will be devoted to
a proof that torsion-free H3-structures do, indeed, exist. Moreover, in a certain sense,
the moduli space of torsion-free H3-structures modulo diffeomorphism will be shown to
consist of the disjoint union of a two-dimensional space, two one-dimensional spaces, and
four points.

It is natural to attempt an analysis similar to the one which worked for G3. However,
due to a remarkable identity to be described below, the H3 situation is quite different.

Let F be a torsion-free H3-structure on a 4-manifold M . Using the notation from
§2, there are well-defined functions a and b on F with values in V2 and V3 respectively.
Note that, under the homothety action, we have Rt

∗(at) = t2 a, Rt
∗(bt) = t3 b, and

Rt
∗(ct) = t4 c. Thus, we will assign the functions a, b, and c the weights 2, 3, and 4,

respectively. Similarly, we assign ω and φ the respective weights −1 and 0. Of course, by
homothety, we could now reduce to the cases where c = −1, 0, or 1, but this does not
significantly simplify the calculations, so we will carry c along as a parameter.

For simplicity of notation, let us set V = V2 ⊕ V3 and let a:V → V2 and b:V → V3

denote the projections thought of as vector-valued functions on V . If we set K = a+b, then
K:F → V is a SL(2, R)-equivariant mapping satisfying K∗(a) = a and K∗(b) = b. Since
both F and V have dimension 7, one might hope to use this mapping and the structure
equations (2.3–4) to embed (or at least immerse) F into V and then mimic the procedure
which worked for G3.

However, this fails for the following reason: Let us write (2.3–4) in the form

(9) da + db = J (φ + ω).

where J is a function on F with values in hom(V ,V). Now J = K∗(Jc) where Jc:V →
hom(V ,V) is a polynomial mapping which depends upon a real parameter c. Relative to
the standard basis (x2, xy, y2, x3, x2y, xy2 , y3) of V , the linear transformation Jc has the
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matrix representation

(10) Jc =




−2a0 2a−2 0 6b1 −4b−1 6b−3 0
−4a2 0 4a−2 18b3 −2b1 −2b−1 18b−3

0 −2a2 2a0 0 6b3 −4b1 6b−1

−2b−1 3b−3 0 c − q1 −a−2a0 a2
−2 0

−4b1 b−1 6b−3 3a0a2 c − q2 0 3a2
−2

−6b3 −b1 4b−1 3a2
2 0 c − q2 3a−2a0

0 −3b3 2b1 0 a2
2 −a0a2 c − q1




where q1 = 3a−2a2 − 3
2a

2
0 and q2 = 5a−2a2 − 1

2a
2
0.

If J were invertible, then we could regard the components of the functions a and
b as a natural coordinate system on F and define the forms φ and ω by the formula
(φ+ω) = J−1 (da+db). However, by direct Maple calculation, one reaches the remarkable
conclusion that det(Jc) ≡ 0.

Thus, we must seek other methods for determining whether there exist local 1-forms
φ and ω with linearly independent components satisfying (2.1–4) on open domains in R

7

for any value of the constant c. This class of problem was addressed by É. Cartan via
his generalization of the third fundamental theorem of Lie, (Cartan [1904]). However,
appealing to Cartan’s general results at this point is somewhat unsatisfactory. First, his
treatment is rather sketchy in the “intransitive” case (he does not even state a theorem
explicitly) and this is the case into which our problem falls. Second, in our case, much
more information can be got by direct methods.

Since det(Jc) ≡ 0, it follows that, if we let Lc denote the classical adjoint matrix of
Jc (i.e., the matrix of 6-by-6 minors), then LcJc = JcLc = 0. Computation of Lc as a
matrix with entries which are polynomial in the quantities a, b, and c shows that Lc does
not vanish identically. (The reader should be careful to distinguish L = K∗(Lc) from Lc,
for it can happen that L vanishes identically.) Let Σc ⊂ V denote the subset on which Lc

vanishes. For x ∈ V \ Σc, the linear mapping Jc(x):V → V has rank 6 and the mapping
Lc has rank 1.

It is a standard (and easy) result in commutative algebra that a rectangular matrix
with polynomial entries which has rank at most 1 for all values of the indeterminates in
the polynomials can be factored into the product of a column and a row, each of whose
entries are also polynomials. This applies to Lc to show that there must exist polynomial
mappings rc:V → V and ρc:V → V∗ so that Lc(v) = ρc(v) rc for all v ∈ V . Of course,
actually finding rc and ρc is an enormous algebra problem which requires factoring the
entries of Lc.

Just this once, we will comment on the mechanical calculations: The typical entry of
Lc has between 150 and 200 terms in the a and b variables. For some inexplicable reason
having to do with the algorithm used to find factors, Maple was unable to factor about
half of the entries. Fortunately, as the reader will have realized, it suffices to factor at least
one entry in each row and column. This Maple was able to do.

The typical entry is the product of two irreducible factors of degree 5. In the cases
where Maple was able to factor the entry, the process took about 10 to 15 minutes on
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a Macintosh SE/30. When Maple failed to find a factorization, it typically reported
failure or returned errors in about 5 minutes. For a SUN 3/60 implementation of the same
problem, corresponding processes were about four times as fast. Reassuringly(?), failures
and errors were reported for the same entries on both machines.

Once enough entries of Lc had been factored to determine candidates for rc and ρc,
factorizations of the remaining entries were easily checked by multiplication.

The result of this calculation can be described as follows: Let pc:V → V2, q:V → V1,
r2

c :V → V2, and r3
c :V → V3 be the following polynomial functions:

(11)

pc = (2c − 〈a,a〉2)a − 〈b,b〉2 ,

q = 〈a,b〉2 ,

r2
c = 7

6
〈q,q〉0 + 1

3
〈〈a,b〉1 ,q〉1 + 1

2
(2c − 〈a,a〉2)pc − 〈a,pc〉2a ,

r3
c = −〈b,pc〉1 − a〈a,q〉1 .

Then for all v = v2 + v3 ∈ V with vi ∈ V i, we have

(12) Lc(v) =
(
〈r2

c , v
2〉2 − 〈r3

c , v
3〉3

)
(r2

c + r3
c).

In particular, note that

(13) Σc =
{
x ∈ V | r2

c(x) = r3
c(x) = 0

}
.

Now a second remarkable identity occurs: If we set

(14) ρc = 〈r2
c , da〉2 − 〈r3

c , db〉3 ,

then the 1-form ρc is closed. In particular, by the polynomial Poincaré lemma, there must
exist a polynomial Rc on V so that dRc = ρc. If we normalize this polynomial by requiring
that it vanish at 0 ∈ V , then

(15) Rc = 1
4 〈pc,pc〉2 + 1

2〈a, 〈q,q〉0〉2

This function Rc has the following significance: By construction, its differential ρc at
each point x ∈ V is a linear form on V whose kernel contains the image of Jc(x). Since
K = a + b = J(φ + ω) = K∗(Jc)(φ + ω), it follows that for each f ∈ F , the image of the
differential mapping dKf :TfF → TK(f)V lies in the kernel of ρc at K(f). In other words,
K∗(ρc) = 0. Thus, K maps F into a level set of Rc.

(Upon seeing this, the reader may well wonder why it is so remarkable that ρc is
closed. After all, if, for every point x ∈ V , there were an H3-structure F whose curvature
mapping K covered x and whose differential had rank 6, then V would be foliated by
codimension 1 integral manifolds of ρc. This would, of course, imply that ρc ∧ dρc ≡ 0,
i.e., that ρc was integrable. However, this is still a long way from knowing that ρc is closed.
An integrable polynomial 1-form θ on a vector space V cannot generally be written (even
locally) in the form θ = f dg where g is a polynomial function on V .)
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Let r2 = K∗(r2
c) and r3 = K∗(r3

c). Since the 7 components of φ and ω form a
coframing of F , it follows that there exists a unique vector field Z on F for which we
have the identities φ(Z) = r2 and ω(Z) = r3. By (9), (12) and the fact that LJ = 0, it
follows that Z(u) lies in the kernel of the mapping dKu:TuF → TK(u)V for all u ∈ F . In
particular, a and b are constant on the integral curves of Z.

Another calculation now reveals a third remarkable identity:

(16) LZ φ = LZ ω = 0.

(Again, the knowledgeable reader may wonder why this is remarkable. After all, a general
theorem of Cartan [1904] implies that, locally on F , away from the singularities of Z,
there exists a multiplier µ so that the equations (16) are satisfied with Z replaced by µZ.
However, the general theory does not provide a method for finding µ other than integrating
a (linear) system of ODE. Luckily, in this case µ = 1 happens to work.)

It follows from (16) that the V-valued coframing φ + ω on F is preserved by the flow
of Z. Of course, this implies that either Z vanishes identically or else Z never vanishes.
(Remember that we are assuming that M (and hence F ) is connected.) We shall say that
a torsion-free H3-structure is regular if Z never vanishes and singular if Z is identically
zero.

For any regular torsion-free H3-structure F on M , the rank of the linear map J is 6 at
every point of F . In particular, for a regular F structure, the curvature mapping K:F → V
is a submersion into a level set of Rc in V \Σc. Moreover, the local flow of the vector field
Z fixes both φ and ω. Thus, we say that Z is an infinitesimal symmetry of the coframing
(φ, ω). Up to constant scalar multiples, Z is the only infinitesimal symmetry of (φ, ω).
This is because any infinitesimal symmetry Y would be tangent to the (one-dimensional)
fibers of K:F → V and hence be of the form µZ for some function µ. However, it is easy
to see that µZ is an infinitesimal symmetry only if µ is constant.

Of course, the infinitesimal symmetries of (φ, ω) on F are in one-to-one correspondence
with the vector fields on M whose flows preserve the H3-structure F , so it follows that any
regular torsion-free H3-structure on M has a one-dimensional local automorphism group.

We are now ready for the following fundamental theorem:

Theorem 3.4: Let c be any constant and let C ⊂ V \Σc be any level set of Rc in V \Σc.
Then C can be covered by open subsets U which have the following property: There exists
a principal R-bundle K:FU → U over U and 1-forms φ and ω on FU , with values in V2

and V3 respectively, satisfying

(i) φ + ω is a V-valued coframing on FU

(ii) The structure equations (2.1–4) are satisfied with a = K∗(a) and b = K∗(b).
Moreover, the triple (FU , φ, ω) is unique in the sense that any other R-bundle F ′ over

U equipped with a V-valued coframing φ′ + ω′ satisfying (i) and (ii) is bundle equivalent
to FU via an equivalence which identifies the coframings.

Proof: Let ā, b̄, r̄2, r̄3 , and J̄ denote the restrictions of the functions a, b, r2, r3, and
Jc, respectively, to C.
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We claim that there exist 1-forms φ̄ and ω̄ on C with values in V2 and V3 respectively
which satisfy the equation

(17) dā + db̄ = J̄ (φ̄ + ω̄).

To see this, first note that since C lies in V \ Σc, it follows that J̄ has rank 6 at
every point of C. Moreover, by construction, at each point of C, the 1-form dā + db̄ takes
values in the 6-dimensional subspace of V which is the image of J̄ . It follows that, as an
inhomogeneous system of linear equations for (φ̄, ω̄), the system (17) has a one-parameter
family of solutions at each point of C. Because J̄ has constant rank 6, it follows that (17)
can be solved smoothly for (φ̄, ω̄).

The kernel of J̄ is spanned at each point by the vector r̄2 + r̄3, so once one solution
(φ̄, ω̄) to (17) has been found, any other can be written in the form (φ̄ + r̄2α, ω̄ + r̄3α) for
some unique 1-form α on C.

It is worth remarking that the equations (17) can be expressed in the expanded form:

(17′)
d ā = −〈φ̄, ā〉1 + 〈b̄, ω̄〉2
d b̄ = −〈φ̄, b̄〉1 + (c − 〈ā, ā〉2) ω̄ + + 1

12〈〈ā, ā〉0, ω̄〉2.

Using the explicit formulas for r̄2 and r̄3 in terms of ā and b̄ derived from (11), it can be
calculated that

(18)
d r̄2 = −〈φ̄, r̄2〉1 − 2ā 〈r̄3 , ω̄〉3 + 1

6 〈ā, 〈r̄3 , ω̄〉1〉2
d r̄3 = −〈φ̄, r̄3〉1 + 〈r̄2, ω̄〉1 .

Now define the 2-forms

(19)
Θ̄ = d ω̄ + 〈φ̄, ω̄〉1
Φ̄ = d φ̄ + 1

2 〈φ̄, φ̄〉1 − ā 〈ω̄, ω̄〉3 + 1
12〈ā, 〈ω̄, ω̄〉1〉2 .

After some calculation, the exterior derivative of (17) can be written in the form 0 =
J̄(Φ̄ + Θ̄). Of course, since the kernel of J̄ is spanned by r̄2 + r̄3 , this implies that there
exists a 2-form Ψ̄ so that Φ̄ = r̄2Ψ̄ and Θ̄ = r̄3Ψ̄. Substituting these relations into (19),
differentiating, and using the relations (18), we compute that r̄2 d Ψ̄ = r̄3 d Ψ̄ = 0. This
implies that d Ψ̄ = 0.

Now let U ⊂ C be any open set on which there exists a 1-form α satisfying dα =
−Ψ̄. Clearly, C can be covered by such open sets. Replacing the pair (φ̄, ω̄) by the pair
(φ̄ + r̄2α, ω̄ + r̄3α), we may compute that, for this new pair, we have Φ̄ = Θ̄ = 0, so we
suppose this from now on. In other words, (φ̄, ω̄) satisfy the structure equations (2.1–4).

Now, let FU = R×U , let t denote a coordinate on the first factor, and let K:FU → U
denote projection onto the second factor. Let a, b, r2 , r3, and J denote the functions ā, b̄,
r̄2, r̄3, and J̄ regarded as functions on FU and define

(φ, ω) = (φ̄ + r̄2 dt, ω̄ + r̄3 dt).
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It is now just a matter of calculation to see that (FU , φ, ω) satisfies all of the conditions
of the Theorem. (This heavily uses all sorts of pairing identities as well as the equations
(17–19). It is not obvious.).

Finally, the uniqueness follows from the standard facts about mappings preserving
coframings, see Gardner [1989]. �

A corollary of Theorem 3.4 is the existence of regular torsion-free H3-structures:

Corollary 3.5: For any constant c0 and any point v ∈ V \ Σc0 , there exists a regular
torsion-free H3-structure F on a neighborhood of 0 ∈ R

4 with c = c0 and a frame u ∈ F0

so that K(u) = v. Moreover, F is locally unique up to diffeomorphism.

Proof: Let V be an open neighborhood of v in the level set of Rc0 which contains v and
to which Theorem 3.4 applies, and let (FV , φ, ω) be the corresponding triple. Let U ⊂ FV

be an open neighborhood of a point u ∈ FV which satisfies K(u) = v.
By the structure equations, the rank 4 Pfaffian system I generated by the components

of ω is completely integrable on FV . It follows that, by shrinking U if necessary, we may
suppose that there exists a submersion π:U → R

4 satisfying π(u) = 0 and whose fibers
are connected and constitute the leaves of I restricted to U .

We claim that there exists a unique immersion τ :U → F , where F is the GL(V3)
coframe bundle of R

4 which pulls back the tautological V3-valued 1-form on F to become
ω on U . Moreover, by shrinking U , we may even suppose that τ is an embedding and that
the image is an open subset of an H3-structure F on a neighborhood of 0 ∈ R

4. Finally,
the mapping τ pulls back the intrinsic connection form on F to become φ and the constant
c to be c0. The argument for these claims is exactly analogous to the one in the last
paragraph of the proof of Proposition 3.1, so we will not repeat it.

Since the forms φ and ω satisfy (2.1–4), it follows that F is torsion-free. Using τ to
identify U with an open set in F , it follows that K(u) = v as desired. By construction,
K(F ) ⊂ V ⊂ V \ Σc0 , so F is regular.

Finally, in order to prove local uniqueness, we appeal to Theorem 3.4 again. If F ′ were
another torsion-free H3-structure on a neighborhood of 0 ∈ R

4 which contained a point
u′ ∈ F ′

0 with K ′(u′) = v and had c = c0, then locally both K:F → V and K ′:F ′ → V
would be submersions into the level set of Rc0 which contained v and hence would, by the
uniqueness aspect of Theorem 3.4, be locally coframe equivalent. This clearly implies that
there exists a local diffeomorphism on a neighborhood of 0 ∈ R

4 which carries F ′ to F (see
Gardner [1989]). �

Of course, Corollary 3.5 is not the ideal statement. One would like to be able to
prove that each connected component C of a level set of Rc in V ⊂ Σc is of the form
K(FC) for some torsion-free H3-structure FC on a connected 4-manifold MC and that this
pair (MC , FC) is unique up to diffeomorphism. If we could do this, then we could begin
to make rigorous sense of the claim that, up to diffeomorphism, the regular, torsion-free
H3-structures form a moduli space of dimension 2 with “coordinates” given by the pair
(c,K∗(Rc)).

Note that a homothety class of torsion-free H3-structures in these “coordinates” would
be described by a curve of the form (ct, kt) = (t4c, t12k), so the moduli space of regular
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homothety classes (and hence, regular torsion-free connections with holonomy conjugate
to H3) would be one-dimensional.

Unfortunately, because we cannot, as yet, determine the topology of the components
C, the step in the proof of Theorem 3.4 where we must assume that the closed 2-form Ψ̄
is exact remains a stumbling block. The best we can do along these lines is state that,
if two torsion-free H3-structures, F1 and F2 are constructed via Corollary 3.5 using the
same constant c0 and points v1 and v2 which lie on the same connected component C of a
level set of Rc0 in V ⊂ Σc0 , then they must be “analytic continuations” of each other in
an appropriate sense.

We now turn our attention to the singular case, i.e., where Z vanishes identically.
This is equivalent to the condition that K:F → V has its image in Σc. This study will
therefore require a description of the singular locus Σc. Fortunately, because this locus is
invariant under the action of SL(2, R) (and because we can use Maple), this description
is available.

For c = 0, it can be shown that Σ0 is the union of two irreducible four-dimensional
components, Σ±

0 , which can be described as follows.

(20) Σ±
0 =

{
(±v2 + u2,∓v2u + 1

3
u3) ∈ V |u,v ∈ V1

}
.

These two components are smooth away from their two-dimensional intersection, Σ0
0, given

by
Σ0

0 =
{
(u2, 1

3u
3) ∈ V |u ∈ V1

}
.

Note that Σ0
0 itself is smooth except at the point (0, 0) ∈ V .

Moreover, the matrix J0 has rank 4 on Σ±
0 \Σ0

0, rank 2 on Σ0
0 \{(0, 0)}, and (of course)

rank 0 at (0, 0).

Now, let us assume that c �= 0. By (11), it is clear that the equations r2 = r3 = 0 are
satisfied on the locus where pc and q vanish. Thus, we can define a subset of Σc by

(21) Σ1
c = {(a,b) ∈ V | (2c − 〈a,a〉2)a − 〈b,b〉2 = 〈a,b〉2 = 0 } .

For c �= 0, it can be shown that Σ1
c is irreducible and smooth of dimension 4. Moreover,

the matrix Jc has rank 4 everywhere on Σ1
c .

It turns out that there is one other component Σ2
c of Σc and it can be parametrized

as follows:

(22) Σ2
c =

{
(v + u2, 1

3u
3 − vu) ∈ V | u ∈ V1, v ∈ V2, where 〈v,v〉2 = 2

3c
}

.

It can be shown that Σ2
c is algebraically irreducible and smooth of dimension 4. (Topolog-

ically, Σ2
c is the product of R

2 with an hyperboloid of either two or one sheets depending
on whether c is positive or negative.) Moreover, the matrix Jc has rank 4 everywhere on
Σ2

c .

Note that, as c → 0, both Σ1
c and Σ2

c reduce to the union of the two components Σ±
0

of Σ0.
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By an analysis similar to the one carried out in the course of proving Theorem 3.4 and
Corollary 3.5, we can arrive at the following theorem which classifies all of the singular
torsion-free H3-structures. The results of this theorem are more global than those in the
regular case since we have a good description of the topology of the singular locus Σc. We
omit the (straightforward) proof.

Theorem 3.6: The following singular torsion-free H3-structures exist and have the stated
properties. Except as noted otherwise, these belong to distinct homothety classes. More-
over, every singular torsion-free H3-structure is locally diffeomorphic to exactly one on this
list.

(i) For each c0 �= 0, an H3-structure F 1
c0

on a connected 4-manifold M1
c0

with the property
that c = c0 and whose curvature mapping K:F 1

c0
→ V is a submersion onto Σ1

c0
. The

symmetry group of F 1
c0

has dimension 3. The structures F 1
c0

and F 1
c1

belong to the
same homothety class if and only if c1 and c0 have the same sign.

(ii) For each c0 �= 0, an H3-structure F 2
c0

on a 4-manifold M2
c0

with the property that
c = c0 and whose curvature mapping K:F 2

c0
→ V is a submersion onto Σ2

c0
. The

symmetry group of F 2
c0

has dimension 3. If c0 < 0, then M2
c0

is connected and all of
these F 2

c0
belong to the same homothety class. If c0 > 0, then M2

c0
has two connected

components and each of these components determines a unique homothety class.

(iii) For ε = ±, an H3-structure F ε on a 4-manifold Mε with the property that c =
0 and whose curvature mapping K:F ε → V is a submersion onto Σε

0 \ Σ0
0. The

symmetry group of F ε has dimension 3; however, its conformal symmetry group has
dimension 4 and has an open orbit on Mε. Moreover, each of F+ and F− is the unique
representative in its homothety class.

(iv) An H3-structure F 0 on a 4-manifold M0 with the property that c = 0 and whose
curvature mapping K:F 0 → V is a submersion onto Σ0

0 \ {(0, 0)}. The symmetry
group of F 0 has dimension 5 and acts transitively on M0; however, its conformal
symmetry group has dimension 6. Moreover, F 0 is the unique representative in its
homothety class.

(v) The standard flat H3-structure F0 on R
4. Its curvature mapping K:F0 → V is just

K ≡ (0, 0). The symmetry group of F0 has dimension 7 and acts transitively on R
4;

however, its conformal symmetry group has dimension 8. Moreover, F0 is the unique
representative in its homothety class.

Thus, there exist eight homothety classes of singular torsion-free H3-structures, the
last two of which are homogeneous. Writing these structures out explicitly is somewhat
tedious, even in case (iv) above, the “simplest” of the non-flat H3-structures. However, as
we shall see in §5, the manifold M0 is topologically the space of smooth plane conics in RP

2

which pass through a fixed point, and its H3-structure F 0 has a very natural geometric
interpretation.
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§4. Path Geometries and Exotic Holonomy

We now turn to another approach to understanding the torsion-free G3- and H3-
structures on 4-manifolds. This approach is closely related to the theory of “path geome-
tries” as initiated by Élie Cartan and, in a complexified form to be treated in the next
section, to the twistor theory of Penrose as generalized by Hitchin [1982].

In order to begin the discussion, let us take a closer look at the G3-representation
V3. As we remarked in the introduction, V3 can be regarded as the homogeneous cubic
polynomials in two indeterminates x and y. As a result, V3 contains a G3-invariant, 2-
dimensional cone C̃ ⊂ V3 which consists of the polynomials which are “perfect cubes”,
i.e., are of the form (ax + by)3 for some linear form ax + by ∈ V1. Moreover, G3 is easily
characterized as the subgroup of GL(V3) which preserves C̃. This cone can be made more
familiar by noting that its projectivization C ⊂ P(V3) is a rational normal curve (sometimes
called the “twisted cubic curve”). It is not hard to show that, for any rational normal curve
C ⊂ P(V ) where V is a (real) vector space of dimension 4, there exists an isomorphism
ι:V →̃V3 which identifies C with C, and that this isomorphism is unique up to composition
with an element of G3.

This leads to an alternate description of G3-structures on 4-manifolds which will be
important for our second point of view. If F is a G3-structure on M4, then for each x ∈ M ,
there is a well-defined rational normal curve Cx ⊂ P(TxM) which corresponds to C under
any isomorphism u:TxM →̃V3 where u ∈ Fx. The “de-projectivized” cone C̃x ⊂ TxM
which corresponds to C̃ ⊂ V3 will be known as the “rational normal” cone (or, sometimes,
the “twisted cubic” cone) of F at x. It is easy to see that the union C ⊂ P(TM) of all of
these curves is a smooth submanifold of P(TM) and that the natural projection C → M
is a smooth submersion. Conversely, given a smooth subbundle C ⊂ P(TM) for which
the fiber Cx is a rational normal curve in P(TxM) for each x ∈ M , there is a unique G3-
structure F which corresponds to C in the manner just described. Thus, a G3-structure
on M may be regarded as equivalent to a smooth field of rational normal cones on M .

There is another geometric object in V3 which will be useful. This is the quartic
cone Q̃ ⊂ V3 which is the null cone of the H3-invariant quartic form Q on V3 given by
Q(v) = 〈〈v, v〉2 , 〈v, v〉2〉2. The null vectors of Q on V3 are the cubic polynomials which
have a double linear factor. The “conformal class” of Q is preserved by G3 and hence
both the “null cone”of Q, i.e., Q̃, and its projectivization Q ⊂ P(V3) are G3-invariant.
The relationship between C and Q is simple: C is the singular locus of Q while Q is the
tangent developable of C. It is not hard to see that if p ⊂ Q̃ is a linear 2-plane, then p
consists of the multiples (ax + by) �2 where � ∈ V1 is a fixed linear form defined up to a
scalar multiple. Thus, the null planes of Q form a 1-dimensional rational curve N in the
Grassmannian Gr(2,V3).

Corresponding to this geometry in V3, a G3-structure on M defines a quartic null cone
Q̃x ⊂ TxM and a rational curve Nx ⊂ Gr(2, TxM) of null planes for each x ∈ M . We let
N denote the union of the Nx as x ranges over M and denote the base-point projection
by l:N → M .

It is interesting to compare this to the more familiar case of a conformal structure of
type (2,2) on M . In that case, the space of null 2-planes at each point x ∈ M forms two
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disconnected rational one-parameter families, the α-planes and the β-planes in Penrose’s
terminology. The condition for there to exist a null surface of type α (respectively, of type
β) in M tangent to each α-plane (resp. β-plane) is that the conformal structure be half
conformally flat, i.e., that one of the two irreducible components of the conformal Weyl
curvature vanish. Our first result will describe an analogous phenomenon for G3-structures.

Theorem 4.1: A G3-structure F on a four-manifold M is torsion-free if and only if for
every null plane p ∈ Nx there exists a null surface in M which passes through x and for
which TxS = p.

Proof: Let F be a G3-structure on M , and let ω, λ, and φ with values in V3, V0, and V2

respectively denote the canonical 1-form and intrinsic connection forms on F . From §2,
we know that the first structure equation can be written in the form

(1) dω = −λ ∧ ω − 〈φ, ω〉1 + 〈τ, ω〉4,

where τ is a function on F with values in V7 which has the equivariance

Rg
∗(τ ) = det(g)

1
4 g−1 · τ

for g ∈ G3. By definition, the function τ vanishes if and only if F is torsion-free.

There is a submersion ν:F → N defined as follows. For each u ∈ Fx, let ν(u) ∈ N be
the subspace of TxM which corresponds under u:TxM →̃V3 to the subspace of V3 spanned
by {x3, x2y}. Of course, we have π = l ◦ ν. The fibers of ν are the orbits in F of the
subgroup P ⊂ G3 which stabilizes this subspace. It will be useful in what follows to note
that P = P 0 ∪ (−P 0) � Z2 × P 0 where P 0 is the identity component of P . In particular,
note that the typical fiber of ν is not connected, but consists of two components.

Let (I,Ω) denote the differential ideal with independence condition on N whose inte-
grals are the canonical lifts of null surfaces. (This is just the restriction of the canonical
contact system on Gr(2, TM) to N ⊂ Gr(2, TM).) Then ν pulls this ideal back to F to be
the ideal Iν generated by ω1 and ω3 and the independence condition Ω pulls back under
ν to be represented by the 2-form Ων = ω−1 ∧ω−3. Thus, in order to describe the integral
manifolds of (I,Ω), it suffices to study the integral manifolds of (Iν ,Ων).

From the structure equation (1), we can extract the following formulas:

(2)
dω1 ≡ 4φ2 ∧ ω−1 + 2160 τ5 ω−3 ∧ ω−1

dω3 ≡ 5040 τ7 ω−3 ∧ ω−1

}
modulo ω1, ω3.

It follows from these formulas that no integral elements of (Iν ,Ων) exist at points where
τ7 �= 0. Of course, this implies that there are no integral elements of the original system
(I,Ω) at any point in N of the form p = ν(u) where τ7(u) �= 0. In particular, if there
exists an integral manifold of (I,Ω) passing through every point of N , then we must have
τ7 ≡ 0 on F . Since V7 is G3-irreducible, this implies that we must have τ ≡ 0, implying
that F is torsion-free.
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Conversely, suppose that τ ≡ 0. Then the structure equations (2) simplify to

(3)
dω1 ≡ 4φ2 ∧ ω−1

dω3 ≡ 0

}
modulo ω1, ω3.

Moreover, the y3-component of dω yields the further information that

(4) dω3 ≡ 2φ2 ∧ ω1 modulo ω3.

It follows that the system (I,Ω) has one-dimensional Cauchy characteristics and that I
is locally equivalent to the second order contact system for curves in the plane. Thus, for
each p ∈ N , there exists an integral manifold S̃ of (I,Ω) passing through p. The projection
of S̃ to M yields the desired null surface S. �

Geometrically, the Cauchy characteristics of I can be described as the C-geodesics
of (the intrinsic connection of) F . To see this, note that the Cartan system of Iν is
generated by the system C(I) = span{ω3, ω1, ω−1, φ2}. The connected integral manifolds
of this system in F project to M to become the ϕ-geodesics whose tangent vectors at each
point belong to the twisted cubic cone, hence the name C-geodesics. In particular, note
that every null surface can be regarded (locally) as a one-parameter family of C-geodesics.
The system I can thus be regarded as representing the conditions for selecting a one-
parameter family of C-geodesics in such a way that the resulting surface is null. Thus, the
integral manifolds of (I,Ω) are constructible by ode methods alone. The main point is
that the Cartan-Kähler Theorem is not needed, so our constructions do not require the
assumption of real analyticity.

From now on, let us assume that F is a torsion-free G3-structure on M . For our
purposes, the most interesting null surfaces in M will be those which are totally geodesic.
These surfaces are the integrals of an augmented system (I+,Ω) on N whose pull-back
under ν is the system (Iν

+,Ων) where Iν
+ is generated by the 1-forms ω1, ω3, and φ2.

Proposition 4.2: If F is a torsion-free G3-structure on M , then the system I+ is a
Frobenius system of rank 3. In particular, there exists a 3-parameter family of totally
geodesic null surfaces in M .

Proof: Since F is torsion-free, we may assume that the structure equations (2.6–7) hold.
Examining the xy2- and y3- components of dω and the x2-component of dφ, we get the
equations

dω1 ≡ dω3 ≡ dφ2 ≡ 0 modulo ω1 ω3, φ2.

Of course this implies the Proposition. �

Remark: As the reader is probably aware, the only surprising aspect of this proof is
that dφ2 ≡ 0 modulo ω1 ω3, φ2. A näıve expectation would be that the curvature term in
the formula for dφ2 would make the formula read

dφ2 ≡ g ω−3 ∧ ω−1 modulo ω1 ω3, φ2
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for some function g which is a linear combination of curvature coefficients. However, this
coefficient must be zero since the “conservation of index sum” principle would say that g
would be assigned an index of 6 as a coefficient of some Vk-valued function on F , while we
have seen that the curvature takes values in V2 ⊕V4, a space which has no terms of index
6.

From now on, we will refer to a connected, totally geodesic null surface of a torsion-free
G3-structure F on M as a sheet of F . The sheets of F are in one-to-one correspondence
with the leaves of the Frobenius system I+ on N . Since I+ is a rank 3 Pfaffian system,
its space of leaves has the structure of a (not necessarily Hausdorff) three-manifold.

We shall say that F is amenable if the space of leaves of I+ on N is Hausdorff. It
can be shown that if F is a torsion-free G3-structure on M , and x ∈ M is any point,
then there exists an x-neighborhood U ⊂ M so that the restricted G3-structure FU is
amenable. This is done by first showing that the canonical flat G3- structure on V3 is
amenable and then showing that if expx:TxM → M is the (locally defined) exponential
mapping of the connection ϕ, then U = expx(Ũ ) is amenable for any sufficiently small
convex neighborhood Ũ of 0 ∈ TxM . (Essentially this is true because such a U can be
compared “closely enough” with the flat case. Details will be left to the interested reader.)
In the amenable case, we let Y denote the space of sheets and let r:N → Y denote the
projection.

Proposition 4.3: If F is an amenable, torsion-free G3-structure on M , then

(5)
N

l↙ ↘r

M Y

is a non-degenerate double fibration. Moreover, there exists a contact structure on Y for
which each of the curves Rx = r(l−1(x)) for x ∈ M is a (closed) contact curve. Finally,
if we let Y (2) denote the manifold of 2-jets of contact curves in Y , and let r(2):N → Y (2)

be the mapping which sends p ∈ N to the 2-jet of Rl(p) at r(p), then r(2) is a local
diffeomorphism.

Before we begin the proof, note that we have the following consequences of the struc-
ture equations on F :

(6)

dω3 ≡ 2φ2 ∧ ω1 modulo ω3,

d ω1 ≡ 4φ2 ∧ ω−1 modulo ω3, ω1,

d ω−1 ≡ 6φ2 ∧ ω−3 modulo ω3, ω1, ω−1,

d ω−3 ≡ 0 modulo ω3, ω1, ω−1, ω−3.

It follows from these equations that the orbits of P 0 ⊂ G3 are the Cauchy characteristic
leaves of the Pfaffian system on F spanned by {ω3, ω1, ω−1}. However, this system is also
invariant under right action by −1 ∈ G3, so this Pfaffian system is the pull-back under ν of
a well defined Pfaffian system I of rank 3 on N = F/P . Note that the first (respectively,
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second) derived system of I, denoted I [1] (respectively, I [2]), pulls back via ν to F to be
spanned by the form(s) {ω3, ω1} (respectively, {ω3}).
Proof: First, we show that the product mapping l× r:N → M × Y is an immersion. By
construction, the semi-basic forms for the projection π = l ◦ ν:F → M are spanned by
the 1-forms {ω−3, ω−1, ω1, ω3}; the semi-basic forms for the projection r ◦ ν:F → Y are
spanned by the 1-forms {φ2, ω1, ω3}; and the semi-basic forms for the projection ν:F → N
are spanned by the forms {ω−3, ω−1, φ2, ω1, ω3}. Since this latter collection is contained
in the union of the first two, it follows that l × r is an immersion. (Note that we have
not proved that l × r is an embedding, which is the usual double fibration axiom. This
stronger statement may well fail.)

Now, the intersection of the first two spans is the Pfaffian system spanned by the
forms {ω1, ω3}. By the first two of the equations (6), it follows that this system does not
contain any Frobenius sub-system. Thus, the double fibration is non-degenerate.

Now the first equation of (6) shows that the Cartan system of I [2] is a rank 3 Pfaffian
system which consists of the semi-basic forms for the projection r:N → Y . Since, by
construction, the fibers of r are connected, a standard result (see BCG3 [1990]), then
implies that there exists a rank 1 Pfaffian system (I [2])� on Y which pulls back to N via
r to become the Pfaffian system I [2]. The first equation of (6) then implies that (I [2])�

defines a contact structure on Y . We will denote by L ⊂ T ∗Y the line bundle whose space
of sections is equal to (I [2])�.

Now for each x ∈ M , the curve Rx is a contact curve for this contact structure (i.e., is
an integral curve of (I [2])�). To see this, note that the fiber Nx = l

−1(x) ⊂ N is a smooth,
connected, compact curve and its inverse image under ν is π−1(x) = Fx. Since ω clearly
vanishes when pulled back to Fx, it follows that Nx is an integral curve of I and hence
that Rx = r(Nx) is an integral curve of L.

Let σ2:Y (2) → Y be the 5-dimensional bundle of 2-jets of contact curves in Y and
let L(2) ⊂ T ∗Y (2) be the canonical contact Pfaffian system. By a standard result in the
theory of Pfaffian systems, namely the Goursat Normal Form Theorem (see BCG3 [1990],
particularly Chapter II), the structure equations (6) imply that there is a unique mapping
r′:N → Y (2) which satisfies r = σ2 ◦ r′ and which pulls L(2) back to be I. The map
r′ can be defined as follows: Let p ∈ N be any point, and let γ ⊂ N be any integral
curve of I which passes through p and is transverse to the fibers of r. Then r′(p) is
defined to be the 2-jet of the curve r(γ) at r(p). (Although we have invoked the Goursat
Theorem, the well-definition of this mapping can be checked directly by the interested
reader. See the discussion below on ode.) It follows from the general theory that r′ is
a local diffeomorphism. By construction, the fiber of l through any p ∈ N is an integral
curve of I, and hence r′ is equal to r(2) as defined in the proposition. �

It is worth remarking that, in fact, L is the unique contact structure on Y with respect
to which each of the curves Rx is a contact curve. This follows since our discussion has
shown that the curves of the form Rx which pass through a given point y ∈ Y serve to “fill
out” an open set in the space of 2-jets of contact curves passing through y. Thus, there is
only one 2-plane Ey ⊂ TyY which contains all of the tangent vectors to these curves, and
hence its annihilator E⊥

y ⊂ T ∗
y Y is unique and must be Ly.
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We have shown how to associate to each torsion-free amenable G3-structure F a
contact 3-manifold endowed with a “non-degenerate” 4-parameter family of contact curves.
It is instructive to see what this data looks like in local coordinates. The coordinate form
of the Goursat Normal Form Theorem asserts that every point p ∈ N has a neighborhood
U on which there exist local coordinates ψ = (x, y0 , y1, y2, y3) so that if we define θi =
dyi − yi+1 dx for i = 0, 1, 2, then I [2] is spanned by θ0 while I [1] is spanned by

{
θ0, θ1

}
and I [0] = I is spanned by

{
θ0, θ1, θ2

}
. The fibration r can then be represented locally

in these coordinates by (x, y0 , y1, y2, y3) �→ (x, y0 , y1). Moreover, after possibly shrinking
U , the coordinate system can be chosen so that x restricts to each fiber of l to become
a local coordinate. It then follows that the l-fibers are the integral curves of the rank
4 Pfaffian system spanned by the 1-forms

{
θ0, θ1, θ2 , dy3 − Φ ◦ ψ dx

}
where Φ is some

smooth function on ψ(U) ⊂ R
5.

It follows that the (smooth) integral curves of I on which dx is non-zero can be written
locally in the form yi = f(i)(x) for some (smooth) function f , and that the fibers of l then
correspond to the functions f which satisfy the fourth order ode

(7) f(4) = Φ(x, f, f ′ , f ′′, f ′′′).

From this point of view, it is clear that the set of curves of the form Rx which pass through
a given point s ∈ Y is a two-parameter family which “fills out” an open set in the set of
2-jets of contact curves passing through s.

Thus, our discussion so far has shown how to associate a fourth order ode to any
amenable torsion-free G3-structure. This association is almost canonical. The only non-
canonical aspect of our construction is the choice of local contact coordinates on N . How-
ever, by the usual prolongation procedure, these coordinates are determined by first three
of these coordinates, namely (x, y0 , y1) which are local coordinates in Y . Thus, the ode

(7) is uniquely determined up to an action of the contact pseudo-group in dimension 3.
In the classical language (compare Cartan [1941] and Chern [1940]), one says that the
equation (7) is determined up to contact equivalence.

For the remainder of this section, we shall discuss the feasibility of reversing this
procedure. In particular, we shall show that it is possible to reconstruct (at least locally)
the original torsion-free G3-structure from the data of the fourth order equation. Moreover
we shall determine which (contact equivalence classes of) fourth order equations arise from
torsion-free G3-structures by our construction.

This process may be viewed as part of the program of “geometrizing” ordinary dif-
ferential equations, as proposed by Cartan [1938]. We refer the interested reader to the
works of Chern and Cartan listed in the references for further information about the “ge-
ometrization” of lower order ode.

In order to formulate this reconstruction problem more precisely, we introduce a few
notions from the theory of pseudo-groups. In R

5 with coordinates (x, y0 , y1, y2, y3), we
introduce the pseudo-group Γ ⊂ Diff loc(R5) which consists of the local diffeomorphisms of
R

5 which preserve the rank 3 Pfaffian system I0 generated by the three 1-forms

θ0 = dy0 − y1 dx, θ1 = dy1 − y2 dx, θ2 = dy2 − y3 dx.
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Given a 5-manifold Z, a Γ-structure on Z is, by definition, a maximal atlas A of
coordinate charts whose transition diffeomorphisms lie in Γ. Associated to such a Γ-
structure on Z, there is a well-defined rank 3 Pfaffian system I which is mapped onto I0

by any local coordinate chart in A. Of course, the system I in turn serves to define the
Γ-atlas A as the set of coordinate charts on Z which pull-back I0 to I, so we may regard
the specification of I as equivalent to the specification of A.

Since Γ also preserves the derived systems I
[1]
0 and I

[2]
0 spanned by {θ0, θ1} and {θ0}

respectively, it follows that these also correspond to well-defined systems I [1] and I [2] on
Z of ranks 2 and 1 respectively. Moreover, Γ preserves the Cauchy foliations of I

[1]
0 and

I
[2]
0 and hence there exist well-defined foliations of codimensions 4 and 3 respectively on

any Z5 endowed with a Γ-structure. For our purposes, the Cauchy foliation of I [2] will be
the most important. This is the foliation which maps under any coordinate chart in A to
the simultaneous level sets of the functions x, y0, and y1. Generalizing our previous case
of I+ on N , we shall say that a Γ-structure on Z is amenable if the space Y 3 of Cauchy
leaves of I [2] is Hausdorff.

An integral curve γ of I is said to be admissible if it is transverse to the Cauchy
leaves of I [2]. In an A-chart, this means that, when γ is written in the form γ(t) =(
(x(t), y0(t), y1(t), y2(t), y3(t)

)
, the “reduced” curve γ̄(t) =

(
(x(t), y0(t), y1(t)

)
is also an

immersed curve.

As an example, note that the contact system I0 on the third order jet space J3(R, R)
endows J3(R, R) with a canonical Γ-structure and the solution curves of a fourth order ode

describe a foliation of J3(R, R) by admissible integral curves of I0. As another example, the
one that concerns us most in this paper, note that the manifold N constructed from any
torsion-free G3-structure possesses a natural Γ-structure defined by the Pfaffian system I
as well as a foliation by admissible integral curves of I.

In the case where Z has an amenable Γ-structure, a foliation of Z by admissible
integral curves of I has a natural interpretation as a four-parameter family of contact
curves in the space Y . This latter family of curves determines a contact path geometry on
Y in Cartan’s sense. We do not want to limit ourselves to the amenable case, so we will
refer to a 5-manifold Z endowed with a Γ-structure and a foliation by admissible integral
curves as a generalized contact path geometry.

In the remainder of this section, we will describe some of the local invariants of a
generalized contact path geometry. This description will be applied in the next section to
relate a certain “twistor space” to the geometry of torsion-free G3-structures.

Let G ⊂ GL(5, R) denote the subgroup which consists of Jacobian matrices of elements
of Γ relative to the coframe

(8) ϑ =




ϑ0

ϑ1

ϑ2

ϑ3

ϑ4


 =




6 θ0

6 θ1

3 θ2

dy3

1
2

dx


 .
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(The choice of constants is cosmetic, but it does help us compare the structure equations
we are about to derive with the ones we have already derived.) It can be shown that the
Lie algebra of G is the subalgebra g ⊂ gl(5, R) consisting of those matrices of the form

(9)




m + 3f0 0 0 0 0
a1 + 6f1 m + f0 0 0 0
a2 + 2a4 a1 + 4f1 m− f0 0 0

a3 a2 + a4 a1 + 2f1 m− 3f0 a0

a6 a5 0 0 2f0




where m, f0, f1, and ai for 0 ≤ i ≤ 6 are arbitrary real numbers. Moreover, G consists
of two connected components: the identity component Go ⊂ GL(5, R), which is a closed
subgroup, and the coset h Go where h = diag(−1,−1,−1,−1, 1). (The choice of basis
for g implicit in the entry labeling in (9) is also partly for cosmetic reasons and partly for
ease of reference in an argument to be presented below.)

It follows that, associated to every Γ-structure A on Z5, there is a unique (first order)
G-structure F ⊂ F (where F is the R

5-coframe bundle of Z) with the property that φ∗(ϑ)
is a section of F over U ⊂ Z whenever φ:U → R

5 is a local coordinate system belonging
to A. Of course, the G-structure F in turn determines the Γ-structure A, so these may be
regarded as equivalent.

We define a closed subgroup P ⊂ G by the condition that P = P o ∪ h P o where P o

is the connected Lie sub-group of G whose Lie algebra p ⊂ g consists of the matrices of
the form (9) where all of the ai have been set to zero.

Proposition 4.4: Let Z be a 5-manifold endowed with a Γ-structure and let F be the
corresponding G-structure. Let L be a foliation of Z by admissible integral curves of I.
Then there exists a unique P -structure FL ⊂ F which has the following properties:

(i) If σ:U → FL is any local section where U ⊂ Z is open, then σ = (σ0, σ1, . . . , σ4) has
the property that the leaves of L ∩ U are integral curves of the forms σ0, σ1, σ2, σ3.

(ii) The structure equations of FL take the form




dϑ0

dϑ1

dϑ2

dϑ3

dϑ4


 = −




λ + 3κ0 −2ϑ4 0 0 0
6κ1 λ + κ0 −4ϑ4 0 0
0 4κ1 λ − κ0 −6ϑ4 0
0 0 2κ1 λ − 3κ0 0
0 0 0 0 2κ0


 ∧




ϑ0

ϑ1

ϑ2

ϑ3

ϑ4


 +




0
0

T 2

T 3

T 4




for some 1-forms κ0, κ1, and λ, and where the T i are 2-form expressions in the ϑi

which satisfy
T 2 = 2Aϑ4 ∧ ϑ0

T 3 = ϑ4 ∧ (Aϑ1 + B ϑ0) + ϑ0 ∧ (C ϑ2 + D ϑ1)

T 4 ≡ 0 modulo ϑ0, ϑ1

for some functions A, B, C , and D on FL.
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Moreover, the 1-forms κ0, κ1, and λ and the functions A, B, C , and D which make these
structure equations hold are unique.

Proof: The proof is a calculation which is a little long but which offers no difficulty
(particularly to Maple) and we will only give an outline here.

First, restrict to the sub-bundle F0 of F which satisfies (i). The sub-bundle F0 is
a principal bundle for the subgroup G0 ⊂ G whose Lie algebra g0 is the set of matrices
of the form (9) for which a0 = 0 and which satisfies G0 = Go

0 ∪ h Go
0 where Go

0 is the
identity component of G0. The structure reduction by Cartan’s method of equivalence
then proceeds in three stages:

The intrinsic torsion of the G0-structure F0 takes values in a single two dimensional
G0-orbit in the Spencer cohomology group H0,2(g0). There is a point τ0 on this orbit
whose stabilizer G1 ⊂ G0 is the subgroup whose Lie algebra g1 is the set of matrices of
the form (9) for which a0 = a1 = a2 = 0 and which satisfies G1 = Go

1 ∪ h Go
1 where Go

1 is
the identity component of G1. We define F1 ⊂ F0 to be the inverse image of τ0 under the
intrinsic torsion map of F0. Then F1 is a principal G1-bundle.

The intrinsic torsion of the G1-structure F1 takes values in a single three dimensional
G1-orbit in the Spencer cohomology group H0,2(g1). There is a point τ1 on this orbit
whose stabilizer G2 ⊂ G1 is the subgroup whose Lie algebra g2 is the set of matrices of the
form (9) for which a0 = a1 = a2 = a3 = a4 = a5 = 0 and which satisfies G2 = Go

2 ∪ h Go
2

where Go
2 is the identity component of G2. We define F2 ⊂ F1 to be the inverse image of

τ1 under the intrinsic torsion map of F1. Then F2 is a principal G2-bundle.

The intrinsic torsion of the G2-structure F2 need not take values in a single G2-orbit
in H0,2(g2). However, there is a transitive affine action of G2 on R and an affine mapping
H0,2(g2) → R which is G2-equivariant and for which the stabilizer of 0 ∈ R is the subgroup
P ⊂ G2 as defined above. Thus, we set FL equal to the inverse image of 0 ∈ R under the
reduced intrinsic torsion mapping of F2.

Since, as is easily computed, p(1) = 0, the connection described in the statement of
the Proposition is unique. Further details, including that the torsion has the stated form,
will be left to the reader. �

The reader may wonder why we have stopped the reduction at the third stage. The
reason is that, while all of the reductions so far have been ageneric, i.e., accomplished
without using any genericity assumptions, any further reductions would require some sort
of genericity hypotheses. (In the terminology of Gardner [1989], one says that the method
of equivalence “branches” at this point.)

To see why, note that the case where all of the T i vanish does occur: The flat G3-
structure on R

4 gives rise to a generalized path geometry on N = R
4 × RP

1 in which all
of the T i vanish. In this case, there is no canonical reduction of this FL, for in fact, the
automorphism group of the flat G3-structure acts transitively on FL.

Any reduction of FL in the general case must therefore be based on some genericity
assumption such as A �= 0. We do not wish to make genericity assumptions since they
are awkward for the twistor theory in the next section. Fortunately, for our purposes,
genericity assumptions will not be needed anyway.
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Now, using the structure equations in Proposition 4.4, it is easy to show that the semi-
basic symmetric differential forms A (ϑ4)3 and C ϑ4◦ϑ0 are P -invariant and therefore there
exist a well defined symmetric cubic form A and a well defined symmetric quadratic form
C on Z which pull-back to FL to become A (ϑ4)3 and C ϑ4 ◦ϑ0 respectively. We shall refer
to A and C as primary invariants of the foliation L.

If A vanishes identically, then the semi-basic quartic differential form B (ϑ4)4 is P -
invariant and therefore there exists a well defined symmetric quartic form B on Z which
pulls-back to FL to become B (ϑ4)4. Similarly, if C vanishes, then D ϑ4◦(ϑ0)2 is P -invariant
and therefore there exists a well defined symmetric cubic form D on Z which pulls-back
to FL to become D ϑ4 ◦ (ϑ0)2. We shall refer to B and D (when either exists) as secondary
invariants of the foliation L.

For the reader who is comparing our treatment with the theory of contact equivalence
of second (respectively, third) order ode as developed in Cartan [1938] (respectively,
Chern [1940]), the functions A and C represent what the classical papers call “relative
invariants” and are analogous to the Wünschmann invariant encountered in the third
order theory. In more modern language, “relative invariants” are just sections of certain
natural line bundles associated with the geometry. As we shall see below, the “line bundle”
interpretation is a useful viewpoint.

The invariants A, B, C , and D can be written out explicitly for the generalized contact
path geometry defined by the equations (7) as polynomials in the derivatives of Φ of order
less than or equal to three. However, the explicit expressions are quite complicated. It is
useless to write them out here.

Theorem 4.5: Let Z be a 5-manifold with F and L as in Proposition 4.4. The primary
and secondary invariants of the foliation L vanish if and only if the P -structure FL on Z
is locally equivalent to the P -structure F on N associated to a torsion-free G3-structure
on some 4-manifold M .

In order to make sense of this theorem, it will be necessary to first explain how the
group P is being identified in the two cases. In our original definition of P , it was the
subgroup of G3 = GL(2, R) which preserved the subspace W3 ⊂ V3 spanned by {x3, x2y}.
Of course, this subgroup also acts on V2, and it is easy to see that it preserves the subspace
W2 ⊂ V2 spanned by {x2, xy}. If we identify R

5 with the vector space V3 ⊕ (V2/W2) by
using the basis (x3, x2y, xy2, y3, y2 mod W2), then P acts on R

5. It is easy to see that
embedding P into GL(5, R) this way yields the subgroup of G that we defined in the
course of our structure reduction in the proof of Proposition 4.4.

Proof: First, let us start with a torsion-free G3-structure on M and construct the bundle
F together with its connection forms ω, λ, and φ. The first structure equation is dω =
−λ ∧ ω − 〈φ, ω〉1 and can be written explicitly in the form

(10)




dω3

dω1

dω−1

dω−3


 = −




λ + 3φ0 −2φ2 0 0
6φ−2 λ + φ0 −4φ2 0

0 4φ−2 λ − φ0 −6φ2

0 0 2φ−2 λ − 3φ0


 ∧




ω3

ω1

ω−1

ω−3



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while the y2-component of the second structure equation implies that

(11) dφ2 ≡ −2φ0 ∧ φ2 modulo ω3, ω1.

By considering the coframing correspondence

(12) (ω3, ω1, ω−1, ω−3, φ2, φ0, φ−2, λ) ←→ (ϑ0 , ϑ1, ϑ2, ϑ3, ϑ4, κ0, κ1, λ),

it becomes clear that the bundle ν:F → N is the P -reduction FL of the G-structure over
N defined by the system I relative to the foliation L of N which consists of the fibers of
l:N → M . Moreover, the structure equations on F clearly imply that the primary and
secondary invariants vanish for this P -structure on N . This establishes the theorem in one
direction.

To go in the other direction, let us suppose that the primary and secondary invariants
of L vanish. Then on FL, we have T 2 = T 3 = 0. It follows that the forms

ω = ϑ3 x3 + ϑ2 x2y + ϑ1 xy2 + ϑ0 y3

and
φ = κ1 x2 + κ0 xy + ϑ4 y2

together with λ satisfy the first structure equation for a torsion-free G3-structure. It is
now straightforward to show that, if U ⊂ Z is an open subset on which the foliation
L is amenable, then there is an induced torsion- free G3-structure F ∗ on the leaf space
M∗ = U/L and that there is a canonical immersion of FL restricted to U into F ∗ which is
a local diffeomorphism and which pulls the canonical forms on F ∗ back to FL so that the
correspondence (12) becomes an identity. Further details will be left to the reader. �

§5. Twistor Theory and Exotic Holonomy

In view of Theorem 4.5, one method of constructing torsion-free G3-structures is to
construct a generalized contact path geometry whose primary and secondary invariants
vanish. Doing this directly is not easy. In terms of the fourth order ode defined by (4.7),
these conditions are equivalent to a (non-involutive) system of non-linear, third order pde

for the function Φ. It is not even clear that there are any non-trivial solutions.
However, for the same geometric problem in the holomorphic category, there is another

approach, based on the Kodaira deformation theory of complex manifolds and submani-
folds, which is suggested by Penrose’s non-linear graviton construction and its generaliza-
tion by LeBrun [1983] and Hitchin [1982]. Basically, the idea of this theory is to consider
the deformation space of a rational curve (i.e., a compact Riemann surface of genus zero)
in a complex manifold whose normal bundle is a sum of non-negative line bundles. This
deformation space is a smooth manifold consisting of the “nearby” rational curves and it
inherits a “geometry” whose properties depend on the Grothendieck type of the normal
bundle of the original rational curve.
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We shall not attempt a recounting of the full theory, but instead refer the reader to
Hitchin’s paper. Also, we shall not always give full details in the argument below since
they are generally quite analogous to those in the examples treated in that paper.

Our motivation for moving into the holomorphic setting can be explained as follows:
If F is a real-analytic torsion-free G3-structure on a real 4-manifold M , then, at least
locally, M can be embedded as a real slice of a complex 4-manifold M and F can be
extended to a G3-structure F where G3 is the connected holomorphic Lie subgroup of
Aut(V3 ⊗ C) whose Lie algebra is the complexification of g3. The structure equations of
this “holomorphicized” structure are analogous to those in the real category in every way.
In particular, in the amenable case (which can always be arranged locally by passing to a
suitably small neighborhood), the holomorphic version of Proposition 4.3 holds where the
double fibration (4.5) is replaced by a “complexified” version in which the general fiber of
the mapping l is a copy of P

1. The sheet space Y then becomes a complex contact 3-fold
and the corresponding complexified curves Rx are rational contact curves in the complex
contact 3-fold Y.

Thus, the points of M can be thought of as rational contact curves in Y. It is not true
that M constitutes the complete deformation space of “nearby” rational curves, as in the
cases treated previously by Penrose and Hitchin, but, as we shall see, it does constitute
the complete deformation space of “nearby” rational contact curves.

We will need some information about the deformations of an unramified rational con-
tact curve in a general complex contact 3-fold. For the sake of avoiding any possible
confusion, let us note that, by definition, an unramified rational curve in a complex mani-
fold Y is an equivalence class of holomorphic immersions φ: P1 → Y where the equivalence
relation is reparametrization in the domain, i.e., φ1 ∼ φ2 iff φ1 = φ2 ◦ψ where ψ: P1 → P

1

is a linear fractional transformation. It is well-known that such an equivalence class is
determined completely by its image C ⊂ Y, so, by abuse of language, we shall speak of C
as a rational curve. To say that C is embedded means that C is the image of a one-to-one
holomorphic immersion φ: P1 → Y.

The following proposition is derivable by standard “twistorial” techniques, but we
give a more deformation-theoretic proof since we will need the information that this proof
provides about local coordinates in the moduli space.

Proposition 5.1: Let Y denote a complex contact 3-fold where L ⊂ T ∗Y denotes the
holomorphic line bundle which defines the contact structure on Y. Suppose that C ⊂ Y is
an unramified rational contact curve in Y and that the restriction of L to C is isomorphic
to O(−k−1) for some integer k ≥ 0. Then then the normal bundle of C in Y is isomorphic
to O(k) ⊕ O(k). In particular, the moduli space Z of unramified rational curves in Y
is smooth and of complex dimension 2k + 2 near C . Moreover, the subspace Mk ⊂ Z
which consists of contact curves to which the contact bundle L restricts to be isomorphic
to O(−k − 1) is a smooth submanifold of Z of complex dimension k + 2.

Proof: First, we will recall a few facts about complex contact geometry.

If L ⊂ T ∗Y is the line bundle determining the contact structure, then L2 � KY . To
see this, note that the mapping D:O(L) → O(KY ) defined by D(θ) = θ∧ d θ for any local
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holomorphic section θ of L satisfies D(fθ) = f2D(θ) for any local holomorphic function
f and thus induces a well-defined sheaf mapping D:L2 → KY . This is an isomorphism
since the hypothesis that L defines a contact structure on Y implies that D(θ) is non-zero
wherever θ is non-zero. Now, if L⊥ ⊂ TY is the rank two vector bundle annihilated by the
sections of L, then standard arguments combined with the above isomorphism imply that
Λ2(L⊥) � L∗. Note also that we have a canonical short exact sequence of vector bundles

(1) 0 −→ L⊥ −→ T −→ L∗ −→ 0

where T is the holomorphic tangent bundle of Y.

Now, by hypothesis, C � P
1 is unramified, so the natural sequence

0 −→ τ −→ T|C −→ NC −→ 0

is exact where τ � O(2) is the tangent bundle of C and NC is the normal bundle of the
immersion. (We caution the reader that, in algebraic geometry, the normal bundle is often
defined as a certain sheaf theoretic quotient. This alternate definition can disagree with
NC as we have defined it if C is not embedded.) Moreover, since C is a contact curve, we
have an exact inclusion 0 → τ → L⊥

|C . It follows that

τ ⊗ (L⊥
|C/τ ) � Λ2(L⊥

|C) � L∗
|C � O(k + 1).

Thus, we must have L⊥
|C/τ � τ ∗ ⊗O(k + 1) � O(k − 1). From (1) we get the exactness of

the sequence

(2) 0 −→ L⊥
|C/τ −→ NC −→ L∗

|C −→ 0

and this implies that the normal bundle of C fits into an exact sequence of the form

0 −→ O(k − 1) −→ NC −→ O(k + 1) −→ 0.

By standard arguments, it then follows that NC is isomorphic to either O(k−1)⊕O(k+1)
or O(k) ⊕ O(k) according to whether the exact sequence (2) does or does not split. In
either case, since k ≥ 0 by hypothesis, we have

(3)
h0(NC) = 2k + 2,

h1(NC) = 0.

If C is embedded, then Kodaira’s Main Theorem in Kodaira [1962], hereinafter re-
ferred to as KMT, implies that the moduli space Z of rational curves in Y is smooth
and of dimension 2k + 2 near C . The case where C is not embedded is easily reduced to
the embedded case by “separating the crossings of a tubular neighborhood of C”. More
precisely, let ν:NC → Y be the normal exponential mapping with respect to any smooth
metric on Y and let Ỹ ⊂ NC denote a neighborhood of the zero section which maps lo-
cally diffeomorphically into Y. Give Ỹ the holomorphic contact structure which makes ν
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a local contact biholomorphism. Note that the zero section in Ỹ is an embedded rational
contact curve C̃. If Z̃ denotes the space of unramified rational curves in Y, then Z̃ is
smooth of complex dimension 2k + 2 near C̃ and ν clearly induces a biholomorphism of a
neighborhood of C̃ in Z̃ with a neighborhood of C in Z.

In view of this, we shall assume for the remainder of the proof that C is embedded.
We will now identify the subspace of Z near C which consists of contact curves. To do

this, we first observe that for any curve C ′ ⊂ Y, there is a natural pairing L|C′ × τC′ → C

which is the restriction to the given bundles of the natural pairing of co-vectors with
vectors. We may regard this pairing as a section σC′ of the bundle L∗

|C′ × τ ∗
C′ and note

that this section vanishes if and only if C ′ is a contact curve. In the case where C ′ is
a rational curve and L|C′ � O(−k − 1), it follows that σC′ is a section of a line bundle
isomorphic to O(k − 1) and hence vanishes identically if and only if it vanishes to order k
at some point on C ′.

The rest of our argument requires some slight notational changes in the case k = 0,
so from now on, we will assume that k ≥ 1, leaving for the reader the task of making those
changes needed to make the argument go through for k = 0. (If k = 0, then σC′ ≡ 0
anyway since it is a section of a line bundle of negative degree. Thus, it is clear that
M0 = Z in a neighborhood of such a C .)

Let p ∈ C be fixed. Since C is embedded, it follows that we may suppose that there
is a neighborhood U of p so that C ∩U consists of a single, analytically irreducible branch
of C . Moreover, by using a slight extension of the Pfaff-Darboux theorem in the analytic
category, we see that it is possible to choose a p-centered holomorphic coordinate system
(x, y, z) on a p-neighborhood U ⊂ Y in which U∩C is described by the equations y = z = 0
and so that the 1-form θ = dy − z dx is a section of L|U . (The point is that we can choose
the Pfaff coordinates so that C ∩U is described in such a simple fashion. To see that this
can be done, first choose the p-centered coordinate system (x, y, z) so that θ = dy − z dx
is a section of L|U and so that dx is a non-vanishing 1-form when pulled back to C ∩ U .
Then, since C is a contact curve, it is easy to see that, by shrinking U if necessary, we may
suppose that there exists a holomorphic function f on a neighborhood of 0 ∈ C so that
C ∩ U is described by the equations y = f(x) and z = f ′(x). Replacing the coordinate
system (x, y, z) by

(
x, y − f(x), z − f ′(x)

)
(and again possibly shrinking U), we get the

desired new coordinate system.)
By Kodaira’s description of the moduli space Z near C , there exist holomorphic

functions yj , zj for j ≥ 0 on a C-neighborhood U ⊂ Z so that, for C ′ ∈ U , we have
L|C′ � O(−k − 1) and the defining equations of U ∩ C ′ take the form

(4)
y = y0(C ′) + y1(C ′)x + · · · + yj(C ′)xj + · · ·
z = z0(C ′) + z1(C ′)x + · · · + zj(C ′)xj + · · ·

We want to show that it is possible to select a specific set of (2k + 2) of the functions
yj , zj in such a way that, after possibly shrinking U , this set forms a C-centered coordinate
system on U . In order to do this, we need to use our information about the normal bundle
of C . By KMT, if {να| 1 ≤ α ≤ 2k + 2 } is any basis for the global sections of NC ,
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then there exists a C-centered local coordinate system (t1, t2, . . . , t2k+2) on U so that, with
respect to the local coordinate trivialization of NC over C ∩U determined by (x, y, z), we
have

(5) να =
(∑

j≥0

∂yj

∂tα
(C) xj

) [
∂

∂y

]
+

(∑
j≥0

∂zj

∂tα
(C) xj

) [
∂

∂z

]

for all α, where [ ] represents reduction modulo the sub-bundle spanned by the vector field
∂/∂x which spans τ .

Now let us first suppose that NC � O(k)⊕O(k). Then it is clear that there is a basis
{να | 1 ≤ α ≤ 2k + 2 } for the global sections of NC which is expressed in the coordinate
trivialization given above in the form

(6)
νj+1 = xj

[
∂

∂y

]
+ O(xk+1)

νj+k+2 = xj

[
∂

∂z

]
+ O(xk+1)

for 0 ≤ j ≤ k

where the symbol O(xk+1) denotes terms which vanish to order (k+1) at x = 0. Comparing
(5) and (6), we see that the Jacobian matrix of the functions y0, y1, . . . , yk, z0, z1, . . . , zk

with respect to the coordinate system (t1, . . . , t2k+2) is the identity matrix at C . By the
Implicit Function Theorem, it is possible to shrink U so that (y0, y1, . . . , yk, z0, z1, . . . , zk)
forms a C-centered holomorphic coordinate system on U .

Alternatively, let us suppose that NC � O(k − 1) ⊕O(k + 1). Then the sequence (2)
is canonically split, i.e., there exists a unique holomorphic line bundle N ′

C ⊂ NC which
projects isomorphically onto L∗

C in the sequence (2). Moreover, N ′
C must be everywhere

transverse to L⊥
|C/τ . Since L⊥

|C ∩ U is clearly spanned by the vector fields {∂/∂x, ∂/∂z},
it follows that there exists a holomorphic function f(x) for x near 0 ∈ C, so that the
expression [∂/∂y + f(x)∂/∂z] is a local section of N ′

C over C ∩ U . Now, replacing the
coordinate system (x, y, z) by the system (x, g(x)y, g(x)z +g′(x)y) where g is the holomor-
phic function which satisfies g(0) = 1 and g′(x) + f(x)g(x) = 0, we retain all of our earlier
normalizations and get a new coordinate system in which the coordinate trivialization of
N ′

C over C∩U is spanned by [∂/∂y]. It is now easy to choose a basis {να | 1 ≤ α ≤ 2k + 2}
for the global sections of NC which are expressed in the local coordinate trivialization in
the form

νj+1 = xj

[
∂

∂y

]
+ O(xk+2) for 0 ≤ j ≤ k + 1,

νj+k+3 = xj

[
∂

∂z

]
+ O(xk ) for 0 ≤ j ≤ k − 1,

Again, an application of the Implicit Function Theorem shows that it is possible to shrink
U so that the functions y0, y1, . . . , yk+1, z0, z1, . . . , zk−1 form a C-centered holomorphic
coordinate system on U .
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This leads us to the following important observation: In either case, the functions
y0, y1, . . . , yk, z0, z1, . . . , zk−1 have linearly independent differentials on a neighborhood of
C ∈ U .

Since the bundle L has been trivialized over U , it follows that for C ′ ∈ U ,the section
σC′ has the local expression

(6)
σC′ = (dy − z dx)|C′

=
(
(y1(C ′) − z0(C ′)) + · · · + (k yk(C ′) − zk−1(C ′))xk−1 + · · ·

)
dx.

Because the functions y0, y1, . . . , yk, z0, z1, . . . , zk−1 have linearly independent differentials
at C , the locus MU defined by the equations zj−1 − j yj = 0 for 1 ≤ j ≤ k is a smooth
submanifold of Z of codimension k in a neighborhood of C . Now note that any C ′ in MU
has σC′ vanishing to order k at at least one point. Since, for C ′ ∈ U , we know that σC′

takes values in a line bundle isomorphic to O(k − 1), it follows that any C ′ ∈ MU must
have σC′ ≡ 0 and hence is a contact curve. It follows that MU is equal to Mk ∩ U and is
smooth of dimension k + 2.

To finish the proof, we must rule out the possibility that the sequence (2) splits. By
KMT, if the functions y0, y1, . . . , yk, z0, z1, . . . , zk have linearly independent differentials at
C ∈ U , then NC is isomorphic to O(k)⊕O(k). Thus, we proceed to show this independence.

We have seen that Mk ∩ U is defined as an analytic subvariety of U by the vanishing
of the (independent) functions fj−1 = zj−1 − j yj for 1 ≤ j ≤ k. Moreover, since dy − z dx
vanishes identically on any contact curve, it follows that fk = zk−(k+1) yk+1 also vanishes
on Mk ∩ U . Since the functions f0, . . . , fk−1 are a regular defining ideal for Mk near C ,
the function fk must be in the ideal defined by these functions so

fk = a0 f0 + a1 f1 + · · · + ak−1 fk−1

for some local holomorphic functions aj . It follows that at C , we have a relation of the
form

dzk = (k + 1)dyk+1 + a0 (dz0 − dy1) + · · · + ak−1 (dzk−1 − k dyk)

which implies that at C , we have

dzk ≡ (k + 1)dyk+1 modulo dy0, dy1, . . . , dyk, dz0, dz1, . . . , dzk−1

Thus, the functions y0, y1, . . . , yk, z0, z1, . . . , zk have linearly independent differentials at
C if and only if the functions y0, y1, . . . , yk+1, z0, z1, . . . , zk−1 have linearly independent
differentials at C . Since, by our above arguments, at least one of these two sets of func-
tions must have linearly independent differentials at C , it follows that they both do. In
particular, the first set does, as we wished to show. �

In this paper, the important case is k = 2 for then we have the following theorem:

Theorem 5.2: Let Y be a contact 3-fold and let M be the moduli space consisting of
those rational contact curves C ⊂ Y which satisfy L|C � O(−3). Then M is a smooth
manifold of dimension 4. If we let N ⊂ M× Y be the incidence submanifold consisting
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of pairs (C, p) ∈ M × Y such that p ∈ C , and let l:N → M and r:N → Y denote the
projections onto the first and second factors, then the diagram

N
l↙ ↘r

M Y

is a non-degenerate double fibration which is a generalized contact path geometry. More-
over, the primary and secondary invariants of this geometry vanish, so that there is induced
on M a torsion-free G3-structure.

Moreover, every real-analytic torsion-free G3-structure on a 4-manifold M is locally a
real slice of a torsion-free G3-structure which arises in the above manner.

Proof: The smoothness of M has already been demonstrated. In order to show the
non-degeneracy of the double fibration, we resort to local coordinates.

FIrst, we show that we can take local coordinates of a particularly simple kind. Let
(C, p) ∈ N be fixed. Let U ⊂ Y be a p-neighborhood on which there exist p-centered
coordinates (x, y, z) as in the proof of Proposition 5.1. In particular, the bundle L|U has
θ = dy − z dx as a trivializing section and C ∩ U is described by the equations y = z = 0.
Let U ⊂ M be a C-neighborhood with the property that C ′ ∩ U �= ∅ for all C ′ ∈ U
and so that there exist functions yj , zj so that the defining equations of C ′ ∩ U are given
by (4) as before. Since the normal bundle of C in Y is O(2) ⊕ O(2), it follows that
the functions y0, y1, y2, z0, z1, z2 contain four functions which form a coordinate system
on a neighborhood of C ∈ M. However, M is defined as a locus in Z by the equations
z0 = y1 = z1 − 2y2 = 0, so it follows that the set y0, y1, y2, z2 must be a local coordinate
system on U once U has been shrunk sufficiently. Since we also have zj−1 = j yj for all
j ≥ 1, it follows that we can equally well take y0, y1, y2, y3 as our local coordinate system
near C , so we do so.

If we let F denote the function of (x, y0, y1, y2, y3) which is represented by the series
on the right hand side of the first equation in (4), then it follows that N ∩ (U × U) is
defined in (U × U) by the equations

y − F = z − ∂F/∂x = 0.

By shrinking U and U if necessary, we may suppose that the functions x, p0 = F ,
p1 = ∂F/∂x, p2 = ∂2F/∂x2, and p3 = ∂3F/∂x3 form a local coordinate system ψ =
(x, p0, p1, p2, p3) on N ∩ (U × U). In particular, there is a function Φ defined on a neigh-
borhood of 0 ∈ C

5 for which we have

∂4F/∂x4 = Φ(x, p0 , p1, p2, p3).

It follows easily that the semi-basic forms for the projection l are spanned by {dp0 −
p1 dx, dp1−p2 dx, dp2−p3 dx, dp3−Φ◦ψ dx} while the semi-basic forms for the projection
r are spanned by {dx, dp0, dp1}.

Since the point (C, p) ∈ N was chosen arbitrarily, it immediately follows that the dou-
ble fibration is non-degenerate and represents a generalized contact path geometry where
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the Γ-structure is defined locally by the Pfaffian system {dp0 − p1 dx, dp1 − p2 dx, dp2 −
p3 dx} and the fibers of l give the foliation by admissible integral curves of this system.

Now, we must show that the primary and secondary invariants of the foliation by
l-fibers vanish on N . First, by the structure equations and the remarks in §4, we know
that A is a holomorphic section of a line bundle on N and restricts to each fiber of l to
be a section of the third power of the canonical bundle of the fiber. Since these fibers
are rational curves, there are no non-zero holomorphic sections of any positive power of
the canonical bundle. Thus, A = 0. The secondary invariant B is now well-defined and
restricts to each fiber of l to be a holomorphic section of the fourth power of the canonical
bundle. Thus, B = 0.

Let L̂ denote the pull-back of the line bundle L to N . Note that C is a holomorphic
section of a line bundle on N and that this line bundle restricts to each fiber of l to be a
holomorphic section of the tensor product of L̂ and the canonical bundle of the fiber. Now
L̂ restricts to each fiber of l to be isomorphic to O(−3), so it follows that C is a section of
a line bundle isomorphic to O(−5). Thus, C = 0. In particular, D is well-defined. Finally,
arguing as above, D restricts to each fiber of l to be a section of a line bundle isomorphic
to O(−7). Thus, D = 0.

Of course, by the holomorphic version of Theorem 4.5, we now have the desired torsion-
free G3-structure on M.

The proof of the final statement of the theorem, that every real-analytic torsion-free
G3-structure is a real slice of a torsion-free G3-structure arising in the above manner,
proceeds as expected, except for one point which we will now explain.

If we suppose that the torsion-free G3-structure F on M is real analytic in appropriate
local coordinate systems, then by restricting to sufficiently small open sets in M , we may
suppose that M is the real slice of a complex manifold M endowed with a real structure
(i.e., an anti-holomorphic involution whose fixed point set is M) and that F is the real
slice of an appropriate G3-structure F on M. It easily follows that F is torsion-free and,
moreover, by restricting to an even smaller open set in M if necessary, we may assume that
F is amenable, so that we get a double fibration as in the statement of the theorem. Note
that we only have to localize in M . In particular, it follows that Y is a complex contact
3-fold and that each of the curves Rx for x ∈ M is a rational contact curve.

To finish the proof, we need to see why the restriction of the contact bundle L to Rx

is isomorphic to O(−3). However, this follows directly from the complex versions of the
structure equations (ii) of Proposition 4.4. �

Of course, it is possible to describe the G3-structure on M directly in terms of the
incidence geometry of the family of rational curves in Y. For example, the set of curves
in M which meet a given curve C ∈ M constitutes the set of points which are “null-
separated” from C in the sense determined by the conformal quartic form on M which
determines the G3-structure. The set of curves in M which are tangent to a given curve
C ∈ M constitutes the set of points which are “null-separated” from C in the sense
determined by the field of rational normal cones on M which determines the G3-structure
(see §4). In particular, the geodesics in M whose tangent vectors are “perfect cubes” are
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in one-to-one correspondence with the 1-parameter families of rational curves in Y which
pass through a given point in a given direction.

A direct proof that this G3-structure is torsion-free can be based on the holomorphic
analogue of Theorem 4.1, using the fact that the 2-parameter subfamily of curves which
pass through a fixed point in Y describes a null surface in M.

We now come to the interesting question of how useful Theorem 5.2 is in proving
existence, constructing examples, or discussing the generality of torsion-free G3-structures
on complex 4-folds M.

First, we show that Theorem 5.2 is not vacuous. We will describe a class of com-
plex contact 3-folds which contain rational contact curves to which L restricts to become
isomorphic to O(−3).

Let S be a complex surface and let Y = P(TS) be the projectivized holomorphic
tangent bundle of S. It is easy to show that Y has a canonical contact line bundle L ⊂ T ∗Y
defined as follows: Let � ⊂ TsS be a line and define L� ⊂ T ∗

� Y to be the line π∗(�⊥) where
π:Y → S is the base-point projection and �⊥ ⊂ T ∗

s S is the annihilator of �.
Any curve C ⊂ S has a canonical lift to Y as a contact curve; this lift being defined

by sending p ∈ C to TpC . (If C is ramified, this lifting extends holomorphically across the
ramification points. In fact, it “resolves” simple cusps.) Conversely, it is easy to show that
every irreducible contact curve in Y is either a fiber of π or else is the canonical lift of an
irreducible curve in S.

From our description, it is clear that if C ⊂ S is an unramified rational curve with
normal bundle O(k+1), then, as a curve in Y, it satisfies L|C � O(−k−1). If, in addition,
k ≥ 0, then Proposition 5.1 shows that C belongs to a (k +2)-parameter family of rational
contact curves. Of course, the projection of these curves back into S agrees with the
moduli space of curves near C in S.

Taking k = 2 in this construction, we obtain examples of the desired contact 3-folds.

A specific example is obtained by letting S = O(3), i.e., regarding the bundle O(3)
over P

1 as a surface. Then, taking C to be the zero-section of O(3), we get a rational curve
C with the normal bundle O(3). However, this example is not too interesting because the
moduli space M of nearby contact curves in this case is just the space of global sections
of O(3) itself, which forms a vector space of dimension 4. The corresponding G3-structure
is easily seen to be the flat one on C

4.
A more interesting class of examples is to take a rational curve C in P

2 of degree
d ≥ 2 whose only singularities are D = (d − 1)(d − 2)/2 distinct nodes. (This is true for
the generic rational curve of degree d in P

2.) The nearby rational curves form a (3d − 1)-
parameter family. Select a set S consisting of s smooth points on C and a set N consisting
of n nodes on C where s + 2n = 3d − 5. Let S be the surface got from P

2 by blowing
up the points in S ∪ N . Then the normal bundle of C as a curve in S is isomorphic to
O(3). It follows that the moduli space of nearby rational curves in S carries a canonical
torsion-free G3-structure.

The specific case of a non-singular conic in P
2 with one point blown up yields the

4-parameter family of conics passing through a single point. Thus, this family of curves
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can be described in the form

(x + p3)y + p2 x2 + p1 x + p0 = 0.

The corresponding fourth order differential equation is easily seen to be y(4) = 4
3
(y′′′)2/y′′.

It is not difficult to show that the corresponding G3-structure is not flat. In fact, the
holonomy is H3 and the H3-structure is (the complexification of) the unique non-flat
homogeneous structure F 0 discussed in §3.

It is an interesting question as to how general a G3-structure can be constructed by
varying d and the sets S and N . Not all of these are distinct since, for example, the
conic with one point blown up and the nodal cubic with its node and two smooth points
blown up give rise to isomorphic G3-structures. More generally, any two such 4-parameter
families of rational curves which differ by a Cremona transformation of P

2 will give rise to
isomorphic G3-structures.

Finally, once one example of a rational contact curve C with normal bundle NC �
O(2) ⊕ O(2) in a contact manifold Y has been constructed, the Spencer-Kodaira theory
of deformation of pseudo-group structures may be applied. Thus, one expects to be able
to construct more examples by deforming a neighborhood of C in Y as a complex contact
manifold. In fact, Kodaira [1960] shows that the tangent space to the moduli of nearby
complex contact structures on a tubular neighborhood U of C in Y is given by H1(U,Θc)
where Θc ⊂ Θ is the sheaf of contact vector fields, i.e., the vector fields whose infinitesimal
flows preserve the bundle L.

Now, on any complex contact manifold Y with contact line bundle L ⊂ T ∗Y, the sheaf
of contact vector fields is isomorphic over C to the sheaf of sections of L∗. The reason for
this is that the sheaf of O-modules

(7) 0 −→ L⊥ −→ T −→ L∗ −→ 0

has a C-splitting given by a first order differential operator D0:L∗ → T with the property
that a vector field X on U ⊂ Y is a local contact vector field if and only if X = D0([X])
where [ ] denotes reduction modulo L⊥.

Since L∗ restricts to C to be isomorphic to O(3), it follows that, if U is a sufficiently
small tubular neighborhood of C in Y, then H1(U,Θc) will be “large”. Thus, one expects
there to be many non-trivial local contact deformations of this neighborhood.

It is not hard to see that under small deformations of U , the 4-parameter family of
rational contact curves persists. Essentially, this is because the normal bundle of C is
positive, see Kodaira [1963]. However, some care must be taken in this argument since
we want contact curves, so just Kodaira stability is not quite sufficient.

We shall not go into any detail about this deformation theory here because we have
already seen by other methods in §3 that the general local real analytic solutions in the
real category depend on four arbitrary analytic functions of three variables. It would be
interesting to see whether there is a direct relation between the description of the generality
of local solutions via the Cartan-Kähler theory and the description of the same “moduli
space” by Kodaira-Spencer deformation theory.
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§6. Epilogue

The function of this short last section is to collect together some of the open problems
and questions which this investigation has raised.

The fundamental underlying problem from §1 is, of course, the classification of the
possible holonomy groups of affine symmetric connections. In particular, what are the
remaining exotic affine holonomies? Perhaps if we knew some of the methods which enter
into the proof of Berger’s Theorem 4, we could determine a finite inclusive list and then
examine each one separately.

The methods of §3 give no information about degenerate torsion-free G3-structures.
Since the symmetry group of a non-degenerate torsion-free G3-structure is easily seen
to be discrete, it follows that Theorem 3.3 can say nothing about possible homogeneous
examples. Indeed, we do not know if any homogeneous examples exist other than the flat
structure or the unique homogeneous example with holonomy H3.

Also, the issues of completeness of the intrinsic connection and/or global amenability
are completely ignored in our treatment. Even in the case where the holonomy is H3, we
do not know anything about the global nature of the H3-structures. In particular, note
that Theorem 3.4 does not give any global information.

For example, is it reasonable to conjecture that each connected component of a level
set of Rc in V \Σc corresponds to a connected smooth 4-manifold endowed with a complete
H3-structure? While it seems reasonable that one should be able to “piece together” the
local solutions corresponding to open sets in the level set to get a connected 4-manifold, the
resulting object might be neither Hausdorff nor smooth. In fact, it seems quite likely that
solutions may develop orbifold-type singularities (or worse) under this patching process.
One source of trouble for this approach is that each such local solution has a local 1-
parameter symmetry group (which may even have fixed points), so there is no a priori
canonical way to identify solutions on “overlaps”.

One obstruction to globalizing the proof of Theorem 3.4 is that, at a crucial point in
the argument, a closed 2-form Ψ̄ is assumed to be exact. Of course, this cannot be done
globally if Ψ̄ represents a non-trivial element in the second deRham cohomology group
of the stratum. Unfortunately, due to the complexity of the polynomial function Rc, it
does not appear to be easy to deduce anything about the topology of its level sets. Thus,
determining the deRham class of Ψ̄ seems to be difficult.

Nothing is known about the torsion-free H3-structures which have a three-parameter
symmetry group. These correspond to the irreducible components of the singular locus Σc.
For c �= 0, there are two of these components. While one of these components is rational,
the other does not seem to be (although we have no proof of this).

In §4, a geometric interpretation of the primary and secondary invariants of generalized
contact path geometries is entirely lacking. We only know an interpretation of the vanishing
of those invariants. Since this geometry is essentially equivalent to the geometry of fourth
order ode in the plane up to contact equivalence, some interpretation of these invariants
should be possible in terms of classical ode.
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A sample question is: What are the conditions on a fourth order ode which charac-
terize the Euler-Lagrange equations of second order functionals for curves in the plane?
These conditions, which are analogous to “Helmholtz conditions with multipliers,” should
be expressible in terms of the invariants we have derived.

Of course, this particular question should be easy to answer by the method of equiv-
alence. It may even be possible to do this by comparing our calculations with Cartan’s
calculations in Cartan [1936]. Nevertheless this serves to illustrate what sort of problems
there are to consider.

In §5, we have given no discussion of how one might explicitly incorporate reality
conditions into the construction so that one can see the relationship between the real
analytic and complex settings explicitly. The reality condition is, of course, important for
computation and indicates interesting differences between this theory and the analogous
theory of Penrose for the non-linear graviton.

Our construction associates a complex twistor space to each of the local real analytic
G3-holonomy affine connections while Penrose’s construction associates a complex twistor
space to each self-dual or anti-self-dual solution to Einstein’s equations.

On the other hand, Penrose’s construction works for pseudo-metrics of two distinct
signatures, (4,0) and (2,2). Our construction works for only one of the real forms of G3. In
fact, the other real forms of G3 in this representation cannot occur as the affine holonomy
of a symmetric connection as they do not satisfy Berger’s two conditions.

One consequence of Proposition 5.1 is that a holomorphic torsion-free G3-structure
on a complex 4-manifold M induces a local embedding of M into a certain complex 6-
manifold, Z. This embedding is constructed by interpreting the points of M as rational
contact curves in a contact 3-fold Y and then regarding Z as the full space of rational
curves in Y with normal bundle O(2) ⊕O(2).

Since the tangent space at each point of Z is isomorphic to C
2 ⊗ H0 (O(2)), it is

apparent that Z has a canonical GL(2, C) ⊗ SO(3, C)-structure. For twistorial reasons, it
seems likely that the intrinsic torsion of this structure vanishes. If so, it is also quite likely
that GL(2, C) ⊗ SO(3, C) ⊂ GL(6, C) is yet another exotic affine holonomy group. The
relationship between the geometry on Z and that on M is far from understood.

Finally there is the question of characterizing the complex contact manifolds which
correspond to the finite dimensional family of affine connections with holonomy H3. These
should be some special complex manifolds which have at least a one-parameter symmetry
group. Other than the homogeneous case that we discussed at the end of §3 and §5, none of
the other examples are known. In particular, the complex contact manifolds corresponding
to the two components of the singular locus Σc should have 3-parameter symmetry groups
and may be “almost homogeneous”, but so far, they have resisted explication.
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∫
F (x, y, y′ , y′′)dx., J. Math. pures et appl., 15

(1936), 42–69.
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