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I. Finsler Geometry

A on M™ is a smooth

hypersurtace in 1T'M

— TM

lw

with the properties:

1. m: > — M is a submersion,

1. 2., = 201, M is strictly convex towards
0, € T, M for all z € M.

A or is a curve
v : la,b] — M with ~/(t) € X for almost
all t € |a,b]. Define its length to be

L(v) = b—a.



Possible >, when n = 2

®0 ®0

L Xe) ®0



Example: Zermelo Navigation

M is a domain in the plane and C' is a
vector field on M with |C(p)| < 1 forallp €
M. Set

p:{v—l—C(p)Hv\:l }

A ‘river’: M is defined by |y| < 1. Set

0

L AV
C(x,y) = 0.8(1 —y~) 5

(current is faster in mid-river).
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Example: Hilbert’s Projective Metric

M C R" is a convex domain.
For x,y € M define

1 (=2 —a)
Any) =351 g((p—y)(w—Q)> |

This is the distance function of a Finsler
structure and its geodesics are line segments.
This is the usual hyperbolic metric if M is

the interior of an ellipsoid.



Constructions at ©x € M

For u € X, define u* € T M so that u* =1
defines the tangent plane to ¥, at u. Set u- =
ker u* and let S, be the ellipsoid centered
on 0, that best approximates >, at wu.

T.M = Ru & u-

T, ~ u-

S, 1s the unit sphere of a quadratic form g,
on 1, M, and



(Geodesics:

The Hilbert 1-form w on X is defined by
w =T (u*)

Since /\(d )n_l # 0, there is a Reeb vector
field ' on X satisfying

(£) =1, adw = 0.

E generates the geodesic flow on ..

Set 17, = 7*(h,) and " = £x1n. Then
n’ has type (n—1,n—1). There is a unique
splitting

so that H,, is null for 1’ and
Lagrangian for dw.



Direct sum decomposition: Recall that
T,>., ~ u- ~ H,,, so there is a canonical
metric on >, so that the sum is orthogonal,

with dsi = 1, etc.

ds* = w* + ds; + ds?
T, = RE, & H, & 1T,X,
l““) l l /
T.M = Ru & u"

Defines an O(n)-structure on 3.

Theorem: All local invariants of > can be

reconstructed from (w, d82).

PROOF: See works by Cartan, Berwald, Chern,
and Foulon.



Jacobi Operators and Flag Curvature

For u € X, there is a self-adjoint oper-
ator

(u) : ut — u™

so that if v : [a,b] — M a X-geodesic and
7" 1 la, b] — 3 is its tangential lift, then the

Jacobi operator of v is

Jf(s) = V2f(s) + £ (v'(s)) f(s)

for f € T'((v")*"). Say /' (u)v is the curva-
ture of the ‘flag’ (u, v). |In general, K (u)v #
K (v)u, even when this makes sense. |

>’ has if

K(u)v = cwv

forallu e Y and v € ut.



Example: Hilbert’s Projective Metric has
constant flag curvature ¢ = —1. (Funk,
1929, for n = 2. Buseman for n > 27)

Order of Invariants

In the Riemannian case, > C T'M is

given by n(n+1) functions of n variables.

e w is of order zero,
e [ is first order,
e H. ds? are first order,

e /K is second order.

The general Finsler structure > C T'M
is given by one function of 2n—1 variables.

e w is first order,

e [ is second order,

o H. ds? are third order,
e K is fourth order.



II. Finsler Surfaces

M? oriented, X2 C T'M a Finsler structure.

Cartan’s Structure Equations:

dwl — — W2 A\W3
dCUQ = —W3AW] + ]Wg/\UJQ
du.)g = —le/\LUQ + Jwg/\w2

(w=w;i and E = Fy.)

I = J = 0 defines the Riemannian
case, in which K is just the Gauss curvature
and ws = woy 1s the Levi-Civita connection

form.

The Bianchi Identities:
dl = Jwi + Iowoe + I3ws
dJ = —(Ks+KI)w + Jows + J3ws
dK = Kiwi + Kows + K3zws



Global Rigidity for K = —1
Theorem (Akbar-Zadeh, 1988) If X is com-

pact and K = —1, then X is Riemannian.

PROOF: X and hence M compact implies
the geodesic flow is complete. Geodesics lift
to 2. as the integral curves of E; and, along
such a curve, with arclength parameter s,

Bianchi says

dI
ds

dJ

J —=1.
ds

Thus,
I(s)=c1e’+coe 7,

but [ is bounded, so ¢y = c9 = 0. Thus [ =
0 on all curves, so I = 0, which forces J =0
(Bianchi again), which forces 3 to be Rie-

mannian.



A Double Fibration

Assume K = +1 and X compact. Then
geodesics leaving p € M focus at length ,
just as in the Riemannian case, and M is
either RP? or S2. Assume M = S2. Then
geodesics close at length 27. The space of
geodesics is A ~ S?, with projection \ :
Y. — A, yielding the double fibration:

>
/ N
A M

There is a metric g with area form dA and

1-form ¢ on A so that

)\*g:w22 —I—W32

NdA = W3 \NWwWo — dwl

N =Twy+ Jws



These quantities satisty
dp=(1—R)dA

where R is the Gauss curvature of g.

Every p € M defines a curve C), =
)\(W_l(p)), the curve of geodesics passing
through p. This curve satisfies

Kgdsy = ¢|c -

Such curves are the (g, ¢)-geodesics on A.

Reconstruction Theorem: If (g,y) are
a metric and 1-form on A = S? with the
property that dp = (1 — R)dA and that
the (g, p)-geodesics are closed, then there is
a unique Finsler structure > with K =1 on

the space M of such curves whose geodesic
data is (g, ).



Zoll-type Examples:

If u is any smooth function on S? then
the (g, p)-geodesics are the same as the
(g, p)-geodesics, where

g=ey, p =+ *du.
If ¢ is a metric on S? with positive curva-
ture R > 0, then taking u = % log R yields
a pair (g, ¢ = *du) with

dg = (1 — R)dA.

By a theorem of Guillemin, there are many
Zoll metrics g on S? with positive curvature,
so this gives many Finsler structures on S?
with K = 1, since (g, 0)-geodesics are just

the ordinary geodesics of g.



Projectively Flat Examples
Regard S? as S, oriented lines thru 0 € R?.

If v. = (vg,v1) is a pair of vectors in R?
with vgavy # 0, define 7, : St — S by

YWi(s) = [cossvg + sinsvy | 4.

If w = (wp,wy), then v parametrizes the
same oriented great circle as vy, iff [vgavy ]|+ =

lwoAwi]s. They have the same speed iff

[vo +iv1] = [wo +iw;] € CP*\ RP?

Theorem: (Funk) If ¥ C TS is a Finsler
structure with K = 1 and geodesics the great
circles, then every geodesic has a unit speed

parametrization of the form .



If S* is the space of oriented great cir-
cles in S, a Finsler structure on S with great

circle geodesics and K = 1 induces a sec-
tion o : S* — CP? \ RP? of the bundle map

CP* \ RP* — S*
lvg +ivi] +— [|vorvy]y

Theorem: The image o (S*) C CP*\RP* is
a (holomorphic) conic. Conversely, if C C
CP*\RP? is a smooth conic, then it is U(S*)
for some unique Finsler structure > on S
with great circle geodesics and K = 1. Such
Finsler structures 21 and Yo on S? are iso-

metric if and only if the corresponding C,
and Cy are equivalent under SL(3,R).



Moduli: Any conic without real points in CP?
is SL(3,R)-equivalent to a unique conic of

the form
20° + Pl 212 4 P2 5% = (),

where 0 < p; < po < m. Thus, the moduli

space M is of dimension 2.

e M is not compact.

e The unit spheres >, for x € S are usu-
ally quartic plane curves

e Except for the Riemannian case (p =
g = 0), these are not Zoll-derived ex-

amples.



II1I. Higher Dimensions Analog in
higher dimensions: Regard S™ as S, ori-
ented lines thru 0 € R™'. If v = (v, v1)

is a pair of vectors in R"™ with vgavy # 0,
define vy : S — S by

Yv(8) = [cossvg +sinsvy | 4.

If w = (wg,w1), then vy parametrizes the
same oriented great circle as vy, iff [vgavy]y =

lworw1]1. They have the same speed iff

[[?}() +ivl]] = [[w() —|—ZUJ1]] c CP" \an

Theorem: (Buseman?) IfY C TS is a
Finsler structure with K =1 and great cir-
cle geodesics, then every geodesic has a unit

speed parametrization of the form .



If Q is the space of oriented great cir-
cles in S, a Finsler structure on S with great

circle geodesics and K = 1 induces a sec-
tion o : Q — CP" \ RP" of the bundle map

CP"\RP" —  Q
lvg +ivi] +—  |vorvy]y

Theorem: The image o(Q) C CP" \ RP"
is a (holomorphic) quadric. Conversely, if
Q C CP" \ RP" is a smooth quadric, then
it 1S U(Q) for some unique Finsler struc-
ture X on S with great circle geodesics and
K = 1. Such Finsler structures %1 and
o on S are isometric if and only if the

corresponding Q1 and Qo are equivalent un-
der SL(n+1,R).



Moduli: Any quadric without real points
in CP" is SL(n+1, R)-equivalent to a unique
conic of the form

20° +ePrz? o 4 e z,? =0,
where p; are real numbers satistying

0<p1 < - <pp<m.

The moduli space M,, is of dimension n and

1s not compact.



General case of constant flag curvature c:

If the geodesic space A exists and is
Hausdorf, it has dimension 2(n—1) and we

have a double fibration

When ¢ # 0, there is a (pseudo-)metric g

and a symplectic form {2 on A so that

Ng = cds; + ds?
A = dw

Remarkable Fact: VI = 0.

Corollary: The holonomy of g lies in
GL(n—1,R) C O(n—1,n—1), if ¢ <0,
U(n—1) C O(2(n-1)), if ¢ > 0.



