
Spin(10,1)-metrics with a parallel null spinor
and maximal holonomy

0. Introduction. The purpose of this addendum to the earlier notes on spinors is
to outline the construction of Lorentzian metrics in 10+1 dimensions that have a parallel
null spinor and whose holonomy is as large as possible. The notation from the earlier note
will be maintained here.

1. The squaring map. Consider the squaring map σ : O4 → R2+1 ⊕ O = R10+1

that takes spinors for Spin(10, 1) to vectors. This map σ is defined as follows:

σ




x1

y1

x2

y2


 =


|x1|2 + |y1|2

2
(
x1 · x2 − y1 · y2

)
|x2|2 + |y2|2

2
(
x1 y2 + x2 y1

)
 .

Define the inner product on vectors in R2+1 ⊕O by the rule
a1

a2

a3

x

 ·

b1
b2
b3
y

 = −2(a1b3 + a3b1) + a2b2 + x · y

and let SO(10, 1) denote the subgroup of SL(R2+1⊕O) that preserves this inner product.
This group still has two components of course, but only the identity component SO↑(10, 1)
will be of interest here. Let ρ : Spin(10, 1) → SO↑(10, 1) be the homomorphism whose
induced map on Lie algebras is given by the isomorphism

ρ′



a1 + xI8 C Rx y I8 C Ry

−C Lx a3 + xI8 C Ly −y I8
z I8 C Rz a1 − xI8 C Rx

C Lz −z I8 −C Lx a3 − xI8


 =


2x y 0 y∗

2z 0 2y 2x∗

0 z −2x z∗

2 z −2x 2y a2

 .

With these definitions, the squaring map σ is seen to have the equivariance σ
(
g z
)

=
ρ(g)

(
σ(z)

)
for all g in Spin(10, 1) and all z ∈ O4.

With these definitions, the polynomial p has the expression p(z) = − 1
4σ(z) ·σ(z), from

which its invariance is immediate. Moreover, it follows from this that the squaring map
carries the orbits of Spin(10, 1) to the orbits of SO↑(10, 1) and that the image of σ is the
union of the origin, the forward light cone, and the future-directed timelike vectors.

2. Parallel null spinors. A non-zero spinor z ∈ O4 will be said to be null if p(z) = 0,
or, equivalently, if σ(z) is a null vector in R10+1. The typical example is z1,0, whose
stabilizer subgroupH is the connected subgroup of Spin(10, 1) whose Lie algebra is defined
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by the conditions x = z = x = z = 0 and a ∈ k1. Consider the subgroup ρ(H) ⊂
SO↑(10, 1). Its Lie algebra is given by

ρ′(h) =




0 y 0 y∗

0 0 2y 0
0 0 0 0
0 0 2y a2

 y ∈ R,
y ∈ O,
a ∈ k1

 .

The question is whether ρ(H) can be the holonomy of a torsion-free connection on an
11-manifold.

The first thing to check is to see whether this subgroup satisfies the Berger criteria.
Suppose that M were an 11-manifold endowed with a ρ(H)-structure B that is torsion-free.
Then the Cartan structure equations on B will be of the form

dω1

dω2

dω3

dω

 = −


0 ψ 0 tφ

0 0 2ψ 0
0 0 0 0
0 0 2φ θ

 ∧


ω1

ω2

ω3

ω


where ω and φ take values in O and θ takes values in the subalgebra spin(7) ⊂ gl(O)
that consists of the elements of the form a2 with a ∈ k1. For such a ρ(H)-structure, the
Lorentzian metric g = −4ω1 ω3 + ω2

2 +ω ·ω has a parallel null spinor and B represents
the structure reduction afforded by this parallel structure. Note that the null 1-form ω3 is
parallel and well-defined on M . It (or, more properly, its metric dual vector field) is the
square of the parallel null spinor field.

Differentiating the Cartan structure equations yields the first Bianchi identites:

0 =


0 Ψ 0 tΦ

0 0 2Ψ 0
0 0 0 0
0 0 2Φ Θ

 ∧


ω1

ω2

ω3

ω

 .

where Ψ = dψ, Φ = dφ+ θ∧φ, and Θ = dθ+ θ∧θ.
By the second line of this system, Ψ∧ω3 = 0, while the first line implies that Ψ∧ω2 ≡

0 modω, so there must be functions p and q, with values in R and O respectively, so that

Ψ = (pω2 + q ·ω)∧ω3 .

Substituting this into the first line of the system yields

t
(
Φ− qω2 ∧ω3

)
∧ω = 0,

so it follows that
Φ = qω2 ∧ω3 + σ∧ω ,

where σ = tσ is some 1-form with values in the symmetric part of gl(O), which will be
denoted S2(O) from now on. Substituting this last equation into the last line of the Bianchi
identities, yields

2σ∧ω ∧ω3 +Θ ∧ω = 0.

2



In particular, this implies thatΘ∧ω = 0 mod ω3, so thatΘ ≡ R
(
ω∧ω

)
mod ω3 where R

is a function on B with values in K
(
spin(7)

)
, which is the irreducible Spin(7) module of

highest weight (0, 2, 0) and of (real) dimension 168. (This uses the usual calculation of the
curvature tensor of Spin(7)-manifolds.) Thus, set

Θ = R
(
ω ∧ω

)
+ 2α ∧ω3 ,

where α is a 1-form with values in spin(7) whose entries can be assumed, without loss of
generality, to be linear combinations of ω1, ω2, and the components of ω. Substituting
this last relation into the last line of the Bianchi identities now yields

2σ∧ω ∧ω3 + 2 (α ∧ω3)∧ω = 0,

which is equivalent to the condition

σ ∧ω ≡ α ∧ω mod ω3.

In particular, this implies that σ−α ≡ 0 mod ω3,ω. Since σ and α take values in S2(O)
and spin(7) respectively, which are disjoint subspaces of gl(O), it follows that σ ≡ α ≡
0 mod ω3,ω. In particular, neither ω1 nor ω2 appear in the expressions for σ and α.
Recall that, by definition, ω3 does not appear in the expression for α, so α must be
a linear combination of the components of ω alone. Now, from the above equation, it
follows that

σ∧ω = α ∧ω+ sω3 ∧ω

where s takes values in S2(O). Finally, the first line of the Bianchi identities show that
tω∧α∧ω = 0, so it follows that α = a(ω) where a is a function on B that takes values
in a subspace of Hom

(
O, spin(7)

)
that is of dimension 8 · 21 − 56 = 112. By the usual

weights and roots calculation, it follows that this subspace is irreducible, with highest
weight (0, 1, 1).

To summarize, the Bianchi identities show that the curvature of a torsion-free ρ(H)-
structure B must have the form

Ψ = (pω2 + q ·ω)∧ω3 ,

Φ = qω2 ∧ω3 + sω3 ∧ω+ a(ω)∧ω

Θ = R
(
ω ∧ω

)
+ 2a(ω)∧ω3

where R takes values in K
(
spin(7)

)
, the irreducible Spin(7)-representation of highest

weight (0, 2, 0) (of dimension 168), a takes values in the irreducible Spin(7)-representation
of highest weight (0, 1, 1) (of dimension 112), s takes values in S2(O) (the sum of a trivial
representation with an irreducible one of highest weight (0, 0, 2) and of dimension 35), q
takes values in O, and p takes values in R. Thus, the curvature space K

(
ρ′(h)

)
has dimen-

sion 325. By inspection, this curvature space passes Berger’s first test (i.e., the generic
element has the full ρ′(h) as its range). Thus, a structure with the full holonomy is not
ruled out by this method.
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3. Integrating the structure equations. To go further in the analysis, it will be
useful to integrate the structure equations, at least locally. This will be done by a series
of observations.

To begin, notice that, since dω3 = 0, there exists, locally, a function x3 on M so that
ω3 = dx3. This function is determined up to an additive constant, and can be defined on
any simply connected open subset U0 ⊂M .

Since dω2 = −2ψ∧ω3 = −2ψ∧dx3, it follows that any point of U0 has an open
neighborhood U1 ⊂ U0 on which there exists a function x2 for which ω2∧ω3 = dx2∧dx3.
The function x2 is determined up to the addition of an arbitrary function of x3. In
consequence, there exists a function r on B1 = π−1(U1) so that ω2 = dx2 − 2r dx3. It now
follows from the structure equation for dω2 that ψ∧ω3 = dr∧dx3. Consequently, there is a
function f on B1 so that ψ = dr+f dx3. Since Ψ = dψ is π-basic, it follows that df∧dx3 is
well-defined on U1. Consequently, f is well-defined on U1 up to the addition of an arbitrary
function of x3.

Now, since

dω1 = −ψ ∧ω2 − tφ ∧ω = −(dr + f dx3)∧ (dx2 − 2r dx3)− tφ ∧ω,

it follows that
d(ω1 + r dx2 − r2 dx3) = f dx2 ∧ dx3 − tφ ∧ω.

The fact that the 2-form on the right hand side is closed, together with the fact that the
system I of dimension 9 spanned by dx3 and the components of ω is integrable (which
follows from the structure equations), implies that there are functions G and F on B so
that

d(ω1 + r dx2 − r2 dx3) = d(Gdx3 − tFω),

from which it follows that there is a function x1 on B so that

ω1 = dx1 − r dx2 + r2 dx3 +Gdx3 − tFω .

The function x1 is determined (once the choices of x3 and x2 are made) up to an additive
function that is constant on the leaves of the system I, i.e., up to the addition of an
(arbitrary) function of 9 variables. Expanding d(Gdx3 − tFω) = f dx2∧dx3 − tφ∧ω via
the structure equations and reducing modulo dx3 yields

t
(
dF + θF)∧ω ≡ tφ ∧ω mod dx3 .

so that there must exist functions H and u = tu so that

φ = dF + θF + H dx3 + uω .

Substituting this back into the relation d(Gdx3 − tFω) = f dx2∧dx3 − tφ∧ω yields

dG+ 2 tFdF− t
(
H− 2u F

)
ω ≡ f dx2 mod dx3 .
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Setting G = g − F · F and h = H− 2u F, this becomes

dg ≡ f dx2 + thω mod dx3 ,

with the formulae

ω1 = dx1 − r dx2 + r2 dx3 + (g−F · F)dx3 − tFω ,

φ = dF + θF + (h + 2u F)dx3 + uω .

Now the final structure equation becomes

dω = −2
(
dF + θF + uω

)
∧ dx3 − θ ∧ω

which can be rearranged to give

d
(
ω+ 2Fdx3

)
= −

(
θ− 2u dx3

)
∧
(
ω+ 2Fdx3

)
.

This suggests setting η =ω+ 2Fdx3 and writing the formulae found so far as

ω1 = dx1 − r dx2 + r2 dx3 + (g+F · F)dx3 − tFη ,

ω2 = dx2 − 2r dx3 ,

ω3 = dx3 ,

ω = −2Fdx3 + η ,

ψ = dr + f dx3 ,

φ = dF + θF + h dx3 + uη ,

dg ≡ f dx2 + thη mod dx3 ,

dη = −
(
θ− 2u dx3

)
∧η .

where, in these equations, θ takes values in spin(7) and u = tu. Note that

−4ω1 ω3 + ω2
2 +ω ·ω = −4 dx1 dx3 + dx2

2 − 4g dx3
2 + η · η.

4. Interpreting the integration. I now want to describe how these formulae give
a recipe for writing down all of the solutions to our problem.

By the last of the structure equations, the eight components of η describe an integrable
system of rank 8 that is (locally) defined on the original 11-manifold. Let us restrict to
a neighborhood where the leaf space of η is simple, i.e., is a smooth manifold K8. The
equation dη = −

(
θ − 2u dx3

)
∧η shows that on R ×K8, with coordinate x3 on the first

factor, there is a {1}×Spin(7)-structure, which can be thought of as a 1-parameter family
of torsion-free Spin(7)-structures on K8 (the parameter is x3, of course).
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This 1-parameter family is not arbitrary because the matrix u is symmetric. This con-
dition is equivalent to saying that if Φ is the canonical Spin(7)-invariant 4-form (depending
on x3, of course) then

∂Φ
∂x3

= λΦ + Υ

for some function λ on R × K8 and Υ is an anti-self dual 4-form (via the x3-dependent
metric on the fibers of R × K → R, of course). It is not hard to see that this is 7
equations on the variation of torsion-free Spin(7)-structures and that, moreover, given any
1-parameter variation of torsion-free Spin(7)-structures, one can (locally) gauge this family
by diffeomorphisms preserving the fibers of R×K → R so that it satisfies these equations.
(In fact, if K is compact and the cohomology class of Φ in H4(K,R) is independent of x3

then this can be done globally.) Call such a variation conformally anti-self dual.
Now from the above calculations, this process can be reversed: One starts with any

conformally anti-self dual variation of Spin(7)-structures on K8, then on R3×K one forms
the Lorentzian metric

ds2 = −4 dx1 dx3 + dx2
2 − 4g dx3

2 + η · η

where g is any function on R3×K that satisfies ∂g/∂x1 = 0 and η ·η is the x3-dependent
metric associated to the variation of Spin(7)-structures. Then this Lorentzian metric has
a parallel null spinor. For generic choice of the variation of Spin(7)-structures and the
function g, this will yield a Lorentzian metric whose holonomy is the desired stabilizer
group of dimension 30. This can be seen by combining the standard generality result
for Spin(7)-metrics on 8-manifolds, which shows that for generic choices as above the
curvature tensor has range equal to the full ρ′(h) at the generic point, with the Ambrose-
Singer holonomy Theorem, which implies that such a metric will have its holonomy equal
to the full group of dimension 30.

In particular, it follows that, up to diffeomorphism, the local solutions to this problem
depend on one arbitrary function of 10 variables. It has to be remarked, though, that such
a solution is not, in general, Ricci flat, in contrast to the case where a (10, 1) metric has a
non-null parallel spinor field.

Note, by the way, that the 4-form Φ will not generally be closed, let alone parallel.
However, the 5-form dx3∧Φ will be closed and parallel. The other non-trivial parallel forms
are the 1-form dx3, the 2-form dx2∧dx3, and the 6-, 9-, and 10-forms that are the duals of
these.
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