ON THE EQUATION f"(z) = f(f(x))
ROBERT L. BRYANT

ABSTRACT. These are my notes on the MathOverflow Question
“Is there a general solution for the differential equation f”(z) =
f(f(2))”, which is MO Question 384174.

1. ROUGH SOLUTIONS

There are many local solutions of this equation. For example, sup-
pose that one starts with a C? function f on an interval I C R such
that f’ is positive on I and f([) is disjoint from /. Then an inverse
g: f(I) = Tof f:I— f(I)exists and is C*. Now define f on the
interval f([) so that f(y) = f”(g(y)) fory € f(I). Then for z € I, one
will have = = g(y) for some y € f(I) and, of course, y = f(x). Then
f(x) = "(9(y)) = f(y) = f(f(x)) for all z € I. This sort of ‘rough’
solution is constructed without any fixed points.

A C? solution on an open domain D such that f(D) C D must be
smooth on D, since f” = fof, implying that if f is C*, then f must
be C*+2.

In fact, with a little effort, one can show that a C? solution with a
contracting fixed point, i.e., a point z € dom(f) with f(a) = a and
|f'(a)] < 1, must be real-analytic in a neighborhood of the fixed point
a, since the equation f” = fof allows one to prove an estimate of the
form |f®)| < C* k! for some constant C' on a neighborhood of such a
fixed point.

2. FORMAL POWER SERIES

For the investigation of the solutions of f” = fof that have fixed
points, one can begin with ‘formal solutions’. It is simplest to start by
assuming that z = 0 is a fixed point, and to allow complex coefficients
(though we are mainly interested in the real case).

Proposition 1: For every constant b € C, there is a (unique) formal
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power series with lowest order term bz of the form

2 3 (12 1 4 (1,6 4 11 2 1
(1) f(Z):bz+b—z3+b (O"+ )z5+b (bS+b1+11 >+ )Z7+
3 ol 7l
that satisfies f”(z) = f(f(2)).

Proof: Recall that, if
f(Z) :a1z+a2z2+a3z3+-~-

is a formal power series (note that the constant term is assumed to be
zero), then the formal composition f with itself is a formal power series

fof(z) =a2z+ai(a+1)ag2® 4+ - + sp(a) 2" + - - -

where si(a) is a polynomial with nonnegative integer coefficients given
by the classical formula

o0
(@)=Y D, awayay.

k=1 ji+-jr=n
Note that s,(a) depends only on aq,...,ax, and, moreover, since any
partition of an even integer into an odd number of (integer) parts al-
ways has at least one even part, it follows that ss,(a) lies in the ideal
generated by {ag; | 1 < j <n}.

Since the formal derivative satisfies
f(2) =2as + 6az 2 + - - + (k+2)(k+)agsa 25 + -
it follows that f” = fof if and only if
(k+2)(k+1)ag+e = sk(ai, . .., ax)

for all K > 0. This gives a, = 0 and, by recursion, one obtains formulae

age =0  and a1 = pr(ar), for k >0,

where py, is a polynomial of degree k*+1 and leading coefficient 1/(2k+1)!.
Moreover, one can prove by induction that (2k+1)! p(b) /0F1 = i (b?),
where ¢, has degree (g) and nonnegative integer coefficients, which will
turn out to be useful in the sequel. QED

The first few terms are po(b) = b, p1(b) = ¢ b,

pab) = i PP +1), palb) = b (O°+B+11541),

The above proposition has a generalization to power series centered at
z = a for any a. The proof is by the same method as above.
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Proposition 2: For every pair of constants a, b € C, there is a (unique)
formal power series centered at z = a of the form

(2) f(2)=a+b(z—a)+--- =) pla,b) (z—a)",

that satisfies f”(z) = f(f(z)). For each k > 0, px(a,b) is a polynomial
in ¢ and b with nonnegative coefficients.

The first few terms are given by
f(z) =a+b(z—a) + $a(z—a)* + LV (z—a)®

3
) + ab(b+1) (z—a)* + 5b(b*+b°+3a%) (z—a) + - - .

One says that f has a formal fixed point at z = a and that this fixed
point is formally contracting if |b| < 1 and formally expanding if |b| > 1.
If the power series does have a positive radius of convergence, then a
is actually a fixed point of limiting holomorphic mapping and actually
is contracting if |b| < 1 and expanding if |b] > 1.

Remark: The formal power series does not always have a positive
radius of convergence. For example, when a and b are real and non-
negative,

bk2+1

Pai+1(a, b) > pak11(0,0) = pi(b) = (2k+1)!"

Thus, when a > 0 and b > 1, the sequence pog11(a, b) grows faster than
any geometric sequence C* and hence the general term of the series
does not approach zero for any z # a. (This simple argument was
pointed out to me by Will Sawin.)

3. CONVERGENCE NEAR A FORMAL CONTRACTING FIXED POINT

Now, suppose that ¢ =0 and 0 < b < 1 and that one has a function
f defined on an open neighborhood of z = 0 that satisfies f(0) = 0,
f/(0) =b > 0and f” = fof. Since 0 < f'(0) < 1, there will be
some § > 0 such that 0 < b/2 < f'(z) < 1(1+b) < 1 when |z| < 4.
Then f : (=4§,§) — (—0,0) is a contraction mapping and thus must
be smooth on (=4, ). Moreover, f is strictly increasing on (-4, ) and
satisfies 0 < f(x) < x for all 0 < x < §. Integrating the given relation
f" = fof twice, one obtains

f(z) =bx + /O /Oyf(f(t)) dt dy.

This motivates the following construction and argument.
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3.1. An iterative procedure. Let b, ;1 and r be real constants sat-
isfying 0 < b < p < 1 and r > 0. Let M(b,u,r) be the set of
continuous, nondecreasing functions u on [0, r| satisfying u(0) = 0 and
0 <wu(x) < px for all z € [0,r]. (For example, the function u(z) = bx
belongs to M.) For u € M(b, u,r), define Su : [0,7] — R by

—b:c+/ / )) dt dy.

Proposition 3: When 72 < 6(u—b)/u?, the nonlinear operator S
carries M(b, i, r) into itself. Moreover, if u,v € M(b, u,r) satisfy
u(z) <w(x) for all z € [0,r], then Su(z) < Sv(zx) for all x € [0, 7].
Proof: Suppose that v € M(b,pu, 7). Then Su satisfies Su(0) = 0.
Since, 0 < u(z) < pr < pr < r for x € [0,r], it follows that uou is
well-defined, continuous, and nonnegative on [0, 7]. Hence

(Su)(z) =b+ /Oxu(u(t)) dt>b>0 (when z € [0,r]),

so it follows that Su is nondecreasing on [0, r]|.
Moreover, if u € M(b,pu,7), then u(u(t)) < pu(t) < p?t for all
t € ]0,7] so

—bx+// dtdy<bx+// pPtdt dy = br+3i p® 2°.

Meanwhile, when z € [0, 7],
br+ ¢ p’ 2’ <br+§p° e <br+ (n—b)x = pa.

Thus, one has 0 < Su(x) < pz when z € [0,7]. It follows that Su €
M(b, 7).

Finally, if u,v € M(b, u, r) satisfy u(z) < v(z) for all z € [0,r] then
u(u(t)) < u(v(t)) < v(v(t)), which implies that Su(z) < Swv(zx) for
x € [0,7]. QED

Proposition 4: When b, p, and » > 0 satisfy 0 < b < p < 1 and
r? < 6(u—b)/p?, the power series f(z) = > oo, pr(b) % *! converges
for x € [0,r], and the limiting function satisfies 0 < f(x) < px for
x € [0,r].

Proof: Let ug(z) = bz, and set u;y; = Su; for i > 0. Since uy €
M(b, p, ), it follows that u; € M(b, u,r) for all i > 0. Also, when z €
[0, 7], since ug(x) = bx < ba + §b*2® = uy(x) , it follows that u(z) =
Sug(z) < Suy(x) = ug(z) and, by induction, w;(x) < u;pi(x) < pa for
all 7 and z € [0, 7].
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Now, direct computation gives
us(z) = br + 0% 2 + L 0*(V* + 1) 2° + Ry (w),

where R7(z) is a polynomial in « that vanishes to order 7 at x = 0 and
all of its coefficients are nonnegative. Moreover, by induction, one can
show that

up(r) = b + p1(b) 2® + - - + pi(b) AR Ropi3()

where Ror.3(x) is a polynomial in = that vanishes to order 2k+3 at
x = 0 and all of its coefficients are nonnegative. Hence, for all k£ and
x € [0,r],

bz + pi(b) #° + - - + pi(b) 2 < wy(z) < pa.
Thus, when 0 < b < 1 and x € [0, 7], we have

Z pk(b) p2k+1 <puz.
k=0

This completes the proof of the Proposition. QED

Corollary: When 0 < b < 1, the formal power series (1) has a positive
radius of convergence, say, (b) > 0.

One can get a lower bound for r(b) as follows: We know that r(b)? >
6(u —b)/u* > 0 for all u € (b,1], so it suffices to pick u € (b,1] to
maximize (p —b)/p?. When 0 < b < 1, the maximum of (u—b)/u? on
(b, 1], occurs at p = 2b, and when % < b < 1 the maximum occurs at
i = 1. This yields the (non-sharp) lower bound

% 0<b<i,
(b) >
6(1-b) L<b<i

The convergence result in the real case generalizes to the complex case
as follows:

Proposition 5: When |b] < 1, the power series f(2) = Yoo, pr(b) 22T
converges absolutely and uniformly on the disk |z| < r(]b]), and the
limiting holomorphic function satisfies | f(z)| < |z| for |z| < r(|b]).

Proof: If b € C satisfies |b| < 1, then the fact that the coefficients
of pr(b) are nonnegative real numbers implies that |px(b)| < pr(]0]).
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Hence, when z € C satisfies |z| < r([b]), we have

> o) <Y pe(]) 2 < ).
k=0 k=0

This completes the proof. QED

There is also a (non-sharp) upper bound for r(b):
Proposition 6: When 0 < b < 1, r(b) > 0 is finite and satisfies

/6(1=b)

r(b) < —

Moreover, when a > 0 and b = 1, the series (2) has zero radius of
convergence.

Proof: Suppose that r(b) > ~ 6(; —Y Because all of the coefficients of

the formal power series are non-negative, it follows that, for 0 < z <

r(b), we have f(z) > bz + ¢b®z3. Now, when z = 6(b1_b), we have

br + ébzx?’ =z, so f(z) > x, implying that there must be a positive

g < /6(1—b)

7— such that f(a) = a. By the mean value theorem, there
will exist a ¢ between 0 and a such that f'(c) = 1. Since f” = fof >0
on (0,7(b)), it follows that f/(a) > 1. Thus, f is real-analytic at a
and has f'(a) > 1, and so its Taylor series at + = a would have a
positive radius of convergence. However, we already know that this is

impossible. Thus, r(b) < ¥ 6(;_b).

Finally, if the series (2) with a > 0 and b = 1 had a positive radius
of convergence p > 0, then, since 0 < pr(b) < pp(1) < porsi(a,l)
when 0 < b < 1, the series (1) with b € (0,1) would have radius of
convergence at least p, but we have shown that r(b) — 0 as b — 1.
QED

Remark: A similar argument using f(z) > bz + $b*® + 755b° (0*+1)®

for 0 < x < r(b) gives a lower (but more messy) upper bound

1 30(1-b)
T(b) < 3/4 )
b3/ \| \/30—5b+3002—300% + 5v/b
which is a significantly better bound when b > 0 is small than the esti-

mate proved in the proposition, though it is quite close to the simpler
upper bound when b < 1 is close to 1.

Proposition 7: For 0 < b < 1, the series (1), with radius of conver-
gence 1(b) > 0 is the Taylor series at = 0 of an odd real-analytic
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function f : (—=r(b),r(b)) — (—r(b),r(b)) that is strictly increasing
and satisfies lim,_,, )~ f(x) = 7(b). The function f satisfies f” = fof
and cannot be extended real-analytically to any larger interval.

Proof: Let 0 < b < 1 and let R > r(b) be the largest real number (or
o0) such that the real-analytic function f to which the series (1) con-
verges on (—r(b),7(b)) can be extended real-analytically to (—R, R).
Note that, because |f'(0)| < 1, x = 0 is a contracting fixed point of f.
Hence there is an interval (—e, €) for some € > 0 that is preserved by
f. In particular, fof is defined and real-analytic on this interval and
hence, by construction, it equals f” on this interval.

N.B.: I am not assuming that the series (1) converges on (—R, R),
nor am I assuming that f maps (—R, R) to itself. In particular, while
f" is defined on (=R, R), it is not immediate that fof is defined on
(=R, R) since we do not know that f carries (—R, R) into itself. This
must be addressed.

First, I claim that f(z) < x for 0 < x < R. Suppose not. Since
f(x) < z for 0 < = < €, there must be a smallest real number a €
(0, R) such that f(a) = a, in particular f(z) < z for 0 < = < a.
Then f’(a) > 1, otherwise, f(z) — z would have negative derivative at
x = a and hence would be positive for some a’ € (0, a), a contradiction.
However, since f is real-analytic at a, this would imply that the Taylor
series of f at x = a has positive radius of convergence, contradicting
the result above that says that the series (2) with (a,b) = (a, f'(a))
has radius of convergence 0.

Second, I claim that f is positive on (0, R). Suppose not. Then
there would be a smallest positive ay € (0, R) such that f(ag) = 0.
By the mean value theorem, there exists an a; € (0,aq) such that
f'(a;) = 0, which can be supposed to be the smallest positive root of
f’. Then f is strictly increasing on [0, aq], so that 0 < f(z) < z for all
x € (0,a;) and, by the identity f(—xz) = —x, we have z < f(x) < 0 for
x € (—aq,0). Consequently, f maps (0,a1) into (0,a;). Thus, fof is
well-defined and real-analytic on (—ay, a;) and hence must equal f” on
this interval. Hence, f” is positive on (0, a;). Hence, f’is increasing on
0, a;] However, since f'(0) = b > 0 but f’(a;) = 0, this is impossible.

Thus, f must satisfy 0 < f(x) <  when 0 < x < R, implying
(since f is odd) that f maps (—R, R) into (—R, R). Consequently, fof
is well-defined on (—R, R) and real-analytic, so it must equal f” on
(=R, R). In particular, since f carries (0, R) into itself, it follows that
f" = fof must also carry (0, R) into itself. Thus, f' > b > 0 is strictly
increasing on [0, R).
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In particular, f is increasing and convex up on [0, R). In fact, since
f'>bon (0,R), it follows that f(¢) > bt and f"(t) = f(f(t)) > b*t for
t € (0, R). Hence

—bx+//f )) dt, dy > b + b2

for v € (0, R). Since f(z) < z for x € (0, R), it follows that bx +
Pa® < xfor z € (O,R). Thus, < (1/6(1—b))/b, implying that

R < (1/6(1-0))/0.

Because f’ is even and increasing on (0, R) it follows that f’ > b

n (—R, R). Thus, f maps (—R, R) diffeomorphically onto (-5, 5) for

some S < R, and hence is invertible as a real-analytic mapping. I will
now show that S = R, i.e., that for every = € (0, R) there exists a
y € (0, R) such that f( )

To do this, let F(z f f t)dt be the anti-derivative of f that
satisfies F'(0) = 0. Then F(—z) = F(z) and F is defined and real-
analytic on (—R, R) and has a strict minimum at = 0. Moreover,

f'(@) () = f(f(2) f'(2) = F'(f(2)) f'(2),
and integrating this equation from 0 to z yields
3 (@) =0%) = F(f(2)),
which can be rearranged to give
/()

VR E2F(f(@)

Since F is defined and nonnegative on (—R, R), there is a well-defined
function h on (—R, R) such that

B / Y du
o /B2 +2F(u)
Note that h is odd, real-analytic, and invertible. Hence thereisa T > 0
such that h : (=R, R) — (=T,T) is a real-analytic diffeomorphism.
Moreover, for z € (—R R)

1dt = .

In other words, hof : (=R, R) — (—=T,T) is the identity on (—R, R).
This implies, first, that 7 > R. However, if T > R, then h~!
(=T,T) — (—R,R) is a real-analytic extension of f : (=R, R) —
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(=R, R), contrary to the assumption that (—R, R) is the maximal do-
main to which f can be continued real-analytically. Thus, T = R,
and we see that f : (—R,R) — (—R,R) is a diffeomorphism, as
claimed. Note that we can extend f continuously to [— R, R] by setting
f(£R) = £R, so we do this. (In fact, this extension is smooth in the
sense that f and all of its derivatives extend continuously to z = +R,
but we do not need this.)

We now have that, for this extended f, which belongs to M (b, 1, R),

F(a) = be + / ' / " F ) dedy = Sf(2)

for z € [0,7(b)], and we have that f(x) > ui(z) = bx for x € [0, R],
which, after setting setting wugp,; = Sug, implies by induction that
f=Sf> Su, = ugsy for all k. Thus, when z € [0, R], we have

k

v > f(z) > w(r) > pi(b)a”

k=0

Since all the terms on the righthand sum are positive, it follows that
Y pih)* M < fx) <=
k=0

when z € [0, R], so that the series (1) defining f converges (absolutely)
on [—R, R]. Hence, R < r(b). In particular, for |x| < R, we have

flx) = pi(b)a®*!
k=0
Since R > r(b) by definition, it follows that R = r(b). Q.E.D.

Remark: It appears that, for b less than 1 but to close to 1, there is
a convergent series expansion
r(b) 7 243 9

——— =1+ —(1-b)+ —(1-b)*+---.

\/6(1-b) 10( ) 200( )
Remark: As in the case a = 0, when |b| < 1, so that f is a ‘formal
contraction’ on a neighborhood of a, it turns out that the series (2)
converges absolutely and uniformly on a disc of the form |z—a| < r(a, b)
for some r(a,b) > 0, so this gives a two-parameter family of local
solutions with a contracting fixed point.
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3.2. The case —1 < b < 0. It turns out that the behavior of the series
f when b is real and lies in (—1, 0) is quite different from the case when
b is real and lies in (0, 1).

Proposition 8: When b = —c? < 0 and c is sufficiently small, the

series (1) has a radius of convergence 7(|b|) < oo and converges to a
function f on the interval (—r(|b]), r(|b])) that extends real-analytically
and periodically to the entire line R.

Proof: Here is the idea of the proof: Let f be the odd function to
which the series (1) converges on (—r(|b]),7(|b])), and let p < r(|b]) be
the largest value such that |f(x)| < r(|b]) for z € (—p, p). Consider
the differential equation with initial conditions for a function h : R —

(=r([o]),r(|b])) given by
W'(z) = f(h(z)), h(0) =0, h'(0) =0.
Clearly, h = f on (—p,p). Our goal is to show that the (unique)
solution of the above equation is defined for all x € R and is periodic,
with |h(x)] < r(|b]) for all x, at least when b < 0 is sufficiently small.
To do this, we observe the following: Let F : (—r([b]),(]b])) — R

be the antiderivative of f on (—r(|b]),r(|b])) that satisfies F(0) = 0.
Then multiplying both sides of the equation

W'(z) = f(h(z)) = F'(h(z))
by h/(z) and integrating with respect to x yields
L(W(z)* = b*) = F(h(x)).

which can be re-arranged to become
W(z)? = 2F (h(z)) — b* = 0.

Now, consider the power series for the anti-derivative (with respect
to z) of f,

2k+2 o0 2k+2

bk-i—l b2 Z )
Zpk (2k+2) ; %) D

The series for ®(b, z) is absolutely convergent when [b| < 1 and |z| <
r(|b]). The above equation can now be written more explicitly as

b — W (z)> + 28 (b, h(z)) =0
Now, set b = —c? and consider the function
Z(c,u,v) = ¢ = (ev)® +20(—c*,u)

k—l—l (U
=ct— () +2Z (2k+2)!’

2)k+1
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which is defined and real-analytic on the domain D in cuv-space where
lc] < 1 and |u|] < r(c?), since this is where the series converges. In
particular, this includes the region where |¢| < 1/v/2 and |cu| < /3/2.
Since every term is divisible by ¢?, we can write Z(c, u,v) = ¢*W (¢, u, v)
where

(u®)*
(2k+2)V

Wi(e,u,v) = —v* —u® — 2u? Z(—cz)qu(c4)
k=1

and all the terms in the final sum have degree at least 2 in (c?, u?).

It follows that, on an open neighborhood of (¢,u,v) = (0,0,0) in
D, the locus W = 0 can be described by an equation of the form
¢ = H(u,v), where H is an analytic function on a neighborhood of
(0,0) that is even in u and v separately. Using the power series for @,
one can compute the first few terms in the Taylor expansion for H:

u? N ul(Tu?+20?) N
12 720

It follows that the function H is strictly convex on a neighborhood of
(u,v) = (0,0). Thus, except for the origin itself, an open neighborhood
of (u,v) = (0,0) is foliated by the level sets of H, which are closed,

strictly convex curves. In particular, there is a ¢g € (0,1) such that,
when 0 < ¢ < ¢, the component of the level set

H(u,v) = c?

H(u,v) = (u®+0?) <1 -

that contains (u,v) = (0,—c) is a closed, strictly convex curve X,
surrounding the origin in the wv-plane. Since H(—u,v) = H(u, —v) =
H(u,v), the curve X, is symmetric under reflection in the u- and v-axes.
Thus, |v| reaches a nondegenerate maximum on X, when v = 0, and,
since W(c,0,v) = ¢* — v?, it follows that the maximum value of |v| on
X, is citself. Meanwhile, |u| reaches a nondegenerate maximum p(c) on
X, when v = 0. Since H (p(c),0) = ¢?, it follows that W (c, p(c), 0) = 0,
and examining the series, W (c,u,0) = ¢ —u®*+c'u?/12+- - - one finds
that there is a convergent series expansion

(0) = 1+c4+3c8 223612+
pley=c¢ 24 T 640 322560 ‘

In particular, note that, on X., we have |cu| < cu(c), and, hence, for ¢
sufficiently near 0, we will have |cu| < /3/2 on X..

Consider the 1-form 7 = %“ on X,.. Since u restricted to X, has
critical points only when v = 0 and those are nondegenerate, it follows
that 7 is smooth (in fact, real-analytic) and nowhere vanishing on X..
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Using the power series for H and p, it is not difficult to show that

/ T=m(c)=2r(1+ L +--).
Consequently, there is a 7(c)-periodic parametrization ¢ (t) = (u(t), v(t))
of X, with ¥(0) = (0, —c) and ¢*(7) = dt.

By construction, u/(t) = wv(t), so that wu(t) satisfies the equation
H (u(t),u'(t)) = ¢ Consequently, u(t) satisfies the equation

(cu'(t))2 —20(—c? u(t)) =,
Thus, setting t = cx, one sees that the function h defined for all x € R

by h(z) = u(cz), which has period w(c)/c = (2r/c)(1+ &t + ),
satisfies the equation

B (z)? —2®(—c2 h(x)) = c*,

and the initial conditions 2(0) = 0 and /'(0) = —c® = b.

As has been shown, this forces h = f on the interval of convergence
of the Taylor series at « = 0 of f. Since h: R — [—pu(c), u(c)] is real-
analytic (and periodic), it follows that it is the unique real-analytic
extension of f to the entire line R. Since f” = fof on the domain
of convergence, it follows that its real-analytic extension h satisfies
h"” = hoh on all of R.

Finally, note that, because ®(—b,iz) = ®(b,z) on the domain of
convergence for @, it follows that the radius of convergence for the z-
power series ®(—b, z) is the same as the radius of convergence of the
z-power series ®(b, z). Hence the radius of convergence of the power
series (1) for a given value of b is the same as the radius of convergence
of the power series (1) using the value —b. QED

Remark: Although the argument above only gives periodicity of the
real-analytic extension of f when b = —c? where c is sufficiently small,
numerical evidence seems to indicate that, in fact, the sum of the series
(1) extends to a periodic function on R whenever 0 < ¢ < 1. This is
based on the observation that the plot of the level sets of the truncation
to order 12 of the series that defines the function H (u, v) shows them to
be convex for all the level values less than or equal to 1. Thus, it seems
highly likely to me that the solutions corresponding to b € (—1,0) are
all periodic.

4. SOME EXPLICIT SOLUTIONS

One interesting point is that the (two) multivalued solutions de-
scribed by Michael Engelhardt have fixed points and hence are (ana-
lytic continuations of) solutions of the type (2). One can see this as



ON THE EQUATION f"(z) = f(f(z))

follows: These (multivalued) solutions can be written in the form

f) =iv2 (mf)b

Clearly, a € C will be a fixed point, i.e., f(a) = a if and only if

b—1
1= (L)
2)
and this happens (for b = (1 + /7)) when, for some integer &,

0= ap = iv/2mAFVD/2 _ kL /o ( —mf) k/2

Moreover, we have
ap \"!
"(a = b,
Flow) = (Z\f )

where b= 1(1 =+ V7).

so |f'(ax)] = |b| = v/2 > 1, which implies that the fixed point is
a repelling fixed point. This is interesting because it implies that the
formal power series given above for (ay, b) must have a positive radius of
convergence, even though |b| > 1. This led me to speculate that maybe
the formal power series (2) might have a positive radius of convergence
for any (a,b) € C, but Will Sawin (in a comment below) pointed out

that this cannot be true.
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