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All answers must be reasonably simplified.
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the end of this packet; scratch work will NOT be graded.
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1. (20 pts) We consider here the function f : R2 → R1 given by f(x, y) = x3y − y2, the point
~a = (1, 1), and the vector ~v = (4, 5).

(a) At ~a, find the unit vector that points in the direction of fastest increase of the function f .

(b) At ~a, what is the directional derivative of f in the direction of ~v?

(c) If ~x is at ~a moving with velocity ~v, what is the rate of change of f(~x) with respect to time?
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2. (20 pts)

(a) Find an antigradient for the vector field ~F (x, y) = (3, 2y).

(b) The vector field ~G(x, y, z) = (3, 1, 2) = δ~v represents the flow of a fluid with density δ and
velocity ~v. The surface S is a rectangle in the plane 2x+ 3y− 4z with area 8. Compute the
flow rate dm/dt of this fluid through the surface S.
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3. (20 pts) The region R in the xy-plane is bounded by y = −1, x = π/2, and the part of y = sinx
with −π/2 ≤ x ≤ π/2. Mass is distributed across R with density δ(x, y) = 2 + 2y. Compute the
total mass in R.
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4. (20 pts) In this question we consider the function f(x, y, z) = cos8(x) − cos8(2 − x), the solid
region D that is bounded by the surfaces x = y2 + z2 and x = 2− y2− z2, and the triple integral
I =

∫∫∫
D
f(x, y, z) dV .

(a) Write I as an iterated integral in rectangular coordinates. (Do NOT evaluate the iterated
integral here.)

(b) Compute the value of I using a (valid and complete!) symmetry argument.
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5. (20 pts) The region Q in the xy-plane is the quarter disk defined by (x − 3)2 + (y − 4)2 ≤ 4,
x ≥ 3, and y ≤ 4; and we have f(x, y) = x. In this question we will be interested in the value of∫∫

Q
f(x, y) dx dy.

(a) Use the change of variables function (x, y) = g(u, v) = (u, v)+(3, 4) to rewrite
∫∫

Q
f(x, y) dx dy

as a new integral
∫∫

D
h(u, v) du dv. (That is, identify explicitly the region D in the uv-plane,

and the function h(u, v).)

(b) Compute the value of the above integral using any methods from this course.
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