Finsler Manifolds

with

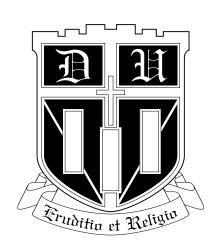
Constant

Flag Curvature

Robert L. Bryant

Duke University

6 March 1998



I. Finsler Geometry

A Finsler structure on M^n is a smooth hypersurface in TM

$$\begin{array}{ccc} \Sigma & \hookrightarrow & TM \\ & & \downarrow^{\pi} \\ & & M \end{array}$$

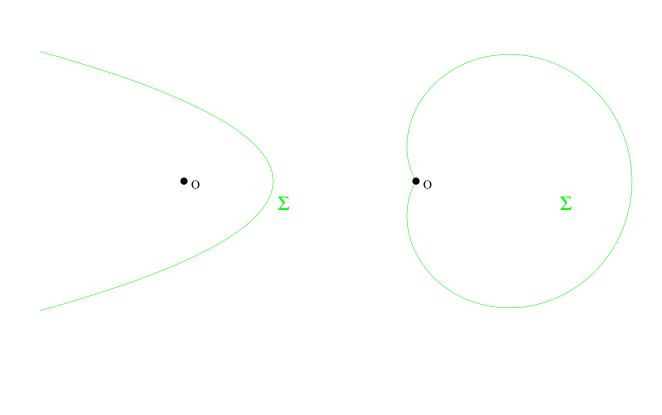
with the properties:

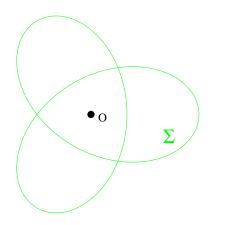
- i. $\pi: \Sigma \to M$ is a submersion,
- ii. $\Sigma_x = \Sigma \cap T_x M$ is strictly convex towards $0_x \in T_x M$ for all $x \in M$.

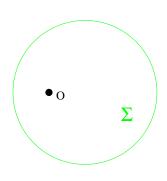
A Σ -curve or unit speed curve is a curve $\gamma: [a,b] \to M$ with $\gamma'(t) \in \Sigma$ for almost all $t \in [a,b]$. Define its length to be

$$L(\gamma) = b - a$$
.

Possible Σ_x when n=2







Example: Zermelo Navigation

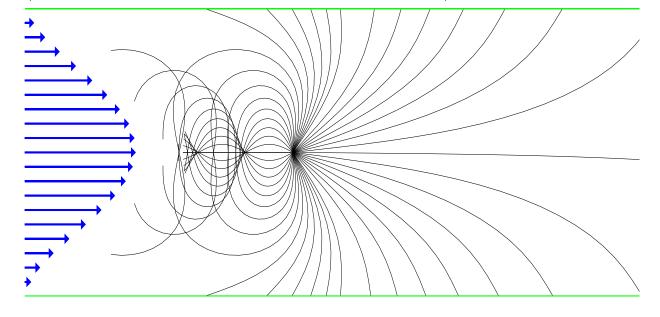
M is a domain in the plane and C is a vector field on M with |C(p)| < 1 for all $p \in M$. Set

$$\Sigma_p = \left\{ v + C(p) \mid |v| = 1 \right\}.$$

A 'river': M is defined by |y| < 1. Set

$$C(x,y) = 0.8(1 - y^2)^2 \frac{\partial}{\partial x}$$

(current is faster in mid-river).

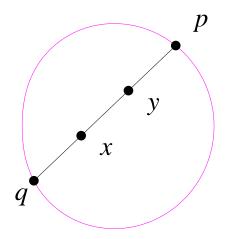


Example: Hilbert's Projective Metric

 $M \subset \mathbb{R}^n$ is a convex domain.

For $x, y \in M$ define

$$d(x,y) = \frac{1}{2} \log \left(\frac{(p-x)(y-q)}{(p-y)(x-q)} \right).$$



This is the distance function of a Finsler structure and its geodesics are line segments. This is the usual hyperbolic metric if M is the interior of an ellipsoid.

Constructions at $x \in M$

For $u \in \Sigma_x$ define $u^* \in T_x^*M$ so that $u^* = 1$ defines the tangent plane to Σ_x at u. Set $u^{\perp} = \ker u^*$ and let S_u be the ellipsoid centered on 0_x that best approximates Σ_x at u.

$$T_x M = \mathbb{R} u \oplus u^{\perp}$$

$$T_u \Sigma_x \simeq u^{\perp}$$

 S_u is the unit sphere of a quadratic form g_u on T_xM , and

$$g_u = (u^*)^2 + h_u$$

Geodesics:

The Hilbert 1-form ω on Σ is defined by

$$\omega_u = \pi^* (u^*).$$

Since $\omega \wedge (d\omega)^{n-1} \neq 0$, there is a Reeb vector field E on Σ satisfying

$$\omega(E) = 1, \qquad E \, \neg \, d\omega = 0.$$

E generates the geodesic flow on Σ .

Set $\eta_u = \pi^*(h_u)$ and $\eta' = \mathfrak{L}_E \eta$. Then η' has type (n-1, n-1). There is a unique splitting

$$\ker \omega_u = T_u \Sigma_x \oplus H_u$$

so that H_u is null for η' and Lagrangian for $d\omega$.

Direct sum decomposition: Recall that $T_u \Sigma_x \simeq u^{\perp} \simeq H_u$, so there is a canonical metric on Σ , so that the sum is orthogonal, with $ds_h^2 = \eta$, etc.

$$ds^{2} = \omega^{2} + ds_{h}^{2} + ds_{v}^{2}$$

$$T_{u}\Sigma = \mathbb{R}E_{u} \oplus H_{u} \oplus T_{u}\Sigma_{x}$$

$$\downarrow^{\pi'(u)} \qquad \downarrow \qquad \downarrow$$

$$T_{x}M = \mathbb{R}u \oplus u^{\perp}$$

Defines an O(n)-structure on Σ .

Theorem: All local invariants of Σ can be reconstructed from (ω, ds^2) .

PROOF: See works by Cartan, Berwald, Chern, and Foulon.

Jacobi Operators and Flag Curvature

For $u \in \Sigma$, there is a self-adjoint operator

$$K(u): u^{\perp} \longrightarrow u^{\perp}$$

so that if $\gamma:[a,b]\to M$ a Σ -geodesic and $\gamma':[a,b]\to\Sigma$ is its tangential lift, then the Jacobi operator of γ is

$$Jf(s) = \nabla^2 f(s) + K(\gamma'(s)) f(s)$$

for $f \in \Gamma((\gamma')^{\perp})$. Say K(u)v is the curvature of the 'flag' (u, v). [In general, $K(u)v \neq K(v)u$, even when this makes sense.]

 Σ has constant flag curvature c if

$$K(u)v = cv$$

for all $u \in \Sigma$ and $v \in u^{\perp}$.

Example: Hilbert's Projective Metric has constant flag curvature $c \equiv -1$. (Funk, 1929, for n = 2. Buseman for n > 2?)

Order of Invariants

In the Riemannian case, $\Sigma \subset TM$ is given by $\frac{1}{2}n(n+1)$ functions of n variables.

- ω is of order zero,
- E is first order,
- H, ds^2 are first order,
- \bullet K is second order.

The general Finsler structure $\Sigma \subset TM$ is given by one function of 2n-1 variables.

- ω is first order,
- E is second order,
- H, ds^2 are third order,
- K is fourth order.

II. Finsler Surfaces

 M^2 oriented, $\Sigma^3 \subset TM$ a Finsler structure.

Cartan's Structure Equations:

$$d\omega_1 = -\omega_2 \wedge \omega_3$$

$$d\omega_2 = -\omega_3 \wedge \omega_1 + I \omega_3 \wedge \omega_2$$

$$d\omega_3 = -K \omega_1 \wedge \omega_2 + J \omega_3 \wedge \omega_2$$

$$(\omega = \omega_1 \text{ and } E = E_1.)$$

I=J=0 defines the Riemannian case, in which K is just the Gauss curvature and $\omega_3=\omega_{21}$ is the Levi-Civita connection form.

The Bianchi Identities:

$$dI = J\omega_1 + I_2\omega_2 + I_3\omega_3$$

$$dJ = -(K_3 + KI)\omega_1 + J_2\omega_2 + J_3\omega_3$$

$$dK = K_1\omega_1 + K_2\omega_2 + K_3\omega_3$$

Global Rigidity for K = -1

Theorem (Akbar-Zadeh, 1988) If Σ is compact and $K \equiv -1$, then Σ is Riemannian.

PROOF: Σ and hence M compact implies the geodesic flow is complete. Geodesics lift to Σ as the integral curves of E_1 and, along such a curve, with arclength parameter s, Bianchi says

$$\frac{dI}{ds} = J \qquad \qquad \frac{dJ}{ds} = I \,.$$

Thus,

$$I(s) = c_1 e^s + c_2 e^{-s},$$

but I is bounded, so $c_1 = c_2 = 0$. Thus I = 0 on all curves, so I = 0, which forces J = 0 (Bianchi again), which forces Σ to be Riemannian.

A Double Fibration

Assume $K \equiv +1$ and Σ compact. Then geodesics leaving $p \in M$ focus at length π , just as in the Riemannian case, and M is either \mathbb{RP}^2 or S^2 . Assume $M = S^2$. Then geodesics close at length 2π . The space of geodesics is $\Lambda \simeq S^2$, with projection λ : $\Sigma \to \Lambda$, yielding the double fibration:

There is a metric g with area form dA and 1-form φ on Λ so that

$$\lambda^* g = \omega_2^2 + \omega_3^2$$
$$\lambda^* dA = \omega_3 \wedge \omega_2 = d\omega_1$$
$$\lambda^* \varphi = I \omega_2 + J \omega_3$$

These quantities satisfy

$$d\varphi = (1 - R) \, dA$$

where R is the Gauss curvature of g.

Every $p \in M$ defines a curve $C_p = \lambda(\pi^{-1}(p))$, the curve of geodesics passing through p. This curve satisfies

$$\kappa_g \, ds_g = \varphi|_C \, .$$

Such curves are the (g, φ) -geodesics on Λ .

Reconstruction Theorem: If (g, φ) are a metric and 1-form on $\Lambda = S^2$ with the property that $d\varphi = (1 - R) dA$ and that the (g, φ) -geodesics are closed, then there is a unique Finsler structure Σ with K = 1 on the space M of such curves whose geodesic data is (g, φ) .

Zoll-type Examples:

If u is any smooth function on S^2 then the (g, φ) -geodesics are the same as the $(\tilde{g}, \tilde{\varphi})$ -geodesics, where

$$\tilde{g} = e^{2u} g, \qquad \tilde{\varphi} = \varphi + *du.$$

If g is a metric on S^2 with positive curvature R > 0, then taking $u = \frac{1}{2} \log R$ yields a pair $(\tilde{g}, \tilde{\varphi} = *du)$ with

$$d\tilde{\varphi} = (1 - \tilde{R})\,\widetilde{dA}.$$

By a theorem of Guillemin, there are many Zoll metrics g on S^2 with positive curvature, so this gives many Finsler structures on S^2 with K=1, since (g,0)-geodesics are just the ordinary geodesics of g.

Projectively Flat Examples

Regard S^2 as \mathbb{S} , oriented lines thru $0 \in \mathbb{R}^3$. If $\mathbf{v} = (v_0, v_1)$ is a pair of vectors in \mathbb{R}^3 with $v_0 \wedge v_1 \neq 0$, define $\gamma_{\mathbf{v}} : S^1 \to \mathbb{S}$ by

$$\gamma_{\mathbf{v}}(s) = [\cos s \, v_0 + \sin s \, v_1]_+.$$

If $\mathbf{w} = (w_0, w_1)$, then $\gamma_{\mathbf{w}}$ parametrizes the same oriented great circle as $\gamma_{\mathbf{v}}$ iff $[v_0 \wedge v_1]_+ = [w_0 \wedge w_1]_+$. They have the same speed iff

$$\llbracket v_0 + i \, v_1 \rrbracket = \llbracket w_0 + i \, w_1 \rrbracket \in \mathbb{CP}^2 \setminus \mathbb{RP}^2$$

Theorem: (Funk) If $\Sigma \subset T\mathbb{S}$ is a Finsler structure with K=1 and geodesics the great circles, then every geodesic has a unit speed parametrization of the form $\gamma_{\mathbf{v}}$.

If \mathbb{S}^* is the space of oriented great circles in \mathbb{S} , a Finsler structure on \mathbb{S} with great circle geodesics and K=1 induces a section $\sigma: \mathbb{S}^* \to \mathbb{CP}^2 \setminus \mathbb{RP}^2$ of the bundle map

$$\mathbb{CP}^2 \setminus \mathbb{RP}^2 \longrightarrow \mathbb{S}^*$$

$$[v_0 + i \, v_1] \longmapsto [v_0 \wedge v_1]_+$$

Theorem: The image $\sigma(\mathbb{S}^*) \subset \mathbb{CP}^2 \backslash \mathbb{RP}^2$ is a (holomorphic) conic. Conversely, if $C \subset \mathbb{CP}^2 \backslash \mathbb{RP}^2$ is a smooth conic, then it is $\sigma(\mathbb{S}^*)$ for some unique Finsler structure Σ on \mathbb{S} with great circle geodesics and K = 1. Such Finsler structures Σ_1 and Σ_2 on \mathbb{S}^2 are isometric if and only if the corresponding C_1 and C_2 are equivalent under $\mathrm{SL}(3,\mathbb{R})$.

Moduli: Any conic without real points in \mathbb{CP}^2 is $SL(3,\mathbb{R})$ -equivalent to a unique conic of the form

$$z_0^2 + e^{ip_1} z_1^2 + e^{ip_2} z_2^2 = 0,$$

where $0 \le p_1 \le p_2 < \pi$. Thus, the moduli space \mathcal{M} is of dimension 2.

- \mathcal{M} is not compact.
- The unit spheres Σ_x for $x \in \mathbb{S}$ are usually quartic plane curves
- Except for the Riemannian case (p = q = 0), these are not Zoll-derived examples.

III. Higher Dimensions Analog in higher dimensions: Regard S^n as \mathbb{S} , oriented lines thru $0 \in \mathbb{R}^{n+1}$. If $\mathbf{v} = (v_0, v_1)$ is a pair of vectors in \mathbb{R}^n with $v_0 \wedge v_1 \neq 0$, define $\gamma_{\mathbf{v}} : S^1 \to \mathbb{S}$ by

$$\gamma_{\mathbf{v}}(s) = [\cos s \, v_0 + \sin s \, v_1]_+.$$

If $\mathbf{w} = (w_0, w_1)$, then $\gamma_{\mathbf{w}}$ parametrizes the same oriented great circle as $\gamma_{\mathbf{v}}$ iff $[v_0 \wedge v_1]_+ = [w_0 \wedge w_1]_+$. They have the same speed iff

$$\llbracket v_0 + i \, v_1 \rrbracket = \llbracket w_0 + i \, w_1 \rrbracket \in \mathbb{CP}^n \setminus \mathbb{RP}^n$$

Theorem: (Buseman?) If $\Sigma \subset T\mathbb{S}$ is a Finsler structure with $K \equiv 1$ and great circle geodesics, then every geodesic has a unit speed parametrization of the form $\gamma_{\mathbf{v}}$.

If \mathbb{Q} is the space of oriented great circles in \mathbb{S} , a Finsler structure on \mathbb{S} with great circle geodesics and $K \equiv 1$ induces a section $\sigma : \mathbb{Q} \to \mathbb{CP}^n \setminus \mathbb{RP}^n$ of the bundle map

$$\mathbb{CP}^n \setminus \mathbb{RP}^n \longrightarrow \mathbb{Q}$$

$$[v_0 + i \, v_1] \longmapsto [v_0 \wedge v_1]_+$$

Theorem: The image $\sigma(\mathbb{Q}) \subset \mathbb{CP}^n \setminus \mathbb{RP}^n$ is a (holomorphic) quadric. Conversely, if $Q \subset \mathbb{CP}^n \setminus \mathbb{RP}^n$ is a smooth quadric, then it is $\sigma(\mathbb{Q})$ for some unique Finsler structure Σ on \mathbb{S} with great circle geodesics and $K \equiv 1$. Such Finsler structures Σ_1 and Σ_2 on \mathbb{S}^2 are isometric if and only if the corresponding Q_1 and Q_2 are equivalent under $\mathrm{SL}(n+1,\mathbb{R})$.

Moduli: Any quadric without real points in \mathbb{CP}^n is $\mathrm{SL}(n+1,\mathbb{R})$ -equivalent to a unique conic of the form

$$z_0^2 + e^{ip_1} z_1^2 + \dots + e^{ip_n} z_n^2 = 0,$$

where p_i are real numbers satisfying

$$0 \le p_1 \le \cdots \le p_n < \pi$$
.

The moduli space \mathcal{M}_n is of dimension n and is not compact.

General case of constant flag curvature c:

If the geodesic space Λ exists and is Hausdorf, it has dimension 2(n-1) and we have a double fibration

When $c \neq 0$, there is a (pseudo-)metric g and a symplectic form Ω on Λ so that

$$\lambda^* g = c \, ds_h^2 + ds_v^2$$
$$\lambda^* \Omega = d\omega$$

Remarkable Fact: $\nabla^g \Omega = 0$.

Corollary: The holonomy of g lies in $GL(n-1,\mathbb{R}) \subset O(n-1,n-1)$, if c < 0, $U(n-1) \subset O(2(n-1))$, if c > 0.