NOTES ON GEODESICS ON LIE GROUPS

ROBERT L. BRYANT

ABSTRACT. These are my notes on the calculation of geodesics on Lie groups
using the geometric Euler-Lagrange formalism.

CONTENTS

QLW W NN ==

1. INTRODUCTION

In this section, I will review the geometric formulation of the Euler-Lagrange
equations on a manifold.

1.1. Tangent bundles. Let M"™ be a smooth n-manifold and let TM denote its
tangent bundle, with basepoint projection 7 : TM — M. Each fiber of 7 is a vector
space 7~ !(z) = T, M, and, as a consequence, there is a canonical isomorphism

Tr(wyM — kern'(v)

for each tangent vector v € T M, where ker n’(v) C T,(T'M) is the kernel of the sur-
jection 7' (v) : Ty(TM) — Ty (yM. The composition of 7’(v) with this isomorphism
is then a nilpotent endomorphism

vy : To(TM) — T,(TM)

and this vector bundle endomorphism « : T(TM) — T(TM) of rank n is an
important feature of the geometry of 7'M . It is natural in the sense that it commutes
with the induced action on T'M of any diffeomorphism of M with itself.

Another natural object on T'M is the radial vector field R on T M. This is the
vector field whose time ¢ flow is scalar multiplication by e! in the fibers of T'M.
This will be useful below.
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1.2. Lagrangians. A Lagrangian is (smooth) function L : TM — R. Given a
differentiable curve 7 : [a,b] — M, one defines the associated functional

b
Fily) = / L(v(1)) d.

Let p,q € M be given, and let Q([a, b, p, q) denote the set of differentiable mappings
v : [a,b] = M such that v(a) = p and v(b) = ¢. Then Fj, can be regarded as a
function on Q([a, b, p, q) and one is interested in its critical points, where a curve
vy € Q([a,b],p,q) is critical if the restriction of Fr to any l-parameter smooth
variation of v within Q([a, b, p, q) has ~ as a critical point.

The equations that characterize critical curves of a given Lagrangian can be
expressed directly in terms of the geometry of T'M.

Given a Lagrangian L : TM — R, one can define a canonical 1-form

wL:dLoa

on T'M. One says that L is nondegenerate if the 2-form dwy, is nondegenerate on
TM.

One can also define the associated energy function of L, which is the function
Er : TM — R defined by

E, =R(L) - L.

Remark 1. If L : TM — R is a Lagrangian that is a homogeneous quadratic poly-
nomial on each tangent space T, M (as would be the case for the action Lagrangian
of a pseudo-Riemannian metric on M), then, by Euler’s Theorem, one has Ej, = L,
which should be born in mind for later purposes.

Using these quantities, one has the following classical result, which is a for-
mulation of the Euler-Lagrange equations for a nondegenerate Lagrangian. For a
proof (and a discussion of the notation introduced above), the reader might consult
Lecture 4 in [1].

Theorem 1 (Euler-Lagrange). Let L : TM — R be a nondegenerate Lagrangian,
and let Xy, be the unique vector field on T M that satisfies

(11) XL deL:—dEL.

If v : [a,b] = M is a critical curve for the functional Fi, on the set Q([a, b],7(a),v(b)),
then 4" : [a,b] = TM is an integral curve of Xr,. Conversely, every integral curve
of Xr, say ¢ : [a,b] = TM, is of the form ¢ =~ where the curve vy =mo ¢ is a
critical curve for the functional Fr, on the set Q([a,b],~(a),(b)).

Thus, finding the critical curves of the functional F;, under fixed-endpoint vari-
ations is equivalent to finding the integral curves of the vector field Xy, which is
called the Fuler-Lagrange vector field of the nondegenerate Lagrangian L.

2. LEFT INVARIANT QUADRATIC LAGRANGIANS

This section is an elaboration of Exercises 10 and 11 in Lecture 7 of [1].
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2.1. Lie groups and Lie algebras. Now let G be a Lie group, with Lie algebra
g. (For simplicity, one could keep in mind the case G = GL(n,R), in which case
g = gl(n,R) is the vector space M, (R) of n-by-n matrices with real entries.)

Let ¢ be the canonical left-invariant g-valued 1-form on G. Then, as usual,
d¢ = =3 [¢,¢]. (In the case G = GL(n,R) and g : GL(n,R) < M, (R) is the
(vector-valued) inclusion mapping, then ¢ = g=! dg. Moreover, in this case, one
has the more explicit formula d¢ = —(a(.)

It is important to recognize that ¢ can be thought of both as a 1-form on G and
as a function on TG (with values in g, of course).

To avoid confusion, I will write z : TG — g to denote the function on T'G that
¢ represents. It is not hard to show that one has the identity

(2.1) ¢ =dzoa,
as 1-forms on T'G, and this identity will be important in what follows.

2.2. Left-invariant Lagrangians. Now, let @ : g x g — R be a nondegenerate
quadratic form on g, and define the Lagrangian L : TG — R

L=1Q(z2).

)
Since L is homogeneous quadratic on each fiber of 7 : TG — G, it follows that
Ep=1L.
Now, by the above formula
wrp=dLoa=Q(z,dz)oca=Q(z,dzoa) = Q(z,ﬂ'*o
From this, one computes

dwr, = Q(dzvﬂ-*g) - % (Zu [F*Cvﬂ-*d)'

Since the g & g-valued form (W*Q , dz) defines a coframing on T'G, if follows from the
nondegeneracy of () that dwy, is nondegenerate as well, so that L is a nondegenerate
Lagrangian.

Let X1, be the Euler-Lagrange vector field and definev : TG — ganda : TG — g
so that 7*((X) = v and dz(X1) = a. Then one computes that

Xp, vdwr = Q(a,7°¢) — Q(dz,v) — Q(z, [v, 7*(]).

Meanwhile, —dE;, = —dL = —Q(z,dz). Comparing coefficients of dz in the equa-
tion Xy vdwy = —dFEp, one sees that

v=2z
and that, consequently, a must satisfy the equation
Q(a,7¢) = Q(z, [v, W*C]) = Q(z, [Z,W*C]) = Q(z, ad(z)(w*()) = Q(adg(z)z, W*C),

where, for p € g, the linear map adg,(p) : g — g is the adjoint with respect to the
quadratic form @ of the linear map ad(p) : g — g. Thus, by the nondegeneracy of
Q, one see that one must have

a =adg(2)z.
Thus, X, satisfies
(2.2) 7 (O(XL) =2 and dz(Xp) = adg(2)z,

which determines X uniquely.
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Now, to find the L-geodesics, it suffices to find the integral curves of Xy. It is
worthwhile noting that (22 can be integrated in two stages: First, one finds the
integral curves z : [a,b] — g of the ordinary differential equation

(2.3) z =adg(2)2,

which is known as the Fuler equation of the Lagrangian. Then, for each such

solution z : [a,b] — g, one solves the left-invariant ordinary differential equation for
g:la,b =G

(2.4) C(3(1) = =(t).
This gives the L-critical curves on G, i.e., the curves that are the geodesics for the
left-invariant pseudo-Riemannian metric ds? = Q(¢,¢) on G.

FEzample 1 (Biinvariant metrics). Suppose that @ : g x g — R is Ad(G)-invariant
and nondegenerate, so that

Qz, [y, 2]) + Q([y, z], 2) = 0.
In this case, adg(y) = —ad(y) for all y € g, so that ([23) simplifies to
z=adg(2)z = —ad(2)z = —[z,2] = 0,

so the solutions of the Euler Equations are simply to have z be a constant zg. Then
the remaining equation (24) becomes

C(¥(t) = 20

and the general solution of this equation is, of course

9(t) = go e'®,
so that the geodesics are the (left) translates of the 1-parameter subgroups of G.

Ezample 2 (K-biinvariant metrics). Suppose that G is a connected simple Lie group
with maximal compact subgroup K C G. As is well-known, there exists an involu-
tive automorphism o : G — G such that K is the fixed subgroup of o.

For example, suppose that G = SL(n,R), with K = SO(n). The involutive
automorphism in this case is o(g) = (¢7)~!.

Let ¢/ : g — g denote the map induced on the Lie algebra by o and write
g = t®dm, where £ C g is the Lie algebra of K and m C g is the orthogonal
complement to € under the Killing form B : g x g — R. Then ¢’ acts as —1 times
the identity on m. For any element = € g, write x = xg + 21, where g lies in £ and
x1 lies in m. Thus, o/(z) = z¢ — ;.

Continuing with the illustrative example, if (G, K) = (GL(n,R),SO(n)), then &
is the space of skew-symmetric n-by-n matrices while m is the space of traceless,
symmetric n-by-n matrices.

Now, let ¢ be a fixed nonzero constant and consider the quadratic form @Q :
g x g — R defined by

Q(zo + 21,20 + 1) = B(x1,21) — ¢ B2, 0)

Because of the usual sign convention for the Killing form B, it is negative definite
on ¢ and positive definite on m, so @ is positive definite on m and is positive definite
on t if and only if ¢ > 0. It is nondegenerate as long as ¢ # 0.

Now, @ is Ad(K)-invariant, but it is not Ad(G)-invariant unless ¢ = —1. In
particular, the associated Lagrangian L : TG — R is left-invariant under the action
of G and right-invariant under the action of K.
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In this case, one finds that (23) becomes
Zo+ 21 = —(1+C) [Zo, 21].

Writing A = (14-¢) for simplicity of notation, the solutions of this Euler system can
be written as

zZ=2zy)+ 2z =v+ Ad(eiAvot) (Ul),
where v = vg + v; is a constant in g. Thus, the geodesic equation ([24]) becomes

C(’}/(t)) = Vo —+ Ad (eiAvot) (’Ul).
Writing v(t) = s(t) e*"? for some curve s in G, this becomes
¢(5(t)) = (1=N)vg + v1

so this is solved by s(t) = s e((lf)‘)””vl)t where sg € G is an arbitrary constant.

Thus, finally, one has the equation for geodesics in this metric:
W(t) =50 e(vl +(1—)\)U0)te)\v0t'

When sop = e, note that 4'(0) = vg + v1 = v, so this is the geodesic leaving the
identity with initial velocity v.

Note that ¢ = —1 implies A\ = 0, so this reproduces the case of a biinvariant
metric on a simple Lie group already done in the first example.

On the other hand, when ¢ = 1, one has A = 2, and this gives the geodesics of
a positive definite (Riemannian) metric on G that is K-invariant in the expected
form

’Y(t) = s e(v1 —vo)t e2v0t'

Note that, in the case of G = SL(n,R), this becomes the formula

,Y(t) _ eth e(vaT)t
for the geodesic starting at the origin with initial velocity v € g.
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