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Abstract. A generalization of Finsler structures on surfaces is proposed and the

differential invariants of such structures are developed. The information obtained is
then used to construct examples of Finsler structures and generalized Finsler struc-

tures which satisfy various interesting curvature conditions. In particular, examples
are constructed of non-Riemannian Finsler structures on the 2-sphere whose ‘Gauss-

ian curvature’ is constant and of non-Riemannian complete Finsler structures on the
plane whose ‘Gaussian curvature’ is a negative constant. The local and global gener-
ality of the Finsler structures satisfying geometrically natural conditions is discussed

using É. Cartan’s method of exterior differential systems.

0. Introduction

This is an expository manuscript on the geometry of Finsler surfaces. My goal
in writing it was two-fold. First, I wanted to explain the construction of some new
examples of Finsler surfaces, examples with certain curvature properties which had
been sought for some time. Second, I wanted to explain some of the general methods
from exterior differential systems that I had found useful in the construction, with
the hope that others might find these methods useful as well. As part of this second
goal, I also wanted to provide a fairly complete example of the use of the ideas of
exterior differential systems that could be used as a resource for those interested
in learning more about exterior differential systems. As such, I hope that this
manuscript can be read with profit by those who are not necessarily motivated by
applications to Finsler geometry per se. Of course, if it does stimulate the reader’s
interest in Finsler geometry, then so much the better. However, an exposition of
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2 ROBERT L. BRYANT

Finsler geometry is not one of my main goals, so the reader will find that I have not
treated any of the basic Finsler material in any depth. Those wishing to learn more
about Finsler geometry should consult some of the works listed in the references
that are specifically devoted to this subject.

Roughly speaking, a Finsler structure on an n-manifold M is a choice of a Ba-
nach norm on each of the tangent spaces to M , the choice being required to ‘vary
smoothly with the basepoint’ in the appropriate sense. The familiar Riemannian
case is simply the case where each of the Banach norms is the norm induced by a
quadratic form. Geometrically, the same information is specified by choosing a ‘unit
sphere’ in each tangent space, so that one arrives at a smooth hypersurface Σ ⊂ TM
which has the property that each fiber Σm = Σ∩TmM is a smooth, strictly convex
hypersurface in TmM which surrounds the origin 0m ∈ TmM . Given one such
hypersurface Σ ⊂ TM , any appropriately small perturbations of Σ in the C2 sense
will also define a Finsler structure on M , so, intuitively, the Finsler structures near
a given one ‘depend’ on a choice of one function of 2n−1 variables. This has to be
contrasted with Riemannian structures on M , which, by the same sort of analysis,
are seen to depend on

(
n+1

2

)
arbitrary functions of n variables, the coefficients of

the quadratic form in local coordinates.
Given a Finsler structure on M , one can define the notion of unit speed curve

and the notion of distance between points, which is the infimum of the length of unit
speed curves joining the two points. Thus, much of metric Riemannian geometry
can be carried over to Finsler geometry. However, the problem of defining parallel
transport and curvature turns out to be more subtle than in the Riemannian case,
in large part because a Finsler structure is not defined as a section of some finite
dimensional tensor bundle over M , instead it is somehow tensorial on the unit
sphere bundle Σ. This motivated Cartan [Ca2] and, later, Chern [Ch1] to analyse
Finsler geometry from the point of view of a natural G-structure with connection
on the manifold Σ. They showed that there is a natural O(n−1)-structure on Σ and
that one could choose one of several possible natural connections on Σ, any one of
which allowed one to generalize the differential geometric curvature constructions
carried out in Riemannian geometry. For example, curvature tensors appear which
play the role in the second variation of arc length that is played by the Ricci tensor
in Riemannian geometry. This allows one to extend results like the Bonnet-Meyers
theorems to the setting of Finsler geometry. Of course, this then raises questions
about what sorts of examples there are of Finsler structures which obey various
curvature restrictions and what sorts of topological restrictions are imposed on a
manifold by supposing that it carries a Finsler structure satisfying these curvature
restrictions.

In particular, for Finsler surfaces, there is an analog of the Gauss curvature,
which I continue to call K (but now it is a function on Σ, not M), which gov-
erns the stability and focussing of Finsler geodesics. An unexpected result due to
Akbar-Zadeh [Ak] asserts that any Finsler structure on a compact surface that sat-
isfies K ≡ −1 is a Riemannian metric. He also classifies the Finsler structures on
compact surfaces that satisfy K ≡ 0, showing that they can only be defined on the
torus or Klein bottle and must be so-called ‘Minkowski’ structures, i.e., quotients
of a translation invariant Finsler structure on R2 by a discrete lattice. This raised
the question of whether or not every Finsler structure on S2 satisfying K ≡ 1 must
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be a Riemannian structure. In §5 of this manuscript, I show that this is not the
case, by constructing a family, essentially depending on one arbitrary function of
one variable, of non-Riemannian Finsler structures on S2 that satisfy K ≡ 1. In §6
and §4, I show that the hypothesis of compactness in Akbar-Zadeh’s results is essen-
tial by constructing examples of complete non-Riemannian and non-Minkowskian
Finsler structures on R2 which satisfy K ≡ −1 or K ≡ 0. This raises interesting
questions about the local and global ‘generality’ of such structures. A significant
part of this manuscript is devoted to precisely formulating and answering questions
of this type.

I will now give an overview of the contents of the manuscript.
In §1, I review Cartan’s construction of a canonical coframing on Σ in the case

of a Finsler surface. This coframing is not an arbitrary coframing on a 3-manifold,
but satisfies certain structure equations which contain three invariant functions as
coefficients: S (which measures ‘deviation from a Riemannian structure’), C (which
measures the ‘deviation from Σ being a circle bundle’), and the aforementioned K.

I also define a generalized Finsler structure to be any 3-manifold endowed with a
coframing satisfying these structure equations and explore the relationship between
Finsler structures per se and generalized Finsler structures. The purpose for con-
sidering generalized Finsler structures is to separate essentially ‘micro-local’ issues
having to do with the local generality of coframings satisfying certain differential
geometric constraints from local or global issues on the original surface that have
to do with the global behavior of certain vector fields or foliations. This separation
is an important part of the general approach taken in this manuscript. As an ex-
ercise, I use the structure equations to classify the homogeneous Finsler structures
on surfaces.

In §2, I derive the Bianchi identities which specify the relations between the
covariant derivatives of the three invariants and then use these relations to explore
the ‘generality’ of the generalized Finsler structures which satisfy various curvature
conditions, such as requiring S to be constant, requiring C to vanish, requiring K
to be constant, etc. All of these conditions have geometric meaning, which I go to
some lengths to explain.

The main interesting feature of §2 is the use of Cartan’s generalization of Lie’s
theory of pseudo-groups defined by differential equations to give meaning to such
questions as “How many geometrically distinct Finsler structures are there which
satisfy K ≡ 1?”

An exposition of Cartan’s theory would have made the manuscript very long,
so I have reluctantly omitted it. The reason for my reluctance is that there is,
at present, no modern exposition of this theory. Even Cartan’s works only sketch
the theory in the intransitive case compared to the level of detail needed. I am
finishing a manuscript [Br2] which will include such an exposition and expect that
it will be available sometime this fall. The reader who is interested in this aspect
of the subject would do well to consult some of Cartan’s papers, notably [Ca5], for
comparison. That said, I have done my best to keep this aspect of the exposition
short and have justified the claims of results by other methods whenever I can.

For example, the method predicts that the generalized Finsler structures sat-
isfying K ≡ 1 will depend on two arbitrary functions of two variables modulo
diffeomorphism and, in §5, I exhibit a local normal form for such structures which
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depends on the choice of two arbitrary functions of two variables.
The knowledge of how ‘flexible’ or ‘general’ the space of Finsler structures satis-

fying given curvature conditions is an important guide in working with such struc-
tures and in helping one to see what sorts of approaches are liable to work. For
example, based on the known generality of generalized Finsler structures satisfy-
ing K ≡ 1, one should look for a way of describing them by specifying data on a
surface, though this surface will not be the original surface M on which the Finsler
structure is defined. In §5, I explain how this works. The surface involved is the
space of geodesics of the original Finsler structure and working on this surface is
the key to constructing a non-Riemannian Finsler structure on S2 which satisfies
K ≡ 1.

In §3, I make a short detour into the study of the geodesic flow of a Finsler
surface, particularly with an eye towards understanding conditions of a Finsler
surface which imply the complete integrability of the geodesic flow. For example,
the non-Riemannian Landsberg surfaces are shown to have a completely integrable
geodesic flow, as are the generic non-Riemannian surfaces on which K is constant.
This brings to mind Cartan’s notion [Ca3] of ‘geometrically integrable’ classes of
ordinary differential equations and I remark on this. It seems that there is more to
this than meets the eye. I would imagine than a study of the relationship of Finsler
geometry with path geometry would clarify this relationship, but I refrained from
this in this manuscript because I did not want to lengthen the manuscript with an
exposition of path geometry. Still the geometry of the double fibration defined by
the geodesic foliation of Σ is intriguing.

In §4, I study the generalized Finsler structures which satisfy K ≡ 0. First, I de-
rive a local normal form which depends on two arbitrary functions of two variables,
as Cartan’s general theory predicts, and then I study the problem of classifying the
compact generalized Finsler structures satisfying K ≡ 0. My purpose for doing this
is mainly didactic. This provides a good example of using the structure equations
to derive a global normal form and the results are interesting.

In §5, I study the generalized Finsler structures which satisfy K ≡ 1. I begin by
showing how the geometry of such structures is encoded in the data of a Riemannian
metric and a 1-form defined on the 2-dimensional space of geodesics of the structure.
I then use this to construct non-Riemannian Finsler structures satisfying K ≡ 1,
culminating in a construction of such Finsler structures on S2. This construction
builds on the construction to be found in Darboux [Da] of rotationally invariant
Zoll metrics.

Finally, in §6, I briefly redo the analysis, this time to construct complete Finsler
structures on R2 which satisfy K ≡ −1. As a bonus, I show how the structure
equations can be used to derive Akbar-Zadeh’s ‘rigidity’ result mentioned above for
such structures defined on compact surfaces.

1. A Generalization of Finsler Structures on Surfaces

In this section, I will first review basic Finsler geometry and the canonical cofram-
ing associated to a Finsler structure on a surface. Then I will consider a generaliza-
tion which ‘micro-localizes’ the notion of a Finsler structure, the purpose of which
is to allow a separation of local considerations having to do with solving partial
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differential equations from global considerations having to do with the behavior of
the leaf space of certain natural foliations.

1.1. Finsler structures. I will now quickly derive structure equations for Finsler
surfaces. This derivation is, of course, not new, having been treated in many places,
cf. [BaChSh], [Ca2], [Ch1], [Ga], and [GaWi], to name just a few from different
points of view and different eras. The present treatment is mainly to fix notation
and nomenclature and treats only the case of surfaces, where there is a notable
simplification of the theory. The reader wishing to understand the more general
case of Finsler structures on manifolds of higher dimension is urged to consult the
above-mentioned references.

Throughout this discussion, M will denote a connected, smooth, oriented surface
(i.e., 2-manifold).

Definition 1. A Finsler structure on a surface M is a smooth hypersurface Σ3 ⊂
TM for which the basepoint projection π : Σ → M is a surjective submersion
having the property that for each x ∈ M , the π-fiber Σx = π−1(x) = Σ∩TxM
is a smooth, closed, strictly convex curve enclosing the origin 0x ∈ TxM . If, for
each x ∈M , the curve Σx is symmetric about 0x, I say that Σ is symmetric.

The prototypical example of a Finsler structure is the unit tangent bundle of a
Riemannian metric on M . In fact, fix a Riemannian metric, say g on M and let Σ1

be its unit tangent bundle. Now choose a smooth positive function r on Σ1 and
define

Σr = {r(u)−1 u u ∈ Σ1}.

Then, provided r satisfies a certain natural second order differential inequality (see
below), Σr will be a Finsler structure on M . Conversely, every Finsler structure
on M is of the form Σr for some positive function r on Σ1. Thus, the set of Finsler
structures on M can be said to be parametrized by an open set in the space of
smooth functions on Σ1. Informally, one says that Finsler structures ‘depend on a
choice of one function of three variables’.

Even when Σ is not the unit tangent bundle of a Riemannian metric, it is still
possible to regard Σ as the unit circle bundle of a norm ν : TM → R+∪{0} that is
convex and positively homogeneous of degree 1, i.e., ν(λv) = λ ν(v) for all λ ≥ 0
and v ∈ TM . This makes it possible to use Σ to define the length of an oriented1

curve γ : [0, 1]→M by the formula

(1) LΣ(γ) =
∫ 1

0

ν
(
γ ′(t)

)
dt

If γ is an immersion, then there is always an orientation preserving reparametriza-
tion which makes γ into a ‘unit speed’ curve, i.e, one whose velocity vector al-
ways lies in Σ. Moreover, the variational problem for LΣ-length is well-behaved:
Through every point of M , in every oriented direction, there will pass a unique,
‘unit speed’ Σ-geodesic and it will be smooth.

1When Σ is symmetric, this notion of length is independent of the orientation.
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1.2. The canonical coframing. I am now going to explain how to use the
geometry of submanifolds of the tangent bundle to define a natural parallelism on
a 3-manifold Σ which defines a Finsler structure on M . This will generalize the
construction of a parallelism on the unit circle bundle of a Riemannian metric on
a surface, so I will first review this construction.

1.2.1. The Riemannian case. Given a Riemannian metric g on an oriented sur-
face, its unit tangent bundle Σ1 can be identified with its SO(2)-bundle of oriented
orthonormal frames and so carries a canonical parallelization. Recall how this par-
allelization is defined: For any u ∈ Σ1, let Ju ∈ TM denote the unique unit vector
with the same basepoint x as u and having the property that

(
u, Ju

)
is an oriented

g-orthonormal basis of TxM . Then there are unique 1-forms α1 and α2 on Σ1 such
that, for all v ∈ TuΣ1, the identity

π′(u)(v) = α1(v) u + α2(v) Ju

is satisfied. (Recall that π′(u) is a surjective linear map from TuΣ1 to TxM where
x = π(u), so this makes sense.) These two 1-forms are everywhere linearly inde-
pendent and there exists a unique 1-form α3 on Σ1 satisfying

(2) dα1 = −α2 ∧α3 and dα2 = −α3 ∧α1 .

This 1-form is linearly independent from the first two and so completes a canonically
defined coframing (α1, α2, α3) of Σ1. Moreover, it satisfies the structure equation

(3) dα3 = −K α1 ∧α2

where K represents the Gauss curvature of the Riemannian metric g. In fact, K is
constant on each π-fiber and so can be regarded as a function on M .

1.2.2. The general case. The construction of a canonical coframing can be gen-
eralized to the Finsler structure case, though the lack of the J operator means that
a less direct route has to be taken.

I will now outline this construction. As a check of the various claims that I will
make, I will carry the construction out explicitly for a Finsler structure written in
the form Σ = Σr where r > 0 is a positive function on Σ1, the unit circle bundle of
a fixed Riemannian metric g on M .

I start with a definition. A vector v ∈ TuΣ will be said to be monic if π′(u)(v) =
u. Since π′(u) : TuΣ → Tπ(u)M is surjective with a kernel of dimension 1, the set
of monic vectors in TuΣ is an affine line. A non-vanishing 1-form θ on Σ will be
said to be null if θ(v) = 0 for all monic vectors. A 1-form ω will be said to be
monic if it satisfies ω(v) = 1 for all monic vectors v. Any two null 1-forms are
linearly dependent and the difference of any two monic 1-forms is a multiple of a
null 1-form.

Let r be the positive function on Σ1 for which Σ = Σr, and let ρ : Σr → Σ1 be
the diffeomorphism which is the inverse of the obvious scaling map, i.e., ρ satisfies

ρ
(
r(u)−1 u

)
= u.
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Then the 1-form θ̄ = ρ∗α2 is null, while the 1-form ω̄ = ρ∗(rα1) is monic. In
particular, null and monic 1-forms exist.

The most general null 1-form is of the form θ = ρ∗(t α2) and the most general
monic 1-form is of the form ω = ρ∗

(
r α1 + s α2

)
for some non-zero function t and

some function s, both defined on Σ1.
First, I claim that there is a unique monic 1-form on Σ with the property that

its exterior derivative is a multiple of a null 1-form. To show this, I will calculate
on Σ1. Since the αi form a coframing of Σ1, there are unique functions ri on Σ1 so
that

(4) dr = r1 α1 + r2 α2 + r3 α3 .

Computation with the structure equations (2−3) yields

dω ∧ θ = ρ∗
(
d((rα1 + sα2) ∧ (t α2))

)
= ρ∗

(
t(r3 − s) α1 ∧α2 ∧α3

)
.

It follows that

(5) ω = ρ∗
(
r α1 + r3 α2

)
is the unique monic 1-form on Σ for which dω is a multiple of a null 1-form. This
canonical 1-form is known in the literature as Hilbert’s invariant form. I will just
call it the Hilbert form. From now on, ω will always denote the Hilbert form.

Note that when r ≡ 1, so that Σ = Σ1 and ρ is the identity map, one has ω = α1,
as might have been expected.

The next canonical 1-form to be defined will be a null 1-form, so I must describe
how to choose the function t in a natural way. First, note that the wedge prod-
uct ω∧θ = ρ∗

(
rt α1∧α2

)
of a monic 1-form with a null 1-form is a non-zero multiple

of the π-pullback of an area form on M . Using the orientation of M , the sign of t
can then be fixed by defining a null 1-form to be positive if the wedge of any monic
form with it is a positive multiple of the π-pullback of an area form on M . I am
now going to look for a canonically defined positive null 1-form.

Now, note that, whatever the value of t > 0, the 1-form θ = ρ∗(t α2) will be a
contact 1-form since

θ ∧ dθ = ρ∗
(
tα2 ∧ d(tα2)

)
= ρ∗

(
−t2 α1 ∧α2 ∧α3

)
6= 0.

Now, writing dr3 = r31 α1 + r32 α2 + r33 α3, one computes for the Hilbert form that

ω ∧ dω = ρ∗
(
−r(r33 + r) α1 ∧α2 ∧α3

)
.

It follows that ω will also be a contact form and that ω∧dω will have the same sign
as θ∧dθ if and only if r > 0 satisfies the inequality

(6) r33 + r > 0.

This is the inequality on r to which I alluded earlier. It is not difficult to see
that (6) is equivalent to the condition that each π-fiber Σx ⊂ TxM be a strictly
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convex curve enclosing 0x ∈ TxM . I will leave the verification of this to the reader.
(Note that r = 1 satisfies this condition.)

In any case, assuming (6), it follows that there is a unique choice of t > 0 so
that θ∧dθ = ω∧dω. From now on θ will denote the unique positive null 1-form
defined by this condition. In terms of forms on Σ1, the formula for θ is

(7) θ = ρ∗
(√

r(r33 + r)α2

)
.

Note that θ = α2 when r ≡ 1, as expected.
Finally, I describe how to choose a third 1-form. Observe that the 2-forms dω and

dθ are nowhere vanishing and that they are also everywhere linearly independent
since θ∧dθ is non-vanishing while θ∧dω vanishes identically. It follows that these two
2-forms have a common linear factor, say η, that is unique up to scalar multiples,
i.e., η satisfies η∧dω = η∧dθ = 0. I can then determine η uniquely by requiring, in
addition, that dω = η∧θ, so that is what I do.

A straightforward calculation using the formulae derived so far shows that there
is a universal cubic polynomial a(r) in r and its α-coframe derivatives up to and
including order 3 so that the unique η satisfying these conditions is given by

(8) η = ρ∗

(
(r33 + r) α3 +

(
r31 − r2

)
α1√

r(r33 + r)
+

a(r) α2√
r3(r33 + r)3

)
.

(The actual formula for a(r) will not be important in what follows.)
When r ≡ 1, one has η = α3, as expected. In the general case, I refer to η as the

canonical pseudo-connection.2

The following Proposition asserts the canonical nature of the coframing just
constructed. Its proof is implicit in the construction itself, so I will omit it.

Proposition 1. If Σ ⊂ TM and Σ∗ ⊂ TM∗ are Finsler structures on the oriented
surfaces M and M∗ respectively, and Φ : M → M∗ is an orientation preserving
diffeomorphism which satisfies Φ′

(
Σ
)

= Σ∗, then(
Φ′
)∗(

ω∗, θ∗, η∗
)

=
(
ω, θ, η

)
. �

Remark. If Φ reverses orientation and satisfies Φ′
(
Σ
)

= Σ∗, then the pullback
equation reads (

Φ′
)∗(

ω∗, θ∗, η∗
)

=
(
ω,−θ,−η

)
.

By Proposition 1, the group of symmetries of a given Finsler structure is embed-
ded into the group of symmetries of the associated coframing

(
ω, θ, η

)
of Σ. In the

next section, I will show that these two groups of symmetries are the same. This
will allow a classification of the homogeneous Finsler structures analogous to the
classification of the homogeneous Riemannian metrics on surfaces.

2Since there is no canonical group action on the π-fibers, Σ is not, a priori, a fiber bundle and
so η is not actually a connection form in the usual sense, though it does restrict to be a volume

form on each π-fiber. For more on this point, see §2.3.
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Proposition 2. For any Finsler structure, the coframing
(
ω, θ, η

)
satisfies

dω = η ∧ θ

dθ = −η ∧
(
ω + S θ

)
(9)

dη = −
(
K ω + C η

)
∧ θ

where S, K, and C are smooth functions on Σ.

Proof. The equation for dω is just the definition. Next, since η∧dθ = 0, it follows
that there are functions R and S so that dθ = −η∧

(
R ω + S θ

)
. However, the

equation θ∧dθ = ω∧dω implies R ≡ 1. Finally, since 0 = d(dω) = dη∧θ − η∧dθ =
dη∧θ, it follows that there are functions K and C so that dη = −

(
K ω+C η

)
∧θ. �

The interpretation of the functions S, C, and K will occupy the next few sections.

1.3. Generalized Finsler structures. With Proposition 2 in hand, I can now
define what I mean by a generalized Finsler structure.

Definition 2. A generalized Finsler structure on a 3-manifold Σ is a coframing(
ω, θ, η

)
which satisfies the structure equations (9). A generalized Finsler structure

will be said to be amenable if the leaf spaceM of the codimension 2 foliation defined
by the equations ω = θ = 0 can be given the structure of a smooth surface M in
such a way that the natural projection π : Σ→ M is a smooth submersion.

Let
(
W, T, H

)
be the triple of vector fields on Σ which is dual to the cofram-

ing
(
ω, θ, η

)
. By the usual formulae, the duals of the structure equations are

(10)

[
H, W

]
= T,[

H, T
]

= −W + S T + C H,[
W, T

]
= K H.

These equations will be useful below.
Every generalized Finsler structure is locally amenable in the sense that every

point of Σ has a neighborhood to which the generalized Finsler structure restricts
to be amenable. In fact, the next proposition shows that the difference between the
concepts ‘Finsler structure’ and ‘generalized Finsler structure’ is global in nature;
every generalized Finsler structure is locally diffeomorphic to a Finsler structure.

Proposition 3. Let Σ be a 3-manifold endowed with an amenable generalized
Finsler structure

(
ω, θ, η

)
. Denote the ωθ-leaf projection by π : Σ→M and define a

smooth map ν : Σ→ TM by the rule ν(u) = π′(u)
(
W(u)

)
. Then ν immerses each

π-fiber Σx = π−1(x) as a curve in TxM which is strictly convex towards 0x. More-
over, there is an orientation of M so that the ν-pullback of the canonical coframing
induced on the ν-image of Σ cöıncides with the given generalized Finsler structure.

Proof. By construction, if x = π(u), then ν(u) is an element of TxM . Since,
by definition, the kernel of π′ consists of the tangent vectors v ∈ TΣ which sat-
isfy ω(v) = θ(v) = 0, it follows that W(u) is not tangent to the fibers of π and
hence is not in the kernel of π′, so that ν(u) 6= 0x.
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Next, I prove that ν is an immersion. Since ν : Σ → TM commutes with the
basepoint projections and since π : Σ→M is a submersion, it suffices to show that
the restriction of ν to each π-fiber Σx is an immersion. At the same time, I will show
that the resulting immersed curve is convex towards 0x. Let u ∈ Σ be fixed and
set x = ν(u). Note that the integral curves of H are the π-fibers. Let γ : (a, b)→ Σ
be the integral curve of H through u and let γ̄ = ν ◦ γ : (a, b)→ TxM . Then (10)
implies

γ̄ ′(t) = π′
(
γ(t)

)(
T(γ(t))

)
.

Since T and W span a 2-plane transverse to the fibers of π at every point, it follows
that γ̄(t) and γ̄ ′(t) are linearly independent in TxM for all t ∈ (a, b). In particular,
ν restricted to each π-fiber is an immersion. Moreover, the equations (10) now
further imply

(11) γ̄ ′′(t) = − γ̄(t) + S◦γ γ̄ ′(t).

It follows from this that γ̄ is strictly convex towards the origin in TxM .3

Thus, the ν-image of Σ is locally identifiable with a Finsler structure as claimed.
Since, by definition, each fiber of π is connected, there is a unique orientation of M
so that ω∧θ is a positive multiple of the π-pullback of a positive 2-form on M . I
will assume that M has been endowed with this canonical orientation.

Use ν locally to identify Σ with its ν-image in TM . Then tracing through the
definitions, one sees that ω is monic while θ is a positive null form. Moreover,
since θ∧dω = 0, it follows that ω is the Hilbert form. Since θ∧dθ = ω∧dω, it follows
that θ is the canonical positive null form. Finally, since dω = η∧θ and η∧dθ = 0, it
follows that η is the canonical pseudo-connection. �

A corollary of Proposition 3 is that if Σ ⊂ TM is a Finsler structure, and
(
ω, θ, η

)
is the associated canonical coframing, then when one regards this coframing as a
generalized Finsler structure, one may simply take π : Σ→M as the ωθ-leaf space
projection and this yields a mapping ν which is just the identity map.

The reader may well wonder why anyone would bother with generalized Finsler
structures since they are locally the same as Finsler structures. The reason is
that in the study of Finsler structures defined by geometric conditions, such as
conditions on the invariants S, C, and K, one is frequently led to solve differential
equations in the larger class of generalized Finsler structures since it is this class
that is locally defined. Then, as a separate step, one can determine the necessary
conditions on a generalized Finsler structure that it actually be a Finsler structure.
Thus, generalized Finsler structures provide a natural intermediate stage where
problems can be localized and solved without the complication of global issues. I
will give several examples of this strategy in the sections to follow.

There is a simple necessary and sufficient test for a generalized Finsler structure
to be a Finsler structure.

3If V is an oriented 2-dimensional vector space, a smooth curve φ : (a, b) → V that satis-
fies φ∧φ′ 6= 0 has a natural orientation so that φ∧φ′ > 0. If, in addition, φ satisfies the open

condition φ′∧φ′′ > 0, then locally its image is strictly convex towards the origin. In this case,
there is a unique element of arc, called the centro-affine element, so that φ∧φ′ = φ′∧φ′′ > 0.

Using this element, φ′′ = −φ+sφ′ where s : (a, b)→Ris the so-called centro-affine curvature. It
follows from (11) that dt is the natural centro-affine element for γ̄ and that S◦γ is its centro-affine

curvature, see [GaWi].
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Proposition 4. A generalized Finsler structure
(
ω, θ, η

)
on a 3-manifold Σ is a

Finsler structure if and only if its ωθ-leaves are compact, it is amenable, and the
canonical immersion ν : Σ→ TM is one-to-one on each π-fiber.

The proof is straightforward. Note, however, that just having the ωθ-leaves be
compact does not make the structure amenable since one could have a discrete
subset of the leaves around which the foliation is not locally a product, the so-
called ‘ramified’ circles. In this case, the leaf space will have the structure of a
2-dimensional orbifold near the ramified points. Moreover, even if the structure is
amenable, the ν-image of each π-fiber Σx will in general be a closed, strictly convex
curve in TxM which winds around the origin µ times for some positive integer µ.
This number µ, the multiplicity of the generalized Finsler structure, is equal to 1
if and only if each Σx is embedded via ν. Both sorts of phenomena can occur in
practice.

Next, I state a local structure theorem for generalized Finsler structures.

Proposition 5. Let
(
ω, θ, η

)
be a generalized Finsler structure on a 3-manifold Σ.

Then every u ∈ Σ has an open neighborhood U on which there exists a u-centered
coordinate chart (x, y, p) : U → D ⊂ R3 and a function L : U → R satisfy-
ing L, Lpp > 0 so that, on U , the following formulae hold:

ω = L dx + Lp (dy− p dx)

θ =
√

L Lpp
(
dy − p dx

)
(12)

η =
dLp − Ly dx√

L Lpp
+

A(L) (dy− p dx)√
(L Lpp)3

where A(L) is a certain universal polynomial in L and its derivatives that is deter-
mined by the identity η∧dθ = 0.

Conversely, if L is a positive function on a domain D in xyp-space and satisfies
Lpp > 0 on D, then the formulae (12) define a generalized Finsler structure on D.

Informally, Proposition 5 states that the local generalized Finsler structures de-
pend on one function of three variables. I will refer to coordinates satisfying the
conditions of Proposition 5 as contact coordinates and the function L will be called
the Lagrangian of the structure in the given contact coordinates. The reason for
this terminology is classical and will be further explored in §3.

Proof. I will only sketch the proof. Let x and y be functions on a neighborhood
of u so that ω∧θ = F dx∧dy for some function F > 0. (Geometrically, x and y
are just independent local functions whose level curves define the ωθ-foliation.) By
switching x and y if necessary, I can assume that θ∧dx is non-zero at u and by
replacing x and y by x − x(u) and y − y(u), I can assume that x(u) = y(u) = 0.
Since θ is not a multiple of dx near u, I know that there is a positive function H
and another function p, both defined on a neighborhood of u, so that that

θ = H (dy− p dx).

Since 0 6= θ∧dθ = −H2 dx∧dy∧dp, it follows that x, y and p form a coordinate
system near u. Replacing y and p by y − p(u) x and p − p(u) respectively, I can
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assume that p(u) = 0. Since ω∧θ 6= 0, it follows that there exist functions L > 0
and M , so that

ω = L dx + M (dy− p dx).

The condition θ∧dω = 0 implies M = Lp. Then the equation θ∧dθ = ω∧dω 6= 0,
implies that H2 = L Lpp. The rest of the normalizations can now be completed by
the reader. �

The invariants S, C, and K can be computed in terms of L. For example, using
the formulae (12), to expand d(ω∧θ) = S ω∧dω yields

S = −L Lppp + 3LpLpp

2
√

(L Lpp)3
= − (L2)ppp

4
√

(L Lpp)3
.

In consequence, S = 0 if and only if L2 is quadratic in p. (Since I am assuming
that L Lpp > 0, it follows that 1

2

(
L2)pp = L Lpp+

(
Lp
)2

> 0, so L2 cannot be linear
in p. In fact, the hypothesis L Lpp > 0 together with S = 0 implies that L2 is a
strictly positive quadratic form in p, so that L is the arc length Lagrangian for a
Riemannian metric on the ωθ-leaf space, see §2.2.) The formulae for C and K in
terms of L are more complicated and will not be discussed or needed.

1.4. Symmetries and homogeneous examples. In the study of any geometry
structure, the homogeneous examples and, more generally, the symmetries of a
given example play an important role. In this section, I will discuss the group of
symmetries of (generalized) Finsler structures and the ‘generality’ of homogeneous
examples.

1.4.1. The group of symmetries. First, a pair of definitions.

Definition 3. Let Σ ⊂ TM be a Finsler structure on M . A symmetry of Σ
is a diffeomorphism Φ : M → M which satisfies Φ′

(
Σ
)

= Σ. Let
(
ω, θ, η

)
be

a generalised Finsler structure on a 3-manifold P . A symmetry of
(
ω, θ, η

)
is a

diffeomorphism Ψ : P → P which satisfies
(
P ∗ω, P ∗θ, P ∗η

)
=
(
ω, θ, η

)
.

Using this terminology, I can combine Propositions 1 and 3 into the following
result, whose proof is simple enough that I can omit it.

Proposition 6. If Σ ⊂ TM is a Finsler structure on M , then the assignment Φ 7→
Φ′ gives a one-to-one correspondence between the orientation preserving symmetries
of the Finsler structure on M and the symmetries of the canonical generalized
Finsler structure on Σ. �

Note that one can always reduce to the orientation preserving case by passing
to the orientation double cover M̃ of M and considering the lifted Finsler struc-
ture Σ̃ ⊂ TM̃.

A corollary of Proposition 6 is that the group of symmetries of a Finsler structure
can be given the structure of a Lie group of dimension at most 3. This follows from
a theorem of Kobayashi [Ko], which asserts that, for any connected manifold P
endowed with a coframing α, the group G ⊂ Diff(P ) of symmetries of α can be
given a Lie group structure in a unique way so that, for each p ∈ P , the evaluation
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map evp : G→ P , defined by evp(γ) = γ(p) for all γ ∈ G, be a smooth embedding
of G as a closed submanifold of P .

There are two senses in which a Finsler structure could be said to be homoge-
neous. First, one could say that Σ ⊂ TM is homogeneous if its group of symmetries
acts transitively on M . A more restrictive notion of homogeneity would be to re-
quire that the group of symmetries act transitively on Σ itself. Both notions are
interesting and will be discussed in the remainder of this section.

1.4.2. Symmetry groups of dimension 3. Note that any γ in the group G of
symmetries of a generalized Finsler structure

(
ω, θ, η

)
on P must satisfy γ∗S = S,

γ∗C = C, and γ∗K = K. In particular, each of these three functions must be
constant on the G-orbits in P . Since the G-orbits are automatically closed in P , if
the group of symmetries of a (generalized) Finsler structure on a connected manifold
is to have the maximum possible dimension of 3, then each of the functions S, C,
and K must be constant.

If one imposes the conditions dS = dC = dK = 0 and differentiates the equa-
tions (9), the result is, first, that 0 = d

(
dθ
)

= −C ω∧θ∧η, implying that C = 0,
and, second, that 0 = d

(
dη
)

= KS ω∧θ∧η, implying that KS = 0. Thus, there
are two possible types of homogeneous generalized Finsler structures, those which
satisfy S = C = 0 and those which satisfy K = C = 0.

The first type is easily identified. These are essentially the Finsler structures
which arise from homogeneous Riemannian metrics on surfaces. In fact, for each
real number K, consider the connected Lie subgroup GK ⊂ GL(3,R) whose Lie
algebra gK ⊂ gl(3,R) consists of matrices of the form 0 −Kx −Ky

x 0 −z
y z 0

 .

for x, y, and z in R. Let H ⊂ GK be the connected subgroup whose Lie algebra
consists of matrices of the above form with x = y = 0. Then H ' SO(2) and GK

acts on the simply connected homogeneous space MK = GK/H as the group of ori-
ented isometries of a Riemannian metric on MK of constant Gaussian curvature K.
In fact, GK can be identified as the unit tangent bundle of MK endowed with this
metric.

Given a homogeneous generalized Finsler structure
(
ω, θ, η

)
satisfying S = C = 0

on a simply connected 3-manifold P , the gK-valued 1-form φ defined by

φ =

 0 −Kω −Kθ
ω 0 −η
θ η 0


satisfies the structure equation dφ = −φ∧φ, so there is a covering map g : P → GK

satisfying φ = g−1 dg.
The second type is also easily identified. For each fixed constant S, these are

essentially the generalized Finsler structures associated to the flat HS-structures
on surfaces where HS ⊂ GL(2,R) is the connected 1-parameter subgroup whose
Lie algebra is

hS =
{ (

Sz z
−z 0

)
z ∈ R

}
.
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In fact, given such a homogeneous generalized Finsler structure on a simply con-
nected 3-manifold P satisfying K = C = 0, if one sets

φ =

 0 0 0
ω Sη η
θ −η 0


then the structure equations (9) can be written in the form dφ = −φ∧φ. It follows
that there is a map g : P → GL(3,R) that satisfies φ = g−1 dg and that, moreover,
this map is a covering map onto a certain 3-dimensional subgroup.

1.4.3. Symmetry groups of dimension 2. More interesting is the case of Finsler
structures Σ ⊂ TM for which the group G of symmetries acts transitively on M
but not on Σ. In this case, the group G will have to be of dimension 2 and
its action on M will have a finite stabilizer subgroup. By passing to the simply
connected cover of M , I can assume that the identity component G◦ of G acts simply
transitively on M . Thus, for any m ∈ M , the evaluation map evm : G◦ → M is a
diffeomorphism. For this reason, I might as well fix an element of m and identify M
with G◦ via evm. Under this identification, the action of G◦ on M simply becomes
the left-action of G◦ on itself via Lie group multiplication.

Since Σ is invariant under G◦, it follows that Σe determines Σg for all other g ∈
G◦. One simply has Σg = L′g(Σe) where Lg : G◦ → G◦ is left multiplication by g.
Conversely, starting with any closed curve C in TeG

◦ ' R2 which is strictly convex
towards the origin, there will be a unique left-invariant Finsler structure Σ ⊂ TG◦

which satisfies Σe = C.
Thus, the homogeneous Finsler structures of this type are generated by choosing

a 1-connected Lie group G◦ of dimension 2 and a closed curve C in TeG
◦ which is

strictly convex towards the origin.
Up to isomorphism, there are two 1-connected Lie groups of dimension 2. The

first is the abelian group R2 and the second is the (solvable) non-abelian group N ⊂
GL(2,R) of matrices of the form (

ey x
0 1

)
where x and y are real.

In the case where G◦ is the abelian R2, the resulting structures are known as
the Minkowski structures. The structures whose underlying symmetry group is the
non-abelian group N do not seem to have a special name in the literature.

2. Special Classes of Finsler Structures

In this section, I want to consider some special classes of Finsler structures de-
fined by various curvature conditions. The objective of this section is to discuss
the ‘generality’ of the Finsler structures satisfying given conditions where ‘gener-
ality’ is meant in the sense that Cartan describes, for example, in [Ca4] or [Ca5]:
Since the conditions are invariant under the diffeomorphism pseudo-group in three
dimensions, in a crude sense the space of Finsler structures satisfying some given
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geometric condition depends on three arbitrary functions of three variables (if it
is not empty). However, one wants to give a sense to how many functions of how
many variables are needed to describe the local equivalence classes of solutions,
where ‘equivalence’ means ‘diffeomorphic’.

Cartan gave a sense to this in the analytic category via his generalization of
the fundamental existence and uniqueness theorems of Lie concerning local Lie
groups to existence and uniqueness theorems for coframings4 subject to differential
conditions. There is no space here to recount this theory, but, fortunately, it is
frequently possible to avoid its use, as I shall do in much of this section. However,
many of the ideas presented here are directly motivated by that theory, so the
reader may want to consult an account of it. While a modern source suitable for
this manuscript is being prepared [Br2] and modern examples exist [Br1], there is
no substitute for the original source and [Ca5], especially Part III, is a good place
to start.

2.1. The Bianchi identities. The structure equations of a generalized Finsler
structure

(
ω, θ, η

)
on a 3-manifold Σ are

(1)

dω = η ∧ θ

dθ = −η ∧
(
ω + S θ

)
dη = −

(
K ω + C η

)
∧ θ

where S, K, and C are smooth functions on Σ. Computing the exterior derivative
of the second equation5 yields

0 = d
(
dθ
)

= −dη ∧
(
ω + S θ

)
+ η ∧

(
dω + dS ∧ θ + S dθ

)
=
(
K ω + C η

)
∧ θ ∧

(
ω + S θ

)
+ η ∧

(
η ∧ θ + dS ∧ θ − S η ∧

(
ω + S θ

))
=
(
dS −C ω

)
∧ θ ∧ η,

which implies that there exist functions S2 and S3 so that

(2a) dS = C ω + S2 θ + S3 η.

The derivative of the third equation yields, after some simplification and arrange-
ment,

0 = −
(
dK ∧ω + (dC + KS ω) ∧η

)
∧ θ,

which implies that there exist functions K1, K2, K3, C2, and C3 so that

(2 b,c)
dK = K1 ω + K2 θ + K3 η

dC = (K3 −KS) ω + C2 θ + C3 η

The formulae (2a−c) constitute the Bianchi identities of the structure.
The tableau of the free derivatives of the three invariants has characters s1 = 3,

s2 = 3, and s3 = 1; is involutive; and has a trivial torsion cokernel. Thus, the

4I.e., {e}-structures.
5The derivative of the first equation is an identity.
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general theory of Cartan would say that the general coframing satisfying these
equations depends on one function of three variables up to diffeomorphism, which
agrees with the observation that the hypersurfaces in the tangent bundle of a surface
depend on one function of three variables as well as with Proposition 5, which gives
a local normal form for such coframings in terms of one function of three variables.

I now want to investigate various special conditions that can be put on gen-
eralized Finsler structures on surfaces and look at the generality of the resulting
systems.

2.2. The condition S = 0. First, consider the case S = 0. By the Bianchi
identities above, this forces C = 0, which, in turn forces K3−KS = K3 = 0. Thus,
the structure equations simplify to

dθ = −η ∧ω,

dω = η ∧ θ,

dη = −K ω ∧ θ,

dK = K1 ω + K2 θ.

The tableau of the free derivatives has characters s1 = 1, s2 = 1, and s3 = 0; is
involutive; and has vanishing torsion cokernel. By the general theory of Cartan, up
to diffeomorphism these coframings depend on one function of two variables.

It is easy to make this dependence explicit. The structure equations imply that
the Lie derivative of the quadratic form g = θ2 + ω2 with respect to the vector
field H vanishes, so that g is a well-defined Riemannian metric on any local leaf
space of the line field ω = θ = 0. Moreover, the structure equations show that the
canonical local embedding of Σ into these leaf spaces reveals it as an open subset
of the unit sphere bundle of g, so that the generalized Finsler structure is locally a
Riemannian structure.

Of course, this statement also follows from the formula for S in canonical co-
ordinates given in §1.3. There, it was shown that S vanishes if and only if L2 is
quadratic in p, which implies that any ν-image of Σ is the set of unit vectors of a
positive definite quadratic form on the leaf space.

Conversely, the formulae of §1.2 show that the canonical Finsler structure of a
Riemannian metric on a surface satisfies S = 0 since in that case, one can identify Σ
with Σ1 for the given Riemannian metric.

Thus S = 0 is the condition that a generalized Finsler structure be locally
Riemannian. As is well-known, up to diffeomorphism, the Riemannian metrics on
surfaces depend on one function of two variables, confirming the count of the general
theory. Explicitly, corresponding to isothermal coordinates for the metric g, there
will exist canonical coordinates in which the Lagrangian L has the form

L = eu(x,y)
√

1 + p2

where u is an arbitrary function of x and y.
In this case, the invariant K is well-defined on the local leaf spaces and is just

the Gauss curvature of the metric g. The general theory of differential invariants
of a coframing now specialize in this case to the statement that the differential
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invariants of a Riemannian metric on a surface are all formed from the covariant
derivatives of the Gauss curvature.

A more general condition would be to require that S be a constant, not neces-
sarily zero. Of course, this also forces C = 0 and thence K3 = KS. As the reader
can check, this system, too, is involutive, with the general coframing depending on
one function of two variables, just as before. In this case the reader can verify that
the generalized Finsler structure defines an HS-structure on any local leaf space
of θ = ω = 0, where

hS =
{ (

Sx x
−x 0

)
x ∈ R

}
For S 6= 0, this is a non-compact one-parameter subgroup of GL(2,R). For example,
when S2 < 4, the canonical local embeddings realize the fibers of π as ‘logarithmic
spirals’ in the tangent spaces. Note that, for S 6= 0, none of these generalized
Finsler structures is actually realizable as a Finsler structure on a surface.

2.3. Landsberg surfaces. A generalized Finsler structure is said to be a Lands-
berg structure if it satisfies the condition C = 0. Then dC = 0 forces K3 = KS,
and the remaining Bianchi identities on the invariants become

dS = + S2 θ + S3 η

dK = K1 ω + K2 θ + KS η

The tableau of the free derivatives has characters s1 = 2, s2 = 2, s3 = 0; is
involutive; and has vanishing torsion cokernel. Thus, the general theory of Cartan
yields that, modulo diffeomorphism, such structures depend on two functions of
two variables.

The equation for a covector ξ = ξ1 ω + ξ2 θ + ξ3 η to be characteristic is that
ξ1ξ3 = 0. From the general theory, this has the following consequence: Suppose
that two real-analytic Landsberg structures

(
ω, θ, η

)
and

(
ω̃, θ̃, η̃

)
on a real analytic

3-manifold Σ satisfy the equations

ω = ω̃, θ = θ̃, η = η̃, S = S̃, K = K̃,

along a real analytic surface P ⊂ Σ which satisfies the non-degeneracy condition
that neither of the 2-forms ω∧θ nor θ∧η vanish on P . Then there is a real an-
alytic map φ : U → Σ of an open neighborhood U of P that fixes P , is a local
diffeomorphism, and identifies the two structures.

In this case, it is not so easy to write down an explicit normal form which
depends on two arbitrary functions of two variables. However, special cases can
easily be integrated. For example, the case S = 0 has already been considered and
the case K = 0 will be considered in §4, where it will be shown that the structures
satisfying K = C = 0 depend on one arbitrary function of two variables and an
explicit normal form will be constructed.

One of the reasons for interest in Landsberg structures is the following charac-
teristic geometric property:
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Proposition. For a Finsler structure Σ ⊂ TM , the condition C = 0 is the nec-
essary and sufficient condition that there be a free SO(2)-action on Σ whose orbits
are the π-fibers and that leaves η invariant. In other words, the condition C = 0
is equivalent to the condition that Σ can be given the structure of a principal
right SO(2)-bundle in such a way that η defines a connection on Σ.

Proof. First, suppose that C = 0. Consider the function ψ on M defined by

ψ(x) =
∫

Σx

η,

where the integral is taken in the positive sense around the circle Σx (i.e., the
orientation for which η is positive). Now ψ > 0 on M . For any two points x and
y in M which are in the same connected component, let γ ⊂ M be a smooth,
embedded, oriented curve joining x to y. Then Σγ = π−1(γ) ⊂ Σ is a smooth
embedded cylinder on which ω∧θ vanishes identically. For the obvious orientation
on Σγ , one has the formula

ψ(y)− ψ(x) =
∫

Σy

η −
∫

Σx

η =
∫

Σγ

dη =
∫

Σγ

−K ω ∧ θ = 0,

so that ψ is locally constant. Let Z = (2π/ψ)H. Note that the flow of Z is periodic
of period 2π. Thus, there exists an action of SO(2) on Σ so that its induced vector
field is Z. Moreover, due to the local constancy of ψ, a computation from the
structure equations gives

LZ η = d
(
η(Z)

)
+ Z dη = d

(
2π/ψ

)
+ Z

(
−K ω ∧ θ

)
= 0,

so that η is invariant under the flow of Z and hence is indeed a connection on Σ
with respect to this SO(2)-bundle structure.

Conversely, suppose that there is a free action of SO(2) on Σ whose orbits are
the π-fibers. Let Z denote the vector field which generates this action and whose
flow has period 2π. Then ω(Z) = θ(Z) = 0 and, by reversing the sign of Z if
necessary, I can suppose that η(Z) = f > 0 for some function f on Σ. Now, if η is
to be a connection on Σ with respect to this action then it must be invariant under
the flow of Z, i.e., LZ η = 0. This condition expands, via the structure equations,
to

0 = LZ η = d
(
η(Z)

)
+ Z dη = df − C θ.

However, C θ = df implies C2θ∧dθ = (C θ)∧d(C θ) = df∧0 = 0. Since θ∧dθ 6= 0, it
follows that C must vanish identically. �
Remark. In the case where C = 0 and M is connected, the function ψ is actually
constant, so that η̂ = (2π/ψ) η is the natural connection form on Σ. It follows that
there is a 2-form Ω on M so that dη̂ = −π∗(Ω). This 2-form is the curvature 2-form
of the connection η̂. If M is compact, a simple calculation gives6∫

Σ

η ∧ dη =
(

ψ

2π

)2 ∫
Σ

η̂ ∧ dη̂ = −ψ2

2π

∫
M

Ω = −ψ2 χ(Σ) = −ψ2 (2− 2g)

(where g is the genus of M), since Σ is homotopic as a bundle to the unit circle
bundle of any Riemannian structure on M . This is the appropriate version of the
Gauss-Bonnet theorem for Landsberg Finsler structures on surfaces.

6The orientation of Σ is the one for which ω∧θ∧η is a positive 3-form.
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2.4. Berwald structures. A structure is said to be Berwald if it satisfies dS ≡ 0
mod η. In particular, this implies that C vanishes, so that such structures are
Landsberg.

On the open set where dS 6= 0, say, dS = S2 η where S2 6= 0, it follows that η =
dS/S2 must be integrable, so that 0 = η∧dη = −K ω∧θ∧η. In other words, K must
be zero. The structures satisfying K = C = 0 and dS∧η = 0 are known as the
Minkowski structures. There is a simple local normal form for them, depending on
one arbitrary function of one variable. It can be derived as follows:

Since dη = 0, it can be written locally in the form η = dp. More precisely,
every point in Σ has a 1-connected neighborhood U on which one can choose a
function p, unique up to an additive constant, so that η = dp. For convenience,
I will assume that this neighborhood has the property that the level sets of p are
connected. Moreover, by shrinking U if necessary, I can arrange that the integral
curves of the vector field H in U are all connected as well. Since dS∧dp = 0, it
follows that S can be written on U as a function of p, say S = s(p). Then there
exists a GL(2,R) valued function A on the interval p(U) ⊂ R so that

dA = A

(
0 − dp
dp s(p) dp

)
= A

(
0 − η
η S η

)
and A is unique up to left multiplication by a constant matrix. Now a computation
from the structure equations gives

d

(
A

(
ω
θ

))
= 0.

Thus, it follows that there exist functions x and y so that(
ω
θ

)
= A−1

(
dx
dy

)
Note that these structures are translation invariant in x and y, which are, of course,
coordinates on the ωθ-leaf space. In this sense, the corresponding structures are
‘flat’.

In case the set where dS vanishes has any interior, say V , then the structure
is locally equivalent that of an HS-structure, as discussed in §2.2. As already
remarked there, unless S = 0, these generalized Finsler structures do not arise from
Finsler structures.

2.5 K-basic structures. A more general class of Finsler structures than the ones
coming from Riemannian geometry are the ones for which K is well-defined on
the base manifold M . For generalized Finsler structures, this is equivalent to the
assumption that K be constant along the ωθ-leaves, i.e., that K3 = 0. I will call
these structures K-basic.

For such structures, the tableau of the free derivatives has s1 = 3, s2 = 3,
s3 = 0; is involutive; and has a vanishing torsion cokernel. It follows that, up to
diffeomorphism, these structures depend on three functions of two variables. The
equation for a covector ξ = ξ1 ω + ξ2 θ + ξ3 η to be characteristic is ξ3(ξ1)2 = 0.
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More restrictive than this is the class of structures for which K is actually con-
stant. For such structures, the tableau of the free derivatives has s1 = 2, s2 = 2,
and s3 = 0; is involutive; and has a vanishing torsion cokernel. It follows that,
up to diffeomorphism, these structures depend on two functions of two variables.
Local normal forms for these structures will be constructed in the sections below.
The equation for a covector ξ = ξ1 ω + ξ2 θ + ξ3 η to be characteristic is (ξ1)2 = 0.

The interest in these structures arises from certain facts, to be discussed in the
next section, about the geodesic flow for such structures.

3. Integrability of the Geodesic Flow

One of the reasons Finsler structures are interesting is that they globalize the
classical first order calculus of variations problem for one function of one variable.
The reader will recall that this is the problem of extremizing the integral

I(u) =
∫ b

a

L
(
x, u(x), u′(x)

)
dx

where L(x, y, p) is a given function of three variables.
When the function L is not zero, this translates into a (generalized) Finsler

structure as follows: Let Σ ⊂ R3 be the open subset of the domain of the function L
defined by L 6= 0. Then Σ can be immersed into TR2 as the set of vectors of the
form

1
L(x, y, p)

(
∂

∂x
+ p

∂

∂y

)
,

so that Σ (at least locally) defines a Finsler structure on a domain in R2 whenever
the Lagrangian L is positive and convex in p.

In this case, the 1-form L dx is monic and the 1-form dy−p dx is null. The
assumption L Lpp > 0 then is equivalent to the local convexity condition and so a
generalized Finsler structure can be defined, resulting in the coframing on Σ given
by the formulae of Proposition 5 of §1.3.

Under suitable smoothness hypotheses, one derives the Euler-Lagrange criterion,
which says that a function u of x renders I extremal if and only if it satisfies the
second order ODE

d

dx

(
Lp
(
x, u(x), u′(x)

))
− Ly

(
x, u(x), u′(x)

)
= 0.

In other words, u renders the integral I extremal if and only if the 1-graph (x, y, p) =(
t, u(t), u′(t)

)
is an integral curve of the system

dy− p dx = dLp − Ly dx = 0.

By the formulae in Proposition 5, this can be expressed in terms of the generalized
Finsler structure as saying that the 1-graphs of the solutions to the Euler-Lagrange
equations are the integral curves of the system θ = η = 0.

In the case of Riemannian metrics, the extremals of the length functional are
called geodesics, which I use to motivate the following definitions:
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Definition. Let
(
ω, θ, η

)
be a generalized Finsler structure on a 3-manifold Σ. The

geodesics of the structure are its θη-integral curves. They define a foliation of Σ
called the geodesic foliation. The (local) flow of W (the dual of ω) is the geodesic
flow and a generalized Finsler structure is geodesically complete if W is complete
on Σ, i.e., its flow exists for all time. The structure is geodesically amenable if the
leaf space Λ of the geodesic foliation can be given the structure of a smooth surface
in such a way that the natural projection ` : Σ→ Λ is a smooth submersion.7

When Σ ⊂ TM is a Finsler structure on a surface M , a ‘Σ-geodesic’ will mean an
immersed curve γ : I →M (where I is an interval in R) that satisfies the condition
that, first, γ ′(t) lie in Σ for all t ∈ I and, second, that the lifted curve γ ′ : I → Σ
be a geodesic of the generalized Finsler structure on Σ.

If γ : I →M is a Σ-geodesic and the interval I contains 0, then γ ′(t) = exptW(u)
where u = γ ′(0). Thus, γ(t) = π

(
exptW(u)

)
.

3.1. The meaning of the invariant K. In the Riemannian geometry of surfaces,
the Gaussian curvature plays an important role in the formula for the second vari-
ation of arc length. In the more general case of a Finsler structure, the function K
plays the same role. More precisely, a compact Σ-geodesic γ : [a, b]→M will be a
local minimum of the Σ-length functional LΣ defined in §1.1 on curves joining γ(a)
to γ(b) if the quadratic form

Qγ(f) =
∫ b

a

(
(f ′)2 −Kγ f2

)
dt

has zero index and nullity on the space of smooth functions on [a, b] which vanish at
the endpoints where Kγ = K◦γ ′. This follows by an elementary calculation which
I will omit.

In particular, note that if K is non-positive, then every geodesic segment is
locally minimizing. On the other hand, if K ≥ a2 for some positive constant a,
then, just as in the Riemannian case, no geodesic segment of length greater than
π/a can be locally minimizing.

3.2. Complete integrability. An important aspect of the theory of Finsler struc-
tures is the study of the geodesic flow, particularly methods for integrating the
geodesic flow. I should emphasize that, just because one can write down the vec-
tor field W in some canonical coordinates, it does not follow that one can write
down explicit first integrals for its flow, i.e., non-constant functions f which sat-
isfy df(W) = 0.

3.2.1. Symmetries as a source of first integrals. Classically, the source for first
integrals of the geodesic flow is the algebra of infinitesimal symmetries of the contact
form ω, i.e., vector fields X that satisfy

LX ω = 0.

These vector fields form a Lie algebra and the (local) flow of such a vector field
fixes ω. Given such an infinitesimal symmetry X, the function f = ω(X) satisfies

df = d
(
ω(X)

)
= LX ω −X

(
η ∧ θ

)
= −η(X) θ + θ(X) η,

7Every generalized Finsler structure is locally geodesically amenable.
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so that df(W) = 0.
Note that, unless X is a constant multiple of W, df cannot vanish identically.

For, suppose that df ≡ 0. Then η(X) = θ(X) = 0, so that X = fW. Thus, every
non-trivial infinitesimal symmetry other than W itself corresponds to a non-trivial
first integral.

Conversely, suppose that f is a first integral of the geodesic flow, i.e., that
df(W) = 0. Then there are functions f2 and f3 so that df = f2 θ + f3 η. By the
structure equations, the vector field

X = f W + f3 T− f2 H

satisfies
LX ω = d

(
X ω

)
+ X

(
η ∧ θ

)
= df − df = 0

and ω(X) = f . Thus, X is an infinitesimal symmetry of the contact form ω.
However, it will not be true, in general, that X is an infinitesimal symmetry of the
full coframing defining the generalized Finsler structure.

3.2.2. A second first integral. If two independent first integrals of the geodesic
flow can be found, the flow is said to be completely integrable. For, say, if f1 and
f2 are independent first integrals, then each simultaneous level set fi = ci will be
a union of integral curves of W and one can say that the integral curves of W are
known implicitly.

In fact, however, a slightly weaker notion turns out to work almost as well:
Because of the contact structure in the problem, having one first integral is almost
as good as having two.

Suppose that f is a first integral of the geodesic flow and let U be the open set
on which df is non-zero. Then, on U , one can write

dω = η ∧ θ = df ∧φ

for some 1-form φ which is well-defined on U up to a multiple of df . Computing
the exterior derivative of both sides of this equation yields 0 = −df∧dφ, so that
dφ ≡ 0 mod df . In particular, on each level set f = c where c is a regular value
of f , the 1-form φ is closed. Thus, on such a level set, one can write φ = dgc where
gc is a function whose level curves on f = c are integral curves of W. Note that gc
can be found by quadrature. Thus, up to quadrature, knowing one non-trivial first
integral of the geodesic flow determines a second.

For this reason, when at least one non-trivial first integral of the geodesic flow
can be found, the geodesic flow is said to be completely integrable.

3.2.2. Geometric conditions producing first integrals. Several natural classes of
generalized Finsler structures have completely integrable geodesic flows.

For example, by the Bianchi identity (2a), the Landsberg structures, defined by
the condition C = 0, all have the invariant S as a first integral of the geodesic
flow. Thus, except for the subclass for which S is constant, the geodesic flow of a
Landsberg structure is completely integrable.

Another such class is the class of structures for which K is constant. In that
case, K1 = K3 = 0, so the Bianchi identities imply that the function J = KS2 +C2
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is constant along the integral curves of W. The tableau of free derivatives of this
class of structures has characters s1 = 2, s2 = 2, and s3 = 0; is involutive; and has
vanishing torsion cokernel. Thus, up to diffeomorphism, these structures depend
on two arbitrary functions of one variable. For the generic such structure, the
function J will be non-constant, and the geodesic flow of such a structure will be
completely integrable. This fact will play an important role in the analysis in the
later sections of this manuscript.

These classes of Finsler structures provide new examples of what É. Cartan
called equations of ‘classe C’ [Ca3]. Roughly speaking, a class of ODE which is
invariant under some group of diffeomorphisms is said by Cartan to be of ‘classe C’
if first integrals for a member of the given class of ODE can be constructed from
the differential invariants of the class under the group of diffeomorphisms. Thus,
the geodesic flow arising from Landsberg Finsler structures or Finsler structures
with constant K are examples of ‘classe C’.

4. Structures satisfying K = 0

4.1. A local normal form. As was seen in §2, the generalized Finsler structures
satisfying K = 0 depend on two arbitrary functions of two variables up to diffeo-
morphism. I will now derive a local normal form which exhibits this dependence.

Proposition. Let
(
ω, θ, η

)
be a generalized Finsler structure on a 3-manifold Σ

which satisfies K ≡ 0. Then every u in Σ has a neighborhood U on which there
exist local coordinates (x, y, z) in which the coframing takes the form

ω = dy− x dz

θ = F−1 dx + (Fy + H) dz

η = F dz

where F 6= 0 and H are functions of the variables x and z.
Conversely, if F 6= 0 and H are arbitrary functions of the variables x and z on

some domain D in xz-space, then the above formulae define a generalized Finsler
structure on D ×R in xzy-space which satisfies K ≡ 0 and

C = Fx,

S = −F−2Fz + Hx + y Fx.

Proof. First, note that under the assumption that K ≡ 0, the structure equations
become

dω = η ∧ θ

dθ = −η ∧
(
ω + S θ

)
dη = −C η ∧ θ

In particular, η∧dη ≡ 0, so there exist functions F 6= 0 and z in a neighborhood
of u so that η = F dz. Moreover, since η∧θ = dω is closed, there also exists a
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function x on a (possibly) smaller neighborhood so that η∧θ = dz∧dx. It follows
that there must exist a function G on this neighborhood so that

θ = F−1 dx + G dz.

Also, since dω = dz∧dx, it follows that there exists a function y on a (possibly)
still smaller neighborhood so that ω = dy − x dz. Since dy∧dz∧dx = ω∧dω 6= 0, it
follows that the three functions x, y, and z are independent on this neighborhood.
By shrinking the neighborhood one more time, I can suppose that (x, y, z)

(
U
)

is a
coordinate cube in xyz-space.

Now, since dη = dF∧dz = −C dz∧dx, it follows that Fy = 0 and that Fx = C.
In particular, F is a function of x and z alone. Expanding the second structure
equation and comparing terms yields

(dG− F dy) ∧dz + (S − F−2Fz) dz ∧ dx = 0.

It follows from this that Gy = F and, since Fy = 0, this implies that when I write
G = Fy + H , then Hy = 0, so that H is a function of x and z alone. Substituting
this formula for G into the above displayed equation yields

S = F−2Fz + Hx + y Fx ,

as desired.
Finally, I leave it to the reader to check that when F 6= 0 and H are chosen arbi-

trarily as functions of x and z, then the given formulae of the Proposition actually
do satisfy the structure equations of a generalized Finsler structure satisfying K = 0
and, moreover, that the formulae for C and S in terms of the derivatives of these
two arbitrary functions are valid. �

Using this normal form, it is easy to see how to construct many geodesically
complete examples of generalized Finsler structures. For example, simply take F
and H to be globally defined on the xz-plane and to satisfy the conditions that F ,
H , and F−1 are bounded on the entire plane. Then the corresponding generalized
Finsler structure on xyz-space will be complete in every desired sense.

Furthermore, under these boundedness assumptions, the resulting generalized
Finsler structure will be amenable, i.e., the ωθ-leaf space will have the structure
of a smooth surface. The reason for this is that each ωθ integral curve is of the
form (x, y, z) =

(
u′(t), u(t), t

)
where u is a solution of the second order equation

u′′ + F (u′, t)
(
F (u′, t)u + H(u′, t)

)
= 0.

Since F and H are bounded, this equation has an entire solution for any initial
conditions. Thus, every ωθ integral curve transversely intersects the plane z = 0 in
a unique point, making this plane a section of the ωθ foliation.

However, without further hypotheses on the functions F and H , the correspond-
ing immersion ν : Σ → TM will not have closed circles as images of the π-fibers.
Certainly some hypothesis will suffice. For example, F ≡ 1 and H ≡ 0 give rise to
an image ν(Σ) ⊂ TR2 which is just the unit sphere bundle of a flat metric on R2.
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4.2. A global classification. Consider the problem of classifying the generalized
Finsler structures for which K = 0 on a compact connected 3-manifold Σ. As has
already been remarked above, for such a structure the function S is linear on the
integral curves of the geodesic flow. However, since Σ is compact, S is bounded on
any such curve. This implies that S is constant on such curves and hence that C
vanishes identically. The structure equations are thus

dω = η ∧ θ

dθ = −η ∧
(
ω + S θ

)
dη = 0

dS = S2 θ + S3 η

The general methods of Cartan predict that coframings satisfying these equations
depend on one function of two variables up to diffeomorphism. I am now going to
make this explicit in this case.

Let W, T, and H denote as usual the dual vector fields to the coframing
(
ω, θ, η

)
and let p : Σ̃ → Σ be the universal cover of Σ. Since dη = 0 and η is nowhere
vanishing, it follows that there exists a smooth function z : Σ̃→ R so that dz = p∗η.
Since Σ is compact, it follows that the flow on Σ̃ of the lift of a vector field on Σ
is complete, and this fact applied to the lift of H shows that z : Σ̃ → R is a
surjective submersion. In fact, using the flow of the lift of H to identify z-fibers,
it follows that z : Σ̃ → R is actually a fiber bundle and hence Σ̃ = N × R for
some simply connected surface N . Moreover, by the structure equations, d

(
p∗θ
)

and d
(
p∗ω

)
are in the ideal generated by p∗η = dz, so these 1-forms pull back to

any z-fiber z−1(c) ⊂ Σ̃ to be closed and dual to the (complete) lifts of the vector
fields W and T. It follows that N is diffeomorphic to R2, so that Σ̃ is diffeomorphic
to R3.

To complete a construction of coordinates on Σ̃, I proceed as follows: Let σ :
R → Σ̃ be a section of z, i.e., z

(
σ(t)

)
= t. Then for any point u ∈ Σ̃, there is a

path in z−1
(
z(u)

)
' R2 joining u to σ

(
z(u)

)
and any two such are homotopic. Set

x(u) =
∫ u

σ
(
z(u)
) θ

where the integral it taken along a path lying in z−1
(
z(u)

)
. Since any two such

are homotopic and since the pullback of p∗θ to z−1
(
z(u)

)
is closed, this integral is

independent of the choice of path and defines a smooth function x : Σ̃ → R. By
construction, dx ≡ θ mod dz, so it follows that p∗

(
θ∧η
)

= dx∧dz.
In particular,

d
(
p∗ω + x dz

)
= p∗(dω) + dx ∧dz = p∗(η ∧ θ) + dx ∧ dz = −dx ∧ dz + dx ∧dz = 0

so that there exists a function y : Σ̃ → R satisfying p∗ω = dy − x dz. From the
completeness of the lifted dual vector fields it follows that the map (x, y, z) : Σ̃→ R3

is a diffeomorphism and so I will now regard these functions as coordinates on Σ̃.
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Now p∗θ = dx + f dz for some function f on Σ̃ and the structure equations give

df ∧ dz = d
(
p∗θ
)

= −p∗η ∧
(
p∗ω + p∗(S θ)

)
= −dz ∧

(
dy + p∗S dx

)
,

so d(f − y)∧dz = p∗S dx∧dz. It follows that there exists a function h on R2 so
that f − y = h(x, z). Thus, the following formulae hold

p∗ω = dy − x dz

p∗θ = dx +
(
y + h(x, z)

)
dz

p∗η = dz

p∗S = hx(x, z)

Since some arbitrary choices were made in the definition of the coordinates (x, y, z)
they are not unique and it is useful to examine how many ways coordinates satis-
fying these conditions can be introduced. Thus, suppose that

dy − x dz = dy′ − x′ dz′

dx +
(
y + h

)
dz = dx′ +

(
y′ + h′

)
dz′

dz = dz′

Then clearly there exists a constant c so that z′ = z + c and the relation dy∧dz =
dy′∧dz′ = dy′∧dz implies that there exists a function φ of one variable so that y′ =
y + φ(z). Then the second relation implies that x′ = x + φ′(z).

Thus, coordinates of the above kind are unique up to diffeomorphisms Φ of the
form

Φ
(
x, y, z

)
=
(
x+φ′(z), y+φ(z), z+c

)
.

These diffeomorphisms form a pseudo-group Γ onR3 whose general element depends
on one function of one variable and one constant. By changing variables via this
pseudo-group, one cannot much further normalize the function h of two variables.

Conversely, starting with any function h on R2, the equations

ω̄ = dy − x dz

θ̄ = dx +
(
y + h(x, z)

)
dz

η̄ = dz

S̄ = hx(x, z)

satisfy the structure equations

dω̄ = η̄ ∧ θ̄

dθ̄ = −η̄ ∧
(
ω̄ + S̄ θ̄

)
dη̄ = 0,

which verifies the earlier claim that the coframings of this type depend on one
function of two variables up to diffeomorphism.
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It remains to be seen what restrictions are placed on h by the requirement
that there exist a group Λ acting freely and discretely on R3 which preserves the
coframing

(
θ̄, ω̄, η̄

)
and has the property that R3/Λ is compact.

By the discussion above, any element of the group of symmetries of
(
θ̄, ω̄, η̄

)
is

an element of Γ. I will write such elements in the form 〈φ, c〉 where φ is a function
of one variable and c is a constant. The action of Γ on R3 will be written

〈φ, c〉 ·
(
x, y, z

)
=
(
x+φ′(z), y+φ(z), z+c

)
.

The product in this group is given by 〈φ, a〉〈ψ, b〉 = 〈φ + ψa, a+b〉 where I define
φa to be the function satisfying φa(z) = φ(z + a).

Now, if 〈φ, c〉 it is to preserve the given coframing, it must satisfy

h
(
x+φ′(z), z + c

)
+ φ(z) + φ′′(z) = h(x, z)

In other words, the graph w = h(x, z) is invariant under the Λ-action

〈φ, c〉 · (x, z, w) =
(
x+φ′(z), z+c, w−φ′′(z)−φ(z)

)
.

First, if all of the elements in Λ were of the form 〈φ, 0〉, then R3/Λ could not be
compact. Thus, I may choose an element 〈φ, c〉 ∈ Λ with c > 0. Since

〈ψ, 0〉−1 〈φ, c〉 〈ψ, 0〉= 〈φ + ψc − ψ, c〉,

it follows that conjugating the choice of coordinates by an element of the form 〈ψ, 0〉
where φ = −ψc+ ψ will replace h by a new h for which h(x, z + c) = h(x, z), i.e., h
becomes c-periodic in its second variable. I will assume from now on that this has
been done.

There are then two cases, either h does not depend on z at all or else there is
a minimum p > 0 so that h(x, z + p) = h(x, z) and c must be an integer multiple
of p.

In the former case, the reader will find that the requirement there be a co-
compact subgroup of Γ which satisfies

h
(
x + φ′(z)

)
+ φ′′(z) + φ(z) = h(x)

forces h to be linear, so that h = Sx + h0 and a further conjugation reduces to the
case h = Sx. Thus, in this case, the group of symmetries of the coframing on R3

is simply transitive. Indeed, R3 can be given the structure of a Lie group GS in a
unique way so that (0, 0, 0) is the identity element and the given coframing consists
of left-invariant 1-forms. Then the question reduces to classifying the co-compact
lattices in GS, a well-understood problem.

It remains to treat the case where h actually depends on z. Crucial for this is
understanding the equation for hx = S. I will return to this later. What I want to
show is that the existence of a co-compact lattice forces S to be independent of x,
which will ultimately make these be like Minkowski models.
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5. Structures satisfying K = 1

In this section, I want to study the (generalized) Finsler structures that sat-
isfy K = 1 and construct examples of such on the standard 2-sphere.

Thus, let
(
ω, θ, η

)
be a generalized Finsler structure on a connected 3-manifold Σ

that satisfies K ≡ 1. In this case, the structure equations become

dω = η ∧ θ

dθ = −η ∧
(
ω + S θ

)
dη = −

(
ω + C η

)
∧ θ

dS = C ω + S2 θ + S3 η

dC = −S ω + C2 θ + C3 η

Let W, T, and H denote as usual the dual vector fields to the coframing
(
ω, θ, η

)
.

Note that J = S2+C2 is constant along the geodesic curves, i.e., the integral curves
of W, and so is a first integral of the geodesic equations. More interesting than
this function, however, are the 1-form S θ +C η, the 2-form η∧θ, and the quadratic
form η2 + θ2. A computation from the structure equations yields

LW

(
S θ + C η

)
= LW

(
η ∧ θ

)
= LW

(
η2 + θ2

)
= 0,

so that all of these quantities are invariant under the geodesic flow.
In fact, LW ω = 0, LW θ = η, and LW η = −θ, which implies

exp∗tW ω = ω

exp∗tW θ = cos t θ + sin t η

exp∗tW η = − sin t θ + cos t η

These formulae have some interesting consequences for geodesically complete
structures with K ≡ 1. For example, set Φ = exp2πW. Then Φ : Σ → Σ is a
symmetry of the generalized Finsler structure. If any geodesic closes with length
an integral multiple of 2π, then this implies that some power of Φ, say Φk has a
fixed point. Since Φk is a symmetry of the coframing and Σ is connected, this
implies that Φk is the identity map. Thus, having one closed geodesic of length an
integer multiple of 2π implies that all of the geodesics are closed and have the same
length.8

Another interesting observation is that, if Σ is compact, then so is the group G
of symmetries the generalized Finsler structure. It follows that either Φk is the
identity for some k > 0, so that all of the geodesics close, or else the closure of the
set {Φk | k ≥ 0} in G contains an abelian sub-group of positive dimension. Now, it
can be shown that there cannot be a compact example with a 2-dimensional abelian
subgroup of the group of symmetries, so the only possibilities for a compact ex-
ample with positive dimensional symmetry group are the quotients of the standard
Riemannian structure on the 3-sphere and examples with a 1-parameter symmetry
group. I will construct examples of this latter type at the end of this section.

8Actually, if any geodesic on which J is non-zero closes, then it must have length an integral
multiple of 2π. This follows from the formulae LW S = C and LW C = −S, which imply that S

and C are periodic of period 2π with respect to arc length along any geodesic.
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5.1. Canonical structures on the geodesic space. Suppose that U ⊂ Σ is
an open set in which the geodesic foliation is amenable, i.e., the leaf space Λ of
the integral curves of W in U carries the structure of a Hausdorff smooth manifold
so that the quotient map ` : U → Λ is a smooth submersion. Then there exist a
1-form ϕ on Λ so that `∗ϕ = −S θ−C η; a 2-form dA on Λ so that `∗(dA) = η∧θ; and
a positive definite quadratic form g on Λ so that `∗g = η2 + θ2. In particular, when
the space of geodesics is a manifold, it has a canonical metric g and orientation dA
as well as a canonical 1-form ϕ, whose norm with respect to the metric g is the
invariant J.

5.2. Recovering the generalized Finsler structure. In fact, starting with
this data on a surface Λ, one can recover the generalized Finsler structure. To see
this, let ν : F → Λ denote the oriented orthonormal frame bundle of Λ with respect
to the metric g and orientation form dA. One can then define a map ˆ̀ : U → F by
the formula

ˆ̀(u) =
(
`(u); `∗(Hu), `∗(Tu)

)
∈ Fu .

(The facts that (η∧θ)(H, T) ≡ 1 and that H and T are the duals to η and θ ensures
that

(
`∗(Hu), `∗(Tu)

)
is a dA-oriented, g-orthonormal frame at `(u) ∈ Λ.) By the

very definition of the canonical 1-forms α1 and α2 on F , it follows that ˆ̀∗(α1) = η

and ˆ̀∗(α2) = θ. The defining equations of the Levi-Civita connection 1-form α21

on F are
dα1 = α21 ∧α2 dα2 = −α21 ∧α1

so pulling these back via ˆ̀ yields

dη = ˆ̀∗(α21) ∧ θ dθ = −ˆ̀∗(α21) ∧ η.

Comparing this with the structure equations above then yields

ˆ̀∗(α21) = −
(
ω+Sθ+Cη

)
= −ω + `∗ϕ.

In particular, ˆ̀∗(α1∧α2∧α21

)
= −η∧θ∧ω 6= 0, so ˆ̀ is a local diffeomorphism. If I

denote the Gauss curvature of the metric g by R, then the usual structure equation
yields dα21 = ν∗

(
−RdA

)
. In particular, computing the exterior derivative of the

equation ˆ̀∗(−α21 + ν∗ϕ) = ω yields

`∗(dA) = η ∧ θ = dω = ˆ̀∗(−dα21 + ν∗(dϕ)
)

= ˆ̀∗ν∗
(
RdA + dϕ

)
= `∗

(
RdA + dϕ

)
,

so that dϕ = (1−R) dA.
Conversely, suppose now that I start with an oriented surface Λ endowed with a

Riemannian metric g with Gauss curvature R and a 1-form ϕ which satisfies dϕ =
(1−R) dA. Then on the orthonormal frame bundle ν : F → Λ with tautological
1-forms α1 and α2 and Levi-Civita connection 1-form α21 satisfying the standard
structure equations

dα1 = α21 ∧α2

dα2 = −α21 ∧α1

dα21 = −ν∗R α1 ∧α2
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write ν∗ϕ = −C α1 − S α2 for some functions S and C on F and consider the
1-forms

ω̄ = −α21 + ν∗ϕ = −α21 −C α1 − S α2

θ̄ = α2

η̄ = α1

Then these 1-forms and functions on F satisfy the structure equations

dω = η ∧ θ

dθ = −η ∧
(
ω + S θ

)
dη = −

(
ω + C η

)
∧ θ

and so correspond to a generalized Finsler structure with K = 1. Thus, the given
data (g, dA, ϕ) on the surface Λ suffice to determine a local solution to the K = 1
equation.

5.2.1. A normal form. This local picture is still not entirely satisfactory because
of the need to solve the equation dϕ = (1−R) dA. However, this last step can also
be avoided in a more-or-less natural way. The metric g is conformal to a metric ḡ
of constant Gauss curvature R̄, say g = e2u ḡ. There is a natural map from the
oriented orthonormal frame bundle F̄ of ḡ to F that simply scales a ḡ-orthonormal
frame by e−u. I will denote this map by µ : F̄ → F . Then the standard formulae
yield

µ∗α1 = eu ᾱ1

µ∗α2 = eu ᾱ2

µ∗α21 = ᾱ21 + ∗du

Pulling back the equation dα21 = ν∗
(
dϕ− dA

)
via µ then yields

d
(
ᾱ21 + ∗du

)
= ν̄∗

(
dϕ− e2udĀ

)
,

so setting ϕ̄ = ϕ− ∗du, this can be written

dϕ̄ + R̄ dĀ = e2udĀ.

This yields the following prescription: Start with a metric ḡ of constant curvature R̄
and choose any 1-form ϕ̄ satisfying the open condition dϕ̄+ R̄ dĀ > 0. Then define
the function u by the equation dϕ̄ + R̄ dĀ = e2udĀ. Then the 1-forms

ω̄ = −ᾱ21 + ν∗ϕ̄

θ̄ = eu ᾱ2

η̄ = eu ᾱ1

will satisfy the structure equations of a generalized Finsler structure with K = 1.
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Explicitly, in the case R̄ = 0, let x and y be local coordinates on V ⊂ Λ so that,
on V , one has ḡ = dx2 + dy2 and dĀ = dx∧dy. Choose a 1-form ϕ̄ = a dx + b dy
satisfying the open condition (bx − ay) > 0. Then on V × S1 ' F̄V , the 1-forms

ω̄ = −dφ + a dx + b dy

θ̄ =
√

bx−ay
(
− sin φ dx + cosφ dy

)
η̄ =

√
bx−ay

(
cos φ dx + sinφ dy

)
satisfy the structure equations of a generalized Finsler structure with K = 1 and
every generalized Finsler structure with K = 1 is locally of this form. Thus, the
general local solution is explicitly given in terms of two arbitrary functions a and b
of two variables, as the general theory predicted.

5.3. Compact examples. I now want to make some remarks about compact
examples and Finsler structures satisfying K = 1 on the 2-sphere.

5.3.1. The Riemannian case. The case where S (and hence, C) vanishes identi-
cally is the (generalized) Riemannian case, for which there is a unique local model.
If Σ is compact, then the simply connected cover Σ̃ is diffeomorphic to the 3-sphere
via a diffeomorphism which identifies the Finsler coframing to the standard left-
invariant coframing of S3 thought of as the Lie group SU(2). Thus Σ = Γ\ SU(2)
where Γ ⊂ SU(2) is a finite subgroup.

5.3.2. The non-Riemannian case. For the rest of the discussion, I will suppose
that S does not vanish identically.

Since dS ≡ Cω mod {θ, η} and dC ≡ −Sω mod {θ, η}, it follows that S cannot
be constant. Thus, the group of symmetries of the coframing cannot act transitively.
In particular, the dimension of this group must be at most 2. Recall that in the
Riemannian case, the group of symmetries of a Riemannian metric may never be
of dimension 2.

The first problem is how to describe the actual Finsler structures with K = 1.
As will be seen, this is a more delicate matter than just solving the local generalized
Finsler structure problem as was done above.

To see what the conditions should be, first suppose that Σ ⊂ TM is an actual
Finsler structure satisfying K = 1 and let ω, θ, and η denote the canonical 1-forms
satisfying the structure equations as above. Then the fibers of the projection π :
Σ → M are smooth embedded circles and are the leaves of the system ω = θ = 0.
Thus, an obvious necessary condition for a generalized Finsler structure to be a
Finsler structure is that all the leaves of the system ω = θ = 0 be compact. This is
not sufficient however because of two difficulties.

The first difficulty is that even though all of the leaves may be compact, so
that the system ω = θ = 0 defines a foliation by circles, there may exist certain
exceptional circles (necessarily isolated) around which the foliation is not locally
product of a circle and a 2-disk. Such ‘multiply covered’ circles cause the leaf
space M to have the structure of an orbifold. One can deal with this either by
considering Finsler structures on orbifolds, which does not significantly change the
local theory, or by simply deleting the offending circles, yielding a smooth quotient
space.
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The second difficulty is that even if the foliation is locally a product, with leaf
space quotient π : Σ → M , the map ι : Σ → TM may immerse each fiber Σx
into TxM as a convex curve which winds around the origin more than once, say m >
1 times. If the images ι

(
Σx
)
⊂ TxM are all simple embedded curves, then one can

divide Σ by an action of Zm so as to get a new Σ′ which is a Finsler structure on M .
However, there is no reason a priori for the images to be simple closed curves, even
in the case where K = 1, as will be seen.

5.3.3. The local non-Riemannian case. Returning to the case of a Finsler struc-
ture Σ ⊂ TM , let D ⊂ M be a geodesically convex disk with smooth strictly
convex boundary ∂D. (Such disks exist, for example, the geodesic ball Br(x) satis-
fies this condition for sufficiently small r.) Then an (oriented) geodesic γ through
any point in the interior meets the boundary ∂D in two distinct points γ− (enter-
ing) and γ+ (exiting). Conversely, for any two distinct points p− and p+ in ∂D,
there is a unique geodesic segment γ lying in D and starting at p− and ending
at p+. Thus, the space ΛD of geodesic segments in D is topologically (in fact,
smoothly) identifiable with

(
∂D × ∂D) \∆, a smooth surface diffeomorphic to a

cylinder. Let ΣD = π−1(D). By the remarks just made, the geodesic foliation
on ΣD is amenable, with a smooth submersion ` : ΣD → ΛD having the leaves of
this foliation as fibers. This yields the double fibration

ΣD
`↙ ↘π

ΛD D.

Note that for any x ∈ D, the set Cx = `
(
π−1(x)

)
⊂ ΛD consists of the oriented

geodesics which pass through x, and the map ` : π−1(x)→ ΛD is a smooth embed-
ding of a circle into ΛD which generates the fundamental group of ΛD ' S1×(0, 1).

Now, assuming K ≡ 1 for the original Finsler structure, let g, dA and ϕ be the
canonical metric, area form, and 1-form, respectively, constructed earlier on ΛD.
Identifying ΣD with an open subset of F , the oriented orthonormal frame bundle
of LD via the map ˆ̀constructed earlier, the curves Cx are the images of the (closed)
integral curves of the system α2 = α21 − ν∗ϕ = 0.

The geometric interpretation of these integral curves is as follows: For any unit
speed (oriented) curve γ : [a, b]→ ΛD, there are two natural functions associated
with it. First, there is the geodesic curvature κ : [a, b]→ R and, second, there is the
function f : [a, b]→ R defined by f(t) = ϕ

(
γ ′(t)

)
. I will say that γ is a ϕ-geodesic

if κ = f . The notion of ‘λ-geodesic’ would make sense for any 1-form λ, and
the 0-geodesics are, of course, the usual geodesics.9 Note that the λ-geodesics are
solutions of a second order ODE and that there is exactly one oriented, unit-speed
λ-geodesic in each tangent direction through each point of ΛD.

By this definition, the curves Cx are ϕ-geodesics. Moreover, each closed ϕ-
geodesic C is the projection of a unique closed integral curve of the system α2 =
α21 − ν∗ϕ = 0 which must therefore constitute a single π-fiber, say π−1(x). Of
course, this implies that C = Cx and hence that C is embedded and represents a

9I am told that the ‘physical interpretation’ of λ-geodesics is that of a particle moving under

the influence of a ‘magnetic field’ specified by λ.
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generator of the fundamental group of ΛD. Note also that for each Finsler geo-
desic γ in D, the interval of points y in D which lie on γ give rise to an interval of
closed ϕ-geodesics Cy which pass through γ when it is regarded as a point of ΛD.
Thus, each point of ΛD has an open interval of tangent directions for which the
corresponding ϕ-geodesic is closed and represents a generator of the fundamental
group of ΛD.

This leads to the following prescription for constructing local Finsler structures
with K = 1. Since ΛD is an annulus, the Uniformization Theorem implies that(
ΛD, g

)
is conformally equivalent to a standard annulus. In other words, there are

coordinates r and ψ (well-defined modulo 2π) on ΛD so that g = e2u (dr2 + dψ2)
and dA = e2u dr∧dψ and so that the image (r, ψ)

(
ΛD
)

in R × S1 is a standard
cylinder of the form I × S1 where I ⊂ R is an open interval. By the previous local
discussion, I can then embed ΣD as an open subset of I×S1×S1 (with coordinates
(r, ψ, φ)) in such a way that, for some functions a and b of r and ψ with (br−aψ) > 0
the following formulae hold,

ω = − dφ + a dr + b dψ

θ =
√

br−aψ
(
− sin φ dr + cos φ dψ

)
η =

√
br−aψ

(
cos φ dr + sin φ dψ

)
The functions a and b must then be chosen so that an open subset of the integral
curves of the system θ = ω = 0 are closed and project to I×S1 to become generators
of the fundamental group.

5.3.4. Rotationally invariant examples. To show that this is possible for some-
thing other than the Riemannian case, I am now going to construct some examples,
adapting an idea found in Volume 3 of Darboux [Da] for constructing metrics on S2,
all of whose geodesics are closed.10 The simplest way to proceed to these examples
is to try to find ones which are rotationally symmetric with respect to the cyclic
coordinate ψ, i.e., so that aψ = bψ = 0. In fact, I am going to make the even more
stringent assumption that a = 0, so that the forms involved simplify to

ω = − dφ + b(r) dψ

θ =
√

b′(r)
(
− sinφ dr + cosφ dψ

)
η =

√
b′(r)

(
cosφ dr + sinφ dψ

)
where, by assumption b′(r) > 0 for all r in the interval I , so I will write b =
B′(r) where B is a strictly convex function on I . A computation shows that the
invariant S is given by

S = −b′′(r) + 2b(r)b′(r)

2
(
b′(r)

)3/2
cos φ.

10Such metrics are called Zoll metrics. The interested reader might want to consult Besse’s
treatise [Be] for further developments of these ideas, both for surfaces and for higher dimensional

manifolds.
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Thus, as long as b′ + b2 is not constant, the examples constructed will not be
Riemannian.

Now, the system ω = θ = 0 has a first integral. To see this, note that

b(r)
(
− sinφ dr + cos φ dψ

)
− cos φ

(
−dφ + b(r) dψ

)
= d
(
sinφ

)
− sinφ

(
b(r) dr

)
= eB d

(
e−B sinφ

)
.

Thus every integral curve of this system lies on a level surface of the function f =
e−B sin φ. In particular, the zero level surface is foliated by the curves defined
by ψ ≡ ψ0 and φ ≡ 0 or π. None of these curves are closed, of course, so I must look
at the other level sets. Since the system is invariant under the involution (r, ψ, φ) 7→
(r,−ψ,−φ), it suffices to look at the positive level surfaces of f .

First, suppose that b does not vanish on the interval I . Then B has a smooth
inverse on I . Let C be an integral curve of θ and ω on which f is positive, say f ≡
e−B0 . The equation e−B sin φ = e−B0 can be solved on C for r in the form

r = B−1
(
eB0 sinφ

)
.

Since sinφ must be positive on C, it follows that 0 < φ < π on C. Moreover, I
claim that φ must be monotone on C, which implies that it cannot be closed. To see
this, note that because r is a function of φ on C and C is immersed, then at least
one of dφ or dψ is non-vanishing at every point. However, since b is non-vanishing
and ω = −dφ + b dψ, it follows that neither dφ nor dψ can vanish. Thus, φ is
monotone as claimed, and there are no closed integral curves.

Thus, from now on, I assume that b does vanish somewhere on I . Since br > 0,
this zero must be unique. By translation in the variable r, I can assume that b(0) =
0 and can also make B unique by setting B(0) = 0. Since B′′ > 0, it follows
that there exists a unique smooth function ρ of r so that ρ′ > 0, ρ(0) = 0, and
e−B = cos ρ. Note that ρ satisfies −π/2 < ρ < π/2. I will let ρmin denote the
infimum of ρ and ρmax denote the supremum of ρ. I am now going to use ρ as the
natural parameter on I , so that I can regard r as a function of ρ, instead of the
other way around and write ṙ for dr/dρ. Thus, the system to be integrated now is
of the form

−ṙ sin φ dρ + cosφ dψ = −ṙ cosρ dφ + sinρ dψ = 0

In these coordinates, f = cosρ sinφ ≤ 1. The level set f = 1 is just ρ = 0
and φ = π/2, which is a closed integral curve whose projection into I × S1 is a
generator for the fundamental group. For any value ρ0 so that ρmin < −ρ0 < 0 <
ρ0 < ρmax, the equation cos ρ sinφ = cos ρ0 > 0 is a closed curve Cρ0 in I × S1.
In particular, since cos ρ and sinφ cannot vanish on Cρ0 , it follows that on any
integral curve of the system which lies in f = cosρ0, the equation can be written
in the form

dρ =
cos φ dψ

ṙ sin φ
dφ =

sin ρ dψ

ṙ cos ρ
,

so that dψ cannot vanish on any such integral curve, so I can regard it as a parameter
on the curve. In fact, these equations show that the point

(
ρ(ψ), φ(ψ)

)
traces

around the curve Cρ0 counterclockwise as ψ increases. Thus, the integral curve will
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close if and only if ψ increases by an rational multiple of π when this point makes
a complete circuit around Cρ0 . A simple calculation reveals that the increase of ψ
corresponding to such a complete circuit is

P (ρ0) =
∫ ρ0

−ρ0

2 cosρ0 ṙ(ρ)√
cos2 ρ− cos2 ρ0

dρ .

The condition on r needed to satisfy the π1-generation condition is that P (ρ0) ≡ 2π
for all ρ0 in the range 0 < ρ0 < π/2.

Now, it is known that for ρ0 satisfying 0 < ρ0 < π/2∫ ρ0

−ρ0

2 cosρ0

cos ρ
√

cos2 ρ− cos2 ρ0

dρ ≡ 2π.

It follows that the necessary and sufficient condition that P (ρ0) ≡ 2π for all ρ0 in
the range 0 < ρ0 < π/2 is that ṙ be of the form ṙ =

(
1 + h(ρ)

)
/(cosρ) where h is

an odd function defined on an interval symmetric about ρ = 0.
In order to have ṙ > 0 it will also be necessary to impose the condition h > −1.

The identity b dr = b ṙ dρ = −eB d
(
e−B) = cot ρ dρ yields b = sinρ/

(
1 + h(ρ)

)
and

the condition br = db/dr > 0 becomes

1 + h(ρ)− h′(ρ) tanρ > 0,

which I also impose. Conversely, if h is an odd function on the interval
(
−a, a)

which satisfies these inequalities, the resulting generalized Finsler structure will
have all of the ωθ-curves in the region f > cos a be closed.

5.3.5. Compact examples. Now, I further require that the odd function h be
defined and smooth on all of R, that it satisfy h(ρ + π) = −h(ρ) and that h
and h′ vanish at ρ = ±π/2. This will ensure that the formulae above define a
smooth metric on S2, all of whose ϕ-geodesics are closed. By the general procedure
described above, as long as h is non-zero, this will induce a non-Riemannian Finsler
structure satisfying K ≡ 1 on the 2-sphere of oriented ϕ-geodesics. (Writing this
Finsler structure out explicitly would require finding a second first integral of the
ϕ-geodesic flow, a non-trivial task.)

6. Structures satisfying K = −1

In this final section, I want to briefly consider the corresponding problem of
studying the generalized Finsler structures which satisfy K = −1.

Thus, let
(
ω, θ, η

)
be a generalized Finsler structure on a connected 3-manifold Σ

that satisfies K ≡ −1. In this case, the structure equations become

dω = η ∧ θ

dθ = −η ∧
(
ω + S θ

)
dη =

(
ω −C η

)
∧ θ

dS = C ω + S2 θ + S3 η

dC = S ω + C2 θ + C3 η
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These structure equations already have global implications. For example, sup-
pose that Σ were compact. Then it would necessarily be geodesically complete,
but the structure equations above show that, along any integral curve of W, the
function S satisfies an equation of the form S′′ − S = 0, where the prime denoted
differentiation with respect to the flow parameter along the integral curve. How-
ever, the only solution of this equation which is bounded in both directions is the
zero solution. Since Σ is supposed to be compact, S must be bounded on Σ and
hence on every integral curve. Of course this implies that S (and hence C) must
vanish identically, so that the structure is locally Riemannian. In particular any
Finsler structure on a compact surface M which satisfies K ≡ −1 (or any negative
constant, for that matter) must be a Riemannian metric11 , a result to be found
in [Ak].

Note that J = −S2 + C2 is constant along the geodesic curves, i.e., the integral
curves of W, and so is a first integral of the geodesic equations. Thus, in the non-
Riemannian case, the geodesic flow must be completely integrable, again, a great
contrast with the Riemannian case when K = −1.

6.1. Canonical structures on the geodesic space. Consider the 1-form S θ−
C η, the 2-form η∧θ, and the quadratic form η2 − θ2. A computation from the
structure equations yields

LW

(
S θ− C η

)
= LW

(
η ∧ θ

)
= LW

(
η2 − θ2

)
= 0,

so that all of these quantities are invariant under the geodesic flow.
If one assumes that the generalized Finsler structure is geodesically amenable,

with geodesic projection ` : Σ→ Λ, then it follows that there exist on Λ a 1-form ϕ
so that `∗ϕ = −S θ + C η; a 2-form dA so that `∗

(
dA
)

= η∧θ; and a Lorentzian
quadratic form g so that `∗g = η2 − θ2.

Using the same sort of immersion of Σ into the ‘orthonormal frame bundle of g
as I did in the K = 1 case, I can identify η and θ as the canonical forms on the
Lorentzian orthonormal frame bundle of g and, due to the equations

dη = (ω + S θ − C η) ∧θ

dθ = (ω + S θ − C η) ∧η

one sees that ψ = (ω+S θ−C η) can be thought of as the Levi-Civita connection of
this pseudo-metric. The curvature R of this metric is then defined by dψ = Rη∧θ
and is well-defined on Λ. Then, just as before, one derives

dϕ = (1− R) dA.

as the equation relating the 1-form ϕ with the oriented Lorentzian structure defined
by g and the choice of oriented area form dA.

Conversely, starting with an oriented surface Λ endowed with a Lorentzian
metric g of curvature R and area form dA and a 1-form ϕ which satisfies the

11Note that this result definitely does not hold for Finsler structures on a compact surface if

one merely assumes that K is bounded above by a negative constant
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equation dϕ = (1 − R) dA, one can define a generalized Finsler structure satisfy-
ing K = −1. I will now describe this construction. For simplicity, I am going to
assume that Λ is also time-oriented.

Let ` : Σ→ Λ be the bundle of oriented, time oriented g-frames on Λ of the form
(p; e1, e2) where p is a point of Λ and (e1, e2) are an oriented, time oriented basis
of TpΛ which satisfies

1 = g(e1, e1) = −g(e2, e2), 0 = g(e1, e2).

Then Σ is an R-bundle over Λ and the tautological 1-forms α1 and α2 satisfy

dα1 = ψ ∧α2

dα2 = ψ ∧α1

where ψ is the connection 1-form. It satisfies dψ = `∗R α1∧α2, where R is the
function on Λ which represents the curvature of g.

Now, write `∗ϕ = C α1−S α2 for some functions S and C on Σ, which can always
be done. Then the hypothesis that dϕ = (1− R) dA ensures that the 1-forms

ω = ψ + `∗ϕ = ψ + C α1 − S α2

θ = α2

η = α1

satisfy the structure equations of a generalized Finsler structure on Σ with K ≡ −1.
Further details will be left to the reader.

6.2. A local normal form. In a manner completely analogous to the K = 1
case, one can show that there is a local normal form of the form

ω = dz + a dx + b dy

θ =
√

bx − ay
(
sinh z dx + cosh z dy

)
η =

√
bx − ay

(
cosh z dx + sinh z dy

)
where a and b are arbitrary functions of x and y subject to the condition that
bx − ay > 0. Details will be left to the reader.

6.3. Complete examples. To construct complete examples of actual Finsler
structures on surfaces, it suffices to construct an example of a Λ endowed with
the appropriate structures so that the positive ϕ-geodesics are are all closed and
satisfying appropriate growth conditions.

Again, the method is to start with the above normal form and assume a sym-
metry. The same sort of analysis that produced the compact examples of Finsler
surfaces with K = −1 leads to the following prescription: Let Λ be the cylin-
der (−π/2, π/2)× S1 with coordinates ρ and φ (which is periodic of period 2π).
Let Σ = Λ× R with coordinate z on the R-factor. Let h : (−π/2, π/2)→ (−1, 1)
be an odd function of ρ which satisfies the inequality

1 + h(ρ)− h′(ρ) sinρ cosρ > 0.
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Now consider the coframing on Σ defined by

ω = dz − (tanρ)/
(
1 + h(ρ)

)
dφ

θ = R(ρ)
((

1 + h(ρ)
)
cosh z dρ + sinh z dφ

)
η = R(ρ)

((
1 + h(ρ)

)
sinh z dρ + cosh z dφ

)
where the function R > 0 is defined by

(
R(ρ)

)2
=

1 + h(ρ)− h′(ρ) sinρ cosρ

cos2 ρ
(
1 + h(ρ)

)3 .

For any choice of h satisfying the above restrictions, this is a generalized Finsler
structure satisfying K = −1. A computation shows that the invariant S vanishes
if and only if h satisfies the differential equation

1(
1 + h(ρ)

)2 − h′(ρ) tanρ(
1 + h(ρ)

)3 = c

for some constant c. (Note that h = 0 satisfies this condition.)
It is not hard to show that the ωθ integral curves are closed in Σ for any such

choice of h. (Compare the argument from §5.) They foliate Σ and the leaf pro-
jection π : Σ → M induces a Finsler structure on M (topologically a disk) which
satisfies K ≡ −1.

It is not hard to show that if there is a constant c < 1 so that |h(ρ)| ≤ c for all
ρ, then the resulting Finsler structure on M is complete. Thus, these choices of h
provide examples of complete non-Riemannian Finsler structures on the disk that
satisfy K ≡ −1.
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[Ca4] É. Cartan, La geometria de las ecuaciones diferenciales de tercer orden, Revista. Mat.

Hispano-Amer. 4 (1941), 1–31.



FINSLER SURFACES 39
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